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Emerging on-demand service platforms (OSPs) have recently embraced teamwork as a strategy for stimulat-

ing workers’ productivity and mediating temporal supply and demand imbalances. This research investigates

the team contest scheme design problem considering work schedules. Introducing teams on OSPs creates

a hierarchical single-leader multi-follower game. The leader (platform) establishes rewards and intra-team

revenue-sharing rules for distributing workers’ payo↵s. Each follower (team) competes with others by coor-

dinating the schedules of its team members to maximize the total expected utility. The concurrence of

inter-team competition and intra-team coordination causes dual e↵ects, which are captured by an equilibrium

analysis of the followers’ game. To align the platform’s interest with workers’ heterogeneous working-time

preferences, we propose a profit-maximizing contest scheme consisting of a winner’s reward and time-varying

payments. A novel algorithm that combines Bayesian optimization, duality, and a penalty method solves the

optimal scheme in the non-convex equilibrium-constrained problem. Our results indicate that teamwork is

a useful strategy with limitations. Under the proposed scheme, team contest always benefits workers. Intra-

team coordination helps teams strategically mitigate the negative externalities caused by over-competition

among workers. For the platform, the optimal scheme can direct teams’ schedules toward more profitable

market equilibria when workers have inaccurate perceptions of the market.
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1. Introduction

On-demand service platforms (OSPs) recently implemented a new supply management strategy

that organizes workers into teams and makes them compete with each other. For example, ride-

hailing platform DiDi Chuxing launched a “virtual team” program where teams atop the leader-

board received bonuses (Ai et al. 2019; Zhang et al. 2019). Field experiments revealed that this

team-based operational strategy improved drivers’ productivity significantly, leading to an average

increase of 33.8% in the number of completed orders and a 27.4% increase in drivers’ income. Some

food delivery platforms divided service areas into multiple stations whose leaders were responsible

for instructing couriers to compete for orders (Chan 2021). The last example is mapping platforms

that integrated several ride-hailing companies into a single-access system (Zhou et al. 2021). Allow-

ing workers from several companies to compete for customers accessed via the same application

inherently transforms the integrator model into an extended form of team contests. Compared

to the case with fully self-scheduled workers, the behavioral benefits of implementing team con-

tests are evident, including establishing team identity, increasing cooperation between workers, and

stimulating productivity (Ai et al. 2019). However, the managerial implications of team contests

on OSPs have not been thoroughly investigated due to the “dual e↵ects” – intra-team coordination

and inter-team competition.

First, the presence of teams enables intra-team coordination on work schedules, which o↵ers a

novel method for correcting the temporal supply and demand mismatches. Demand for service on

OSPs, such as ride-hailing trips (He 2021) and food deliveries (Tong et al. 2020), is frequently

volatile. Meanwhile, labor supply on OSPs depends on the proportion of active workers, which

highly depends on their working-time preferences. As many workers on OSPs are part-time workers,

they enjoy the flexibility of scheduling their working hours (Chen, Rossi, et al. 2019; Mukhopad-

hyay and Chatwin 2020). Furthermore, self-scheduled workers may have inaccurate perceptions of

market conditions (Dong et al. 2021) because their decisions are made independently with limited

social connections or knowledge of others (Glavin et al. 2021). Consequently, workers might not

respond to the platform as expected, contributing to significant discrepancies between supply and

demand during peak hours (Shen 2019; Wu et al. 2021). After implementing the team-based oper-

ations, intra-team work schedules can be conducted by (a) allowing workers within each team to

interchange information on working-time preferences, and (b) coordinating team members’ indi-

vidual schedule decisions to maximize the total expected utility. The impacts of implementing

localized coordination on the equilibrium state have been investigated in the machine scheduling

problem (Immorlica et al. 2009), in which demands are assumed to be fixed and known a priori.
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However, OSPs are two-sided markets in which the realized demand depends on the instantaneous

labor supply. On the other hand, previous studies observed the spontaneous coordination among

workers in two-sided markets. For example, taxi drivers coordinate their shifts or service locations

to maximize their revenue (Shehory and Kraus 1999). Drivers on ride-hailing platforms colluded

for a lack of service providers and exploited surge prices (Tripathy et al. 2022). Nevertheless, the

team-based coordination on work schedules has not been rigorously described or analyzed.

Second, with all teams vying for the same pool of customers, inter-team competition becomes

inevitable. This can be further escalated into a contest by the platform that o↵ers additional

incentives for completed orders, as is performed in Ai et al. (2019). In literature, game theory

is often used to describe the strategic interactions between workers and to delineate the contest

outcomes by the notion of market equilibrium (Fu and Wu 2019). Inter-team competition on OSPs

di↵ers from previous studies in three ways: (a) OSPs serve as intermediaries in the two-sided

markets that usually exhibit cross-network e↵ects on both demand and supply (Armstrong 2006;

Rochet and Tirole 2006). As a result, the inter-team competition is less likely to be a zero-sum

game; (b) Aggregate models that project from individuals’ performances to each team’s winning

probability may overlook the temporal dimension of contest design, while work schedule play a

central role in this context; (c) The decision-makers follow a hierarchical structure such that the

intra-team work schedules directly determine each team’s contest outcomes. In contrast, workers

in other economic contests, e.g., collective rent-seeking, make their decisions simultaneously and

independently (Nitzan 1991; Baik and Lee 2007).

A central task for the platform, with teams present, resides in devising optimal contest schemes

to align teams’ work schedules with the platform’s interests, by taking advantage of the above dual

e↵ects. This study proposes a platform-centric contest scheme and characterizes the corresponding

market equilibrium on OSPs. The contest scheme consists of three components, (a) a winner’s

reward, which is commonly used in practice (Nalebu↵ and Stiglitz 1983; Ai et al. 2019), is awarded

to the team with the most completed orders, (b) the intra-team revenue-sharing rules (Nitzan

and Ueda 2011; Baik and Lee 2007; Kobayashi and Konishi 2021) guarantee workers’ individual

rationality, meaning that each worker’s utility from joining a designated team is greater than that

of the fully self-scheduling case, and (c) the attraction weights, which are tailored to account for the

temporal imbalance of supply and demand and act as important parameters in intra-team revenue-

sharing rules. To this extent, we expect to direct the market equilibria toward the platform’s

interests with reduced supply-demand imbalances.

The procedure of team contests on OSPs is illustrated in Figure 1. Workers have been organized

into teams before the platform declares a platform-centric scheme. Next, all teams observing the
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contest scheme will simultaneously conduct intra-team coordination on workers’ schedules to max-

imize the total utility in inter-team competition while ensuring workers’ participation constraints.

In the end, the platform announces the winning team. Each team distributes its revenue from

completed orders plus the winner’s reward among team members.

Figure 1 Timeline of events for team contests on OSPs

Objectives and Methodology. Considering the dual e↵ects and the hierarchical structure

on OSPs, we model the contest scheme design problem as a single-leader multi-follower game. A

platform is the leader who designs the contest scheme to guide the lower-level market equilibrium.

Teams are strategic followers who decide intra-team schedules responding to the upper-level contest

scheme, other teams’ strategies, and the team members’ participation constraints. Our main objec-

tives are (a) characterizing the optimal platform-centric scheme and (b) identifying key factors that

impact the scheme decisions and contest outcomes at equilibrium. The goal of this research is to

explore why and under what conditions using teams can enhance OSPs’ profitability and workers’

expected utility compared to the status quo market with self-scheduled workers.

To model this hierarchical game, we first model the intra-team scheduling coordination as an

optimization problem where each team’s total utility and feasible schedules are a↵ected by other

teams’ decisions. On that premise, the market equilibrium under a particular scheme is charac-

terized by quasi-variational inequalities (QVI). Next, we formally introduce the platform-centric

contest scheme, which optimizes the winner’s reward and period-specific attraction weights simul-

taneously to maximize the platform’s total profit. Assembling all these elements, we formulate the

platform-centric contest scheme design problem as a mathematical programming with equilibrium

constraints (MPEC) program. However, solving the optimal contest scheme in this game is tech-

nically challenging. An algorithm integrating Bayesian optimization, penalty, and duality methods

is developed to solve the global optimal platform-centric scheme.

Main Contributions. Our contributions are as follows:
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1. By utilizing a flow approximation for scheduling decisions, we simplify the hierarchical contest

scheme design problem to an MPEC formulation, which would otherwise be intractable when there

are a large number of workers. The modeling methodology developed here can be used in other

incentive research on OSPs.

2. Due to the di�culty of computing the optimal strategy for a single-leader multi-follower game,

we develop an e�cient algorithm that combines Bayesian optimization with QVI-based algorithms.

This work provides the groundwork for implementing team-based strategies on OSPs.

3. Our findings suggest that the e↵ectiveness of team contests may be overstated when intra-

team coordination is not considered. It complements empirical studies in an attempt to provide a

more complete understanding of the value of team-based operations.

Main Results. We list our main results as follows:

1. Team contests with the optimal platform-centric scheme can overcome the temporal misalign-

ment between supply and demand.

2. The e↵ectiveness of team contests depends on workers’ perception accuracy toward their

scheduling utility before they join teams. When workers have inaccurate perceptions, implementing

team contests benefits the platform and workers. Otherwise, it may lead to a loss of profit for the

platform.

3. The intra-team heterogeneity in workers’ working-time preferences is critical in determining

the optimal platform-centric scheme.

4. The platform benefits from the increasing number of teams with a diminishing marginal

return.

Paper Organization. The rest of the paper is organized as follows. Section 2 overviews the

market setting and the contest scheme design problem. Section 3 models the market equilibrium

incorporating both workers’ intra-team coordination and inter-team competition. The QVI for

characterizing market equilibria and the corresponding solution algorithm are presented. Section 4

formally introduces and models the platform-centric contest scheme design problem. The algorithm

for computing the optimal scheme is developed. Section 5 numerically evaluates the impact of

teamwork from both the platform’s and workers’ perspectives. Section 6 discusses more model

variants and conducts a sensitivity analysis for more insights on factors impacting contest scheme

design and contest outcomes. The paper concludes with the main findings and future works.

2. Problem Overview
2.1. Market Setting

Consider a monopolistic platform that deploys a team contest strategy in a two-sided market. To

serve the time-varying market demand, we divide the planning horizon into a sequence of time
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periods T = {1,2, ..., t, ..T0}. The analysis of contest scheme design and market equilibrium focuses

on the long-term average steady state of the market. The settings of supply and demand are

outlined as follows:

Supply side. The supply sides consist of K types of workers who are heterogeneous in their

working-time preferences, as indicated by their service cost per period ckt. We characterize a worker

type by a vector ck = (ckt)T0
t=1

2 T0 . Prior to the competition, workers are grouped into a set

of teams denoted as J = {1, ..., i, j, .., J0}, and the numbers of workers per team are the same.

The composition of team j is predetermined and is captured by a tuple {Nk
j }k2K , where Nk

j is

the number of the k-type workers in team j. Each team consists of a leader and several team

members. A team leader has the authority to coordinate the schedules of team members, namely

their working hours during the planning horizon. Teams compete with each other for service orders

and the winner’s reward R by making intra-team coordination decisions.

Throughout the paper, we use the supply of active workers per period Nkt
j , i.e., the number of

workers in the working state, as a representation of team j’s collective scheduling decisions for the

k-type workers. For each period t2 T , let N t
j =

P
k2K Nkt

j denote the total supply of active workers

provided by team j. The vector N t = (N t
j )

J0
j=1

2 J0 represents the supply of active workers from

all teams during period t.

Demand side. Customers send service requests to the platform and are then matched with

active workers. The potential demand, or the maximum number of service requests that can be

made by customers, varies with time periods and is denoted as Qt
0
for t 2 T . For a given Qt

0
, the

demand served per period qt depends on the supply of active workers N t and is prescribed as

qt(N t) = Fq(N
t|Qt

0
), 8t2 T. (1)

Without loss of generality, we assume that the function Fq(·) is twice di↵erentiable. Equation (1)

captures the cross-side network e↵ects in two-sided markets. That is, the number of participants

on the demand side depends on the number of participants on the supply side and vice versa (Arm-

strong 2006; Rochet and Tirole 2006). Since on-demand service markets generally exhibit positive

cross-side network e↵ects (Rochet and Tirole 2006), the served demand is supposed to increase

continually with the supply of active workers from each team, i.e., @qt/@N t
j > 0 for t2 T and j 2 J .

A team’s service output in competition depends on the platform’s matching policy. Suppose that

the platform treats all teams and workers equally in matching. Then, for each period t 2 T , team

j’s service output qtj is directly proportional to its supply of active workers relative to the total

supply of active workers in all teams:

qtj(N
t
j ,N

t
�j) = qt(N t) ·

N t
jP

i2J N
t
i

, 8t2 T, j 2 J. (2)
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where the vector N t
�j = (N t

i ) 2 (|J|�1) represents the supply of active workers from all teams in

period t except team j. Equation (2) suggests that the per-period service output of each team

increases with its own active workers’ supply but decreases with the supply of other teams.

Competition rules. We consider team contests with complete information. Anticipating

teams’ responses, a platform designs the contest scheme to steer the market toward a more prof-

itable equilibrium. Observing the contest scheme, each team leader simultaneously determines the

team schedules to maximize the total utility of its team members during the competition while

ensuring their individual rationality. Following common practice (Ye et al. 2020), we measure a

team’s performance by its total service output over the entire planning horizon, i.e.,
P

t2T qtj for

j 2 J . In each period t 2 T , the platform pays a team wt for each completed order. At the end of

the competition, the team with the best performance receives a winner’s reward R, and each team

member receives a positive share of the team revenue based on the declared attraction weights

and revenue-sharing rules. In the long run, the competition could be implemented repeatedly, with

each round determining a winning team. In an average sense, a team’s probability of winning the

reward is determined by a Tullock contest success function (Tullock 2001) so that it is defined as
P

t2T qtj/
P

i2J

P
t2T qti for any team j 2 J .

2.2. Hierarchical Structure of the Contest Scheme Design Problem

Figure 2 represents the hierarchical single-leader multi-follower structure of the contest scheme

design problem on OSPs. The platform is the profit-maximizing leader, and each team is a follower.

The leader designs the contest scheme to influence teams’ decisions and the resulted market equi-

librium. Each follower solves a coordinated scheduling problem considering other teams’ actions in

competition.

The two levels of decision-making are intertwined. At the upper level, the platform designs the

contest by considering teams’ scheduling decisions under the winner’s award and their impact on

demand. At the lower level, a team leader who maximizes team utility needs to take both the

inter-team competition and workers’ time preferences for service into consideration. On the one

hand, the scheduling decisions depend on both the winner’s reward and other teams’ decisions.

On the other hand, intra-team coordination should guarantee individual rationality, meaning that

all workers are better o↵ under the coordinated schedules than under the self-scheduling status

quo. This links a worker’s utility to the attraction weights in revenue-sharing rules and her team’s

performance in competition. Due to the hierarchical structure, finding the optimal contest scheme

is challenging by its very nature.

The model presented later follows the hierarchical structure described above. Specifically, Section

3 models the followers’ game and characterizes the lower-level market equilibrium. Section 4 models

the upper-level contest scheme design problem.
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Figure 2 Model setting and framework

3. Market Equilibrium Model under Team Contests

In this section, we present the market equilibrium model under team contests and its solution

algorithm. We first introduce a time-expanded network over which we could represent workers’

schedules as traversing flows. Then, we develop utility functions and model intra-team coordina-

tion as a network flow optimization problem. We will show how each team’s scheduling decisions

correlate with the contest scheme and the decisions of other teams. At the end of this section,

we formally define the market equilibrium and present the equivalent formulation along with a

solution algorithm. The notations and acronyms used throughout this paper are summarized in

Table EC.1 in Appendix A.

3.1. Workers’ Schedule Approximate Representation

We use a time-expanded network (Zha, Yin, and Du 2018) to capture workers’ schedules over the

planning horizon. A time-expanded network is denoted as G(V,A), where V is the set of nodes

and A is the set of links representing workers’ states between each pair of nodes (Figure 3). All

schedules begin with a common “Start” node and terminate at an “End” node, indicating the

beginning and end of the planning horizon, respectively.

Specifically, the planning horizon is divided into T0 periods of equal length. In each time step, a

work node in the set V1 and an auxiliary rest node in the set V 0
1
are used to distinguish workers’

being working and resting, respectively. Workers in a work node could traverse to the next work

node by providing on-demand services, or to the rest node for a temporary rest. Workers in a rest

node can go to the adjacent work node at the same time step or to the next rest node, which means

they return to work or continue resting, respectively.

The link set A consists of five mutually exclusive subsets. The links connecting two work nodes

belong to the working link set T , as the previously defined period set. The sets A1�A4 contain

links indicating the start of the planning horizon, work-rest transition, rest, and the end of the

planning horizon, respectively. Customers’ service demand only appears on the working links.
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Figure 3 Time-expanded network

A path from ’Start’ to ’End’ denotes a worker’s schedule: start (A1), work (T ), work-rest transition (A2),

rest (A3), end (A4).

In a time-expanded network, a worker’s schedule can be represented by a path from the “Start”

node to the “End” node. For example, the path “Start! 0! 2! 30 ! 40 ! 4 . . .! T0 ! End”

means that a worker starts working at time step 0 and takes a break at time step 2 after working

two periods. Then, the worker returns to work at time step 4 until the end of the planning horizon.

For a k-type worker, the cost traversing a working link t equals her service cost per period ckt.

Workers incur no revenue or cost over other non-working links. Each worker’s profit over a link is

the di↵erence between her revenue and service cost.

Let P denote the set of all paths from the “Start” node to the “End” node. Suppose that the

supply of workers is infinitesimal. Then, the flow along a path p 2 P represents the number of

workers who follow the schedule defined by path p. Throughout the paper, we denote fkp
j as the

flow of k-type workers in team j whose schedules are along path p. Hence, the collective schedules

of all workers in team j can be represented by a vector fj = (fkp
j )2 (|K|⇥|P |). The fractional path

flow can be interpreted as the result of the mixed scheduling strategy adopted by team leaders. In

each period, the team j’s supply of k-type active workers Nkt
j is essentially the flow across each link

t 2 T . From the network topology, Nkt
j =

P
p2P fkp

j · �pt where �pt equals 1 if the link t lies on path

p, and 0 otherwise. Recall that a team’s service output per period is a function of active workers’

supply N t (equation (2)), a time-expanded network links a team’s performance to its scheduling

decision fj .

3.2. Team Strategy: Intra-team Schedule Coordination

Using a time-expanded network, the intra-team coordination problem is equivalent to assigning

heterogeneous types of team members to di↵erent paths such that the team utility is maximized

and workers are individual rational. The feasible path flow pattern constitutes a team’s strategy

profile, and the resulted network flow model is a proxy for the workers’ scheduling model. Given a

contest scheme, the following specifies the utility of teams and individual workers.
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Team utility with workers’ schedules and the winner’s reward. In competition, a

team’s revenue Rj comes from two sources, serving customers and winning rewards. Since teams

receive wt per completed order in period t, a team’s total revenue from serving customers is
P

t2T wtqtj(N
t
j ,N

t
�j) for j 2 J . The expected reward of team j is computed by the defined Tullock

contest success function
P

t2T qtj/
P

t2T qt and the winner’s reward R. To summarize, given the

winner’s reward R, team j’s revenue Rj is:

Rj(N ,R) =
X

t2T

wtqtj(N
t
j ,N

t
�j)+R ·

P
t2T qtjP

t2T qt(N t)
, 8j 2 J. (3)

where the vector N = (N t)T0
t=1

2 (|J|⇥|T |) denotes the supply of active workers during the entire

planning horizon.

Let Uj be the total utility of all members in team j. For j 2 J , Uj is defined as the di↵erence

between total team revenue Rj and total labor costs, which is a function of its team schedule fj ,

other teams’ supply N�j = (N t
�j)

T0
t=1

and the winner’s reward R:

Uj(fj ,N�j ,R) =Rj(N ,R)�
X

k2K

X

t2T

ckt ·Nkt
j � ch

X

k2K

X

p2P

fkp
j · (hp)⌫ , 8j 2 J, (4)

where the term
P

k2K

P
t2T ckt · Nkt

j represents the total period-specific service costs and

ch
P

k2K

P
p2P fkp

j represents the cost associated with the cumulative labor hours hp. Here, hp =
P

t2T �pt , �
p
t equals 1 if the working period t lies on path p, and 0 otherwise; ch is a cost parameter

for amounting labor hours, and ⌫ represents workers’ degree of aversion to working duration.

Individual worker’s utility with revenue-sharing rules. The revenue of each worker

depends on the revenue of her team and how it is allocated among team members. In intra-team

scheduling, each team leader is a decision-maker who decides the strategy profile for each type of

workers and allocates the team revenue based on the declared intra-team revenue-sharing rules.

Notice that there are multiple paths, so each worker will follow a mixed strategy profile. Since

workers of the same type adopt the same mixed scheduling strategy, they gain identical average

revenue in the long run. The following formally defines the intra-team revenue-sharing rules:

Definition 1 (intra-team revenue-sharing rules). A set of intra-team sharing rules Fm

defines a mapping from teams’ supply inputs N to a team- and type-specific worker’s revenue r̂kj

, i.e., Fm :N ! r̂kj with the team revenue conservation property
P

k2K

P
j2J N

k
j r̂

k
j =Rj(N ,R) for

each team j 2 J .

We denote a contest scheme as (R,Fm) for brevity. Given intra-team sharing rules Fm for team

j 2 J , each k-type worker’s utility uk
j is defined as her revenue minus the average labor cost:

uk
j (fj ,N�j ,R|Fm) = r̂kj (N ,R|Fm)�

1

Nk
j

 
X

t2T

cktNkt
j + ch

X

p2P

fkp
j · (hp)⌫

!
, 8j 2 J,k 2K, (5)
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where the term
⇣P

t2T cktNkt
j + ch

P
p2P fkp

j · (hp)⌫
⌘

is the total labor cost of k-type workers in

team j. The average labor cost results from the assumption of intra-team equal treatment.

Intra-team coordination model. Given a contest scheme (R,Fm) and the active workers’

supply from other teams N�j, a leader in team j decides its members’ schedules fj to maximize

the team’s utility Uj. For each team j 2 J , we model the intra-team coordination problem as the

following flow optimization problem based on the prescribed utility of teams and individuals:

max
fj

Uj(fj ,N�j ,R), (6a)

s.t.
X

p2P

fkp
j =Nk

j , 8k 2K, (6b)

fkp
j � 0, 8k 2K,p2 P, (6c)

uk
j (fj ,N�j ,R|Fm)� uk

0
, 8k 2K. (6d)

where constraint (6b) denotes flow conservation condition for each worker type; constraint (6c)

defines the flow to be non-negative; constraint (6d) essentially represents the aforementioned IR

constraint. (6d) states that each worker will be better o↵ by joining a team and gets a utility no

less than uk
0
, the utility under self-scheduling without teams. Here, uk

0
is an exogenous parameter

for each worker type k 2K. Note that the supply of active workers N�j in (6d) is derived from

the schedules of all teams except team j. Thus, considering IR constraint (6d) makes the feasible

set of a team’s schedules fj dependent on its rivals’ decisions f�j .

3.3. Market Equilibrium Definition and Formulation

Given a contest scheme, the team contest could be captured by a non-cooperative game. Each

team is a strategic player and solves the intra-team coordination problem (6). For this game, the

market equilibrium can be formally defined as follows:

Definition 2 (Market equilibrium under team contests). Given the team composition

{Nk
j } for each team j 2 J , the market equilibrium defines a stationary state where no team can

gain a higher team utility by unilaterally changing its team members’ schedules without violating

IR constraints.

The above definition leads to a generalized Nash equilibrium (GNE) because each team’s feasible

set of intra-team schedules depends on the decisions of other teams. Mathematically, given a contest

scheme (R,Fm), GNE is to find a vector f⇤ = (f⇤
j )j2J , such that fj

⇤ is the optimal solution of the

intra-team coordination problem (6) with N�j fixed at N⇤
�j :

Uj(f
⇤
j ,N

⇤
�j ,R)�Uj(fj ,N

⇤
�j ,R) 8j 2 J,fj 2Mj(N

⇤
�j ,R,Fm), (7)
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where Mj(N⇤
�j ,R,Fm) is the feasible set of team j’s schedules. Specifically, this set is

defined by (6b)-(6d) and can be expressed as Mj(N⇤
�j ,R,Fm) = {fj |

P
p2P fkp

j = Nk
j , f

kp
j �

0, uk
j (fj ,N⇤

�j ,R|Fm)� uk
0
}.

Characterizing the equilibrium defined by (7) is equivalent to scheduling workers according to

the solutions of the following QVI:

X

j

Lj(f
⇤
j )

T (fj �f⇤
j )� 0, 8fj 2Mj(N

⇤
�j ,R,Fm). (8)

Here, Lj is a function of fj , defined by Lj(fj) =�r
fkp
j
Uj(fj ,N⇤

�j ,R) for j 2 J .

Note that the defined GNE assumes fixed team compositions and ensures that workers join teams

by imposing IR constraints. The flexibility of workers to choose their teams is not considered here.

This simplification applies when workers have limited knowledge about each other and are o↵ered a

one-shot joining option for a particular team. For instance, the ride-hailing platform DiDi Chuxing

assigns team members to team leaders via a recommendation-based system, which exempts team

members from making team choices (Zhang et al. 2019). More flexible settings that allow workers

to choose their teams and the associated considerations such as workers’ incentive compatibility

are left for future research. Furthermore, some platforms may overlook workers’ willingness to

participate and have the authority to assign workers directly to teams (Rokicki et al. 2015; Lei

2021). In this situation, the equilibrium analysis could relax IR constraint (6d) as uk
j � 0. Thus,

workers are only guaranteed non-negative utility for providing services in teams.

3.4. Solution Algorithm for Market Equilibrium

Solving the QVI defined by (8) is challenging because the feasible sets of intra-team schedules are

interdependent among teams. We develop a penalty-duality-based solution algorithm by (a) disen-

tangling this interdependence of feasible sets and transforming QVI into a sequence of variational

inequalities (VIs); (b) solving the resulting VIs via duality theory.

The first step applies an iterative penalty method introduced by Pang and Fukushima (2005). In

each iteration m, this method converts IR constraints (6d) to be a part of each team’s objective

via penalty terms. Mathematically, we introduce gkj (fj ,N�j ,R,Fm) to denote the utility loss for

k-type workers after joining team j, i.e., gkj (fj ,N�j ,R,Fm) =Nk
j u

k
0
�Nk

j u
k
j (fj ,N�j ,R|Fm). Note

that when gkj  0, the k-type workers are individually rational in joining team j. The penalty

terms for team j are then defined as quadratic functions of gkj for k 2K. With that, each team

takes the active workers’ supply from other teams N�j as a given vector and solves the intra-team

coordination problem (6) with the objective (6a) replaced by:

min
fj

�Uj(fj ,N�j ,R)+
1

2⇢(m)

X

k2K

✓h
µk(m)

j + ⇢(m) · gkj (fj ,N�j ,R,Fm)
i+◆2

. (9)
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where the operator [x]+ stands for max(0, x); ⇢ and µk
j are parameters that are updated in each

iteration m. The parameter ⇢ satisfies ⇢(m+1) > ⇢(m) and tends to 1. The parameter µj
k is bounded

and updated by the rule µk(m+1)

j =
h
µk(m)

j + ⇢(m) · gkj
i+

for j 2 J,k 2K. Thereafter, gkj is short for

gkj (fj ,N�j ,R,Fm) for notation simplification.

By penalizing the IR constraints (6d), the remaining constraints (6b) and (6c) redefine the

feasible set of intra-team schedules for each team. Since these sets are independent of each other

and are nonempty polyhedral, each iteration m essentially solves a Nash equilibrium that has a

VI formulation
P

j2J(fj � fj
⇤)T
✓
Lj(fj)+

P
k02K

h
µk0(m)

j + ⇢(m) · gk0j
i+

·rfk
jp
gk

0
j

◆
� 0 for fj in the

redefined feasible set.

Since the above VI possesses an asymmetric Jacobian matrix on its feasible set, it could not

be easily handled by commercial solvers. Therefore, we apply a duality-based method (Aghassi et

al. 2006) to reformulate the above VI as an optimization problem. The basic idea is as follows.

Because the redefined feasible set for each team is a polyhedron, solving the above VI is equivalent

to minimizing a linear program parameterized by f⇤. By strong duality, f⇤ optimizes the linear

program if the optimal objective is equal to that of its dual problem. The duality-based method

solves the above VI by minimizing the duality gap with respect to the primal variables f and the

dual variables (�j)
J0
j=1

:

min
f ,�j

zV I =
X

j

fj
T

 
Lj(fj)+

X

k02K

h
µk0(m)

j + ⇢(m) · gk
0

j

i+
·rfk

jp
gk

0
j

!
�
X

j

�j
TN0

j , (10a)

s.t. Aj
T�j Lj(fj)+

X

k02K

h
µk0(m)

j + ⇢(m) · gk
0

j

i+
·rfk

jp
gk

0
j , 8j 2 J, (10b)

Ajfj =N0
j . 8j 2 J, (10c)

fj � 0, 8j 2 J. (10d)

Here, for each team j 2 J , �j = (�k
j )

K0
k=1

2 |K| represents the vector of the multipliers for the flow

conservation constraints (6b), and Aj is the corresponding |K|-by-(|K|⇥ |P |) coe�cient matrix

for (6b); N0
j = (Nk

j )
K0
k=1

2 |K| denotes the composition of team j; zV I is the value of the objective

function (10a). By duality theory, zV I � 0 and the equality holds at the VI’s solution.

In summary, the penalty-duality-based solution algorithm solves the QVI (8) by solving a

sequence of penalized VIs whose solutions are derived by (10). Appendix B details the solution

algorithm.

4. Platform-Centric Contest Scheme Design

The fact that contest schemes a↵ect team schedules gives the platform control over the market

equilibrium and contest outcomes. This section examines the design of the platform-centric scheme.

We first detail this contest scheme and then formulate the hierarchical contest scheme design
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problem as an MPEC program. An algorithm for computing the global optimal platform-centric

contest scheme is presented.

4.1. Overview of Platform-Centric Contest Scheme

Allocating the revenue of a team based on each member’s relative e↵ort is a common practice

for teamwork (Skaperdas 1998; Nitzan 1991; Fu and Wu 2019). A platform-centric contest scheme

extends this idea to the multi-period setting. Specifically, it motivates teams with a winner’s reward

R and allocates team revenue based on each worker’s relative supply contribution throughout the

planning horizon. Instead of treating each period equally, this scheme induces workers to serve more

customers during high-demand periods via period-specific attraction weights � that are defined as

follows:

Definition 3 (Attraction weights). Attraction weights � = (�t)T0
t=1

2 |T | refer to a vector

of normalized non-negative weights �t that a platform assigned to each working period t2 T .

Given the winner’s reward R and attraction weights �, the revenue share of each worker type

equals the share of the corresponding active workers’ supply weighted by attraction weights over

the entire planning horizon. More specifically, the revenue of a k-type worker in team j is:

r̂kj (N ,R|�) =
P

t2T �t ·Nkt
jP

k02K

P
t2T �t ·Nk0t

j

· Rj(N ,R)

Nk
j

, 8j 2 J,k 2K, (11)

where the team revenue Rj(N ,R) is specified by equation (3), and attraction weights � satisfy

the normalization requirement
P

t2T �t = 1. Equation (11) defines the aforementioned intra-team

revenue-sharing rules Fm. Following the equations (5) and (11), given the winner’s reward R and

attraction weights �, the utility of a k-type worker in team j is:

uk
j (fj ,N�j ,R|�) =

P
t2T �t ·Nkt

jP
k02K

P
t2T �t ·Nk0t

j

· Rj

Nk
j

� 1

Nk
j

·
 
X

t2T

cktNkt
j + ch

X

p2P

fkp
j · (hp)⌫

!
, 8j 2 J,k 2K.

(12)

By introducing attraction weights, we aim to dynamically balance supply and time-varying

demand to promote the platform’s profit. Figure 4 illustrates this point with an example of two

types of workers. Type 1 workers prefer to work during low-demand period 2, while the opposite

holds for Type 2 workers. Without teams, workers choose their schedules following their time

preferences. Suppose that these two types of workers form a team and period 1 is assigned a

higher attraction weight than period 2. If Type 1 workers keep the same schedules as before,

they will experience lower earnings than under self-scheduling. Thus, to ensure workers’ individual

rationality, the team leader will assign both types of workers to work in high-demand period 1.

This work adopts the above platform-centric contest scheme for three reasons. First, implement-

ing a lump-sum winner’s reward is a well-recognized policy for motivating workers (Ai et al. 2019).
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Figure 4 An explanation on the mechanism of attraction weights

Second, period-specific attraction weight can be viewed as a dynamic pricing policy, which has been

proved useful for balancing supply and demand on OSPs (Zha, Yin, and Du 2018; Chen and Shel-

don 2016). Third, a platform-centric scheme is flexible yet simple, which is a major requirement of

any reward scheme (Nalebu↵ and Stiglitz 1983). Since attraction weights apply to workers’ collec-

tive e↵orts, a platform-centric scheme could allocate workers’ payo↵s without tracking individual

schedules.

4.2. The Platform-Centric Contest Scheme Design

4.2.1. Contest scheme design formulation. As discussed in Section 2, the contest

scheme design problem can be modeled as a single-leader multi-follower game. Given a platform-

centric contest scheme (R,�), the followers’ problem may admit multiple equilibria. For exploring

the potential of team contests, we assume that the platform has the authority to select the best

equilibrium:

Assumption 1. The platform has the power to select the equilibrium with the highest profit if

multiple market equilibria coexist.

Designing a platform-centric contest scheme is to find the optimal winner’s reward R and attrac-

tion weights � such that the platform’s profit is maximized at equilibrium. Mathematically, with

assumption 1, we model this hierarchical contest scheme design problem as the following MPEC

program:

max
�,R

max
f

X

t2T

pt · qt(N t)�R, (13a)

s.t. 0 �t  1,
X

t2T

�t = 1, (13b)

R� 0, (13c)

f 2 S(R,�). (13d)

where S(R,�) stands for the solution set of the QVI defined by (8) for a given platform-centric

scheme (R,�). In objective function (13a), the parameter pt represents the per-unit service profit
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obtained by the platform during period t. More specifically, pt equals the service price charged

to customers in period t minus workers’ wage per completed order wt. There, the second ‘max’

operator comes from assumption 1 that the equilibrium with the highest profit is selected under

a given contest scheme. Constraint (13b) specifies the normalization requirement for attraction

weights �, and constraint (13c) ensures that the winner’s reward R is non-negative. Constraint

(13d) states that workers’ schedules f constitute feasible solutions if they support the market

equilibrium under team contests. The following proposition shows that the problem (13) is feasible:

Proposition 1. [Feasibility of the platform-centric contest scheme design problem] There exists

at least one feasible contest scheme (R,�) to problem (13), under which the market equilibrium

exists.

Readers can refer to Appendix C.1 for the proof of Proposition 1.

4.2.2. Solving the optimal platform-centric contest scheme. Solving the contest

scheme design problem (13) is challenging as it is constrained by parameterized QVI. In essence,

the followers’ game is nonlinear, nonconvex, and intractable. Consequently, teams’ best responses

to the upper-level decision (R,�) may lead to a disjunctive feasible set. Furthermore, finding a

global solution to an MPEC program is in general computationally expensive.

We propose an algorithm combining the market equilibrium algorithm and multiple starting

points search to compute the global optimal platform-centric scheme. The main idea is to convert

problem (13) into a general nonlinear optimization problem for the local optimal solution, and then

find the best scheme by continuously exploring new local searches. The former task is completed

using the penalty-duality-based algorithm discussed in Section 3.4, and the latter is conducted

using Bayesian optimization.

Specifically, the penalty-duality-based algorithm suggests that the schedules satisfying equi-

librium constraint (13d) could be derived by solving a sequence of optimization problems (10).

Therefore, we replace constraint (13d) with the optimization problem (10). Since problem (10) has

an objective function value zV I � 0 and the equality holds at the equilibrium solution, we move

zV I to the upper-level objective (13a) by applying a large positive penalty parameter ⌘. With

that, solving the contest scheme design problem (13) is transformed into solving a sequence of the

following single-level optimization problem:

max
�,R�0

max
(f ,�j)

X

t

pt · qt(N t)�R� ⌘ · zV I(f ,�j), (14)

s.t. (13b), (10b), (10c), (10d).
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Problem (14) is a nonlinear and nonconvex optimization problem. With specified initial values

for decision variables, (14) can be solved iteratively by commercial solvers for a local optimal solu-

tion. To obtain a global optimal solution, we introduce Bayesian optimization which is a powerful

approach for solving black-box global optimization problems (Frazier 2018). Here, Bayesian opti-

mization explores the feasible set of decisions variables and locates the initial values leading to the

best local solution. Figure 5 summarizes the entire solution procedure. Appendix C.2 details the

solution algorithm and briefly introduces Bayesian optimization. Note that the algorithm designed

is flexible enough to solve a variety of contest schemes in hierarchical single-leader multi-follower

games, which is of significance itself to game theorists.

Figure 5 Solution procedure for solving the optimal platform-centric contest scheme

5. Numerical Experiments and Discussion

In this section, we aim to numerically evaluate the e↵ectiveness of teamwork under the pro-

posed contest scheme. We first specify the parametric setting of numerical experiments and a

self-scheduling benchmark used throughout the section. Utilizing the previously-mentioned algo-

rithms, the numerical example draws implications for the platform and workers. The results focus

on the competition between two symmetric teams, and more flexible settings such as varying team

compositions and multi-team competition will be discussed in Section 6.

5.1. Numerical Setup and Benchmark Specification

5.1.1. Numerical setup. Consider a four-period planning horizon T = {1,2,3,4}, and

let the first two periods denote morning periods and the last two denote afternoon periods.

Given that the morning periods are peak hours, the potential demand quantities are {Qt
0
} =

{500,500,300,300} (requests/hour). The served demand per period in (1) is assumed to follow an

exponential function (Yang et al. 2010):

qt(N t) =Qt
0
· exp(� ↵P

j2J N
t
j

), 8t2 T. (15)
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The parameter ↵ captures the sensitivity of demand to the supply of active workers. The term

↵/
P

j2J N
t
j refers to a measure of service quality, e.g., the average waiting time customers wait to

be served. The numerical example sets ↵= 50(hour�1).

Worker type and team compositions. 120 workers are evenly divided into two types, Type 1

and Type 2 workers. The former group, also termed the afternoon workers, prefers to work during

the afternoon periods with service costs c1 = {50,50,30,30}($/hour). The latter group, also termed

themorning workers, prefers to work during the morning periods with c2 = {30,30,50,50}($/hour).

For both types, workers’ aversion degree to working duration is set as ⌫ = 2 and the associated

cost parameter is ch = 2($/hour2).

Team compositions are predetermined. We begin with the simplest setting where two teams of

equal team size and symmetric team compositions compete against each other. The symmetric

team composition means that two teams have the same distribution of worker types, i.e., Nk
i =Nk

j

for i, j 2 J and k 2K. The asymmetric teams divide workers of two types unevenly into two teams

for evaluating the impact of team compositions on the contest outcome.

Service price setting. As per completed order, the platform charges customers higher fares

during the peak periods. The platform charges an average fare of $30 per request in the morning

periods and $25 per request in the afternoon periods. According to the current practice (Chen,

Rossi, et al. 2019), workers receive 80% of the fare, while the platform collects the remaining 20%.

The above revenue-sharing rate remains the same with or without team contests.

The above parameters are either from empirical studies or selected for illustration purposes

only. Nonetheless, the managerial insights are general and have been validated through sensitivity

analysis. These parameters can be calibrated using real-world data based on the circumstances of

specific platforms.

5.1.2. Self-scheduling benchmark. We consider the fully self-scheduling case as a bench-

mark, in which each worker independently schedules her daily work hours. Since individual work-

ers have only partial information about their coworkers without communication, we model their

scheduling decisions by including randomness in their perception of the scheduling utility (She�

1985). It then contributes to a k-type worker’s perceived utility toward a schedule V p
k , consisting

of the real utility up
k and a random perception error term ⇠p, i.e., V p

k = ✓ ·up
k + ⇠p for p2 P . Every

k-type worker seeks to maximize her perceived utility when choosing her work schedule, and the

probability distribution over her choices is derived from a discrete choice model. ✓ is a positive

parameter that indicates the dispersion among workers with respect to their perceived utility. The

smaller value of ✓ indicates a larger variance in workers’ perceptions. Thereafter, we call ✓ the

perception intensive parameter. Note that as team participation improves intra-team information
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sharing, ✓ is higher in each team’s perceived utility. We implicitly assume that the workers have

perfect information in the setting with only two teams.

Throughout the experiments, the random terms ⇠p for di↵erent paths are supposed to be inde-

pendently and identically distributed Gumbel variables (She� 1985). The value of ✓ ranges from a

fairly small number indicating workers select schedules randomly, to a positive number indicating

that workers uniformly choose the schedules to obtain the highest real utility. The self-scheduling

benchmark is computed at an equilibrium state where no worker can improve her perceived utility

by unilaterally changing her schedule. The computation uses the same parameter settings as that

used for teams, such as the setting of prices and service costs. Whenever multiple equilibria coexist,

the equilibrium with the highest platform’s profit is selected. Appendix D details the mathematical

formulation of this benchmark.

The fully self-scheduling benchmark serves two purposes. First, this benchmark reflects the

status quo market across a wide range of platforms. Team-based incentive policies are expected

to outperform the self-scheduling benchmark. Second, the equilibrium self-scheduling utility uk
0
is

input for the IR constraint (6d) when solving the optimal contest scheme and the corresponding

market equilibrium. In the benchmark, uk
0
is the expectation of real utility for k-type workers across

all chosen schedules at equilibrium.

5.2. Results on Platform-Centric Contest Scheme with Teams

The following presents the results of the competition between two symmetric teams. The opti-

mal platform-centric scheme, including the optimal winner’s reward and attraction weights, are

presented. The key factors a↵ecting the contest outcomes are discussed.

5.2.1. Optimal platform-centric scheme and workers’ schedules. For two symmetric

team contests, the optimal winner’s reward is zero in all situations of worker perception accuracy.

This is expected and is explained by the winner’s reward’s marginal e↵ect. A further discussion of

this point is provided in Section 6.3.

Figure 6 illustrates that the optimal attraction weights are consistent with the potential market

demand. Morning peak periods have consistently higher attraction weights than those non-peak

afternoon periods. Furthermore, the optimal attraction weights are insensitive to workers’ percep-

tion accuracy.

To investigate the e↵ect of attraction weights on workers’ schedules in equilibrium, we compare

the supply of active workers under the fully self-scheduling benchmark and the optimal platform-

centric scheme. To show whether increasing attraction weights for peak periods attracts more

workers, we also examine a platform-centric scheme in which four periods are assigned the same

attraction weight �t = 0.25 and the winner’s reward R is set as zero in accordance with the optimal
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Figure 6 The optimal attraction weights

scheme. The results in Figure 7 lead to three observations. First, the optimal platform-centric

scheme provides the highest supply of active workers during morning peak periods. Second, despite

that the attraction weights are suboptimal in the platform-centric scheme of �t = 0.25, it exceeds

the self-scheduling benchmark regarding the total supply of active workers. Third, compared to

the case where all periods are equally weighted, assigning higher attraction weights to the peak

periods stimulates some Type 1 workers to switch from their preferred periods in the afternoon to

the peak periods in the morning. These observations support the adoption of attraction weights as

a supply-demand balancing policy.

Figure 7 Workers’ schedules under self-scheduling and team contest (✓= 0.02)
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5.2.2. Impacts of team contests on the platform and workers. The platform’s profit

and profit per worker at equilibrium are two critical performance measures in this symmetric

team setting and self-scheduling benchmark. With team contests, the equilibrium responses to the

optimal platform-centric contest scheme. The former measure is calculated by equation (13a). The

latter equals the worker’s real utility, which is uk
j under intra-team scheduling and uk

0
under the

fully self-scheduling benchmark.

Figure 8a summarizes the platform’s profit per di↵erent market settings. Under the fully self-

scheduling benchmark, the platform’s profit increases with the perception intensive parameter ✓. By

contrast, the platform’s profit under team contests remains stable despite fluctuations in workers’

self-scheduling utility. When workers perceive their scheduling utility less accurately, the platform

gains higher profit under team contests than under the fully self-scheduling benchmark. This ben-

efit arises from intra-team information sharing, which reduces workers’ randomness in choosing

work schedules. Due to the dominance of workers’ intra-team coordination over the inter-team

competition, when workers have more accurate information about their utility, the platform’s profit

in the benchmark exceeds that under team contests. This is because, with an accurate percep-

tion of profitable hours, more self-scheduled workers will jam into these periods to compete with

each other. The concentration of active workers’ supply consequently intensifies the competition

and reduces the total workers’ utility. With the help of teamwork, team leaders can maximize the

team’s collected utility by avoiding this over-competition e↵ect in scheduling workers. Therefore,

the intra-team coordination contradicts the platform’s intention to promote competition for higher

profits, which is beneficial for achieving the welfare maximization objective.

One may question the rationale for team contest as it could generate less profit than the self-

scheduling benchmark. Note that all these comparisons are based on the principle of “selecting the

best equilibrium”. However, the platform cannot always control which self-scheduling equilibrium

to be reached while the team contest policy manages to do so. To show this di↵erence, the point

“A” in Figure 8a exemplifies a worse self-scheduling equilibrium, at which a platform obtains a

much lower profit than that with teams. Therefore, team contest is a critical strategy to reduce

the risk of converging into a low-profit market equilibrium.

Figure 8b shows that the profit per worker under team contests is no less than that under fully

self-scheduling by the virtue of the IR constraint. The improvement in the workers’ profits depends

on their perception accuracy as well as their types. In this case study, morning (Type 2) workers

earn more than afternoon (Type 1) workers in all scenarios because the former group has lower

service costs during high-revenue peak periods. While Type 1 workers receive the same profits as

in the benchmark, Type 2 workers gain higher profits after joining teams even when they perceive

their scheduling utility accurately.

Electronic copy available at: https://ssrn.com/abstract=3886735



Author: The Dual E↵ects of Team Contest on On-Demand Service

22 Service Science 00(0), pp. 000–000, © 0000 INFORMS

(a) Platform’s profit (b) Profit per worker

(c) Total profit of the platform and workers
Figure 8 Profit gains from the team contests

Team contests have inconsistent impacts on the platform and workers in Figures 8a and 8b when

✓ is large. Workers achieve greater profits under team contests than under self-scheduling while the

platform does not. A portion of increased total profit is transferred from the platform to workers

(Figure 8c). This is mainly because the mitigated over-competition among self-interested workers

owing to intra-team coordination.

An illustrative one-period example can explain this observation. Following the demand function

(15), Figure 9 sketches the platform’s profit and a typical worker’s revenue and service cost regard-

ing the supply of active workers. For this one-period example, workers’ marginal service cost equals

their per-unit service cost. With a su�cient number of workers, if all workers are self-scheduled,

they would enter the market to provide services until their average profit reaches zero (Zha, Yin,

and Yang 2016), leading to a high level of active workers’ supply (point B in Figure 9b). However,

after forming a common-interested team, the leader considers the marginal e↵ect that a worker

exerts on the entire team (Hu and Treich 2014). This results in a lower level of active workers’
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supply as in point A and positive profit per worker. With teamwork, the reduced competition

among workers undermines the platform (Figure 9a). In our numerical example, such an e↵ect is

more obvious when workers’ perception becomes more accurate and explains the profit loss for the

platform as shown in Figure 8a.

(a) Platform’s profit (b) Workers’ revenue and costs
Figure 9 Intra-team coordination mitigates over-competition among workers

In summary, the designed contest scheme for team contests always benefits workers. The platform

should carefully check the workers’ perception accuracy, which a↵ects the power of intra-team

coordination on the final contest outcome. As workers’ perception accuracy increases, the platform

should balance the e↵ects of intra-team coordination and inter-team competition to avoid the loss

of profit caused by the dominance of the former factor.

6. Model Variants and Sensitivity Analysis

This section provides more insights into factors that impact the platform’s contest design decisions

and contest outcomes. Section 6.1 discusses the multi-team contests with a large number of teams.

Section 6.2 relaxes the symmetric team assumption and examines how the intra-team heterogeneity

from both team compositions and team members’ working-time preferences a↵ects the competition.

Section 6.3 explores the mutual influences between the winner’s reward and attraction weights in

the platform-centric contest scheme.

6.1. Multi-team Contests on OSPs

We extend the number of teams from two to ten to explore the impacts of splitting workers into more

teams. We alter the team size while maintaining the total number of workers and the symmetric

team setting. We set the perception intensive parameter ✓ = 0.02 to compute the self-scheduling

utility. The general conclusions also apply to other values of ✓.
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Figure 10a shows that the platform benefits from the increased number of teams. As the number

of teams increases, each team becomes more “selfish” in seeking to maximize their utility despite

potential externalities to other teams. As a result of the intensified competition, teams will summon

more active workers to compete for service orders. The increased active workers’ supply thus

produces a higher profit for the platform, which approaches the profit generated by fully self-

scheduled workers with perfect information. However, the e↵ectiveness of splitting workers into

more teams has diminishing marginal benefit to the platform.

(a) Platform’s profit (b) Profit per worker
Figure 10 Profits of the platform and workers with the number of teams

The impact of multi-team contests on workers di↵ers based on their types (see Figure 10b).

In this example, Type 1 workers receive the same profit as under the self-scheduling benchmark,

regardless of the number of teams. By contrast, the impact of multi-team contests on Type 2

workers is undetermined.

6.2. Intra-team Heterogeneity

Previous studies indicate that intra-team heterogeneity greatly impacts contest outcomes (Ye et al.

2020). This subsection examines the impact of intra-team heterogeneity from team compositions

and working-time preferences. The former measures team diversity regarding worker types while

the latter measures the degree of di↵erences between two types of workers.

6.2.1. Team compositions. To examine the influence of team compositions on contest

outcomes, we vary the worker type distribution in teams while maintaining a fixed number of

workers. Specifically, in Team 1,  denotes the ratio of Type 1 workers in one of the two teams

(Team 1), and the ratio of Type 2 workers is 1� . Correspondingly, the ratios of the two types

in Team 2, are 1� and , respectively. The team compositions are varied by changing the value

of  from 0 to 1 with a step size of 0.1. When  equals 0.5, it is equivalent to the symmetric team
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setting. Other values of  lead to asymmetric team settings. Here, we focus on how symmetric and

asymmetric team settings impact the contest outcome.

Our numerical results indicate that team composition has a non-monotonic e↵ect on market

equilibrium. Figure 11 combines the results for various values of , as shown in the shaded area.

The results are presented in terms of percentage increase in the platform’s profit and the profit

per worker compared to those under the self-scheduling benchmark. Despite the change in team

compositions, the conclusion that team contests improve the platform’s profit when workers have

less accurate perceptions remains valid (Figure 11a). Interestingly, while workers are better o↵ in

all situations compared to the self-scheduling benchmark, the di↵erence in profit per worker is

type-dependent (Figure 11b). Symmetric teams do not appear to have any significant disadvantages

over other team compositions for Type 1 workers. Since the cost of switching from their preferred

afternoon to morning periods dominates the incremental incomes, these workers do not benefit too

much from the team contest regardless of team compositions. This finding does not necessarily

apply to Type 2 workers, for whom staying in symmetrical teams is significantly less profitable

than staying in certain asymmetrical teams. The more Type 2 workers, who prefer to work in the

morning periods with the smaller value of , the less fluctuation in their profitability when their

perceptions are accurate. These observations highlight the di�culty of determining the best team

composition, given the platform’s and workers’ disparate influences.

(a) Percent increase of the platform’s profit (b) Percent increase of profit per worker
Figure 11 Percent increase of profits with team compositions and perception accuracy

6.2.2. Workers’ heterogeneous working-time preferences. Because attraction weights

are designed to balance supply and time-varying demand, the optimal contest design will certainly

be influenced by workers’ time preferences. We investigate the impacts of working-time preferences

on the optimal attraction weights considering two factors. (a) Because Type 1 (afternoon) workers’
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time preferences are less compatible with the peak hours, it is more costly to incentivize them

to reschedule. Hence, the experiment varies their service cost distribution and keeps a constant

total service cost of $160. Specifically, Type 1 workers’ service cost varies from 40 ($/hour) to

80 ($/hour) per morning period. The remaining cost is evenly distributed to afternoon periods.

The service cost distribution for Type 2 (morning) workers remains unchanged. Consequently,

the higher service cost experienced by Type 1 workers during morning periods indicates a higher

degree of heterogeneity among team members. (b) Type 1 workers’ ratio  in Team 1 is changed

to accommodate various team compositions stated in Section 6.2.1.

For demonstration purposes, workers’ perception accuracy takes ✓ = 0.02 when calculating the

self-scheduling utility of workers. Figure 12 shows that the degree of heterogeneity in workers’

working-time preferences significantly impacts the values of optimal attraction weights. When Type

1 workers encounter minimal service costs in the morning, team members’ preferred working hours

are broadly similar. As a result, the platform assigns high attraction weights to the morning peak

periods. On the contrary, when Type 1 workers face high costs in the morning, they shift to work

in the afternoon periods. In this case, the platform assigns a great proportion of attraction weights

to low-demand afternoon periods regardless of team compositions. This contradicts our purpose of

raising the attractiveness of peak periods. The explanation is that attraction weights � are period-

specific but independent of worker types. When Type 1 workers strongly prefer to work in the

afternoon, implementing high attraction weights in the morning cannot ensure workers’ individual

rationality. These results suggest that period-specific attraction weights only apply to situations

where team members’ working-time preferences are not substantially di↵erent.

6.3. Interdependence between the Winner’s Reward and Attraction Weights

Investigating the relationship between the winner’s reward and attraction weights at optimality

is nontrivial, largely because the platform might not have complete control over both policies in

practice. We examine the mutual influence between the winner’s reward and attraction weights by

fixing one design element and solving problem (13) for the other one. Figure 13 presents the results,

which include all team compositions stated in Section 6.2.1. When computing the results of Figure

13b, we set the attraction weights of two morning (afternoon) periods equal. Workers’ perception

intensive parameter takes ✓= 0.02 when calculating the self-scheduling utility of workers.

Figure 13a illustrates how the optimal attraction weights change with the winner’s reward R,

which is treated as an input parameter in this case. We combine the results from all team com-

positions because there is no clear correlation between them and the values of attraction weights.

Overall, the optimal attraction weights for the morning peak periods increase with the winner’s

reward and decrease for the afternoon periods. Figure 13b suggests that attraction weights and
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Figure 12 Peak and non-peak periods’ attraction weights di↵erent with Type 1 workers’ service costs and

ratios

(a) Optimal attraction weights change with win-
ner’s reward

(b) The optimal winner’s reward changes with
attraction weights

Figure 13 The mutual influence between attractions weights and the winner’s reward

team compositions significantly impact the optimal winner’s reward. To this extent, using non-

optimal attraction weights incurs an external reward, which can be avoided by applying symmetric

team compositions. Overall, Figure 13 indicates that attraction weights and the winner’s reward

are strongly correlated.

When the platform lacks complete control over both the winner’s reward and attraction weights,

it is critical to choose the most e↵ective design component. After demonstrating the e↵ectiveness

of attraction weights in Section 5.2, this section investigates the e↵ects of the winner’s reward on

alleviating supply-demand imbalances and on the platform’s profitability. Figure 14 compares the

number of active workers and the platform’s total profit at equilibrium when the winner’s reward
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is set to be $0,$1000, and $2000, respectively. Here, the platform only optimizes the attraction

weights. Figure 14a shows that increasing the amount of reward attracts more workers during peak

periods. On the opposite, this policy incurs additional costs, reducing the benefit from the external

reward, and leaving the platform with a loss of profit (Figure 14b). These results and those in

Section 5.2 suggest that attraction weights are more e↵ective than the winner’s reward in directing

the market equilibrium in the platform’s favor.

(a) The supply of active workers (b) Platform’s daily profit
Figure 14 The supply of active workers and the platform’s profit with the winner’s reward

(symmetric teams)

7. Conclusion

Team contest design has the potential to balance supply and demand on OSPs. This paper develops

an integrated model for aligning work schedules with fluctuating service demand. In a hierarchical

single-leader multi-follower game, the contest scheme utilizes the dual e↵ects of inter-team com-

petition and intra-team scheduling coordination. The lower-level intra-team coordination problem

solves the workers’ schedules by network flow optimization. QVI is used to quantify the market

equilibrium with heterogeneous working-time preferences. The upper-level problem considers a

platform-centric scheme that combines a winner’s reward to incentivize finishing more orders and

period-specific attraction weights to balance supply and demand. In-depth numerical experiments

evaluate the impact of team contests on the platform and its workers and identify critical factors

a↵ecting the optimal scheme. This work draws the following managerial insights:

1. The optimal platform-centric contest scheme with a winner’s reward and attraction weights

can alleviate temporal supply-demand imbalances and steer the market toward more advanta-

geous equilibria. Attraction weights are more e↵ective than the winner’s reward at increasing the

platform’s profit.
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2. While team contest benefits all workers, its impacts on the platform rely on workers’ percep-

tions of their utilities prior to joining teams. The platform benefits more from the team contest

when workers’ perception accuracy is lower.

3. There is a discrepancy between dual e↵ects as enhancing the intra-team coordination will

weaken inter-team competition. The team’s scheduling decisions benefit its workers at the expense

of misaligning labor supply with the platform’s profit-maximizing objectives.

4. Splitting workers into multiple teams increases profit for the platform but the marginal return

is diminishing.

5. Supply and demand can be balanced through the use of attraction weights only when workers

within a team have less heterogeneous working-time preferences.

Our study identifies several potential directions for future research. First, we assume prede-

termined team compositions throughout the analysis. A future direction is to consider workers’

flexibility to choose teams and optimize team compositions and the contest scheme in tandem.

Optimizing team compositions is more complicated than current models, mainly because decen-

tralized team assignment introduces combinatorial complexity into the decision-making process.

Second, workers are assumed to report their types (e.g., per-period service cost) truthfully to the

team leader. Investigating incentive-compatible contest scheme designs is an interesting extension.

Finally, our conclusions are derived from numerical experiments that employ hypothetical instances

due to a lack of available data. Empirically validating our models and results will be an intriguing

future research direction.
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Proofs and Supplementary Materials

Appendix A Summary of Major Notation

Table EC.1: Summary of major notation

Notation Description
Sets

J The set of teams;
T The set of periods;
K The type space of workers;
P The path set over a time-expanded network;

Mj The feasible set of team j’s intra-team schedules;
S(R,�) Solution set of QVI parameterized by the contest scheme (R,�).

Variables of intra-team coordination problem
Uj The utility of team j ($);
Rj The revenue of team j ($);
qtj Service output of team j in period t (requests/hour);
qt Served demand in period t (requests/hour);
Nkt

j Supply of k-type active workers from team j in period t (/hour);
N t

j Supply of active workers from team j in period t (/hour), vector N t = (N t
j )

J0
j=1;

fkp
j Flow along path p of k-type workers from team j, vector fj = (fkp

j )k2K,p2P ;
uk
j Utility of a k-type worker in team j ($).

Variables of contest scheme design problem
R The winner’s reward ($);
�t Attraction weight of period t, vector � = (�t)T0

t=1;
�k
j Lagrangian multiplier for constraint (6b), vector �j = (�k

j )
K0
k=1 ;

f (fj)
J0
j=1, the scheduling plans of all teams.

Parameters
Qt

0 Potential demand in period t (requests/hour);
Nk

j The number of k-type workers in team j, vector N0
j = (Nk

j )
K0
k=1;

ckt The service cost of k-type workers in period t($/hour), vector ck = (ckt)T0
t=1;

pt Per unit service profit in period t ($/request);
wt Workers’ earning per completed service order ($/request);
hp Working hours along path p (hour);
ch Cost parameter for amounting working hours;
⌫ Workers’ degree of aversion to working duration;
�pt Parameter indicating whether period t lies in path p;
uk
0 A k-type worker’s utility under self-scheduling ($).

Other vectors
N t

�j (N t
j ), supply from all teams other than j in period t, vector N�j = (N t

j )
T0
t=1;

N (N t)T0
t=1, supply of active workers during the entire planning horizon;

Lj(fj) The derivative of �Uj with respect to fj .
Acronyms

OSPs On-demand service platforms;
IR Individual rationality;

GNE Generalized Nash equilibrium.
QVI Quasi-variational inequalities;
VI Variational inequalities;

MPEC Mathematical programming with equilibrium constraints.
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Appendix B Supplementary Materials for Section 3

Algorithm 1: A penalty-duality-based algorithm for market equilibrium

Result: Scheduling plans of all teams at market equilibrium f⇤;

Set iteration counter m= 0, initialize parameters µk
j , ⇢ and an error tolerance ✏;

Solve optimization problem (10) for the optimal schedule f⇤(0);

while there exists (k, j) such that gkj (fj
⇤(m),N t(m)

�j ,R,Fm)> ✏ do

Update µk
j and ⇢ by setting µk(m+1)

j =
h
µk(m)

j + ⇢(m) · gkj
i+

and ⇢(m+1) > ⇢(m);

Solve optimization problem (10) for the optimal solution f⇤(m+1);

Set f⇤(m+1) ! f⇤(m), µk(m+1)

j ! µk(m)

j , ⇢(m+1) ! ⇢(m);
end

Output the converged scheduling plans of all teams f⇤(m).

Appendix C Supplementary Materials for Section 4

C.1 Feasibility of the platform-centric contest scheme design problem

Proposition 1. [Feasibility of the platform-centric contest scheme design problem] There exists at least

one feasible contest scheme (R,�) to problem (13), under which the market equilibrium exists.

Proving Proposition 1 is equivalent to proving that there exists at least one non-negative solution (R,�)

such that the normalization constraint (13b) is satisfied and the QVI’s solution set S(R,�) is nonempty. In

this proof, we first remove IR constraint (6d) from intra-team coordination problem (6) and transform the

QVI defined by (8) into the following VI:

X

j

Lj(f
⇤
j )

T (fj �f⇤
j )� 0, 8fj 2Mj . (E1)

where the feasible set of each team’s schedules is Mj = {fj |
P

p2P fkp
j =Nk

j , f
kp
j � 0} and is independent of

other teams’ decisions. After proving the solution existence to the above VI (Lemma EC.1), we complete

the proof by showing that there is a contest scheme (R,�) that satisfies constraint (13b) and that S(R,�)

coincides with the solution set of the above VI.

Lemma EC.1. There exist solutions to the VI problem (E1).

The feasible set M that defines the VI problem (E1) is the Cartesian product of the feasible set for

each team j 2 J , i.e., M=
QJ0

j=1Mj . Since Mj is a nonempty, closed and bounded polyhedron, the set M
is compact. Furthermore, because the solutions to the VI also belong to M, the VI problem (E1) essentially

defines a mapping from M to the set itself.
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Next, we demonstrate that the function Lj(fj) that defines the VI problem (E1) is continuous with

variables fj . For each team j 2 J , the partial derivative of team utility Uj with respect to a specific path

flow fkp
j is as follows:

@Uj(fj ,N�j ,R)

@fkp
j

=
X

t2T

wt ·
@qtj
@N t

j

· �pt +R ·�j �
X

t2T

ckt · �pt � ch · (hp)⌫ , 8k 2K,p2 P, (E2)

where the team utility Uj(fj ,N�j ,R) is specified by equation (4); the term �j comes from the Tullock

contest success function in equation (3) and is derived as follows:

�j =
1P

t2T qt
·
 
X

t2T

@qtj
@N t

j

· �pt

!
�

P
t2T qtj

(
P

t2T qt)2
·
 
X

t2T

X

i 6=j

@qti
@N t

j

· �pt

!
, 8j 2 J. (E3)

By equation (E2), @Uj(fj ,N�j ,R)/@fkp
j is a continuous function of fkp

j because the demand function Fq(·)
is twice di↵erentiable (equation (1)) and the link flow N t

j continuously changes with the path flow fkp
j .

Therefore, the function Lj(fj) =�rfkp
j
Uj(fj ,N�j ,R) defines a continuous mapping fromMj into (|K|⇥|P |)

for each team j 2 J .

Based on Brouwer’s fixed-point theorem and Theorem 3.1 from Harker and Pang (1990), the above con-

clusions on compact M and continuous Lj(fj) imply that there exist solutions to the VI defined by (E1).

⇤
Next, we show that there exists a feasible solution (R,�) to the platform-centric contest scheme design

problem (13). For simplicity, we select an attraction weight �t = 1/|T | for period t 2 T , where |T | is the

cardinality of the period set T . The normalization constraint (13b) is automatically satisfied.

Following equation (12), a k-type worker’s utility under the platform-centric scheme (R,1/|T |) is as follows:

uk
j (fj ,N�j ,R| 1

|T | ) =
P

t2T Nkt
jP

k2K

P
t2T Nkt

j

· Rj

Nk
j

� 1

Nk
j

·
 
X

t2T

cktNkt
j + ch

X

p2P

fkp
j · (hp)⌫

!
, 8j 2 J,k 2K. (E4)

where the team revenue Rj is given by

Rj =
X

t2T

wtqtj(N
t
j ,N

t
�j)+R ·

P
t2T qtjP

t2T qt(N t)
, 8j 2 J. (E5)

Fixing workers’ schedules (fj)j2J and active workers’ supply (N t)t2T at one solution of the VI defined by

(E1), a k-type worker’s utility uk
j continually increases with the winner’s reward R. Thus, there must exist

a non-negative reward R̂ such that the IR constraints uk
j (fj ,N�j , R̂)>uk

0 hold for each worker type k 2K

and each team j 2 J . With that, IR constraint (6d) could be safely dropped in deriving the optimal solutions

to intra-team coordination problem (6). Consequently, the QVI defined by (8) becomes the VI as shown

in (E1), giving back (fj)j2J as a solution in the set S(R,�). Therefore, the contest scheme (R̂,1/|T |) is a

feasible solution to the contest scheme design problem (13). ⇤

C.2 Global optimization for the optimal contest scheme design

Bayesian optimization (BO) is a powerful approach for solving black-box derivative-free global optimization

problems (Frazier 2018). In the absence of an exact objective function form, BO approximates it with a

probabilistic surrogate model and then performs the optimization. More specifically, BO treats the objective
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function as a random function and applies a prior measure to it. With each sample drawn from the objective

function, a posterior distribution is then computed to better approximate the objective. To determine the

next sampling point, an acquisition function is optimized based on the posterior distribution. The acquisition

function combines exploration and exploitation in its search for a new point. There, exploration means

searching toward unexplored regions with high predicted uncertainty. By contrast, exploitation focuses on

sampling where the surrogate model predicts a favorable outcome. Typically, Bo applies to optimization

problems with simple feasible sets and dimensions less than 20.

To solve the optimal contest scheme with BO, we use the commonly adopted Gaussian process as the sur-

rogate model. The sampling points are determined by an acquisition function called “expected-improvement-

plus” function. This acquisition function evaluates a point based on the expected improvement in the objec-

tive function value. It avoids regions from being over-exploited to escape a local optimum and is a typical

choice of BO. In programming, we set the exploration ratio at 0.6. As a stop criterion, BO is set to evaluate

the objective function no more than 50 times. Throughout numerical experiments, the function ’bayeopt’ in

Matlab is used to implement BO.

Algorithm 2: Solution algorithm for the optimal platform-centric contest scheme

Result: The global optimal platform-centric contest scheme (R⇤,�⇤) and the scheduling

plans of all teams at market equilibrium f⇤;

Initialize suggested searching points (R(0),�(0)), penalty parameter ⌘, and an error

tolerance ✏;

while BO does not reach the maximum number of objective function evaluations do
Set iteration counter m= 0, initialize parameters µk

j and ⇢;

Solve problem (14) for a local optimal solution (R⇤(m),�⇤(m),f⇤(m));

while z⇤(m)

V I > ✏ do

Update µk
j and ⇢ by setting µk(m+1)

j =
h
µk(m)

j + ⇢(m) · gkj
i+

, ⇢(m+1) > ⇢(m);

Solve problem (14) for a local optimal solution (R⇤(m+1),�⇤(m+1),f⇤(m+1));

Set fj
⇤(m+1) ! fj

⇤(m), µk(m+1)

j ! µk(m)

j , ⇢(m+1) ! ⇢(m);
end

Output the local optimal solution (R⇤(m),�⇤(m),f⇤(m)) and the objective function value

of problem (14);

Seek the next suggested searching point (R0,�0) via BO;
end

Output the best local solution so far (R⇤,�⇤,f⇤).;

Appendix D Supplementary Materials for Section 5
Fully self-scheduling benchmark. Under fully self-scheduling, each worker makes scheduling decisions

independently to maximize her perceived utility. Thus, a k-type worker chooses schedule p only if ✓up
k + ⇠p �
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✓up0

k + ⇠p
0
for all p0 2 P . Here, ✓ measures the dispersion among workers regarding their perceived utility.

When ✓ is small, the random term ⇠p and the deterministic term ✓ · up
k are comparable, indicating a large

variance in workers’ perceptions. By contrast, a large value of ✓ makes the deterministic term a dominant one,

which implies a small perception variance among workers. Using the discrete choice model, the probability

that a k-type worker would choose schedule p is given by kp = [✓up
k+⇠p � ✓up0

k +⇠p
0
,8p0 2 P ]. Assume that

the random terms follow identical and independent Gumbel distributions, we have kp =
exp(✓·up

k)
P

p02P exp
⇣
✓·up0

k

⌘ .

At equilibrium, no worker can gain a higher perceived utility by unilaterally changing her working schedule.

Plugging in the above scheduling choice model, the equilibrium flow f can be obtained by solving the

following fixed-point problem:

fkp = kp(f) ·
X

j2J

Nk
j ,

kp(f) =
exp (✓ ·up

k(f))P
p02P exp

�
✓ ·up0

k (f)
� , 8p2 P,k 2K. (E6)

When ✓ ! 0, workers will take each possible schedule with an equal probability. At equilibrium, workers

are evenly distributed over all paths. When ✓ !+1, all workers choose the schedule yielding the highest

real utility up
k. For a given value of ✓, the self-scheduling utility is calculated as uk

0 =
P

p2P
kp ·up

k for each

worker type k 2K.
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