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A B S T R A C T   

Many U.S. cities are investing in making a more bike-friendly environment in hopes of reducing auto- 
dependency. Studies have shown that improving bike lanes enhance bike users’ perceived safety and comfort, 
but whether it also shifts mode choice towards more biking remains largely unaddressed. This study proposes a 
model to examine whether and how bike lanes shift the mode choice towards various non-automobile modes. 
With the help of more than 110,000 sample trips from travel surveys, hypothetical bike routes are obtained to 
assess each route’s level of bike-friendliness. A mode choice model with four modes – walking, biking, driving, 
and transit – is developed using this data. The model results suggest that bike lanes increase not only biking trips 
but also walking and public transit trips. However, the impact on biking trips alone was marginal, suggesting a 
more comprehensive strategy may be necessary to make a significant transition towards non-auto trips. When the 
data are segmented by poverty level, model results show that the mode choice of the low-income population is as 
significantly affected by bike lanes as the general population. In addition, the study results indicate that frequent 
transit users can greatly benefit from bike infrastructure since walking, biking, and public transit trips are closely 
associated with each other.   

1. Introduction 

There has been a concerted effort in the U.S. to advance active 
mobility, particularly biking, to reduce car-dependence for short- 
distance trips, which also benefits the environment, public health, and 
the economy. Accordingly, a considerable amount of local, state, and 
federal budgets is being put into bike infrastructure development. For 
example, Atlanta, one of the most auto-dependent cities in the U.S., has 
invested multi-million dollars in extending the protected bike lane 
network in recent years (City of Atlanta, 2018, 2019). Besides the city 
government, many other organizations — such as Georgia DOT, Renew 
Atlanta (Atlanta transportation SPLOST), the PATH foundation, and the 
Atlanta BeltLine — are making significant investments in bike lanes. 

A better bike lane network is expected to enhance the safety and 
comfort of bike users and encourage more people to ride a bike. Many 
earlier studies have examined people’s stated preferences and supported 
the hypothesis that a better bike lane network is associated with more 
willingness to ride a bike (Akar & Clifton, 2009; Aldred & Dales, 2017; 
Clark, Mokhtarian, Circella & Watkins, 2019; Dill & Voros, 2007; Gar-
rard, Rose & Lo, 2008; Moudon et al., 2005). However, we know far less 

about whether better bike lanes have influenced people’s actual travel 
behavior and increased the number of bike users (Aziz et al., 2018; 
Buehler & Pucher, 2012; Dill & Voros, 2007; Krizek, Barnes & Thomp-
son, 2009; Moudon et al., 2005; NACTO, 2016; Pedroso, Angriman, 
Bellows & Taylor, 2016; Schoner & Levinson, 2014; Zahabi, Chang, 
Miranda-Moreno & Patterson, 2016). Most previous studies have used 
cross-sectional analyses to show correlations between biking and bike 
lanes but cannot guarantee the direction of causality. For example, do 
people ride a bike more because there are bike lanes in their neighbor-
hood? or does the city build more bike lanes in a neighborhood where 
people already choose to ride more? 

Bike lanes not only support bike users and, perhaps, induce more 
bike riding, but it also accommodates micro-mobility users, which helps 
ensure a safer environment for pedestrians. In addition, a better bike 
lane network can enhance first/last-mile accessibility, thereby facili-
tating transit use. Therefore, bike lanes can play an essential role in 
creating a better environment for alternative modes of transportation 
and reducing car dependency. Improving the bike lanes would have 
greater implications for the underserved population who often have 
fewer transportation options. In other words, bike lanes can contribute 
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to promoting transportation equity depending on how it is implemented. 
However, we find limited research on the relationship between bike 
lanes and mode choice that focus on underserved populations. Our study 
is designed to address this gap. 

This study examines whether and to what extent the bike lanes affect 
mode choice for a short-distance trip at the route level. Route-level mode 
choice research has not been explored simply due to a lack of data: that 
is, without first knowing the routes people have taken, we cannot 
examine the mode choice at the route level. This study takes a novel 
approach in which bike routes are simulated. Based on a path-finding 
algorithm and actual origin-destination (O-D) coordinates from travel 
surveys, this study simulates hundreds of thousands of bike routes. A 
mode choice model then employs the information from the simulated 
routes (e.g., the proportion of bike lanes in a route) to examine how it 
affects mode choices – walking, biking, driving, and public transit. The 
estimation in the model uses two types of samples—a whole sample and 
a low-income sample—so that we can infer the impact of bike lanes on 
the mode choice of the general population as compared to the low- 
income population. Through this analysis, we can have a better pic-
ture of how people’s mode choices might change as they encounter a 
street environment that ensures safety and comfort for non-motorized 
mode users such as pedestrians or cyclists. 

2. Literature review 

Previous studies that examined stated preference surveys have 
shown that the type and quality of bike lanes substantially influence 
people’s perception of biking (Hull & O’Holleran, 2014; Johns, 2012) as 
well as the level of safety (Marshall & Ferenchak, 2019; Pedroso et al., 
2016). For example, a survey conducted by Clark et al. (2019) found that 
people reported higher levels of safety and comfort for biking when 
protected bike lanes and multi-use paths are presented. This research 
also concluded that perceived safety and comfort are significantly 
related to people’s willingness to try. Similarly, a survey conducted at 
the University of Maryland-College Park campus showed that both bike 
users and non-bike users stated that improved bike lanes and trails 
would encourage them to use bikes for commuting to the campus (Akar 
et al., 2008). Studies based on actual biking behavior reinforce those 
findings. Garrard et al. (2008) observed 6589 bike users in Melbourne, 
Australia, and found that there are gender differences in risk aversion by 

noting that female bike users prefer to use bike routes that are well 
separated from motorized traffic. A study based on 4360 bike users in 
London, UK, drew similar conclusions: women and older people are 
more likely to ride on protected bike lanes than on typical roads. In 
addition, people who ride on protected bike lanes are less likely to wear 
helmets, which shows bike lanes increase their perceived level of safety 
(Aldred & Dales, 2017). 

While empirical studies on the impact of bike infrastructure on bike 
mode choice have been conducted, these are mostly cross-sectional 
studies that are limited in showing the direction of causality. The au-
thors found only one study (Xu & Chow, 2020) that conducted a lon-
gitudinal analysis of the impact of bike lanes on the daily trip count of 
shared bikes in New York City. The study found that improving bike 
lanes has a meaningful impact on bike ridership within Manhattan but it 
was not as effective outside of the area. 

Most of the cross-sectional studies undertaken at the city level noted 
a significantly positive correlation between bike lanes and bike ridership 
(Buehler & Pucher, 2012; NACTO, 2016; Pedroso et al., 2016; Schoner & 
Levinson, 2014). For example, a study based on 90 large U.S. cities 
showed a positive correlation between bike lanes/paths and bike 
commuting rates (Buehler & Pucher, 2012). On the other hand, Krizek 
et al. (2009) found that the relationship between proximity to bike fa-
cilities and bike mode share was not significant in Minneapolis, Min-
nesota. It is difficult to tease out from these city-level studies whether a 
better bike lane network leads to higher bike mode share or whether 
cities spend more on bike lanes and paths as the number of bike users 
surges. 

Results from individual-level studies are also divergent. According to 
Aziz et al. (2018), who analyzed travel survey data from five counties 
around New York City, a 1% increase in bike lanes (in the home and 
work census tracts) increases the probability of bike commuting by 
1.13%. A similar study based on travel survey data from Montreal, 
Canada, also identified a significant association between bike lane 
accessibility from home and bike mode choice (Zahabi et al., 2016). 
Also, a study based on households in Bogota, Colombia, found that the 
proximity from home to bike lanes has a positive but marginal impact on 
the probability of making bike trips (Rodriguez-Valencia, Rosas-Sa-
tizábal, Gordo & Ochoa, 2019). In contrast, Moudon et al. (2005) and 
Dill and Voros (2007) drew an opposite conclusion: the presence/den-
sity of bike lanes near the home location was not associated with bike 
ridership. These individual-level studies are more able to examine the 
direction of causality when compared to city-level studies. However, 
these studies include independent variables, such as proximity to or 
density of bike infrastructure near the respondents’ home location, 
which may not reflect people’s trip-level experience of the bike infra-
structure. This study addresses these limitations by quantifying bike 
lanes along individual routes (from an origin to a destination) to capture 
the trip-level experience more accurately. 

3. Conceptual framework 

3.1. Obtaining bike route information through network simulation 

This project seeks to answer the following research question: Does 
the availability of bike lanes affect mode choice? To answer this ques-
tion, we design a model in which an individual’s mode choice is largely 
affected by characteristics of 1) the person, 2) the trip, and 3) the route. 
The personal characteristics include a traveler’s socio-demographic 

Table 1 
Variables for the Hierarchical Cluster Analysis.  

Variable Data Source 

Population Density Census Bureau & Bureau of 
Economic Analysis Employment Density 

Ratio of Employment to Population 
Per Capita Personal Income 
Commute Mode Share by Private Vehicle / Public 

Transit / Bike / Walk 
Census Bureau 

Mean Commuting Time 
Density of Highway / Primary & Secondary Road / 

Local Road / Subway Line / Bike Lane 
OpenStreetMap 

Fuel Price American Automobile 
Association 

Bikeability Score PeopleforBikes 
5-year Average Temperature National Centers for 

Environmental Information 5-year Total Precipitation 
Terrain Google Maps Elevation API  

Table 2 
Traffic Stress in terms of MRS.  

Number of Lanes 2 2 2–3 4–5 2–3 6+ 4–5 6+ 2–3 4–5 6+

Speed Limit 25 30 25 25 30 25 30 30 35+ 35+ 35+
Traffic Stress (in MRS) 10% 15% 20% 35% 40% 67% 70% 80% 100% 120% 140% 

Note: Data are from Lowry et al., 2016. 
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conditions such as age, gender, race, income level, or physical ability. 
The trip characteristics are about a specific trip such as purpose, dis-
tance, cost, date and time, and weather. The route characteristics can be 
considered as a part of trip characteristics, but it is more associated with 
conditions along a particular route such as the level of congestion, speed 
limit, quality of sidewalks, the presence of bike lanes, slope, and aes-
thetics of the surrounding environment. While previous studies have 
only focused on the first two, route characteristics are also fundamental 
factors that affect an individual’s travel behavior. Particularly for active 
transportation modes, travelers are much more sensitive to the condition 
along the routes. 

The primary reason that route characteristics have not been 
considered in previous studies is that data on actual routes selected are 
rarely available. In addition, analyzing the impact of bike lanes on mode 
choice requires not just bike routes for bike users but also for other mode 
users. Our approach, therefore, is to ‘simulate’ a bike travel route for 
every trip using the O-D coordinates, regardless of the respondents’ 
actual modes. Through the simulation, we obtain information on the 
‘bike-friendliness’ of the hypothetical route. This approach is based on 
counterfactual thinking that estimates what route would be chosen if the 
respondent had taken a bike for the trip. The bike-friendliness infor-
mation includes the following three variables: Proportion of Bike Lanes, 
Average Traffic Stress, and Average Slope. The next section discusses how 
the simulated bike trips are derived and how the bike-friendliness var-
iables are measured. 

3.2. Selection of the study areas 

This study employs individual trips in travel surveys as observations 
for estimating a mode-choice model. Building a discrete choice model 
with modes of transportation including bike and public transit requires a 
significantly large sample size because trips made by either of the two 
modes are relatively rare. However, the travel survey data in our initial 
area of interest, Atlanta, Georgia, does not consist of a sizable sample, 
which necessitated securing more trip samples. Therefore, we included 
additional travel survey data from two other cities: Chicago, Illinois, and 
the Twin Cities (Minneapolis + St. Paul), Minnesota. The two cities are 
chosen since (1) they are closest to Atlanta in terms of demographic, 
economic, transportation, and environmental characteristics according 
to a hierarchical cluster analysis (described later) and (2) have recently 
completed a region-wide travel survey with O-D coordinates and were 

willing to share this data. 

3.3. Modeling mode choices 

To quantify the impact of improving bike lanes on each mode of 
transportation, the mode choice model includes information about bike- 
friendliness among other explanatory variables. The model includes four 
modes—walking, biking, driving, and public transit—among which 
driving is the base category. Therefore, the significance of the bike- 
friendliness variables as well as the other covariates show the likeli-
hood of choosing walking, biking, and public transit compared to 
driving. The model will be estimated using two types of samples: a 
complete sample and a separate sample of individuals with low income. 
The two model estimation results will provide insights into how the 
bike-friendliness variables affect the mode choice of the general popu-
lation and the low-income population in particular. 

4. Methods and data 

4.1. Hierarchical cluster analysis 

This study uses hierarchical cluster analysis to select cities that have 
similar characteristics to Atlanta. The hierarchical clustering algorithm 
first calculates the distance between data points. The dataset is 
normalized so that each variable is equally considered in calculating the 
distance. Euclidean distance is used for this analysis. From this distance 
matrix, the algorithm builds a hierarchy of clusters. There are multiple 
clustering methods available at this step and this study uses the com-
plete linkage method. Complete linkage is one of the agglomerative 
clustering schemes that iteratively combine two clusters until all the 
inputs become a single cluster. At each step, the two clusters with the 
shortest distance are combined, where the complete linkage method 
defines the shortest distance based on the two most distant elements. 
This method is known to be more robust when the data has outliers. 
Compared to non-hierarchical cluster analysis, hierarchical clustering 
has the advantage that the number of clusters need not be assigned a 
priori. In addition, the dendrogram derived from this analysis allows us 
to visually check the distance between observations and determine how 
the sequence of cluster fusion has taken place. 

The unit of analysis for the clustering method is the county. To 
include only counties with similar contexts to Atlanta (Fulton County) in 
the analysis, we first selected all U.S. Counties that meet the following 
three criteria: 1) its county seat is the principal city within a Metro-
politan Statistical Area, 2) it has a population of more than 400,000, and 
3) it has a metro/light rail system. These criteria resulted in 28 counties, 
which were clustered based on the variables listed in Table 1. Among 
them, the density-related variables were computed by using the ur-
banized area as the denominator. For the ‘bikeability score’, we used 
Peopleforbikes’ Bicycle Network Analysis score which measures acces-
sibility via a low-stress bike network. ‘Terrain’ represents how flat an 
urbanized area is; a value of 0 means the area is completely flat. It is 
calculated as the average standard deviation of elevations (extracted at 
intervals of 500×500 feet) in each neighborhood (3 × 3 mile area). In 
other words, it is a measure of the average elevation change that occurs 
when a person makes a short-distance trip. 

4.2. Bike route simulation 

In defining an optimal bike route, this study assumes that bike users 
seek a route with the lowest overall stress, where the stress is induced by 
1) the biking distance, 2) the traffic, and 3) the slope. The stress from 
each of the three factors would vary by individual – some people may 
want to take the shortest route, while others prefer a safer, flatter, but 
longer route. Since we cannot personalize those preferences by the 
sampled individuals, this study is based on reasonable logic that esti-
mates how much stress the general population would feel from biking 

Table 3 
Model Specification and Data Source.  

Category Variable Data Source 

Dependent variable Mode choice (Walking / Biking / 
Transit / Driving) 

Travel Surveys 

Trip Characteristics Travel Time Google 
Directions API 

Distance to the Nearest Subway 
Station (mile) 

– 

Weekend/Weekday Travel Surveys 
Feels-like Temperature at 
Departure Time 

Visual Crossing 
API 

Weather of the Day 
Purpose Travel Surveys 
Intra-city Trip – 
Region (Atlanta / Chicago / the 
Twin Cities) 

– 

Socio-demographic 
Characteristics 

Age Travel Surveys 
Gender 
Race 
Disability 
Driver’s License 
Household Income 
Frequent Transit User 

Bike-friendliness of the 
route 

Average Traffic Stress (%) Network 
Simulation Proportion of Bike Lanes (%) 

Average Slope (%)  
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distance relative to traffic or slope. We borrow insights from Hood, Sall 
and Charlton (2011) and Broach, Dill and Gliebe (2012) that quantified 
the factors that affect biking stress in terms of the concept of the mar-
ginal rate of substitution (MRS). In a later study, Lowry, Furth and 
Hadden-Loh (2016) leveraged the findings from the two studies and 
summarized the stress values in MRS based on the number of lanes, 
speed limit, slope, and the presence of dedicated bike lanes. MRS, in this 
context, can be thought of as the distance bike users are willing to 
substitute with the stress from a given traffic/biking condition. For 
example, 65% of traffic stress in terms of MRS means an individual is 
willing to travel 65% more distance for a zero-traffic-stress detour. In 
other words, MRS quantifies the trade-off between the stress from traf-
fic/slope and the stress from prolonged biking and is, therefore, a good 
proxy to show how much the traffic stress would reduce by imple-
menting bike lanes. 

Table 2, based on the work by Lowry et al. (2016), summarizes traffic 
stress induced by the number of lanes and the speed limit. According to 
this study, striped bike lanes, buffered bike lanes, and protected bike 
lanes can reduce stress by 50%, 65%, and 75%, respectively. Using these 
three factors, it calculates the traffic stress of road segments. For 
example, the traffic stress of a street with four lanes, a 35mph speed 
limit, and protected bike lanes would be: 120% * (100%–75%) = 30%. 

The slope of the route is also a crucial stress factor for biking. The 
stress induced by the slope is as follows: 37% in MRS if the slope is 2–4%; 
120% if the slope is 4–6%; 320% if the slope is greater than 6% (Broach 
et al., 2012). This study measures ‘biking stress’ by adding the stress 
induced by the slope to the ‘traffic stress.’ We made the distinction be-
tween the two to highlight their different uses: the ‘traffic stress’ is used 
in the mode choice model, while ‘biking stress’ is used when simulating 
bike trip routes. 

For the network simulation, we employ the A-star shortest path 
search algorithm. The A-star algorithm is an advanced form of Dijkstra’s 
algorithm. While Dijkstra’s algorithm compares every possible route in 
the network, the A-star algorithm includes a heuristic function that 
guides its search direction. Thus, it requires much less computation than 
Dijkstra’s. The algorithm searches for the shortest path but depending 
on how we define the objective to optimize for each segment (e.g., 
distance to find the shortest path), it can be used for other purposes. To 
find an optimal bike route, the distance of each road segment is 
weighted by the biking stress, so that the algorithm can find the stress- 

minimizing route from the cyclists’ perspective. 
Using the algorithm, we find a bike route for every trip whose travel 

distance is shorter than 3 miles which accounts for 90 percent or more of 
the bike trips and is consistent with existing studies (Bearn, Mingus & 
Watkins, 2018; Martens, 2004). From these trips, we extract the values 
of the bike-friendliness variables for the route. The Proportion of Bike 
Lanes is the ratio of the distance of streets that have a dedicated bike lane 
(protected or not) to the total distance of the route. The Average Traffic 
Stress is the distance-weighted average of the traffic stress – measured by 
the number of vehicular lanes, speed limit, and the presence of dedicated 
bike lanes – at the road segment level. Similarly, the Average Slope is the 
distance-weighted average of the slope of each road segment. Therefore, 
if a route has a high proportion of bike lanes, low average traffic stress, 
and a low average slope, the route can be considered bike-friendly. 

All the data analytical tasks in this study – such as data cleaning and 
manipulation, network simulation, and logistic regressions – were done 
with the programming language R. The A-star search algorithm is 
implemented using an R package called ‘astar-r’. Since the network 
simulation requires a huge amount of computing resources, this study 
utilized a high-performance computing environment (or supercom-
puter) called the PACE cluster at the Georgia Institute of Technology. 
The network simulation took 4,631 CPU hours1 in total. 

4.3. Mode choice model 

Multinomial logistic regression is employed to build a mode choice 
model with the four modes: walking, biking, private vehicle, and public 
transit. Private vehicle is set as a comparative baseline. We can simply 
think of this multinomial logistic regression as three separate binomial 
logistic regression models: walking vs. private vehicle, biking vs. private 
vehicle, and public transit vs. private vehicle. 

As shown in Eqs. (1)–(3), multinomial logistic regression can be 
expressed as a series of linear predictor functions that construct a logit 
value from a set of coefficients that are linearly combined with the in-
dependent variables. That means, from the set of coefficients and given 

Fig. 1. Hierarchical Cluster Analysis Result.  

1 4,631 CPU hours are calculated based on 44 batch jobs, 3,947 seconds per 
job on average, 4 nodes per job, and 24 processors per node: 44 * 3,947/3,600 * 
4 * 24 = 4,631 CPU hours. 
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values, we can calculate a logit for a certain category of observation i, 
from which we can then calculate the probability for i to choose the 
category. 

ln Pr(Yi = walk)
Pr(YI = car) = βwalk ∗ Xi (1)  

ln Pr(Yi = bike)
Pr(Yi = car) = βbike ∗ Xi (2)  

ln Pr(Yi = transit)
Pr(Yi = car) = βtransit ∗ Xi (3) 

Assuming that there are only four modes available, the probability of 
choosing a car equals the probability of not choosing any other three 
modes, which can be expressed as Eq. (4). Therefore, as shown in Eqs. 
(5)–(7), probabilities of either walking, biking, or public transit can be 
calculated using the set of coefficients from each of the three models and 
given values of the explanatory variables. 

Pr(Yi = car) = 1 − Pr(Yi =walk) − Pr(Yi = bike) − Pr(Yi = transit)

= 1
1 + eβwalk∗Xi + eβbike∗Xi + eβtransit∗Xi

(4)  

Pr(Yi =walk) = eβwalk∗Xi

1 + eβwalk∗Xi + eβbike∗Xi + eβtransit∗Xi
(5)  

Pr(Yi = bike) = eβbike∗Xi

1 + eβwalk∗Xi + eβbike∗Xi + eβtransit∗Xi
(6)  

Pr(Yi = transit) = eβtransit∗Xi

1 + eβwalk∗Xi + eβbike∗Xi + eβtransit∗Xi
(7) 

Table 3 shows the list of explanatory variables and their data source. 
All variables except for ‘travel time’ are choice-situation-specific vari-
ables. Those variables provide a set of coefficients which represent an 
impact on the mode shift from a private vehicle to another mode. It 
means those variables return coefficients for the three modes: walking, 
biking, and public transit. On the other hand, ‘travel time’ is an 
alternative-specific variable. This variable can have a different value for 
each alternative. For example, if a certain O-D trip takes 15 min by 
driving, it would take at least 30 min by walking. Unlike the choice- 

situation-specific variables, alternative-specific variables return co-
efficients for all categories. In this case, the coefficient represents the 
variable’s impact on choosing that specific mode. We implemented this 
model specification using the R package ‘mlogit’ (Croissant, 2012). 

The primary data source in this study is household travel surveys in 
each of the three regions: 1) ‘2017 National Household Travel Survey 
(NHTS)’ Georgia add-on survey conducted by the Federal Highway 
Administration, 2) ‘2018–19 My Daily Travel’ survey from Chicago 
Metropolitan Agency for Planning, and 3) ‘2018–19 Travel Behavior 
Inventory’ survey from Metropolitan Council in the Twin Cities. Those 
travel survey data consist of 1) respondents’ personal and household 
information, 2) their trip information in a day by each purpose and 
mode, and 3) O-D information of each trip at the coordinates level.2 The 
O-D coordinates are used for the network simulation. Data for most 
covariates—such as trip purpose and traveler’s age, gender, race, 
disability, and income—are from travel surveys. 

Data for constructing the network such as streets, bike lanes, and 
railways are from OpenStreetMap. Since it is crowd-sourced map data, 
we cannot say OpenStreetMap is 100% accurate. Regardless, it provides 
data reliable enough for major cities like Atlanta, Chicago, and the Twin 
Cities. Since the raw data in OpenStreetMap is not in a suitable form for 
network simulation, we converted it into graph data using a Python li-
brary ‘OSMnx’ (Boeing, 2017). The number of lanes which is required to 
calculate traffic stress is also collected from OpenStreetMap. 

Most of the variables describing trip characteristics and socio- 
demographic characteristics are self-explanatory. Table A3 in Appen-
dix shows categories and descriptive statistics for all the variables. 
‘Feels-like temperature at departure time’ and ‘weather of the day’ are 
collected using Visual Crossing Weather API. From their historical 
weather database, we obtained the temperature and weather informa-
tion of each trip at its departing location and time. ‘Intra-city trip’ in-
dicates a trip that has both its origin and destination inside the city 
boundary. ‘Frequent transit user’ is a dummy variable indicating those 

Table 4 
Descriptive Statistics of the Three Study Areas.  

City (County) Atlanta(Fulton 
County) 

Chicago(Cook 
County) 

The Twin Cities 
Minneapolis(Hennepin 
County) 

St. Paul(Ramsey 
County) 

Population 1,063,937 5,150,233 1,265,843 550,321 
Employment 1,201,235 3,600,552 1,204,282 424,967 
Urbanized area (mi2) 424 906 404 428 
Population Density 2,507 5,684 3,137 3,328 
Employment Density 2,830 3,973 2,984 2,570 
Ratio of Employment to Population 1.13 0.7 0.95 0.77 
Per Capita Income ($) 88,832 65,306 76,552 55,583 
Commuting Mode 

Share (%) 
Private Vehicle 78.5 69.1 80.4 83.2 
Public Transit 7.5 19.1 7.1 6.7 
Walking 2.7 4.3 3.5 2.7 
Biking 0.5 1.1 1.7 1 
Other Modes 10.8 6.4 7.3 6.4 

Mean Commuting Time (minute) 28.8 33.4 23.7 24.2  
Infrastructure 

Density 
(mile/urbanized area (mi2)) 

Highway 0.55 0.61 0.95 1.06 
Primary & Secondary Road 1.44 2.47 1.91 1.45 
Residential Road 8.43 10.69 8.97 8.17 
Railway 0.20 0.32 0.09 0.11 
Bike Lane 0.27 0.29 0.59 1.02 

Length of Bike Lanes (mile) 113.7 262.6 238.1 169.4 
Gas Price ($) 2.37 2.76 2.30 2.31 
Bikeability Score 23 37 35 42 
5-year Precipitation (inch) 283 213 168 171 
Average Temperature 63◦F (17 ◦C) 51◦F (11 ◦C) 46◦F (8 ◦C) 46◦F (8 ◦C) 
Terrain (Std. Dev. in meters) 14.6 4.5 7.6 12.6  

2 In the case of the Twin Cities data, due to concerns about data privacy is-
sues, we received coordinates data that was trimmed to three decimal places. 
That decreases the accuracy of the coordinates approximately by ±160 feet, but 
it is not a serious issue for the purpose of this study. 
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who use public transit at least once a week. Variables in the Bike- 
friendliness category – ‘average traffic stress’, ‘proportion of bike 
lanes’, and ‘average slope’ – are explained in Section 4.2 Bike route 
simulation. 

Note that, since ‘travel time’ is an alternative-specific variable in the 
mode choice model, we need travel time for each mode for every trip 
regardless of its actual mode. Fortunately, Google Directions API pro-
vides route information between locations for all four modes: walking, 
biking, driving, and public transit. Routes using the first three modes are 
available for every trip even though it may seem unfeasible: we do not 
want to walk for 3 h, but at least the route exists. However, a lot of O-Ds 
do not have public transit options: it turned out that 58.5% of trips in the 
sample cannot be made by public transit. Therefore, in the mode choice 
model, 58.5% of the trips have three mode choices and the rest 41.5% 
have four mode choices. Furthermore, since all three cities in this study 
have both bus and train systems, the public transit trip can be made by 
either bus, train, or a combination of the two modes. This study lumped 
the bus trip, train trip, and bus + train trip into a single mode category in 
the mode choice model. 

5. Results 

5.1. Hierarchical cluster analysis 

Fig. 1 shows the dendrogram of the hierarchical clusters. 
We can notice that cities in each cluster are geographically close as 

well. It implies that, from the perspective of the whole nation, 
geographically adjacent cities are likely to share similar properties in 
terms of demography, infrastructure, travel behaviors as well as climate. 
Although how the cities are grouped in the hierarchical clustering is a 
matter of selecting the section from which the tree segment is extracted, 
the dendrogram suggests a generous number of cities that are closest to 
the travel behavior characteristics of Atlanta. There are nine cities: 

Charlotte NC, Pittsburgh PA, Baltimore MD, Chicago MI, St. Paul and 
Minneapolis MN, Buffalo NY, Cleveland OH, and St. Louis MO. Minne-
apolis and St. Paul are considered as one city region: the Twin Cities. 
Based on the availability of travel survey data, we finally selected Chi-
cago and the Twin Cities to include in the model. 

Table 4 summarizes the descriptive statistics of the three study 
areas.3 Although they are clustered in a group, the table demonstrates 
that the three cities are different in many ways. It would be appropriate 
to say that the hierarchical cluster analysis yielded the ‘least dissimilar’ 
cities to Atlanta among the 28 cities. In terms of travel behaviors, Chi-
cago shows a significantly higher commuting mode share of public 
transit while the Twin Cities shows a higher bike mode share in 
commuting. Interestingly, this trend is associated with the infrastructure 
density: Chicago has the highest railway density and the Twin Cities 
have the highest bike lane density. Combining data from the three cities 

Fig. 2. Bike Networks in the Study Areas (clockwise from top-left: Atlanta, Chicago, and the Twin Cities).  

Table 5 
Descriptive Statistics of the Bike-friendliness Variables.  

Category Walking Biking Transit Driving 

Average Traffic Stress Atlanta 24% 20% 34% 34% 
Chicago 16% 14% 18% 15% 
Twin Cities 15% 14% 16% 17% 

Proportion of Bike Lanes Atlanta 15.5% 36.0% 9.5% 21.3% 
Chicago 12.1% 15.8% 9.1% 19.8% 
Twin Cities 18.2% 26.6% 19.5% 22.3% 

Average Slope Atlanta 2.38% 2.35% 2.27% 2.05% 
Chicago 0.81% 0.70% 0.76% 0.72% 
Twin Cities 1.30% 1.26% 1.29% 1.25%  

3 The descriptive statistics of the other six cities in the cluster is in Table A2 in 
Appendix. 
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would increase variations in independent variables. For example, the 
Twin Cities data allow us to model how cold, snowy weather would 
affect mode choices, which would be very difficult to achieve with 
Atlanta samples only. 

Fig. 2 shows the bike networks in the three study areas. The desig-
nated paths described as ’Bike lanes’ (yellow) indicate dedicated bike 
lanes along vehicular streets, including striped bike lanes, buffered bike 
lanes, and protected bike lanes. Most of these are striped lanes.4 The bike 
network of Atlanta mostly consists of dedicated bike lanes and is less 

dense than the other two cities. Chicago has provided dedicated bike 
lanes mostly within the city boundary, while there are many off-street 
trails (green) outside the city. The Twin Cities has the densest bike 
network. Unlike Atlanta and Chicago, the Twin Cities have a high pro-
portion of off-street trails, attributed to the extensive network along the 
Mississippi river. 

5.2. Descriptive statistics 

Based on the three cities’ household travel survey data, we created a 
sample of 118,423 short-distance (less than 3 miles) trips. The sample 
includes trips of the following four modes: walking, biking, driving, and 
public transit. Out of the 118,423 trips, 4,285 trips are from Atlanta, 
38,814 trips are from Chicago, and 75,324 trips are from the Twin Cities. 

Table 6 
Multinomial Logistic Regression Result: Whole Population Model.  

Variable Walking Biking Public Transit Driving 
Coef. p Coef. p Coef. p Coef. p 

Travel Time ¡0.16*** 0.000 ¡0.12*** 0.000 ¡0.07*** 0.000 ¡0.11*** 0.000 
(Intercept) 4.91*** 0.000 2.24*** 0.000 ¡4.72*** 0.000  

*** significant at 
p = 0.001 or better 
** significant at 
p = 0.01 or better 
* significant at 
p = 0.05 or better 
^ significant at 
p = 0.1 or better 

Distance to the Nearest Subway Station ¡0.06*** 0.000 ¡0.20*** 0.000 ¡0.37*** 0.000 
Weekend/Weekday (Weekend = 1) ¡0.23*** 0.000 ¡0.11* 0.050 ¡0.66*** 0.000 
Feels-like Temperature at Departure Time Below 30◦F (~ −1 ◦C) ¡0.64*** 0.000 ¡1.88*** 0.000 0.09 0.224 

30~39◦F (−1~4 ◦C) ¡0.35*** 0.000 ¡1.02*** 0.000 −0.07 0.401 
40~49◦F (4~9 ◦C) ¡0.22*** 0.000 ¡0.66*** 0.000 −0.01 0.880 
50~59◦F (10~15 ◦C) −0.02 0.607 ¡0.25*** 0.000 0.00 0.956 
60~69◦F (16~21 ◦C) (base) 
70~79◦F (21~26 ◦C) 0.02 0.604 0.08 0.166 −0.06 0.407 
80~89◦F (27~32 ◦C) ¡0.12* 0.011 0.10 0.183 0.01 0.941 
Above 90◦F (32 ◦C~) 0.04 0.673 0.39* 0.011 −0.12 0.608 

Weather Sunny 0.16*** 0.000 0.28*** 0.000 0.10 0.122 
Cloudy (base) 
Rain ¡0.16*** 0.000 ¡0.18*** 0.000 0.05 0.367 
Snow ¡0.08* 0.043 ¡0.29* 0.043 0.06 0.457 

Purpose Home ¡1.22*** 0.000 ¡0.65*** 0.000 ¡0.30*** 0.000 
Work ¡0.97*** 0.000 −0.10 0.159 0.39*** 0.000 
School ¡0.82*** 0.000 0.26* 0.017 0.68*** 0.000 
Social/Recreational (base) N = 118,423 

Pseudo-R2 = 0.44 Shopping ¡2.35*** 0.000 ¡1.35*** 0.000 ¡0.89*** 0.000 
Errand ¡2.49*** 0.000 ¡1.49*** 0.000 ¡1.25*** 0.000 
Meal ¡1.66*** 0.000 ¡1.41*** 0.000 ¡0.87*** 0.000 
Drop-off/Pick-up ¡2.52*** 0.000 ¡2.14*** 0.000 ¡1.61*** 0.000 
Other Purposes ¡1.64*** 0.000 ¡0.52*** 0.000 0.44*** 0.000 

Region Atlanta (base) 
Chicago ¡0.18* 0.011 0.34^ 0.057 0.90*** 0.000 
Twin Cities ¡0.21** 0.001 0.34* 0.047 0.45* 0.040 

Intra-city Trip 1.24*** 0.000 1.23*** 0.000 1.31*** 0.000 
Age Under 15 ¡1.48*** 0.000 ¡1.64*** 0.000 ¡1.01*** 0.000 

16–24 0.40*** 0.000 −0.03 0.761 0.29*** 0.000 
25–34 0.29*** 0.000 0.12* 0.023 0.24*** 0.000 
35–44 (base) 
45–54 0.00 0.928 ¡0.51*** 0.000 0.26*** 0.001 
55–64 0.10** 0.006 ¡0.29*** 0.000 0.36*** 0.000 
65 or older 0.01 0.712 ¡0.49*** 0.000 0.42*** 0.000 

Gender (Female = 1) ¡0.13*** 0.000 ¡0.56*** 0.000 ¡0.11** 0.007 
Race Asian ¡0.28*** 0.000 ¡0.34*** 0.000 0.25** 0.005 

Black ¡0.55*** 0.000 ¡0.91*** 0.000 0.49*** 0.000 
Other Races ¡0.24*** 0.000 ¡0.19* 0.026 0.38*** 0.000 
White (base) 

Disability ¡0.39*** 0.000 −0.18 0.180 0.51*** 0.000 
Driver’s License ¡1.55*** 0.000 ¡1.34*** 0.000 ¡2.01*** 0.000 
Household Income Less than $25,000 0.50*** 0.000 1.01*** 0.000 1.04*** 0.000 

$25,000–50,000 0.08* 0.039 0.31*** 0.000 0.34*** 0.000 
$50,000–75,000 (base) 
$75,000–100,000 0.11** 0.001 0.15* 0.040 ¡0.20** 0.009 
$100,000–150,000 0.15*** 0.000 0.21** 0.001 ¡0.30*** 0.000 
$150,000 or more 0.25*** 0.000 0.19** 0.005 ¡0.48*** 0.000 

Frequent Transit User 1.15*** 0.000 1.02*** 0.000 2.74*** 0.000 
Average Traffic Stress ¡1.14*** 0.000 ¡2.62*** 0.000 2.08*** 0.000 
Proportion of Bike Lanes Atlanta 0.47* 0.050 1.87*** 0.000 0.84 0.287 

Chicago 0.74*** 0.000 0.65*** 0.000 1.26*** 0.000 
Twin Cities 0.26*** 0.000 0.53*** 0.000 0.13 0.265 

Average Slope −1.50 0.285 ¡12.1*** 0.000 ¡10.7** 0.008  

4 Among the on-street dedicated bike lanes, striped bike lanes are 93% (in 
length) in Atlanta, 71% in Chicago, 95% in the Twin Cities. Chicago has a 
relatively higher proportion of buffered lanes (17.5%) and protected lanes 
(11.4%) than the other two cities 
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The descriptive statistics of the sample are in Table A3 in the Appendix – 
the variables other than the bike-friendliness variables will not be dis-
cussed here. 

The O-D coordinates of the 118,423 trips were used as inputs for the 
bike route simulation from which we generated the data for the bike- 
friendliness variables. Table 5 shows the descriptive statistics of the 
bike-friendliness variables. The modes in each column indicate the 
actual trip modes in the travel surveys, while the values in each row are 
from the bike route simulation. It means, as for the trips that are not 
made by bike, the values are based on a counterfactual scenario: what if 
the trips were made by bike instead of their actual modes? 

Average traffic stress is lowest in biking routes of actual bike trips 
and highest in biking routes (simulated) of actual driving trips. The gap 
in the traffic stress between modes is large in Atlanta while it does not 
seem significant in the other two cities. In Atlanta and the Twin Cities, 
the proportion of bike lanes is the highest in actual bike trip routes. 
However, in Chicago, simulated bike routes of transit trips show the 
highest proportion of bike lanes. The average slope does not seem to 
have a significant impact on mode choice in any city. 

5.3. Result of mode choice models 

Tables 6 and 7 show the results of the multinomial logistic regression 
of the total population model and the low-income population model 
respectively. McFadden’s R2 values of the two models are 0.44 and 0.45 
respectively, which are reasonably high goodness-of-fit statistics for 
discrete choice models. The available modes in the model are walking, 
biking, public transit, and private vehicle with the private vehicle being 
the base mode. Thus, the coefficients and p-values in each mode column 
represent the variables’ impact on the probability of choosing each 
mode over driving. 

As shown in Table 6, the coefficients for all variables are mostly in 
line with expectations. ‘Travel time’ shows the highest absolute coeffi-
cient value in the walking trip and is followed by bike, drive, and public 
transit trips. This result indicates that travel time is a constraint affecting 
walking trips most and the public transit trip least, which follows our 
expectations. The coefficients of the ‘distance to the nearest subway 
station’ show that increasing distance from a subway station is associ-
ated with a lower chance of choosing walking and bike trips as well as 
transit trips. Coefficients and p-values of the ‘feels-like temperature at 
departure time’ and ‘weather of the day’ imply that those two are crucial 

Table 7 
Multinomial Logistic Regression Result: Low-income Population Model.  

Variable Walking Biking Public Transit Driving 
Coef. p Coef. p Coef. p Coef. p 

Travel Time ¡0.15*** 0.000 ¡0.22*** 0.000 ¡0.08*** 0.000 ¡0.15*** 0.000 
(Intercept) 5.08*** 0.000 5.19*** 0.003 ¡1.96^ 0.094 *** significant at 

p = 0.001 or better 
** significant at 
p = 0.01 or better 
* significant at 
p = 0.05 or better 
^ significant at 
p = 0.1 or better 

Distance to the Nearest Subway Station ¡0.10*** 0.000 ¡0.18*** 0.001 ¡0.23*** 0.000 
Weekend/Weekday (Weekend = 1) ¡0.40*** 0.000 ¡0.37^ 0.051 ¡0.64*** 0.001 
Feels-like Temperature at Departure Time Below 30◦F (~ −1 ◦C) ¡0.46*** 0.000 ¡1.95*** 0.000 0.04 0.827 

30~39◦F (−1~4 ◦C) ¡0.34* 0.019 ¡0.83*** 0.000 0.07 0.725 
40~49◦F (4~9 ◦C) 0.24 0.150 0.00 0.988 0.13 0.544 
50~59◦F (10~15 ◦C) 0.10 0.485 −0.09 0.673 0.21 0.279 
60~69◦F (16~21 ◦C) (base) 
70~79◦F (21~26 ◦C) 0.10 0.417 0.26 0.155 0.07 0.696 
80~89◦F (27~32 ◦C) −0.05 0.758 0.38 0.113 0.45^ 0.074 
Above 90◦F (32 ◦C~) ¡0.92** 0.007 1.33** 0.004 −0.47 0.489 

Weather Sunny 0.61*** 0.000 1.20*** 0.000 0.34* 0.042 
Cloudy (base) 
Rain −0.03 0.774 0.08 0.553 0.04 0.741 
Snow −0.15 0.322 −0.63 0.172 −0.14 0.448 

Purpose Home ¡0.70*** 0.000 ¡0.54** 0.004 −0.27 0.119 
Work ¡0.38* 0.021 0.39 0.102 −0.01 0.955 N = 8077 

Pseudo-R2 = 0.45 School −0.15 0.411 0.74** 0.007 0.61** 0.009 
Social/Recreational  
Shopping ¡1.39*** 0.000 ¡0.99*** 0.000 ¡0.61** 0.002 
Errand ¡1.55*** 0.000 ¡1.59*** 0.000 ¡0.93*** 0.000 
Meal ¡1.49*** 0.000 ¡1.22*** 0.000 ¡0.96*** 0.000 
Drop-off/Pick-up ¡2.06*** 0.000 ¡2.33*** 0.000 ¡1.87*** 0.000 
Other Purposes ¡0.77*** 0.000 0.13 0.614 0.14 0.533 

Region Atlanta (base) 
Chicago ¡0.49* 0.025 1.37^ 0.074 0.63^ 0.098 
Twin Cities ¡0.84*** 0.000 1.06 0.158 0.17 0.631 

Intra-city Trip 0.74*** 0.000 0.88*** 0.000 1.37*** 0.000 
Age Under 15 ¡1.17*** 0.000 ¡2.04*** 0.000 ¡0.87*** 0.000 

16–24 0.42** 0.003 0.52* 0.023 0.47* 0.012 
25–34 0.44*** 0.001 0.10 0.667 0.22 0.245 
35–44 (base) 
45–54 ¡0.31* 0.048 0.27 0.267 0.65*** 0.001 
55–64 0.19 0.196 0.35 0.157 0.58** 0.004 
65 or older ¡0.51*** 0.001 ¡0.72* 0.011 0.68** 0.002 

Gender (Female = 1) −0.05 0.507 ¡0.62*** 0.000 0.00 0.997 
Race Asian 0.17 0.271 −0.37 0.183 0.61** 0.009 

Black ¡0.36*** 0.000 ¡0.89*** 0.000 0.77*** 0.000 
Other Races 0.36** 0.003 −0.34 0.158 0.47** 0.005 
White (base) 

Disability ¡0.35** 0.010 ¡0.42^ 0.078 0.56*** 0.000 
Driver’s License ¡1.73*** 0.000 ¡1.42*** 0.000 ¡2.10*** 0.000 
Frequent Transit User 1.48*** 0.000 1.56*** 0.000 2.50*** 0.000 
Average Traffic Stress ¡0.96* 0.028 ¡5.02*** 0.000 0.66 0.384 
Proportion of Bike Lanes 0.42** 0.008 0.43^ 0.091 0.35 0.113 
Average Slope ¡11.2* 0.043 ¡44.7*** 0.000 ¡37.2*** 0.000  
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conditions for active mobility, particularly for the bike trip, while public 
transit trips are not significantly affected by weather conditions. The 
variable ‘purpose’ also emerges as a significant factor for mode choice: 
people are more likely to walk or bike for social/recreational purpose 
trips while public transit is preferred for commuting. The variable ‘re-
gion’ shows that, compared to Atlanta, people in Chicago and the Twin 
Cities are less likely to walk, but more likely to bike and use public 
transit with Chicago showing a considerably higher coefficient in public 
transit. ‘Intra-city trip’ shows that people who are traveling within a city 
area are much more likely to use a mode other than driving compared to 
those from/to outside the city. 

Socio-demographic variables are all significant and intuitive as well. 
The coefficient of ‘age’ implies that being too young or old can be a 
constraint for bike trips while being old is not negatively affecting 
walking and public transit trips. The variable “gender’ indicates that 
women are less likely to choose any of the three modes, particularly 
biking, than men. In terms of race, compared to White population, 
people of any other race are less likely to walk or bike, but more likely to 
use public transit, which we think is largely influenced by the neigh-
borhood environment. It is not a surprise that White residents are less 
likely to take public transit than any other racial group given that in 
most U.S. cities, neighborhoods close to the city center (where public 
transit is well supplied) have a relatively lower proportion of White 
households compared to racial minorities. In addition, White residents 
are more likely to walk or bike because their neighborhoods have better 
community infrastructure, thereby encouraging more physical activity 
(Kelly, Schootman, Baker, Barnidge & Lemes, 2007). 

Having a disability is correlated negatively with walking trips and 
positively with public transit trips. Having a driver’s license is a strong 
factor for driving trips. Our results also indicate that travelers’ house-
hold income and mode choices are closely related. For public transit 
users, there is a clear negative relationship between income and the 
probability of public transit usage. This finding reinforces earlier studies 
showing that as income rises, individuals are less likely to take public 
transit and more likely to use a private vehicle for travel. For walking 
and biking, on the other hand, the relationship with income is U-shaped: 
individuals with household incomes between $50,000 and $75,000 are 
least likely to walk or bike; this probability increases as the income 
either increases or decreases. Low-income populations are more likely 
captive users of walking/biking modes for transport purposes (Murakami 

& Young, 1999). On the other hand, high-income populations are choice 
users of walking/biking mode and seek out more walkable and bike-able 
neighborhoods with better mental/physical quality of life (Sallis et al., 
2009). The coefficient of ‘frequent transit user’ indicates that people 
who regularly take public transit are more likely to walk and bike. 

Finally, the bike-friendliness variables show interesting results. As 
mentioned earlier, values of the three bike-friendliness variables are 
based on bike route simulations for all O-D pairs of each respondent 
regardless of their actual modes. Therefore, in the case of bike trips, we 
consider their actual routes and values but in the case of non-bike trips, 
they are hypothetical values based on simulations designed to obtain 
counterfactual insights. The variable ‘average traffic stress’ shows that 
when the bike route has high traffic stress, people are less likely to walk 
or bike, but more likely to take public transit. Note that the ‘proportion 
of bike lanes’ is segmented by the three cities to differentiate the impacts 
(and the predictions in the following section) by cities. Although the 
coefficients vary by city, the significant positive values support the hy-
pothesis of this study. That is, the proportion of bike laneswould be 
positively associated with the probability of biking trips as well as 
walking trips and, in some cases, public transit trips. The coefficients for 
walking and biking are significant in all three cities and the coefficients 
for public transit are only significant in Chicago. 

Table 7 presents the result of the model for the low-income popu-
lation segment only. In general, the coefficients suggest that this group 
of the population is not significantly different from the whole popula-
tion. Below we discuss the variables showing noteworthy differences. 

First, ‘feels-like temperature at departure time’ is less significant in 
the low-income population model and their signs are different from the 
same variable in the full-population model. We can surmise that low 
temperatures make people reluctant to walk or bike. In the whole pop-
ulation model, it is statistically significant that people start to walk less 
when the temperature goes below 50◦F (10◦C) and bike less when the 
temperature is below 60◦F (16◦C). However, in the low-income popu-
lation model, the likelihood of walking or riding a bike at a temperature 
between 60◦F (16◦C) and 69◦F (21◦C) does not change statistically 
significantly until it reaches 40◦F (4◦C). In addition, the ‘weather of the 
day’ variable shows a similar difference: while the whole population 
model indicates that people are significantly less likely to walk or bike 
on a rainy/snowy day, the low-income population model says that the 
probability of walking or biking on a rainy/snowy day is not statistically 

Table 8 
Mode Share Prediction by Bike Lane Extension Scenarios: 20% to 80%; whole Sample.  

Mode City Proportion of  
Bike Lanes in the Route 

Non-frequent transit user sample (N = 97,219) Frequent transit user sample (N = 21,204) 
Mode share Δ(20→80%) Mode share Δ(20→80%) 

Walking Atlanta 20% 
80% 

12.9% 
14.6% 

1.7% 34.3% 
35.7% 

1.4% 

Chicago 20% 
80% 

16.1% 
17.3% 

3.7% 45.3% 
47.9% 

2.6% 

Twin Cities 20% 
80% 

18.5% 
19.8% 

1.3% 45.7% 
46.9% 

1.2% 

Biking Atlanta 20% 
80% 

0.7% 
2.0% 

1.3% 2.3% 
5.6% 

3.2% 

Chicago 20% 
80% 

2.0% 
2.5% 

0.5% 5.0% 
5.2% 

0.2% 

Twin Cities 20% 
80% 

2.0% 
0.6% 

0.6% 5.6% 
7.0% 

1.3% 

Public Transit Atlanta 20% 
80% 

0.2% 
0.4% 

0.2% 8.6% 
10.6% 

2.0% 

Chicago 20% 
80% 

2.1% 
3.3% 

1.2% 17.0% 
23.2% 

6.2% 

Twin Cities 20% 
80% 

0.6% 
0.6% 

0.0% 11.1% 
11.2% 

0.1% 

Non-automobile 
(Walk + Bike + Transit) 

Atlanta 20% 
80% 

13.9% 
17.0% 

3.1% 45.2% 
51.8% 

6.6% 

Chicago 20% 
80% 

20.2% 
25.6% 

5.5% 67.3% 
76.4% 

9.1% 

Twin Cities 20% 
80% 

21.0% 
22.9% 

1.9% 62.4% 
65.1% 

2.6%  
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different from that on a cloudy day. Based on those results, we can 
presume that the low-income population is likely to have limited options 
for mode choice or to avoid travel, compared to people in other income 
groups. 

Second, ‘frequent transit user’ in the low-income population model 
shows the same signs as the whole population model, albeit with larger 
coefficients for walking and biking trips. That is, frequent transit users in 
the low-income population are much more likely to have walking or 
biking trips in addition to public transit trips. It implies the possibility 
that they are more open to making multi-modal trips between active 
mobility and public transportation. 

Lastly but most importantly, the bike-friendliness variables in the 
low-income population model show that walking and biking trips are 
significantly affected by the average traffic stress and the proportion of 
bike lanes,5 but public transit trips are not strongly affected by either. 
Also, the influence of the average slope is much greater for all three 
modes compared to the whole population model. 

5.4. Mode share prediction by bike lane investment scenario 

Coefficients from the multinomial logistic regression are based on a 
logit transformation, which makes their interpretability less intuitive 
than, say, ordinary least square regression results. One way to directly 
compare coefficients from the mode choice model is to predict a mode 
share. Here, an average probability of choosing a certain mode can be 
considered equivalent to the mode share. By testing various values of a 
particular variable, we can examine how much impact the variable has 
on the mode share. 

Table 8 and Fig. 3 are the mode share prediction results based on the 
whole population model results shown in Table 6. The predicted mode 

shares in Table 8 are based on a scenario in which the proportion of bike 
lanes increases from 20% (which is close to the current average) to 
80%.6 The non-frequent transit user sample column shows the predic-
tion result based on the 97,219 observations who reported that they use 
transit less than once a week and the frequent transit user sample col-
umn is based on the 21,204 observations who use transit once a week or 
more. The prediction was done separately by each city using the 
segmented coefficients of the variable ‘proportion of bike lanes.’ 

First, the non-frequent transit user sample column shows that, if the 
proportion of bike lanes increases to 80%—in other words, if it quad-
ruples—, the bike mode share would increase by 1.3% in Atlanta, 0.5% 
in Chicago, and 0.6% in the Twin Cities. The increases in the walking 
mode share are also noticeable: 1.7% in Atlanta, 3.7% in Chicago, and 
1.3% in the Twin Cities, which are greater than the increases in the 
biking mode share. The non-automobile mode share in total would in-
crease by 3.1% in Atlanta, 5.5% in Chicago, and 1.9% in the Twin Cities. 

The impact is more evident in the frequent transit user sample whose 
current non-automobile mode share is roughly three times higher than 
the non-frequent transit user sample in all three cities. Accordingly, the 
increase in the mode share is also substantially higher. For example, if 
the proportion of bike lanes quadruples, the bike mode share will in-
crease by 3.2% in Atlanta, 0.2% in Chicago, and 1.3% in the Twin Cities. 
For Atlanta and the Twin Cities, the predicted increase in the bike mode 
share of the frequent transit user sample was more than twice greater 

Fig. 3. Mode Share Prediction by Bike Lane Extension Scenarios: 20%, 40%, 60%, and 80%.  

5 Contrary to the whole sample model, the "Proportion of bike lanes” in the 
low-income sample model was not segmented by the three cities for two rea-
sons: 1) the low-income sample is not large enough to get a significant result 
from the segmented model and 2) the point of running the low-income model is 
to see how the overall trend differs from the whole sample model but not 
necessarily by each city. 

6 It is difficult to estimate how much bike lanes should be provided to achieve 
80% of the proportion of bike lanes on average because it would vary 
depending on how the bike network is designed. One reasonable scenario for 
covering most part of bike trip routes by bike lanes would be to provide all 
secondary and tertiary roads with dedicated bike lanes. Secondary and tertiary 
roads are where most of bike trips are happening and most of dedicated bike 
lanes exist: 76.3% of the total length of dedicated bike lanes in Atlanta, 85.9% 
in Chicago, and 90.9% in the Twin Cities are in either secondary or tertiary 
roads. Thus, it is plausible that, if all the secondary and tertiary roads are 
covered by dedicated bike lanes, the proportion of bike lanes in a route would 
be above 80%. The length of new bike lanes required for that scenario would be 
348 miles in Atlanta, 888 miles in Chicago, and 570 miles in the Twin Cities. 
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than that of the non-frequent transit user sample. The total non- 
automobile mode share would increase by 6.6% in Atlanta, 9.1% in 
Chicago, and 2.6% in the Twin Cities, which is a considerably greater 
increase compared to the non-frequent transit user sample. 

Table 9 is the mode share prediction result based on the low-income 
population model in Table 7. Unlike Table 8, the prediction results in 
Table 9 are not segmented by cities as the variable ‘proportion of bike 
lanes’ in the low-income population model in Table 7 was not 
segmented. A noticeable difference between Table 8 and Table 9 is that 
the low-income sample (either frequent or non-frequent transit users) 
shows much higher current mode shares for all non-automobile modes. 

For example, the bike mode share of non-frequent transit users is 3.4% in 
the low-income sample while it is between 0.7% and 2.0% in the whole 
sample. The difference is more apparent in the frequent transit user 
group: 8.0% in the low-income sample and 2.3 - 5.6% in the whole 
sample. 

In general, the increases in mode shares in the low-income sample 
are similar to those of the whole sample. Bike mode share in the low- 
income sample shows a bit smaller increase than the whole sample: if 
the proportion of bike lanes quadruples, the bike mode share would 
increase by only 0.3% in the low-income, non-frequent transit user 
sample and 0.5% in the low-income, frequent transit user sample. 

The differences in the mode share change between frequent transit 
users and non-frequent transit users in the low-income sample are not as 
great as they are in the whole sample: the non-automobile mode share 
increases by 3.4% in the non-frequent transit user sample and 3.5% in 
the frequent transit user sample. 

Taken together, we can draw three conclusions from these results. 
First, providing more bike lanes does affect the mode choice of all non- 
automobile modes. Second, frequent transit users are considerably more 
affected by bike lane network improvement in terms of higher shares of 
non-automobile modes compared to non-frequent transit users. Third, 
income does not make a significant difference in terms of the impact of 
bike lanes on mode choice; although the low-income population is less 

Table 9 
Mode Share Prediction by Bike Lane Extension Scenarios: 20% to 80%; low-income sample.  

Mode Proportion of Bike Lanes in the Route Low-income, non-frequent transit user sample 
(N = 5580) 

Low-income, frequent transit user sample(N = 2497) 

Mode Share Δ(20→80%) Mode Share Δ(20→80%) 

Walking 20% 24.2% 2.6% 48.2% 1.9% 
80% 26.8% 50.1% 

Biking 20% 3.4% 0.3% 8.0% 0.5% 
80% 3.7% 8.5% 

Public Transit 20% 7.8% 0.5% 24.2% 1.1% 
80% 8.3% 25.3% 

Non-automobile 
(Walk + Bike + Transit) 

20% 35.3% 3.4% 80.5% 3.5% 
80% 38.7% 84.0%  

Table A1 
List of Acronyms.  

Acronym Definition 

DOT Department of transportation 
SPLOST Special-purpose local-option sales tax 
O-D Origin and destination 
MRS Marginal rate of substitution 
LTS Level of traffic stress 
NACTO National association of city transportation officials 
NHTS National household travel survey  

Table A2 
Descriptive Statistics of Six Other Cities that are Similar to Atlanta According to the Cluster Analysis.  

City(County) Charlotte 
(Mecklenburg) 

Baltimore 
(Baltimore) 

Pittsburgh 
(Allegheny) 

St. Louis(St. 
Louis) 

Buffalo 
(Erie) 

Cleveland 
(Cuyahoga) 

Population 1.11 M 1.42 M 1.22 M 1.29 M 0.92 M 1.24 M 
Employment 0.96 M 0.98 M 0.93 M 1.11 M 0.59 M 0.95 M 
Urbanized area (mi2) 468 356 538 447 332 417 
Population Density 2,374 3,991 2,262 2,900 2,763 2,960 
Employment Density 2,045 2,748 1,732 2,486 1,771 2,287 
Employment / Population 0.86 0.69 0.77 0.86 0.64 0.77 
Per Capita Income ($) 62,890 60,730 65,784 69,480 53,498 56,502 
Commuting Mode 

Share (%) 
Private Vehicle 85.8 80.4 79.5 87.4 89.3 87.2 
Public Transit 2.9 9.8 9.5 3.9 3.7 4.6 
Walking 1.9 3.5 4.1 2.2 2.6 2.7 
Biking 0.1 0.4 0.6 0.3 0.4 0.4 
Other Modes 9.3 6.0 6.3 6.3 4.0 5.1 

Mean Commuting Time (minute) 26.4 30.4 27.2 24.4 21.5 24.3 
Infrastructure 

Density 
(mile/urbanized area 
(mi2)) 

Highway 0.61 0.95 0.63 0.77 0.87 0.78 
Primary &  
Secondary 
Road 

1.59 2.55 1.48 1.55 2.08 1.60 

Residential 
Road 

7.76 8.77 8.13 10.47 9.10 7.76 

Railway 0.11 0.25 0.11 0.14 0.04 0.19 
Bike Lane 0.14 0.04 0.06 0.17 0.16 0.08 

Length of Bike Lanes (mile) 63.5 13.5 31.4 76.9 54.9 34.5 
Gas Price ($) 2 2 3 2 2 2 
Bikeability Score 12 24 21 32 6 23 
5-year Precipitation (inch) 245 255 240 219 215 207 
Average Temperature 62◦F 

(17 ◦C) 
56◦F 
(13 ◦C) 

53◦F 
(12 ◦C) 

57◦F 
(14 ◦C) 

49◦F 
(9 ◦C) 

52◦F 
(11 ◦C) 

Terrain (Std. Dev. in meters) 10.4 16.3 32.8 9.2 8.0 16.0  
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sensitive to the effect of the bike lanes on travel mode choices compared 
to the whole population. 

6. Conclusions 

Biking is a notably underutilized mode of transportation in the ma-
jority of U.S. cities. Many local governments are spending a sizeable 
amount of their budget on improving the bike lanes to ensure a safer 
travel environment for both pedestrians and bike users and to offer 
better access to public transit. Ultimately, the bike infrastructure is ex-
pected to reduce car-centricity and bring other benefits to the economy 
and the environment. Yet, previous studies have not adequately assessed 
what impact the bike infrastructure has on mode choice. This study 
sought to understand that relationship at an individual route level based 
on simulated routes. The analysis was conducted for three cit-
ies—Atlanta, Chicago, and the Twin Cities. Altogether 118,423 indi-
vidual trips from the travel surveys of the three cities were used as the 
sample for simulation and the mode choice model. 

The simulation result showed that bike routes of actual bike trips 
have lower average traffic stress and a higher proportion of bike lanes 
compared to simulated bike routes of trips made using other modes. The 
multinomial logistic regression results based on the entire 118,423 trips 
confirmed that all non-automobile modes—walk, bike, and public 
transit—are found to be positively affected by bike-friendliness vari-
ables: the average traffic stress, the proportion of bike lanes, and the 
average slope. Another multinomial regression model based on the low- 
income population sample also demonstrated significant correlations 
between the bike-friendliness of routes and mode choice. 

The analyses gave us three valuable insights. First, investing in bike 
lanes does have a positive impact on promoting non-automobile modes. 
Although the magnitude varies by city, the proportion of bike lanes is 
found to be significantly associated with walking and biking in all three 
cities. If bike lanes cover 80% of an average route, non-automobile mode 
share is predicted to increase by 2–5% for non-frequent transit users. 
The impact on bike trips is, however, relatively small – the predicted 
increase in the bike mode share is 0.5–1.3% for non-frequent transit 

Table A3 
Descriptive Statistics of Variables by Type of Sample and Mode.  

Category Whole sample (N = 118,423) Low-income sample (N = 8,077)   
Walk Bike Transit Drive Walk Bike Transit Drive  

Travel time (minute) 10.8 7.8 16.2 5.6 10.8 6.4 15.9 5.7  
Distance to the nearest subway station (mile) 1.58 1.26 0.66 3.43 1.26 1.12 0.77 2.83  
Weekend/Weekday (% weekday) 84.8% 84.0% 93.3% 82.5% 88.9% 87.6% 93.7% 85.9% 

Feels-like temperature at departure time Below 30◦F (~ −1 ◦C) 26.0% 9.5% 35.2% 38.6% 29.4% 7.7% 36.5% 29.5%  
30~39◦F (−1~4 ◦C) 10.0% 7.0% 12.1% 11.5% 10.8% 9.5% 16.7% 12.2%  
40~49◦F (4~9 ◦C) 7.1% 6.1% 7.2% 6.6% 7.9% 8.2% 7.8% 6.3%  
50~59◦F (10~15 ◦C) 11.9% 13.6% 10.9% 9.7% 13.2% 14.2% 10.6% 11.5%  
60~69◦F (16~21 ◦C) 18.5% 24.4% 14.7% 13.4% 14.2% 20.9% 11.9% 16.1%  
70~79◦F (21~26 ◦C) 20.0% 28.2% 14.3% 14.2% 17.6% 26.3% 11.6% 15.5%  
80~89◦F (27~32 ◦C) 5.4% 9.3% 4.8% 4.8% 6.1% 10.3% 4.7% 6.7%  
Above 90◦F (32 ◦C~) 1.2% 1.9% 0.7% 1.1% 0.8% 2.8% 0.3% 2.0% 

Weather of the day Sunny 17.1% 21.6% 13.5% 13.9% 16.3% 23.5% 10.0% 12.2%  
Cloudy 49.5% 46.2% 49.7% 52.7% 49.4% 42.0% 51.8% 53.4%  
Rainy 26.8% 30.2% 23.6% 27.2% 26.7% 33.0% 28.7% 26.7%  
Snowy 6.6% 2.0% 9.7% 9.7% 7.7% 1.5% 9.5% 7.8% 

Purpose Home 26.8% 34.1% 31.5% 31.4% 30.9% 30.4% 34.0% 31.8%  
Work 14.9% 16.7% 20.8% 8.1% 9.1% 13.7% 7.3% 5.6%  
School 3.7% 4.7% 5.5% 2.7% 8.7% 9.5% 8.6% 2.8%  
Social/recreational 27.3% 18.3% 9.2% 10.0% 13.5% 11.9% 14.9% 17.6%  
Shopping 6.9% 8.2% 10.2% 15.3% 4.4% 2.8% 6.5% 9.4%  
Errand 3.1% 3.7% 3.7% 8.4% 18.4% 16.5% 9.4% 9.6%  
Meal 10.6% 6.0% 6.0% 9.9% 7.5% 5.7% 6.6% 9.1%  
Drop-off/pick-up 2.6% 2.2% 2.3% 9.2% 2.6% 1.0% 2.4% 9.1%  
Other purposes 4.1% 6.0% 10.8% 5.1% 4.8% 8.5% 10.4% 5.1% 

Intra-city trip 71.4% 76.3% 90.6% 26.9% 74.4% 78.9% 89.8% 39.5%  
Age Under 15 9.1% 8.4% 5.0% 13.9% 8.2% 2.8% 6.6% 11.3%  

16–24 8.6% 8.4% 13.9% 5.0% 23.3% 25.8% 20.7% 10.8%  
25–34 28.5% 33.2% 31.5% 16.6% 27.0% 25.0% 17.6% 18.4%  
35–44 19.1% 23.4% 17.3% 21.0% 11.5% 10.8% 11.3% 12.1%  
45–54 12.7% 8.7% 13.2% 14.6% 9.5% 14.4% 18.0% 11.4%  
55–64 13.3% 10.9% 11.8% 15.4% 11.7% 14.2% 14.7% 18.0%  
65 or older 8.7% 7.0% 7.3% 13.5% 8.8% 7.0% 11.2% 18.0% 

Gender (% of female) 51.8% 42.5% 54.1% 55.7% 57.1% 45.9% 60.6% 64.5%  
Race Asian 4.7% 4.8% 6.0% 4.7% 6.2% 4.9% 4.4% 5.1%  

Black 5.7% 4.0% 20.9% 5.5% 23.0% 11.1% 44.7% 23.7%  
Other Races 5.2% 5.8% 9.0% 4.9% 11.9% 6.4% 11.6% 7.7%  
White 84.5% 85.4% 64.1% 84.9% 59.0% 77.6% 39.2% 63.5% 

Disability (% of disabled)  2.1% 2.4% 8.7% 2.0% 8.0% 7.7% 20.0% 9.3% 
Driver’s license (% of licensee)  84.3% 85.9% 71.9% 84.7% 60.2% 74.2% 42.7% 81.7% 
Household income Less than $25,000 9.6% 12.7% 27.6% 4.8%      

$25,000–50,000 11.0% 12.1% 19.4% 11.0%      
$50,000–75,000 15.1% 13.0% 15.9% 15.7%      
$75,000–100,000 15.9% 15.6% 11.8% 17.0%      
$100,000–150,000 24.8% 25.2% 15.1% 27.6%      
$150,000 or more 23.5% 21.5% 10.2% 23.8%     

Frequent transit user 36.4% 37.4% 74.3% 9.0% 47.4% 51.8% 58.4% 11.8% 
Average traffic stress 15% 14% 16% 18% 16% 14% 16% 18% 
Proportion of bike lanes 16.3% 23.2% 21.0% 15.7% 14.8% 21.4% 16.4% 15.1% 
Average slope 1.17% 1.1% 1.0% 1.16% 1.13% 1.0% 0.9% 1.23% 
Number of trips 26,312 

(22.2%) 
3,067 
(2.6%) 

3,757 
(3.2%) 

85,287 
(72%) 

2,536 
(31.4%) 

388 
(4.8%) 

1,037 
(12.8%) 

4,116 
(51%)  
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users and 0.2–3.2% for frequent transit users. Considering that 
achieving 80% of bike lanes on average would require hundreds of miles 
of new bike lanes, the effect is not very promising. In fact, it tells us that 
providing bike lanes alone cannot bring an appreciable effect on pro-
moting bike usage. Therefore, the investment in bike lanes should be 
accompanied by other types of effort, such as providing bike parking 
facilities (particularly in transit hubs), introducing a bike-sharing system 
and making public bike stations, organizing public bike events or cam-
paigns, and creating bike education programs. 

Second, the non-automobile mode choice of the low-income popu-
lation is as significantly affected by the bike lanes as the general popu-
lation. Also, the magnitudes are similar. Based on model predictions, if 
the proportion of bike lanes quadruples (from the current 20% to 80%), 
non-automobile mode share will increase by around 2–5% in the general 
population and 3% in the low-income population. Therefore, the low- 
income population who are residing in historically underserved areas 
with low transportation services can greatly benefit from the new bike 
lanes, which can ultimately help reduce social inequities. 

Third, the mode shares of the non-automobile modes are positively 
associated with each other. Whether a respondent is a frequent transit 
user affects not only the probability of making public transit trips but 
also the probability of making walking/biking trips. The impact of 
providing a better biking environment is also evident for all non- 
automobile modes. The prediction results of the whole population 
model demonstrate that the increases in non-automobile mode share are 
significantly higher among frequent transit users (2.6–9.1%) compared 
to non-frequent transit users (1.9–5.5%). Therefore, investing in bike 
lanes would benefit not just bike users but all active travelers and public 
transit users. 

This study adds to the literature by empirically demonstrating that, 
although the impact of bike lanes on promoting bike usage may not seem 
great, their impact on the non-automobile modes as a whole would be 
significant because walking, biking, and public transit are positively 
associated with each other. This study also introduces methodological 
novelty by demonstrating the validity of estimations using a mode 
choice model based on simulated routes. The individual route-level 
analysis lets us understand how the linear infrastructure influences 
our travel experience and the mode we choose, which was not attainable 
in previous studies. 

Making people drive less is the utmost goal in the major U.S. cities to 
make themselves economically and environmentally sustainable. The 
model results and predictions in this study provide valuable information 
on how improving the bike lane network can serve the goal. Trans-
portation planners should carefully consider the potential linkages be-
tween active modes of travel and public transit to correctly estimate the 
efficiency of implementing bike lanes, which can ultimately contribute 
to reducing auto-dependency and creating a sustainable city. 

7. Limitations 

The research framework and methods in this study have multiple 
limitations. First, the bike routes of each trip are based on simulations, 
which may differ from the real route choice. Second, although we 
believe that our method is more elaborate than any previous study, even 
individual route-level analysis cannot guarantee the direction of cau-
sality by the nature of the cross-sectional aspect of this study. Third, the 
sample size between the three cities is unbalanced. Among the 118,423 
observations, only 4% are from Atlanta while more than 70% are from 
the Twin Cities. This large variation in sample size is partly the reason 
why we segment the data by each city for the variable ‘proportion of 
bike lanes.’ Otherwise, the coefficients would largely be influenced by 
the Twin Cities data. Lastly, the model did not consider other planning 
factors that may affect the bike mode choice other than bike lanes. We 
acknowledge that future studies are necessary to determine how much 
synergetic effect can be achieved from various types of physical/non- 
physical strategies for encouraging biking such as public bike sharing. 
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