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The Bicycle Network Improvement Problem
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Abstract: Using a bicycle for commuting is still uncommon in US cities, although it brings many benefits to both the cyclists and to society
as a whole. Cycling has the potential to reduce traffic congestion and emissions, increase mobility, and improve public health. To convince
people to commute by bike, the infrastructure plays an important role because safety is one of the primary concerns of potential cyclists. This
paper presents a method to find the best way to improve the safety of a bicycle network for a given budget and maximize the number of riders
that could now choose bicycles for their commuting needs. This optimization problem is formalized as the bicycle network improvement
problem (BNIP): it selects which roads to improve for a set of traveler origin—destination pairs, taking both safety and travel distance into
account. The BNIP is modeled as a mixed-integer linear program (MIP) that minimizes a piecewise linear penalty function of route deviations
of travelers. The MIP is solved using Benders decomposition to scale to large instances. The paper also presents an in-depth case study for the
Midtown area in Atlanta, GA, using actual transportation data. The results show that Benders decomposition algorithm allows for solving
realistic problem instances and that the network improvements may significantly increase the share of bicycles as the commuting mode.
Multiple practical aspects are considered as well, including sequential road improvements, uneven improvement costs, and how to include

additional data. DOI: 10.1061/JTEPBS.0000742. © 2022 American Society of Civil Engineers.
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Introduction

Using a bicycle for transportation is still uncommon in US cities,
but it brings many benefits to both the cyclists and to society as
a whole (Handy et al. 2014). Cycling has the potential to reduce
traffic congestion and emissions, increase mobility, and improve
public health (Northrop 2011). Additionally, bikes can serve as an
economical alternative to a car, especially for short trips (Ryu et al.
2018). Promoting cycling as an alternative to using a car has been
studied extensively, with systematic reviews provided by Ogilvie
et al. (2004) and Yang et al. (2010).

The benefits of cycling as a mode of transportation have also
been recognized by policy makers, and more and more cities have
started promoting bicycle usage. An example in Atlanta is the
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Walk, Bike, Thrive! plan, which provides a recipe for a more
walkable and bikable city (Atlanta Regional Commission 2020).
Plans like these can play a key role in promoting bicycle usage,
as was found by Lanzendorf and Busch-Geertsema (2014), who
studied four German cities. Effective cycling policy may also
benefit modes that are similar to bicycles, such as e-scooters and
e-bikes. E-scooters and e-bikes both substitute for travel by car
(Kroesen 2017; Gossling 2020), and evidence from the Netherlands
suggests that car owners are more willing to use e-bikes than
conventional bikes (Kroesen 2017).

The low number of cyclists is not due to a lack of interest. Dill
and McNeil (2016) questioned 3,000 people in the 50 largest US
metropolitan areas about their attitudes towards cycling, and they
found that 56% of the population can be classified as interested but
concerned. One of the key barriers for this group is traffic safety:
although most feel comfortable riding on a protected bike lane that
is part of a major street, only 16% would be somewhat comfortable
without the bike lane. The willingness to cycle is also demonstrated
by the surge in US bike ridership during the COVID-19 pandemic
(Bryant 2020). Many people have started cycling for recreation, but
also as a socially distant alternative to public transit. Policy makers
hope that this trend continues and that these new cyclists start com-
muting by bike when they return to work after the pandemic.

To convince people to commute by bike, the infrastructure plays
an important role. The study by Dill and Carr (2003) suggested that,
if a city provides the proper infrastructure for cycling, commuters are
likely to make use of it. Hull and O’Holleran (2014) studied selected
European cities to identify whether good design can encourage
cycling. They found that the design may indeed have a significant
impact on mode choice and that safety, comfort, and continuity were
the most influential factors. Although safety is especially important
to cyclists, safety improvements in the last decades have often fo-
cused on motorized vehicles, as highlighted by CIVITAS Initiative
(2020) for the European Union. This situation can be improved by
investing in bicycle infrastructure, which additionally improves
safety for noncycling road users (Walljasper 2016).
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Another important factor, which was not explicitly considered in
the previous study, is the proximity: the distance between the origin
and destination of the trip (Saelens et al. 2003). Heinen et al. (2010)
studied the determinants for bicycle commuting and found that the
built environment affects traveler choice, among which distance is
probably the most important factor. A study for British cities and
towns by Cervero et al. (2019) suggested that safe connections that
are as close to the shortest path as possible are most likely to
encourage bicycle commuting. Ospina et al. (2020) arrived at a sim-
ilar conclusion for Medellin city in Colombia: cyclists are willing to
take a detour to ride on dedicated lanes, but only up to an extent.
Wang et al. (2021) found that similar factors affect the choice to use
shared bicycles.

This paper presents optimization models to find the best way to
improve an existing bicycle network for a given budget. Policy
makers may use this method to guide their investments in cycling
infrastructure and to obtain the advantages that come with it. The
optimization problem is formalized as the bicycle network im-
provement problem (BNIP) that selects how best to spend a given
budget for road improvement in order to minimize the total penalty
for a set of traveler origin—destination pairs (ODs). The penalties
are calculated from the distance deviations from travelers’ shortest
paths. The optimization problem uses piecewise linear penalty
functions, which are flexible enough to model different human
preferences and numerous other factors.

This paper modeled the BNIP as a mixed-integer linear program
(MIP), which was solved through Benders decomposition. The
optimization method was then used to conduct an in-depth case
study for the Midtown area in Atlanta, GA, based on real transpor-
tation data. As the 10th most congested city in the US, and with
a bicycle infrastructure scored in the red category (Reed 2019),
Atlanta makes for an interesting test case. Compared to the city
of Delft in the Netherlands, cyclists in Atlanta are over two times
more likely (78% versus 32%) to report poor road infrastructure
as a cause of stress (Gadsby et al. 2021). Furthermore, a survey
by the Atlanta Department of City Planning mentions that 70%
of people in the city currently feel uncomfortable riding a bike
(Bottoms 2018).

The paper contains four main contributions:

1. From a methodology standpoint, the paper formalizes the bi-
cycle network improvement problem and shows that Benders
decomposition is able to find optimal improvement plans for
realistic instances, whereas the problem is computationally
intractable for state-of-the-art black-box solvers.

2. From a case study standpoint, the paper shows that even small
investments in infrastructure may allow many additional com-
muters to travel safely by bike.

3. At the intersection of methodology and case study, the paper
demonstrates the value of optimization, which produces im-
provement plans that are significantly better than those obtained
by heuristics. Moreover, and this is important for cities, the
paper compares the benefits of optimal long-term plans with
those obtained by upgrading the infrastructure incrementally.
The paper shows that, in the case study, successive improve-
ments using the BNIP lead to a network that is very close to
optimal in the long term, which simplifies decision-making.

4. From a computational perspective, this paper compares a wide
range of different penalty functions and reports consistent
results across all of them.

The rest of the paper is organized as follows. The paper first
reviews prior work. Then, the BNIP is formally introduced, fol-
lowed by describing a Benders decomposition algorithm to solve
it. Then, the paper discusses the current conditions in Midtown
Atlanta, which also motivates this research. Next, the Midtown
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Atlanta case study is presented, and the following section explores
the use of different penalty functions. This paper also discusses
how the methods in this paper can be adapted for future work,
and then ends with the conclusion and possible directions for future
research.

Review of Prior Work

There are several studies that consider bicycle infrastructure im-
provement planning. Duthie and Unnikrishnan (2014) presented
a network design formulation to connect all OD pairs with a lower
bound on the bicycle level of service and an upper bound on the
maximum travel length expressed as a function of the correspond-
ing shortest path. Their objective and the BNIP objective are similar
in that they limit the worst service for travelers with respect to the
travel distances. There is, however, a fundamental difference be-
tween their work and the BNIP: the former mandates that all ODs
admit feasible bicycle travel regardless of the improvement budget,
where the BNIP has a limited budget to serve as many OD pairs as
possible. The benefit of having a finite budget is that it abides by
realistic scenarios, such as urban planners developing new bicycle
infrastructure. Indeed, budgets for infrastructure improvements are
almost always limited, and their effective use is a key aspect for
decision-makers.

Mauttone et al. (2017) introduced another MIP model to min-
imize the overall travel cost of riders, where the cost primarily
consisted of travel distances. This formulation included a budget
constraint but still required all OD pairs to be served. This was
made possible by allowing for bicycle trips that were not 100%
safe and penalizing the usage of unsafe roads. Because safety is
the primary concern for many potential cyclists, as argued in the
introduction, the BNIP does not sacrifice the requirement for com-
pletely safe bicycle routes; rather it imposes limits on maximum
travel distances to model realistic trips and provides an outside
option for those riders who do not have a realistic safe route. It
is also important to mention that Mauttone et al. (2017) only
provided suboptimal solutions in reasonable time for their real-life
case studies, and they used a heuristic to report results for large
cases with more accuracy. The Benders decomposition algorithm
proposed in this paper, however, solves the large Atlanta instances
to optimality.

Liu et al. (2020) presented a MIP model to plan bicycle net-
works using objectives for coverage and continuity of travels.
They assumed that the MIP model receives bicycle paths as input.
Their adjacency—continuity utility function, which incorporated
both safety and trip length, selected one of the precalculated paths
to route each traveler while maximizing the utility of the network.
Their work is similar to the BNIP because it improves both safety
and proximity of the trips. The BNIP, however, has full flexibility in
routing cyclists; this simplifies modeling for decision-makers and
may produce solutions of higher quality because the optimization
can choose the best routes for riders and is not constrained by pre-
selected paths.

In addition to the previous works, a number of studies incorpo-
rate more diverse characteristics in the problem modeling. For
example, Lin and Yu (2013), Lin and Liao (2016), and Zhu and
Zhu (2020) used multiobjective optimization to include various
objectives such as road connections, accessibility, and service level.
These formulations can model more customized bicycle experien-
ces but become more computationally intensive. The BNIP is a
single-objective optimization problem with an objective that is
flexible enough to model realistic applications. Most importantly,
the proposed Benders decomposition algorithm is capable of
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performing studies in much larger instances and areas than those
multiobjective programs. It is an interesting avenue for future re-
search to study if the techniques in this paper can be generalized to
multiple objectives.

A number of other studies have relied on heuristic methods in-
stead of mathematical optimization techniques. Bao et al. (2017)
used large-scale bicycle trajectory data to define a flexible objective
that combined the population covered by the network and the
distances of their trajectories. It was solved with greedy-based heu-
ristics that included steps to initiate road segments, expand the net-
work, and terminate the improvement when the budget limit is met.
Also, Hsu and Lin (2011) used the shortest paths of ODs like those
of Duthie and Unnikrishnan (2014) to evaluate the quality of the
network. They used a variety of algorithms, some of which were
greedy, to compare the shortest paths to bicycle routes. Orozco et al.
(2020) introduced two greedy algorithms to connect bicycle net-
work components. They also compared the shortest paths to bicycle
routes, but as opposed to the BNIP, they did not optimize any
objective.

Bicycle Network Improvement Problem

This section introduces the bicycle network improvement problem
to find the best improvement of an existing bicycle network within
a given budget. Let the current road network be represented by a
directed graph G = (V, W) with nodes V and arcs W. The arcs are
referred to as ways. Ways are partitioned into two distinct sets
W = W U W', with W the set of ways that are safe for cy-
cling, and W' the set of unsafe ways. Every way (i, j) € W has a
length, given by the parameter d;; > 0. The total length of ways that
can be improved is limited by the budget B. The set of sample trips
that travel through the network is given by 7. Each OD k € T con-
sists of an origin 0, € V and a destination d;, € V. Additionally, let
s, 2 0 be the length of the (possibly unsafe) shortest path between
oy and dy, and let p; > 1 be the number of travelers completing this
travel.

Modeling Bicycle Travel

Safety is critical to increase cyclist participation. Accordingly, two
characteristics are taken into account when modeling bicycle trips.
First, potential cyclists would like completely safe routes from
origin to destination: if the safety requirement is met for a certain
OD, then the route is labeled as safe. If the network cannot pro-
vide a safe route, the BNIP assumes that the potential rider will
select another mode of transportation, which is referred to as the
outside option. Second, the travel should not take much longer
than the alternative transportation mode, such as driving by car.
Hence, if there is no safe path of length smaller than L, (a param-
eter for rider k), the BNIP assumes that rider k£ will not travel by
bicycle.

To model the appeal of short bicycle trips for rider k, the BNIP
uses a penalty function f) that is nondecreasing and satisfies
fx(0) = 0. For an OD pair k and a path of length /;, the penalty
is given by f(uy) where uy, = I, — s, denotes the deviation from
the (potentially unsafe) shortest path. If rider k cannot be provided a
short trip, the outside option is used, and the penalty is the objective
function is defined as L; — s; (an optimization model that purely
maximizes the number of cyclists is also presented in the paper).
As such, this trip is assigned the same penalty as a path of length
L,, which is the tipping point at which the rider starts preferring the
outside option.
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Mathematical Formulation

The mathematical model for the BNIP is depicted as follows:

min > pefi(ue) (la)
keT

st. Y dyy;<B (1b)
(if)ew’

l—z ifi=o

-y K={zgy-1 ifi=d VkeTieV
(j.i)ew 0

>
(i)ew

otherwise

(1c)
X<y VKeT (ij)eW (1d)
MkZ Z d,'jxf‘(j‘i‘Lka_sk VkeT (16)

(i,j)EW
yj€B VY (i,j)eW (1f)
XeB VkeT.(ij)ew (1g)
Z€B VkeT (1h)

For every way (i, j) € W', variable y;; € B indicates whether
(i, j) is upgraded to safe conditions (value one) or remains un-
changed (value zero). The shortest safe path for every OD is
determined by variables x and z: variable xfj € B represents
whether trip k € T uses way (i, j). Variable z; € B indicates
whether trip k € T uses the outside option. As explained in the pre-
vious section, the variable u, represents the argument of the penalty
function for every trip k € T.

The objective in Eq. (1a) minimizes the total penalty of the
riders > . crpifi(ui) on the network. The penalties for cyclists
are computed in terms of the deviation from the shortest-path dis-
tance. Riders who are not cycling or have safe paths that are too
long incur the penalty associated with a path of length [, = L, as
will become clear shortly. The constraint in Eq. (1) limits the
budget for improving the network. The constraints in Eq. (1¢) im-
pose the path conservation conditions: each OD has either a unit
flow (if z; = 0), in which case the x-variable describes the path,
or uses the outside option (z; = 1). The constraints in Eq. (1d)
make sure that unsafe ways can only be used if upgraded. The con-
straints in Eq. (1e) compute the deviation. If the shortest path for
trip k exceeds length L, it is optimal to set z; to 1; that is, trip k
uses the outside option. Infeasible trips are also assigned the penalty
associated with a path of length L;. Constraints in Eqs. (1)—(1h)
capture the integrality conditions.

Solution Methods for the BNIP

Solving the BNIP directly with a MIP solver, such as CPLEX or
Gurobi, is computationally intractable for the scale of the case
study considered in this paper. Observe however that, for a given
design (i.e., when the y-variables are fixed), the formulation re-
duces to a set of independent minimum-cost flow problems, one
for each OD. By total unimodularity, this implies that the integrality
conditions in Eqs. (1g) and (1%) can be relaxed. This makes the
problem ideally suited for Benders decomposition (Benders 1962).
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Benders Decomposition

The Benders decomposition for the BNIP has a master problem to
determine how to upgrade the network and subproblems to return
the safe path or the outside option for each rider for a given up-
graded network. The master problem generates a network design,
and the subproblems find the paths in the proposed network for
each trip. The optimal solutions of the subproblems are then used
to derive the Benders cuts that are added to the master problem.
These two steps are iterated until no more violated Benders cuts
are generated by the subproblems, at which point the network is
optimal.

The Benders Master Problem The master problem is presented
as follows:

minzpkfk(”k) (2a)
keT
s.t. (1b), (1f),
w29 (y) VkeT (2b)

Its objective given in Eq. (2a) is the same objective as in Eq. (1).
The constraints in Eqgs. (10) and (1f) ensure that the network im-
provement plan is within budget and valid. When solving the
master problem, the constraints in Eq. (2b), where ®;(y) is the min-
imum objective value for trip k£ given a design y, are replaced by the
Benders cuts generated from the solutions to the subproblems.

Benders Subproblem The subproblem for a trip k generates
Benders cuts for each network produced by the master problem.
The z-variables (the outside option) ensure complete recourse: the
subproblem is feasible for any network because ODs can always
use the outside option. This implies that the optimality cuts in
[Eq. (2b)] are sufficient and no feasibility cuts are needed.

For a given network, the subproblem decomposes into many
independent subproblems, and the subproblem of the BNIP for
each k € T is defined as follows:

Py (y) =min Z dijxf; + Lizi — Sk,
(i.j)ew

s.t. (1c), (1d), (1g), (1h) (3)

Because the subproblem is a standard minimum-cost flow prob-
lem, it is totally unimodular and can be solved by linear program-
ming. This implies that the Benders subproblem can be solved by
optimizing many small and independent linear programs, which is
the prime reason the Benders decomposition provides a significant
computational benefit.

With dual variables A and i associated with the constraints in
Egs. (1¢) and (1d), respectively, the dual subproblem is defined as
follows:

Oy(y) =max N5, =N — > pby— s, (4a)

(i)W’
st. M =X <dy V(i) € Wi (4b)
X=X =y <dy Y (1)) €W (4¢)
N =N <L (4d)

MeR Viev (4e)

pi=0 ¥ (i.j)ew (4f)
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The Benders cuts are obtained as

we = N, — Ny — Z JLiyij — Sk (5)

(i.j)ew’

where X and [ are optimal dual values for the corresponding trips.
Pareto-Optimal Cuts It is well known that network flow prob-
lems often suffer from dual degeneracy. Magnanti and Wong
(1981) addressed this issue by generating Pareto-optimal cuts that
are not dominated by any other Benders cut. This requires solving a
Pareto subproblem that uses the result from the standard subpro-
blem. Pareto-optimal cuts need a core point, that is, a point in the
relative interior of the feasible region of the master variables. For
the BNIP, the following point y’ is selected as the core point

I . B ..
v = Emm{—|W'|d,»j , 1} v (i,j) e W' (6)

The point y’ is in the relative interior because y;; € (0,1) and
D pew dipyi; £ hew dij[B/(2|W'|d;;)] = (B/2) < B, which
strictly satisfies the budget constraint in Eq. (1b).

Using the core point y’, the Pareto subproblem is defined as
follows:

max /\’;k — )\f,k — Z Mf,y,!j — Sk (7a)
(i.j)ew’
s.t. )\];k — /\zk - Z uf-‘jy,-j — s = Py(y), (7b)
(i.j)ew’
(4b) — (4f)

To use Pareto-optimal cuts, each Benders iteration is changed as
follows. For every trip, the value of ®,(y) is calculated by solving
the subproblem. Next, the Pareto subproblem is solved to produce
new optimal dual values X and f, and those variables are used to
generate cuts as in Eq. (5).

Two-Phase Benders McDaniel and Devine (1977) observe that
it is not necessary to solve the master problem to optimality at
every iteration to obtain valid Benders cuts. They propose to apply
Benders decomposition in two phases. In phase one, Benders de-
composition is applied to the relaxed master problem. For the
BNIP, this amounts to relaxing the integrality conditions in Eq. (1f)
in the master problem and solving the subproblems for fractional
values of y. In phase two, the integrality conditions are reinstated,
and the Benders decomposition algorithm continues with the origi-
nal master problem. The Benders cuts that are added in phase one
are maintained, which ensures a better starting lower bound, which
often improves the overall performance of the algorithm. Moving
from phase one to phase two is possible at any point, and this paper
switches over when the relaxed problem is solved, or when a time
limit is reached.

Greedy Heuristic

This section also introduces a greedy heuristic that only relies on
the ability to solve shortest paths to demonstrate the value of opti-
mization. The heuristic greedily computes the next way to upgrade
in the network. For every OD, it computes a shortest path that
minimizes the total distance on unsafe roads, that is, the cost for
traveling safe or unsafe way (i, j) € W is O or d,;, respectively.
Only the shortest paths with a distance of at most L, are considered
for all k € T. The relative importance of an unsafe way is deter-
mined by counting the total number of riders whose shortest paths
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include this way. The greedy heuristic selects the most “important”
way to upgrade and repeats the process until the budget is
exhausted.

Cycling in Midtown Atlanta

This paper was motivated by improving bicycle travel conditions in
the Midtown area in Atlanta, GA. Midtown is a neighborhood of
Atlanta that consists of a commercial core and a residential neigh-
borhood. The Midtown core is characterized by high-rise buildings
and functions as a major employment center, including offices of
large companies such as NCR, Google, Equifax, and Honeywell.
The commercial core has around 28k residents, and 70k people per
day travel to the area for work (Midtown Alliance 2019). The res-
idential neighborhood is to the east of the business district and
mainly consists of single-family residences. Every workday, a large
number of commuters drive to Midtown and cause a significant
amount of traffic congestion. To better this situation, the case study
aimed at improving the bicycle infrastructure to provide these com-
muters safe and short cycling trips as an alternative to commuting
by car.

Travel Data

To gain insight into current commuting behaviors, this paper used
travel data provided by the Atlanta Regional Commission (ARC).
The ARC used an activity-based model, calibrated with survey data
collected in 2007-2011, to simulate trips at the individual level
(Atlanta Regional Commission 2017). The data revealed a low
share of cyclists among commuters to Midtown (about 0.7%) but
also a significant potential for improvement: many of the trips to
Midtown are short, and over 70% of commutes are completed by
people driving alone, who could potentially switch to cycling if the
infrastructure were improved.

The case study focused on one particularly interesting group: the
group of white-collar workers coming in from Virginia-Highland,
an affluent neighborhood immediately to the east of Midtown. Fig. 1
shows the daily number of trips originating from Virginia-Highland
for both cyclists and solo drivers, categorized by trip purpose. Many
trips are taken by white-collar commuters, but, despite the close
proximity of Virginia-Highland to Midtown, the number of cyclists
is less than 5% that of the number of solo drivers.

To study how improving the bicycle network affects travelers, a
sample of travels was generated to represent the white-collar com-
muters from Virginia-Highland. The eight traffic analysis zones
(TAZs) that cover Virginia-Highland were selected as the departure
zones, and 72 TAZs that cover Midtown and Virginia-Highland

work_whitecollar ?
work_services
work_retailandfood
work_health f—
work_bluecollar
& atwork_business
g. atwork_eat [—
& atwork_maint —
g eatout
,_E university
social {—
shopping f
school_drive Taveler
escort_kids = Driving Alone
othmaint | - - i -‘_B'k'ng
0 100 00 300 400
Count
Fig. 1. Travelers from Virginia-Highland to Midtown.
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Fig. 2. Origins and destinations of 1,039 sample OD pairs. (Data from
Atlanta Regional Commission 2017, © OpenStreetMap contributors.)

were chosen as the destination zones. Destinations in Virginia-
Highland were included because these trips may benefit from the
same infrastructure improvements. The ARC provided travel data
between the TAZs, and to obtain a more realistic sample, the origins
and destinations were randomly assigned to the centers of the
smaller census blocks, weighted by the population counts. Five
samples were generated for every OD pair, and samples that did
not connect to the existent road network were filtered out. The re-
sult is a set of 1,039 representative trips, covering 110 origins and
256 destinations, presented by Fig. 2. The origins on the map are in
Virginia-Highland in the east, and most destinations are in the
business area in the west. The center of the map shows Piedmont
Park, with the Midtown residential neighborhood to its south.

Current Bicycle Network

The current road network in the case study area was retrieved from
OpenStreetMap (OpenStreetMap 2020). The network consisted
of 5,815 nodes and 11,329 directed ways. The ways made up
667 roads and had a total length of 339 km (212 mi). The roads
were classified into three types: roads with a dedicated bike lane,
residential roads, and unsafe roads, where dedicated and residential
roads were assumed to be safe for cyclists.

Fig. 3 shows the current bicycle network in the case study re-
gion, where there are three types of roads: dedicated, unsafe, and
residential. Unsafe roads do not have the proper infrastructure for
cyclists and were the target for conversion to dedicated roads.
There were 450 bicycle-unsafe roads, with a total length of 180 km
(113 mi). The conditions on the unsafe roads were assumed to be
similar throughout the area, and the cost to realize dedicated bike
lanes was assumed to be the same per unit length everywhere.
Among the sampled ODs, only 170 trips (16%) had bicycle-safe
routes that are completely safe. Moreover, many of them required
a significant detour to complete those safe paths. For example, only
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Fig. 3. Current bicycle network. (©OpenStreetMap contributors.)

89 ODs (9%) had access to a bicycle path with a detour of less than
10% of the shortest path.

Experimental Results

This section presents experimental results on the case study. It first
shows that the Benders decomposition algorithm allows for solving
the BNIP to optimality for realistic instances that cover a whole
neighborhood. It also analyzes the effectiveness of the optimal im-
provement plans to provide safe and short cycling trips to commuters
and demonstrates the benefits of optimization by comparing the op-
timal improvement plans to those obtained with the greedy heuristic.

Experimental Settings

The experimental results use the case study region, the existing net-
work, and the 1,039 sample trips from the previous section. For
each sample, the number of passengers p, = 1 because the case
study targeted solo drivers who commute to their workplaces.
The budget B ranged from 6.4 km (4 mi) up to 44.8 km
(28 mi) of improvements, in 6.4 km (4 mi) increments. For the case
study, it is useful to consider network improvements on the road
level, rather than on the way level, and to improve both directions
at the same time. These solutions are more practical to implement
and also contribute to safe return trips. In total, 450 roads were
identified. To improve all ways of a road at the same time, addi-
tional constraints were added to the BNIP: if (i,j) € W’ and
(p.q) € W' were part of the same road, then y;; = y,,,. These con-
straints were added to the Benders master problem without chang-
ing the main steps of the algorithm. For the greedy heuristic, the
relative importance of a road was calculated by averaging the usage
counts for the individual ways.

The core experimental results used a linear penalty function
with f(uy) = uy; that is, the objective maximized the number of
cyclists and minimized the overall average distance over the
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shortest paths, and the resulting BNIP was denoted as BNIP-L.
Section “Alternative Penalty Functions” provides experiments with
alternative penalty functions, and the “Discussion” section discusses
how additional data can be included in the model to complement
travel distance. The threshold L, was computed in terms of a
deviation factor R > 1, thatis, L, = s;R. The full Benders algorithm
was implemented in Python, and Gurobi 9.0.2 was used to solve the
master problem and subproblems. All computations were performed
with an Intel Core 17-8565U CPU and 16 GB of RAM.

Efficiency of the Benders Algorithm

This section compares three Benders decomposition algorithms:
the traditional Benders decomposition algorithm (TB), the algo-
rithm that uses Magnanti and Wong Pareto-optimal optimal cuts
(MW), and the algorithm that uses both Pareto-optimal cuts and
the McDaniel and Devine two-phase strategy (MW-McD). In the
MW-McD experiments, phase one was limited to 20 min.

Fig. 4 reports the experimental results for various budgets and
R = 1.2. The left charts show the optimality gap, that is, the differ-
ence between the best feasible solution and the lower bound over
time, and the right charts show how the upper and lower bounds
approach each other until the optimal solution is found. The three
rows correspond to the TB, MW, and MW-McD strategy, respec-
tively. In the MW-McD case, the vertical dashed line indicates the
switch from phase one to phase two.

The first observation is that TB was significantly outperformed
by MW and MW-McD. When fractional cuts were added prior to
integral cuts (MW-McD), the initial optimality gap was much
smaller and the number of iterations was significantly reduced
compared to MW. Table 1 compares MW and MW-McD on the
number of Benders iterations to reach optimality. MW solved each
BNIP instance optimally in under 150 min, whereas MW-McD
only took around an hour per instance. Fig. 5 verifies that the good
performance of MW-McD was consistent for different budgets B
and different distance thresholds R. Overall, the solution time of
at most five hours was short for creating an improvement plan for
months or years into the future. This contrasts with the MIP model,
which could not solve the instances in reasonable time. The diffi-
culty came from the size of the problem: the network consisted of
|W| = 11,329 arcs, and the BNIP introduced a flow variable for
each arc and for each of the 1,039 ODs, resulting in a MIP with
over 10 million variables. The Benders decomposition exploited the
problem structure and solved a significantly smaller problem for
each OD at every step.

Impact of Bicycle Network Improvement Plans

It is interesting to study the type of improvements produced by op-
timal plans. Figs. 21-24 in the Appendix present the full series of
improvement plans for the different settings of B and R; this section
discusses the most important observations. The experiments were
conducted with R = 1.1, 1.2, 1.3, and 1.5.

Plan Characteristics: The bicycle network improvement plans
showed several notable trends. First, the problem searched for sub-
regions that could be served with minimum improvements by maxi-
mizing the usage of preexisting infrastructure. The left map of
Fig. 6 shows the optimal plan when only 6.4 km (4 mi) of road
can be improved. Two crucial improvements (circled) were se-
lected: a short segment that links the park and Virginia-Highland
to the east and roads northwest of the park that connect to the busi-
ness area. These connections are essential to allow commuters from
Virginia-Highland to commute to their workplaces.
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Fig. 4. The performance of Benders decomposition algorithms (R = 1.2).

Table 1. Number of iterations for MW and MW-McD (fractional and
integral cuts)

Iteration count

A second observation is that the optimal plans did not waste
budget to improve multiple roads that serve a similar purpose. For
instance, consider the short discontinuity of safe roads between
the park and the roundabout located north of the park. The optimi-

B (km) MW MW-McD zation algorithm did not remove this discontinuity because the
6.4 24 6+10=16 short segment connecting Virginia-Highland to the park serves
12.8 28 6+10=16 the same purpose. Plans generated by the greedy heuristic (Fig. 25
19.2 16 5+5=10 in the Appendix) did not recognize this. This is the value of opti-
25.6 20 4+13=17 mization that provides globally optimal plans. This will have the
32.0 17 6+7=13 consequence that some trips are better served on the heuristic
38.4 13 6+4=10 network, but overall the optimization will produce significantly
44.8 19 6+8=14
better plans.
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Fig. 6. Optimal improvement plans (R = 1.1): (a) B = 6.4 km (4 mi); and (b) B = 19.2 km (12 mi). (©OpenStreetMap contributors.)
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A third observation concerns increased budgets: here the BNIP
prioritized the improvement of the backbone of the network rather
than providing sporadic developments. The 19.2-km (12-mi) map
in Fig. 6 shows the investments on Monroe Drive (a hook-like
vertical road) to provide safe north—south travel and on missing
segments of Ponce De Leon Avenue (a horizontal road located
southwest) that may connect all southern demands.

The order in which the backbone is constructed depends on the
deviation factor. For instance, Fig. 10, which includes 38.4 km
(24 mi) of improvement plans with four deviation factors, shows
that North Highland Avenue (a vertical road located east) was not
improved for R = 1.5, unlike three other plans of shorter distance
thresholds. That is because the longer deviation allowance allowed
service to origins located on the east with residential roads despite
causing some detours and improved more roads in the western busi-
ness area to complete more last miles of the ODs.

Although the order of its construction may be different, the
backbone of the network converged as B increased. To follow
up on the previous case, the 44.8-km (28-mi) plan for R = 1.5
(Fig. 24 in the Appendix) improved North Highland Avenue
and exhibited practically identical road improvements regardless
of different travel length allowance.

Effectiveness: Fig. 7 shows the effectiveness of the optimal im-
provement plans for different parameters. For each R, the per-
centage of potential cyclists grew as the budget and average trip
distance over the shortest paths decreased. Potential cyclists are
those riders with a safe bicycle trip whose length does not exceed
the maximum distance (i.e., L; for trip k). The number of people
who benefit from the improvements was similar for all values of R.
Improving only 6.4 km of bicycle lanes already doubled the amount
of potential cyclists at the minimum. Moreover, the number of
potential cyclists increased almost linearly with the budget, sug-
gesting that, in the case study, further investments in bicycle infra-
structure deliver similar value and keep increasing the number of
potential cyclists with a safe and short route.

Fig. 8 presents an example of how the cycling path can change
as the bicycle network is extended. The corresponding OD had a
shortest path length of 4,250 m (2.64 mi, s;), and the maximum
allowed length for a bicycle safe path was 6,375 m (3.96 mi,
L, = 1.5s;). On the current network, there was no safe bicycle path
that was sufficiently short. However, the OD achieved a safe bi-
cycle path of 6,009 m (3.73 mi, 1.41s;) when B = 12.8 km of
roads were improved. Increasing the budget further to 19.2 km pro-
vided a shorter bicycle path of 4,976 m (3.09 mi, 1.17sy).
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Fig. 7. Effectiveness of the BNIP improvements.
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Fig. 8. Example routes on optimal improvement plans, R = 1.5. (©OpenStreetMap contributors.)
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Benefits of Optimization

This section compares the optimal improvement plans (OPT) to
those obtained with the greedy heuristic (HEU). For instance,
Fig. 9, which includes 38.4 km (24 mi) HEU plans of four
deviation factors, demonstrates that heuristic improvements focus
less on constructing the backbone, compared to Fig. 10, and often
unnecessarily provide multiple connections that serve a similar
purpose. The optimal and heuristic plans were compared on the
percentage of potential cyclists and the average additional trip dis-
tance. An example set of heuristic solutions for R = 1.1 is pre-
sented by Fig. 25 in the Appendix.

Individual Travel Comparison: By definition, a heuristic plan
cannot be better than the optimal plan, but the heuristic may im-
prove some trips more than the optimal plan. For example, Table 2
counts the number of travels with a smaller trip distance when
R = 1.1: it shows that, for all budgets, the optimal plans produced
shorter routes more often than the heuristic.

Fig. 11 shows a single OD that is evaluated both on the heuristic
and optimal plan. The corresponding OD had a shortest path length
of 3,784 m (2.35 mi, s;), and the maximum allowed length for a
bicycle safe path was L; = 1.3s,. The optimal plan provided a short
route of 3,973 m (2.47 mi, 1.05s;) that is below the threshold dis-
tance. The heuristic also produced a safe path; however, the path
length was 5,286 m (3.28 mi, 1.39s;), which exceeds the threshold,
so the heuristic plan still required the outside option to serve the OD.

Potential Cyclists: Fig. 12 compares the heuristic plans and
the optimal plans in terms of the number of potential cyclists.
The results demonstrate that the optimal plans produced significant
benefits in the number of potential cyclists. This is consistent over
all budget values, and the difference may be more than 20%. This is
a compelling demonstration of the value of sophisticated optimiza-
tion for infrastructure improvement.

Average Additional Trip Distance: Fig. 13 compares the aver-
age additional trip distance of the optimal and heuristic plans for
different values of B and R. Again, the optimal plans produced sig-
nificant benefits compared to the heuristics for all budget values.
They paralleled the improvements in potential cyclists and demon-
strated the significant value of optimization for the BNIP.

Fig. 14 shows the distribution of additional trip distances of
safe routes for the optimal and heuristic plans under two example
settings. Among the safe routes, the heuristic plans tended to pro-
duce fewer trips with smaller additional trip distances. In contrast,
the optimization plans, which optimized both the number of poten-
tial cyclists and average additional trip distances, had more trips
with smaller additional trip distances as well as more feasible
bicycle travels.

Sequential Incremental Improvements

In practice, policy makers cannot necessarily predict future availabil-
ity of budget or other resources for the infrastructure development.

R=11

R = Lz . Safe
Improwved
. Lnsafe

Reswdential

)

.

Fig. 9. Heuristic improvement plans, B = 38.4 km (24 mi). (©OpenStreetMap contributors.)
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Fig. 10. Optimal improvement plans, B = 38.4 km (24 mi). (©OpenStreetMap contributors.)

Table 2. Travels with smaller penalties on different improvement plans

Travel count

B (km) OPT map HEU map Equal
6.4 89 43 907
12.8 123 25 891
19.2 142 7 890
25.6 255 54 730
32.0 321 38 680
384 338 65 636
44.8 275 69 695

Therefore, the improvement plans may be prepared over time and not
in advance. Furthermore, there may be an incentive to implement
solutions that are optimal in the short term but may not necessarily
be good in the long run. To investigate the effect of small myopic
improvements, it is interesting to study the cumulative effect of a
succession of individual improvement plans that optimally extend
the bicycle infrastructure by 6.4 km at a time. Fig. 15 presents
one example of these plans, which illustrates how the sequential
approach progressively produced the same overall structure as the
optimal plan using R = 1.1.

Fig. 16 shows that for all R, the additional average trip distances
in the sequential approach were essentially similar to the overall
optimal plans. This is of great practical importance because it
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indicates that incrementally improving the network over time is
practically identical to a strategic planning approach.

Table 3 provides more details on the differences between the
plans. The largest difference of additional trip distances between
an optimal and a myopic plan was only 4,950 m in total, or 5 m
per travel on average. The optimal and myopic plans did not lead to
the same networks, but the difference in penalty was very small,
especially as the network was improved further over time.

Uneven Improvement Costs

Another practical consideration for the BNIP is to consider im-
provement costs that depend on road properties, such as the number
of lanes, pavement type, traffic volume, and so on. Uneven im-
provement costs can be supported easily by replacing the distance
parameters d;; in the budget constraint [Eq. (15)] with some other
cost parameters b;; that combine multiple factors. Calculating the
real cost for each way would take a significant amount of data and
is out of the scope of this paper. However, a sensitivity analysis
based on the road type is provided in this section.

For this analysis, the ways (i, j) € W’ were partitioned into
three distinct sets based on the cycling-condition labels retrieved
from OpenStreetMap (2020). First, any road that had a cycling-
related label, such as “cycleway” or “bicycle”, but was known not
to have a dedicated cycle lane was classified as a bike-friendly road,
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and b;; = (1/2)d;; was used as the weight. The remaining roads
were ranked by the number of lanes and how important the road
was in the local system based on the following labels: motorway,
trunk, primary, secondary, tertiary, residential, and unclassified.
The roads with the first four labels were classified as significant
roads with higher improvement costs b;; = 2d;;, and the others
were set to incur distance values as costs (b;; = d;)).

New improvement plans were prepared using these new costs
for the same budget, under two deviation factors. Figs. 26 and 27
in the Appendix present these results. For the lower budget cases, it
was observed that the algorithm took advantage of cheaper im-
provement costs by adding more lanes near the business area rather
than improving major backbone roads. When the budget was in-
creased, the results eventually converged to include all backbone
roads, and then the maps were essentially identical to the original
solutions. Figs. 17 and 18 further compare the additional average
trip distances and percentage of potential cyclists for improvement
plans designed by distance or road condition. The trends were
very similar, which suggests that the results are robust to uneven
improvement costs.
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Alternative Penalty Functions

The results in the case study were generated with a linear penalty
function, but other choices may lead to different bicycle network
improvement plans. The BNIP supports different penalty functions,
which makes it a flexible tool to use in practice. This section con-
siders two alternative models aimed at minimizing the penalty of
lost travelers and maximizing the number of cyclists, respectively.
The former resulted in a piecewise linear penalty function, and
the latter required a modification of the program formulation.
Additional possibilities are discussed in the next section.

Minimizing the Penalty of Lost Cyclists

This section presents a model that minimized the penalty incurred
by the travelers who chose not to use the improved bicycle network.
Compared to the linear penalty functions, the new model specifi-
cally focused on potential cyclists who were lost to the system
rather than on the average additional trip distance.

The new model assumed that potential cyclists had a probability
to drop out that increased with the deviation u; from the shortest
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Fig. 15. Sequential incremental improvement plans using BNIP-L, R = 1.1. (©OpenStreetMap contributors.)

safe trip. For short deviations u; < 0.2s;, the probability was as-
sumed to be zero, and no penalty was incurred. After that, the drop-
out probability increased linearly until the maximum trip length of
L, = 1.5s; was reached, at which point all travelers chose the out-
side option. The expected penalty for lost travelers at deviation
uy € [0.25y,0.55,] followed from multiplying the dropout penalty
of u, = L; — s, by the probability of dropping out. This results in
the following penalty function:

0 if 1, <025y,
fPw) =35 1 (8)

§uk —gsk if O.ZSk < Uy < O.S.S‘k
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The value of f1 is piecewise linear and convex. The endpoint
fP(0.5s;) = 0.5s; corresponds to a 100% dropout rate and pen-
alty L — s, = 0.5s.

To use f7 in the Benders decomposition algorithm, the master
problem defines continuous v-variables, uses f¥(v;) = v; in the
objective, and includes the following two additional constraints:

w20 YkeT 9)
5 1
Uy Zguk—gsk V kGT (10)
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The optimization with piecewise linear penalty function f¥ is
labeled BNIP-P, and Fig. 28 in the Appendix presents the full series
of the BNIP-P improvement plans.

Improvement Results: The BNIP-P improvement plans were
compared with the BNIP-L plans for R = 1.5, which had equal
travel distance thresholds.

Table 4 summarizes the improvements using each model. The
two penalty functions produced very similar improvement plans;
the percentage of network difference—a sum of percentages of
unique improvement lengths on each improvement plan—shows
that the two plans converged as more budgets were allowed.

The deviation of an individual traveler was shorter for the
BNIP-L, which was anticipated because the BNIP-P assigned an
equal penalty for short routes and focused more on increasing the
probability of bicycle participation. However, the difference in
cyclist percentages between the two optimized networks was very
small. This is an important observation because it shows that the
linear objective did not forfeit the advantage of the piecewise
objective.

Maximizing the Number of Cyclists

Rather than assuming a probabilistic model for cyclists dropping
out, it is also possible to directly maximize the number of potential
cyclists, that is, to maximize the number of ODs with a short and
safe trip or, equivalently, minimize the use of the outside option z;.
The base formulation was modified to accommodate that objective,
labeled BNIP-Z, and the change is as follows:

minzpkzk (11a)
keT

st. Y dyy; <B (11b)
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Table 4. Network improvement comparison of BNIP-P and BNIP-L
(R =1.5)

Average
additional
Network distance (m) Cyclist percentage
B (km) difference (%) BNIP-P BNIP-L BNIP-P (%) BNIP-L (%)
6.4 0 1,105 1,105 29.36 29.36
12.8 4.20 974 970 41.00 40.52
19.2 8.56 972 797 53.90 53.61
25.6 8.66 870 640 65.06 64.10
32.0 3.86 515 494 75.65 73.72
384 3.00 408 394 81.61 80.08
44.8 2.94 672 298 87.68 86.04

Table 3. Strategic planning versus incremental improvements: average additional trip distance (m), R = 1.1

B
Improvement plans 6.4 km 12.8 km 19.2 km 25.6 km 32.0 km 38.4 km 44.8 km
Strategic planning 40.49 65.07 93.90 122.12 148.88 173.10 192.99
Sequential approach 40.49 61.22 89.13 121.54 147.64 171.40 191.56
Difference 0% 5.92% 5.07% 0.48% 0.83% 0.98% 0.74%
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The objective in Eq. (11a) minimizes the use of the outside op-
tion on the network. A binary variable f; is introduced for every
trip k € T to ensure complete recourse, and the f-variables replace
the z-variables in Eq. (11c¢). That is, if no safe bicycle path exists, f
can be set to one instead. The constraint in Eq. (11e) uses the con-
stant M > 0 to ensure that the outside-option variables z; are set
correctly: preferably, the outside option is not used (z; = 0), which
implies that f;, = 0 and that the x-variables represent a safe and
short bicycle path. If the outside option is used, setting f; = 1 re-
moves this requirement. As a result, BNIP-Z indeed minimizes the
use of the outside option. Finally, the constraint in Eq. (11/) defines
the newly added variables.

It is notable that the Benders decomposition solution method
can be used for the BNIP-Z. The modified master problem for
the BNIP-Z is as follows:

min (11a),
s.t. (11b), (11f), (11i),
U (y) <Ly +Mze VkeT (12)
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The modified subproblem for the BNIP-Z is as follows:

W (y) = min Z dijxf; + (L + M) fr
(i.j)ew

s.t. (11¢), (11d), (11g), (11h) (13)

The new function calculating the shortest path, ¥, (y), is intro-
duced by the modified subproblem. The master problem now in-
cludes the z-variables for the minimization of the objective in
Eq. (11a). The subproblem can be solved by linear programming
because it is a standard minimum-cost flow problem. Pareto-
optimal cuts and two-phase Benders can be used in the same way
as before, and both y-variables and z-variables may be relaxed in
phase one.

Fig. 29 in the Appendix presents the full series of the BNIP-Z
improvement plans using L; = 1.5s;.

Improvement Results: Due to their objectives, the BNIP-L pro-
duced shorter deviations in average in its routes, and the BNIP-Z
collected more potential cyclists. Nevertheless, Fig. 19 illustrates
that the difference of performances between the two programs is
inconsequential. This shows that the use of the linear penalty,
which examines both travel safety and proximity, did not sacrifice
cyclists count to provide shorter deviation for riders.

Efficiency of Alternative Models

To evaluate the methodological efficiency of the three BNIP for-
mulations, the optimality gap and the upper and lower bounds
of the Benders solutions were compared over time. Using algorithm
MW-McD, the BNIP-Z had the fastest computation times in many
cases, as shown in Fig. 20. The BNIP-L also exhibited fast conver-
gence to a small optimality gap for most cases. This is noteworthy
because BNIP-L considers both traveler safety and deviation.

All three formulations reached optimality within a reasonable
time, and they are shown to produce equally attractive improve-
ment plans. Recall the BNIP-Z disregards travel distances, and
the BNIP-P has a piecewise linear objective that is harder to inter-
pret. The linear objective of the BNIP-L reports the quality of the
network in distance values, allowing for a more direct and mean-
ingful evaluation of the network.
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Fig. 19. Performances of the BNIP-L and BNIP-Z.
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Fig. 20. Benders decomposition efficiency of the BNIP with different objectives, L, = 1.5s;.

Discussion

The models in this paper focus on safety and travel distance, which
are among the most important determinants for bicycle commuting
(Heinen et al. 2010; Cervero et al. 2019; Ospina et al. 2020). The
case study is based on realistic data, and the conclusions are robust
under uneven improvement costs and alternative penalty functions.
This section discusses how the models can be extended to accom-
modate additional data through alternative penalty functions, cost
structures, and choice models.

Penalty Functions: The BNIP defined a term p;f;(u;) in
Eq. (1a) for every trip k € T. The parameter p; models the number

© ASCE

04022095-16

of travelers completing this travel, but it can be used more generally
to model any nonnegative trip weights. This allows policy makers
to assign more weight to certain areas or certain subsets of the pop-
ulation. From a model perspective, the only real requirement on the
penalty function is that f, is nondecreasing [the requirement
f%(0) = 0 is not restrictive]. The penalty function is trip specific,
which means that external data (e.g., census data) can be used to
help shape this function.

From a computational perspective, the methods in this paper
are expected to be effective for two general classes of penalty
functions. The first class is that of convex penalty functions, which
includes both BNIP-L (linear) and BNIP-P (piecewise linear).
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Linear and quadratic penalty functions can be handled directly by
modern solvers (as for BNIP-L), and piecewise-linear functions
can be modeled with additional variables and constraints [similar
to Egs. (9) and (10) for BNIP-P]. General convex functions can
be handled with a classical cutting plane method (Kelley 1960).
The second class is that of MIP representable functions, that is,
functions that can be modeled with mixed continuous and integer
variables and additional constraints. BNIP-Z falls in this class be-
cause it uses binary variables z to indicate whether a traveler cycles.
Modeling details are discussed by Croxton et al. (2003). Alternative
penalty functions only affect how the master problem is solved, and
the overall method stays the same. As such, similar computational
performance is expected when the number of additional variables
and constraints is small.

Cost Structures: The BNIP includes two types of costs: the path
length [, of trip k € T, and the cost d;; for improving way
(i, j) € W'. Both are currently based on travel distance, but they
can be used to reflect any combination of attributes.

Path length can be replaced by a more general path cost. The
path cost ¢ is defined as the sum of a trip-specific constant oy
and trip-specific cost parameters cf‘j >0 for every way (i,j) €
W on the path. The cost per way may combine any number of prop-
erties, including traffic stress, road gradient, activity density, mean
rainfall, and even trip-specific sociodemographic attributes. Many
of these attributes are discussed by Cervero et al. (2019). The maxi-
mum acceptable length L, is replaced by the maximum accep-
table cost C, accordingly. Formulation is updated by replacing
Eq. (le) by

up > Zc{»‘jxfj—}—Ckzk—}—oek VkeT (14)
(i.j)ew

The original model reappears when the cost is distance
(cf-‘j = d;;, C; = Ly), and the constant oy = —s is used to calculate
the deviation from the shortest path. Switching from path length to
path cost makes the model more expressive and allows for includ-
ing additional data without affecting the solution method.

A similar argument can be made for the cost of improving ways.
The distance d;; in the budget constraint in Eq. (1) may be re-
placed by a general budget cost, as is done in the section “Uneven
Improvement Costs” to account for different road types. Further-
more, additional constraints may be added without affecting the
solution method. For example, it can be enforced that the budget
be spread out evenly over different areas.

Choice Models: This paper uses a simple choice model based on
distance: if path length [, < L, then trip k € T is completed by
cycling, and if [, > L, the outside option is used. Based on the
previous discussion, a more expressive choice model is also sup-
ported: if cost ¢;, < Cy, then trip k € T is completed by cycling, and
the outside option is used if ¢, > C;.

More generally, the methods in this paper support any classifier
that predicts cycling when ¢; < C; for some cut-point C; and no
cycling otherwise. This includes logit and machine learning models
(Zhao et al. 2019). For example, the logistic regression model
(Kleinbaum and Klein 2010) is given by

1
T4 e

m(cr) (15)
where 7(c;) = probability of using the outside option. Fitting the
model amounts to combining the different attributes into a cost ¢,
that best explains traveler behavior. The model predicts cycling
when the probability of using the outside option is low, that is,
m(c;) <TI for some value II. This probability cut-point can be
translated into a cut-point for the traveler cost
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II
W(Ck)SH<:> ckSlog<ﬁ> :Ck (16)

This results in a setting that is directly supported by the methods
in this paper.

Conclusion

Cycling brings many benefits to both the cyclists and society as a
whole, and the emergence of e-bikes may make this transportation
mode attractive for a larger population segment. However, safety is
a critical issue faced by commuters when deciding their transpor-
tation mode. This paper considered the problem of improving the
bicycle infrastructure to allow more people to travel by bicycle.
This optimization problem was formalized as the bicycle network
improvement problem. As opposed to the literature, the BNIP sup-
ports a budget for improvement, provides completely safe routes,
allows full flexibility in routing cyclists, and has an exact solution
approach. Solving the BNIP directly is computationally intractable
for large instances, so the paper presented a Benders decomposition
to remedy this issue by exploiting the problem structure and con-
sidering each rider independently in the subproblems.

The paper demonstrated the effectiveness of the method on an
in-depth case study for Midtown Atlanta, based on real transpor-
tation data of white-collar commuters from Virginia-Highland. The
computational results show that the proposed Benders decomposi-
tion algorithm with Pareto-optimal cuts and two-phase Benders
was very effective in solving the realistic case study instances.
Further analysis revealed that the optimal bicycle network improve-
ment plans for Midtown Atlanta were very powerful in providing
access to safe and short bicycle routes. The increase in the number
of travelers with access to a safe and short trip was almost linear in
the available budget, indicating that more investments in bicycle
infrastructure may keep attracting additional commuters to switch
to cycling. The Benders decomposition method was compared to a
greedy heuristic and shown to lead to significantly better plans,
which shows the value of optimization to produce mathematically
optimal solutions.

The paper also considered practical aspects of the bicycle
network extension. It showed that repeated myopic extensions of
the network led to an almost optimal result in the long run. This is
of great practical importance because it indicates that myopically
improving the network over time is practically identical to in-
advance planning. It was shown that changing the road improvement
costs to take the type of road into account did not affect the main
conclusions of this paper. In addition, the paper demonstrated that
the results are robust with respect to different objective functions.

Future work may incorporate additional data and more compli-
cated choice models into the BNIP. The “Discussion” section pro-
vides guidance on how this may be done. Another interesting
direction is to investigate how to extend bicycle network improve-
ment to multimodal transit systems, where the goal is not neces-
sarily to offer a bicycle path for the complete trip but to let
bicycles play a role in addressing the ubiquitous first and last mile
problem.

Appendix. Bicycle Network Improvement Plans

This section presents all bicycle network improvement plans created
for the case study. In Figs. 21-29, existing bicycle infrastructure is
indicated by blue roads, and light-blue roads indicate the proposed
expansion. Red roads remain unsafe, and gray roads are residential
roads that are safe to use without improvement.
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Fig. 21. Optimal bicycle network improvement plans using BNIP-L, R = 1.1. (©OpenStreetMap contributors.)
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Fig. 22. Optimal bicycle network improvement plans using BNIP-L, R = 1.2. (©OpenStreetMap contributors.)
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Fig. 23. Optimal bicycle network improvement plans using BNIP-L, R = 1.3. (©OpenStreetMap contributors.)
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Fig. 24. Optimal bicycle network improvement plans using BNIP-L, R = 1.5. (©OpenStreetMap contributors.)
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Fig. 25. Heuristic bicycle network improvement plans L, = 1.1s;. (©OpenStreetMap contributors.)
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Fig. 26. Optimal bicycle network improvement plans using BNIP-L and uneven improvement costs, R = 1.2. (©OpenStreetMap contributors.)
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Fig. 27. Optimal bicycle network improvement plans using BNIP-L and uneven improvement costs, R = 1.5. (©OpenStreetMap contributors.)
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Fig. 28. Optimal bicycle network improvement plans using BNIP-P. (©OpenStreetMap contributors.)
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