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Abstract—Large language models have demonstrated the ability to

generate both natural language and programming language text. Al-

though contemporary code generation models are trained on corpora

with several programming languages, they are tested using benchmarks

that are typically monolingual. The most widely used code generation

benchmarks only target Python, so there is little quantitative evidence of

how code generation models perform on other programming languages.

We propose MultiPL-E, a system for translating unit test-driven code

generation benchmarks to new languages. We create the first massively

multilingual code generation benchmark by using MultiPL-E to translate

two popular Python code generation benchmarks to 18 additional pro-

gramming languages.

We use MultiPL-E to extend the HumanEval benchmark [1] and

MBPP benchmark [2] to 18 languages that encompass a range of pro-

gramming paradigms and popularity. Using these new parallel bench-

marks, we evaluate the multi-language performance of three state-of-

the-art code generation models: Codex [1], CodeGen [3] and InCoder

[4]. We find that Codex matches or even exceeds its performance on

Python for several other languages. The range of programming lan-

guages represented in MultiPL-E allow us to explore the impact of lan-

guage frequency and language features on model performance. Finally,

the MultiPL-E approach of compiling code generation benchmarks to

new programming languages is both scalable and extensible, making it

straightforward to evaluate new models, benchmarks, and languages.

1 INTRODUCTION

Code generation models, also known as large language mod-
els (LLMs) of code, are deep neural networks trained on
massive corpora of source code. Over the past few years,
code generation models have demonstrated their utility
on a wide variety of software engineering tasks, includ-
ing test generation, documentation generation, and even
synthesizing working programs from natural language de-
scriptions [1, 4, 5, 6, 7]. New products such as GitHub
Copilot1, Amazon CodeWhisperer2, and Tabnine3 built on
code generation models are growing in popularity with
developers [8]. Although several code generation models
are trained on multiple programming languages, they are
typically only evaluated on a single programming language:
Python. Machine learning researchers are familiar with
Python: they have painstakingly constructed several Python

§. Authors are listed alphabetically with students first, then faculty.
1. https://github.com/features/copilot/
2. https://aws.amazon.com/codewhisperer/
3. https://www.tabnine.com/

code generation benchmarks [1, 2, 9, 10] and it is the best
represented language in training datasets [1, 2, 10, 11]. How-
ever, we should also evaluate code generation models with
other languages to support a wider variety of programmers.
There is prior work on multi-language evaluation [7], but
it uses perplexity as a proxy for performance, instead of
benchmarks that check correctness.

In this paper we present MultiPL-E, a system for trans-
lating code generation benchmarks from Python into new
languages, and use it to propose the first massively parallel,
multi-language benchmark for code generation. By “multi-
language” we mean multiple programming languages:
MultiPL-E supports 18 languages and is straightforward to
extend with more. By “parallel”, we mean that MultiPL-
E produces parallel problems for each language, thus we
can measure performance of a code generation model on
a consistent set of problems across multiple programming
languages. What makes MultiPL-E possible is that code
generation benchmarks have unit tests to determine if the
generated function behaves correctly.

MultiPL-E uses a suite of 18 compilers from Python
benchmarks to each target language.4 However, what makes
this scale is that these are not full-fledged compilers. Each
compiler must be able to translate four components from
Python: (1) a function signature (name and arguments),
(2) simple unit tests, (3) a comment describing the expected
function behavior, and (4) type annotations if the target
language is statically typed. Notably, the compiler does not
have to translate the body of a function, since it is the job
of the code generation model to synthesize it. Thus each
MultiPL-E compiler is approximately 200 LOC and easy to
build. MultiPL-E also includes a simple, rule-based tool to
translate technical terms in comments to be more language
appropriate, e.g. a Python list is approximately a C++ vector.

MultiPL-E also includes a containerized sandbox that
(1) compiles programs if necessary, (2) runs them with
appropriate timeouts, (3) validates their results on unit tests,
and (4) classifies each output as successful, syntax error, etc.
Thus each language requires an evaluation script, which is
typically about 20 LOC.

We use MultiPL-E to translate two widely-used code
generation benchmarks, HumanEval [1] and MBPP [2], into

4. These source-to-source compilers are sometimes called transpilers.
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18 languages. The 18 languages capture a broad spectrum
of language features, application areas, and popularity, al-
lowing us to explore the impact of these factors on model
performance.

We use the multi-language parallel MultiPL-HumanEval
and MultiPL-MBPP benchmarks to evaluate three state-of-
the-art code generation models: Codex [1], CodeGen [3], and
InCoder [4]. Our evaluation presents new insights into the
effectiveness of code generation models, including:

1) Across models and benchmarks, code generation
models perform extremely well on JavaScript, some-
times outperforming Python, even on benchmarks
originally designed to evaluate Python perfor-
mance. Codex also performs well on C++, Scala, and
TypeScript.

2) There is no strong correlation between model per-
plexity and correctness of generated code, which
suggests that perplexity may not be a good estimate
of performance.

3) Code generation performance is correlated with lan-
guage popularity, but some niche languages per-
form as well as more popular languages.

4) Code generation performance is sensitive to prompt
design for both niche and popular languages.

5) Static type-checking neither helps nor hinders code
generation model performance.

To summarize, our key contributions are:

• MultiPL-E: a suite of compilers and an evaluation
framework for translating code generation bench-
marks from Python into other programming lan-
guages. MultiPL-E translates unit tests, doctests,
Python-specific terminology, and type annotations.

• Two parallel benchmarks for code generation in 19
languages encompassing a variety of programming
paradigms, language features, and popularity levels.

• A multi-language parallel evaluation of three mod-
els, Codex [1], InCoder [4], and CodeGen [3].

• Explorations of language frequency effects, the im-
pact of type annotations, and prompt translation
sensitivity on code generation performance, along
with a fine-grained error analysis for four languages.

We hope this evaluation work will help the many
software engineers that do not use Python to assess the
feasibility of code generation models for their work and
to understand the language factors that may affect model
performance.

MultiPL-E is presently being employed to evaluate code
generation models for the BigCode project, which is an
open collaborative effort to build code generation models
on permissively licensed code.5

The MultiPL-E system, dataset, and tutorial are available
at github.com/nuprl/MultiPL-E.

2 CODE GENERATION

Code generation has long been a task of interest: there is
extensive work on program synthesis [12, 13, 14] using both

5. bigcode-project.org

(a) The prompt given to the NL2Code model:

def lsi(lst):

"""Create a function that returns a

tuple (a, b), where ’a’ is the largest

of negative integers, and ’b’ is the

smallest of positive integers in a

list. If there is no negative or

positive integers, return them as

None.

Examples:

lsi([2, 4, 1, 3, 5, 7]) == (None, 1)

lsi([]) == (None, None)

lsi([0]) == (None, None)

"""

(b) A completion generated by Codex:

if len(lst) == 0:

return (None, None)

else:

neg_nums = [x for x in lst if x<0]

pos_nums = [x for x in lst if x>0]

if len(neg_nums) == 0:

neg_nums = None

if len(pos_nums) == 0:

pos_nums = None

return (max(neg_nums), min(pos_nums))

(c) 3 of the 12 unit tests (the generated solution fails two):

X assert lsi([2, 4, 1, 3, 5, 7]) == (None, 1)

X assert lsi([2, 4, 1, 3, 7, 0]) == (None, 1)

✓ assert lsi([1, 3, 4, 5, 6, -2]) == (-2, 1)

Figure 1: Problem 136 of 164 of the HumanEval benchmark.
We shorten the name largest_smallest_integers

for brevity. Top: the prompt for the model, with the
function signature , natural language description, and

doctests . Middle: a Codex-generated solution. Bottom: unit
tests.

symbolic and neuro-symbolic approaches. More recently,
large neural language models (LLMs) trained for text gen-
eration have demonstrated the ability to perform program
completion [5, 15, 16]. Since 2020, several code generation
models have been trained or fine-tuned on programming
language text [1, 4, 6, 7, 17, 18]. Unlike traditional program
synthesis techniques, neural language models are able to
condition on and generate both natural language (i.e., code
comments) and programming language text. However, ex-
isting code generation models are tested using monolingual
benchmarks that largely target Python. Thus there is little
quantitative data about how well they perform on other lan-
guages. We make progress towards answering this question
by proposing two large-scale parallel benchmarks for code
generation in 19 languages, which we use to evaluate three
state-of-the-art models: Codex, CodeGen, and InCoder.

2.1 The Natural Language to Code Task

Code generation models have been applied to a variety of
tasks, including test generation [19], docstring generation
[20], code search [17, 21], type inference [22, 23, 24], and
more [25]. We focus on the natural-language-to-code task
(NL2Code): given the description of a function in natural
language, complete the function body.

The input to a code generation model is called a prompt.
Figure 1a shows an example prompt from the HumanEval
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benchmark for NL2Code [1]. The prompt has several
sources of information for the model: the function signature
(its name and parameters); a brief comment describing the
function; and, optionally, examples in the form of Python
doctests. Given the prompt as input, the code generation
model generates a completion that is likely to follow the given
prompt.

Note that the model does not receive an explicit cue
about the target language, but each of the three prompt
regions provide implicit cues: the syntax of the function
signature, the terminology used in the natural language
description, and the syntax of the doctests all suggest that
the target is Python. Consequently, to translate this prompt
to a new programming language, we must target all three
regions of the prompt.

2.2 Sampling Program Completions

There are several ways to configure how a code generation
model produces completions, each of which can have a
significant effect on the quality of generated code. Funda-
mentally, a completion is a sequence of tokens and is not an
abstract syntax tree. Therefore, a completion can readily pro-
duce tokens that go beyond a single function. For example,
given just the the signature of “mean”, InCoder produces
the mean, variance, standard deviation, and several other
functions (Figure 2). In fact, it can continue producing code
up to the maximum sequence length, which, for InCoder, is
2048 tokens.

We control this output by specifying stop sequences that
typically demarcate the end of a function. For Python, we
use the stop sequences that have been employed in prior
work [1]. For example, when completing a top-level func-
tion, \ndef marks the start of the next top-level function,
but allows nested helper functions. For other languages, we
design different sets of stop sequences (§A).

Under the hood, given a prompt, a code generation
model produces a completion one token at a time. At each
step, the neural network receives an encoded prompt as
input and produces a distribution for the following token.
To generate several tokens, a sampling algorithm iteratively
samples next tokens, extending the prompt at each step with
the previously sampled token.

There are a variety of sampling approaches that one can
use. A naive approach is to greedily sample the next most
likely token, but this performs poorly in practice [26]. One
approach employed in prior work [1], and in this article, is to
rescale the probability distribution to favor high probability
tokens more strongly using a temperature hyperparameter
(0 ≤ t < 1): low temperature makes the completion more
“predictable” and high temperature makes it more “cre-
ative”. This is commonly combined with top-p sampling,
which cuts off the least likely tokens that contribute in
aggregate 1 − p to the probability mass, and redistributes
their mass to the remaining tokens. Since these procedure
is nondeterministic, we sample 200 completions for every
prompt and choice of hyperparameters.

2.3 Evaluating Code Generation

Early work on code generation relied on textual similarity
metrics for evaluation [17, 27]. However, previous work

def mean(n):

return sum(n)/len(n)

def variance(n):

mean = mean(n)

return sum([(n-mean)**2 for n in n])/len(n)

def standard_deviation(n):

return math.sqrt(variance(n))

def mode(n):

counts = Counter(n)

max_count = max(counts.values())

return [k for k,v in counts.items()

if v == max_count]

Figure 2: Code generation models produce tokens, not ASTs,
and may produce output beyond that requested. This is
truncated output from InCoder given just the first high-
lighted line as the prompt.

shows that textual similarity is not reliably correlated with
code correctness [1, 2]. The best way to evaluate code
generation is to test code correctness using a suite of hidden
unit tests.

We translate two code generation benchmarks that in-
clude unit tests for every problem. Figure 1c shows 3 of
the 12 unit tests that accompany the problem from Figure
1a. Note that these unit tests are simple assertions: each
test asserts that the output value produced by the function
matches an expected value.

We judge a generated function correct if it passes all
tests. Figure 1b shows just one of the solutions generated
by Codex for the example prompt. This solution is incorrect
because it fails some of the unit tests (Figure 1c). Because
the output of the code generation model is stochastic, it is
common to sample multiple completions per problem and
report an estimated pass rate (§4.2).

3 THE MULTIPL-E APPROACH

This section describes how we select and prepare languages
and benchmarks for MultiPL-E.

3.1 Benchmark Selection

There are a number of existing single-language NL2Code
benchmarks [9, 10, 11]. We choose to translate Hu-
manEval [1] and MBPP [2] as two of the most widely-used
benchmarks.

HumanEval is a good choice of benchmark for several
reasons. It is a diverse collection of 164 problems, where
all problems have tests to check correctness, and most have
examples or doctests as part of the prompt. All of the prob-
lems are functions that receive and return first-order values,
which facilitates unit testing and test translation. Many also
use Python’s optional type annotations. Moreover, it is a
challenging benchmark: the best model evaluated by Fried
et al. [4] achieves only a 36% pass rate on Python.

MBPP is another large, commonly used benchmark of
Python problems. As originally formulated, it is a little
unusual. Each problem has a description and a list of
assertions. The prompt for code generation includes both
the description and the assertions, and the generated code
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# Write a function to fnd the smallest missing

# element in a sorted array. Your code should

# satisfy these tests:

assert smallest_missing([0, 1, 2, 3, 4, 5, 6],

0, 6) == 7

assert smallest_missing([0, 1, 2, 6, 9, 11, 15],

0, 6) == 3

assert smallest_missing([1, 2, 3, 4, 6, 9, 11, 15],

0, 7) == 0

(a) An original MBPP prompt: the same assertions are used to
test the generated code. (Typo in comment is from the original
benchmark.)

def smallest_missing(l):

"""

Write a function to fnd the smallest missing

element in a sorted array.

"""

(b) We add the function signature and hide the test cases to do
a more rigorous evaluation.

Figure 3: An original MBPP prompt and how we modify it
to standardize evaluation.

is then tested with the same set of assertions. We argue that
the HumanEval approach, where test cases are hidden, is
a significantly better way to evaluate code generation. We
therefore remove the assertions from the MBPP prompts
so that we can use them as hidden unit tests. However,
with only a problem description, a code generation model
is free to make up the name of a function (or not even
produce a function). Therefore, we mechanically augment
every prompt with a function signature, based on the name
and arity implied by the assertions. Figure 3 shows an
example of an original MBPP prompt and our modification.

3.2 Programming Language Selection

MultiPL-E supports 19 programming languages, which
we categorize into four frequency classes (NICHE, LOW,
MEDIUM, or HIGH) based on a weighting of TIOBE rank
and GitHub frequency (Table 1). Eight of the languages in
MultiPL-E had never been used before to measure NL2Code
performance; this set includes newer languages (Julia and
Swift), older scripting languages (Bash and Perl), and lan-
guages for specific applications (Lua and R). Half of the
languages are statically type-checked. The broad range of
languages in MultiPL-E shows the generality of our com-
pilation approach and allows us to explore how language
frequency and language features affect performance (§6).
Finally, we ensured that we only selected languages for
which the authors had enough expertise to confidently build
a compiler and validate its results.

A key feature of MultiPL-E is that it is easy to extend
with new models, benchmarks, and languages. To support
new languages and benchmarks without manual (and error-
prone) effort, we build 18 compilers to translate NL2Code
benchmarks written in Python. Writing one of these com-
pilers is straightforward when the target language is similar
to Python, but requires care for statically typed languages
and even some dynamically typed languages, notably Perl,
Bash, and R. §3.4 discusses unsupported languages.

PL Static? GitHub % TIOBE Category LOC
Bash × - 43 NICHE 120
C++ ✓ 7.0 4 HIGH 244
C# ✓ 3.1 5 MEDIUM 149
D ✓ - 35 NICHE 117
Go ✓ 7.9 12 MEDIUM 210
Java ✓ 13.1 3 HIGH 153
JavaScript × 14.3 7 HIGH 45
Julia × 0.1 28 NICHE 125
Lua × 0.2 25 NICHE 43
Perl × 0.3 17 LOW 49
PHP × 5.3 11 MEDIUM 50
R × 0.05 19 LOW 98
Racket × - - NICHE 38
Ruby × 6.2 15 MEDIUM 41
Rust ✓ 1.1 22 LOW 147
Scala ✓ 1.7 32 LOW 152
Swift ✓ 0.7 10 LOW 479
TypeScript ✓ 9.1 33 HIGH 117

Table 1: MultiPL-E languages by frequency, as calculated by
GitHut 2.0 and the 2022 TIOBE Programming Community
index; the LOC column indicates the number of semantic
lines of code in our compiler.

3.3 Compiling Python Benchmarks

A MultiPL-E compiler is significantly easier to build than
a complete compiler. To translate a benchmark problem,
we only need to compile function signatures and unit tests
(not arbitrary statements and expressions). Our compilers
preserve comments, since they contain the natural language
description for the NL2Code task; however, we automati-
cally rephrase them to replace Python-specific terminology.

3.3.1 Compiling Unit Tests

MultiPL-E supports any unit test where the input and
output to the test are first-order values. In Python, these
include constants and data structures such as lists, tuples,
and dictionaries, but exclude values such as lambda expres-
sions.6 HumanEval and MBPP unit tests apply the model-
generated function to a first-order value, and compare the
result with an expected first-order value.

Each MultiPL-E compiler has a recursive function that
compiles Python values to the target language’s values.
Even for a dynamically typed target, this value-to-value
compilation requires care, because not all Python value
types have perfect analogues in every target. For example,
we compile both tuples and lists to JavaScript arrays, since
JavaScript lacks a canonical tuple type. We also support
dynamically typed targets where the compilation strategy
is less obvious. For example, when the target is R, it may
appear natural to compile Python lists to R lists: both
kinds of lists can be nested and allow heterogenous values.
However, R’s vector type is much more commonly used
(data frames are made of vectors). Unfortunately, vectors
must be homogeneous and cannot be nested, so not all
Python lists can be translated to vectors. For example, an
argument typed List[Int] can be translated to a vector,
but a nested list cannot. In order to more closely match the
token distribution of idiomatic R code seen during training,
our R compiler uses types (described below) to identify

6. We do not support testing higher-order functions, but support
generated code that uses higher-order functions.
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(a) Original Python assertion.

assert lsi([0]) == (None, None)

(b) Equivalent R.

if(!identical(lsi(c(0)), c(NULL, NULL))){

quit(’no’, 1)}

(c) Equivalent JavaScript.

assert.deepEqual(lsi([0]), [void 0, void 0]);

Figure 4: Example of a translated assertion.

homogenous list values and maps them to vectors using
c()—even though R is dynamically typed.

The final step of compiling tests is to choose an appro-
priate test for equality. The meaning of equality operators
varies across programming languages. Python’s == operator
checks deep equality, i.e., item-by-item equality within data
structures. Deep equality is the appropriate choice for unit
tests. In some languages, we need to import equality-testing
functions from testing libraries, as in the JavaScript example
shown in Figure 4.

3.3.2 Translating Types and Type Inference

Compiling a function signature to a dynamically typed lan-
guage is straightforward, but requires care when the target
is typed. Most typed languages require argument and return
type annotations. Python has optional type annotations.
Thus if a benchmark has type annotations, we can translate
them to types in a target language. Fortunately, a large
subset of the HumanEval benchmarks employ Python’s
optional type annotations. We introduce type annotations
to the few that do not. None of the MBPP benchmarks have
type annotations. Instead of manually adding annotations
to 400+ benchmarks, we infer the types of the values that
appear in the MBPP assertions.

Translating types and typed values is subtly different
for every language. For example, five HumanEval problems
use types such as Any which cannot be translated to most
traditional statically typed languages (e.g., C++ and Rust).
We fail to compile these few problems to these languages.

Another problem arises when compiling to languages
with algebraic datatypes or discriminated unions. For ex-
ample, consider translating the Python type Optional[Int]

to Rust, Swift, or Scala. The analogous type in the target
language is an algebraic datatype. This means that when the
Python number n has type Optional[Int] it must translate
to the value Some(n). Optional values are very common in
Python benchmarks, and we use this approach extensively.

Finally, many typed languages require type annotations
in data structures, which appear in unit tests. For example,
C++ vectors require an annotation specifying their element
type, and numbers in Rust (sometimes) require a type suffix.
We perform limited local type inference to calculate these
types from the type of the function signature to ensure that
the unit tests always compile successfully.

3.3.3 Translating Doctests

Python doctests are a standard format for examples in docu-
mentation. While many of the HumanEval prompts include

(a) Original Python docstring from HumanEval #95.

Given a dictionary , return True if all keys are

strings in lower case or all keys are strings in

upper case, else return False . The function should

return False is the given dictionary is empty.

(b) Terminology translated to Perl.

Given a hash , return 1 if all keys are strings

in lower case or all keys are strings in upper case,

else return "" . The function should return "" is

the given hash is empty.

Figure 5: A Python docstring and its Perl translation. Errors
(e.g., “is” for “if”) are from the original benchmark.

examples, not all of them are validly formatted doctests. We
standardize examples to the Python doctest format (">>>"
prepended). We apply value-to-value compilation to the
doctests as we do for unit tests. However, since not all
languages have an equivalent doctest format, we keep the
Python format for all target languages.

3.3.4 Translating Python Terminology in Prompts

Different programming languages use different terminology
to refer to the same concept. For example, a Python list is
closest to a JavaScript array or a Rust vector. To mitigate
the impact of these differences, we identify Python-specific
terminology in the natural language portion of the prompt,
and translate it to the most natural equivalent for the target
language. Figure 5 shows an example of a prompt translated
from Python to Perl. Notably, Perl not only lacks Booleans,
but uses 1 for true and the empty string for false.

We conservatively avoid translating number types. Al-
though some target languages use different terms for floats
and integers, the term integer is commonly used in a mathe-
matical sense rather than in reference to the Python type.

3.4 Limitations of Our Approach

A handful of benchmarks cannot be easily translated using
the MultiPL-E approach. Of the 164 original HumanEval
benchmarks: (1) we exclude 3 benchmarks that have Python
helper functions in their prompt; (2) we modify 2 bench-
marks to use unit tests instead of randomized testing; and
(3) for certain typed languages, we fail to compile up to
5 benchmarks with untranslatable types. These changes do
not lead to significantly different results for Python (§5.2.1).

Our approach can be generalized to additional program-
ming languages, so long as the target language has natural
analogues for the Python data types used in the bench-
marks. We do not include two previously studied languages,
C [7] and SQL [28, 29] because they do not meet this
criterion. SQL queries and tables define relations and not
functions, which our benchmarks define. The problem with
pure C is that there are no canonical types for dictionaries
and lists. This is unlike C++, which has STL data structures,
and our C++ prompts include the STL headers. A prompt
for C would have to include one of several non-canonical
libraries and would be very sensitive to the choice made.
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Figure 6: Pass@1 rates for all languages in MultiPL-HumanEval and MultiPL-MBPP. From left to right: InCoder, CodeGen,
Codex.

3.5 Validating Prompts and Test Suites

Since we automatically generate thousands of prompts and
test suites, we validated the quality of generated prompts
and test suites in several ways.

First, we identified a subset of 23 problems on which we
manually validated the generated prompt and test cases for
every language. We selected these problems because they
exercised a variety of syntactic and semantic features. For
example, we selected problems that used different types and
compositions of types, including lists, dictionaries, tuples,
unions, the any type, the optional type, and nested types. We
also selected problems with test cases that used particular
kinds of values, including empty lists, the None value,
and literal newline characters in strings. In addition, we
performed language specific validation when necessary, e.g.,
with Bash.

Second, on the aforementioned 23 problems, we man-
ually checked several sample completions produced by
Codex. This helped us ensure that the solutions were in the
right programming language, and develop the set of stop
tokens for each language.

Finally, we validated our evaluators writing test cases
for every language, including tests that we expected to
fail. Moreover, since we classify failures as syntax errors
or runtime errors, we constructed tests that failed in both
ways.

4 CODE GENERATION MODELS

We evaluate three state-of-the-art code generation models,
each of which use a Transformer architecture [30] and are
trained with a language modeling objective on a mixture of
natural language and code. We evaluate the largest, best-
performing versions of each of these three models.

4.1 Models

InCoder InCoder [4] is a 6.7B parameter language model
trained using a causal masking objective [31]. It supports
both code infilling and code completion; we test only the
latter. InCoder was trained on 159 GB of deduplicated,
filtered code from Github (around a third in Python) and
57 GB from StackOverflow.

CodeGen CodeGen is a 16.1B parameter language model
trained with a next-token prediction objective. We evaluate
the multilingual CodeGen model, which was trained first on
The Pile [32], a 825 GB dataset of mostly natural language
text with around 8% Github-scraped code. The model was
further trained (fine-tuned) on a 6 programming language
subset (C, C++, Go, Java, JavaScript, and Python) of the
BigQuery code dataset.7

7. https://cloud.google.com/blog/topics/public-datasets/github-
on-bigquery-analyze-all-the-open-source-code
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Codex Codex is a GPT-3 language model fine-tuned on
code. [1] describe a 12B parameter version of Codex fine-
tuned on 159 GB of deduplicated, filtered Python code
from Github. We use the more recent 175B parameter
codex-davinci-002 model, which is trained on multiple
languages. Details of its training set are not publicly known.
We use the OpenAI API to query Codex.

4.2 Metrics

For each language, we calculate pass@k using the method-
ology employed by [1] and subsequent work. Intuitively,
pass@1 is the likelihood of the model producing a com-
pletion that passes all unit tests, pass@10 is the likelihood
of any one of 10 completions passing all unit tests, and
so on. We calculate pass@1 with temperature 0.2, and use
temperature 0.8 for pass@10 and pass@100. For statistical
reliability, we take 200 completions at each temperature and
calculate average pass rate using the unbiased sampling
estimator presented in [1].8

5 EVALUATION

In this section, we present the results of evaluating
Codex, InCoder, and CodeGen on MultiPL-HumanEval and
MultiPL-MBPP. We fit mixed-effects models to evaluate the
statistical significance of the differences between groups that
we report below [33]. Appendix C has a full description of
each statistical model with its estimate table.

5.1 Effect of Model Size and Training Data

We expect to find that Codex will outperform CodeGen, and
CodeGen will outperform Incoder. First, the most important
factor is model size: Codex has 175B parameters, CodeGen
16.B parameters, and InCoder 6.7B. A larger model has
higher capacity and can be trained effectively on more
data. Second, the training time and data also matters. The
CodeGen corpus is nearly 2TB, the InCoder corpus 159GB,
and the Codex corpus is unknown. Apart from size, the
training data for InCoder and CodeGen have different com-
positions of programming languages. CodeGen is trained on
six languages, InCoder is trained on more, but most of these
extra languages have negligible quantities of data. Finally,
we expect InCoder’s performance on left-to-right generation
to suffer slightly because a portion of its training is on fill-
in-the-middle problems. Although InCoder did not perform
an ablation, subsequent work by some of the authors of
InCoder and this article show that training to fill-in-the-
middle has a small impact (1%) on pass@100 rates [34].

5.2 MultiPL-HumanEval results

We explore the code generation abilities of the three mod-
els on our translated version of HumanEval, MultiPL-
HumanEval. Figure 6 shows the by-language performance
of each model on both benchmarks. Note that the Codex
model is over 10x and 20x larger than CodeGen and InCoder
respectively, so it performs much better as expected.

8. We note that pass@1 rates appear to stabilize around 20 samples,
suggesting that future work could achieve a stable estimate with a less
computationally costly sample size.

We find reliable differences between Codex pass@1 rates
on MultiPL-HumanEval for Python and all but 4 languages:
C++, JavaScript, Scala, and TypeScript. For these languages,
Codex performance is similar to Python.

CodeGen performs best on the languages included in
its fine-tuning dataset (Python, JavaScript, Java, C++, and
Go). It also performs well on TypeScript, likely due to its
similarity to JavaScript. A mixed-effects model finds reliable
differences in pass@1 rates on MultiPL-HumanEval between
all languages and Python, except Ruby, where performance
is so low that the model fails to find a reliable estimate.

InCoder performs significantly better on the Python ver-
sion of MultiPL-HumanEval than all of the other language
versions (p < 0.001 for all languages).

5.2.1 Python Results and Replication

Our InCoder results on Python exactly replicate its previ-
ously reported performance on HumanEval [4]. We measure
a slightly higher pass@1 rate for CodeGen than what is
reported in [3] (19.2% compared to 18.3%).9 These findings
show that the small standardization changes we made to the
HumanEval benchmarks do not significantly affect model
performance.

We evaluate a more recent Codex model (code-
davinci-002) than the original paper and observe a large
improvement on Python: a pass@1 rate of 45.9%, com-
pared to 28.8% reported earlier [1]. Our pass@1 rate on the
Python HumanEval subset replicates what is reported for
code-davinci-002 in [35].10

5.2.2 Codex Performs Best on JavaScript

Codex’s performance on JavaScript is better than its perfor-
mance on Python, though the difference is not significant
(+2.3%; p = 0.43). Codex also achieves a pass@1 rate higher
than 40% on C++, Java, TypeScript, PHP, Ruby, Rust, Scala,
and Lua. Since its training set is not public, we cannot inde-
pendently verify that the model was not trained on Python-
HumanEval solutions. However, that Codex matches or ex-
ceeds its Python performance on 18 new languages suggests
a negligible impact of any train/test overlap.

CodeGen also performs well on JavaScript and Type-
Script, though the latter is not included in its fine-tuning
dataset. InCoder’s performance is the weakest. Like the
other models, it performs better on more frequently-used
languages (Python) than less popular ones. However, unlike
Codex and CodeGen, it does not match its Python perfor-
mance on any other language.

5.2.3 Performance by Language Frequency

Figure 7 shows MultiPL-HumanEval pass@1 rates for each
model, grouping languages by frequency. All three models
perform best on high frequency languages.

Although we find reliable differences in Codex pass@1
rates between the MEDIUM, LOW, and NICHE languages

9. We note that [3] calculates the pass@1 rate for 3 temperatures,
and reports the best result without specifying the temperature. Con-
sequently, it’s not clear whether the 18.3% pass@1 rate they report is
measured at the 0.2 temperature that we use.

10. We note that [35] also reports results for InCoder and a monolin-
gual version of CodeGen, but with sampling differences that make the
pass@1 rates difficult to compare.
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Figure 9: Model performance on MultiPL-MBPP by language frequency and type-checking. Languages to the left of dashed
line are dynamically typed; languages to the right are statically typed.

formance is not considerably better than HumanEval. A
mixed-effects model finds significant differences in InCoder
pass@1 rates for all languages, with positive coefficients for
TypeScript, JavaScript, and PHP.

Note that we do not have any doctests in MBPP (§3.1).
The performance differences between MultiPL-MBPP and
MultiPL-HumanEval on certain languages may relate to
this, as we discuss in more detail in §6.1.

5.3.1 MBPP is Less Challenging Than HumanEval

MBPP appears to be a less challenging benchmark than
HumanEval. The MultiPL-MBPP pass@1 rate is higher than
the MultiPL-HumanEval pass@1 rate for all but 6 of our 57
model/language pairs. This is despite the fact that MBPP
does not provide doctests in any prompts, which, as we
show in §6.1, affects performance for some languages.

This suggests that HumanEval may be a more use-
ful benchmark suite than MBPP for the community, as it
provides an equally good or better indication of model
performance with a more computationally efficient sample
size.

5.3.2 Python Results and Replication

Our Python MBPP pass@1 rates for Codex are slightly
higher than what is reported in [35] (60.3% compared to
58.1%). [35] prompts with a function signature and doc-
string, even though the original MBPP problems do not
include function signatures; we also include function sig-
natures, which we infer from the provided test cases.

Our Python MBPP results for InCoder are lower than
what is reported in the original paper (15.5% compared to
19.4%) [4]. We calculated pass@1 rates for MBPP differently
than Fried et al. [4] in two key ways. First, since the original
MBPP benchmarks do not include function signatures, Fried

et al. [4] prompts InCoder with the MBPP docstring only.
We infer function signatures for MBPP problems from the
provided test cases, as described in §3. Second, Fried et al.
[4] reports computing pass@1 rates for MBPP using a single
completion, rather than computing the unbiased sampling
estimator with 200 samples as described in Chen et al. [1],
as we do. We suspect this leads to inflated pass@1 rates.11

5.3.3 Performance by Language Frequency

Figure 9 shows model performance on MultiPL-MBPP
by language frequency. As with the MultiPL-HumanEval
benchmark, models generally perform better on more com-
mon languages. However, Codex performance on MultiPL-
MBPP is robust on many MEDIUM, LOW, and NICHE lan-
guages, such as Lua and Scala. CodeGen performs surpris-
ingly well on the D version of MBPP, a niche language not
included in its fine-tuning dataset.

We find reliable differences in Codex pass@1 rates be-
tween languages in the MEDIUM, LOW, and NICHE cate-
gories when compared to the HIGH category (p = 0.007;
p < 0.001; p < 0.001).

5.3.4 Comparing Model Performance by Problem

Although Codex outperforms CodeGen and InCoder, one
may wonder if the latter models can solve problems that
Codex cannot. This type of comparison is subtle since
all of these models are non-deterministic, and the pass@k

metric estimates the likelihood of a prompt producing a
working program. We can consider the subset of prompts

11. With a single sample, the pass@1 rate for an individual problem
will be 0% or 100%. Assuming that the 200 samples are fairly homoge-
neous but not identical, as we observe is usually the case, the unbiased
sampling pass@1 rate for an individual problem is rarely 100%, since
this would require all 200 samples to be correct.
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where Codex never produces a working program. There
are exactly 3,000 out of over 10,000 such prompts, across
all languages and benchmark suites. For these prompts,
we calculate the 95% confidence interval for pass@1 with
CodeGen and InCoder and find that 3% of them have
pass@1 > 0. Moreover, the mean value of pass@1 for the
aforementioned 3% of prompts is 0.16 and 0.14 for CodeGen
and InCoder respectively. Thus the likelihood of CodeGen
or InCoder solving a problem that Codex cannot is very low.

5.4 Summary

On the whole, our results replicate previously reported
model performance on code generation for Python. We
benchmark three state-of-the-art models on 18 additional
languages, most of which have never been evaluated before.
Surprisingly, we find remarkably good model performance
on some lower-frequency languages, such as Lua. We also
find that performance on JavaScript and TypeScript is con-
sistently high and occasionally exceeds Python, even though
the benchmarks we explore originated in Python.

5.5 Cost

We use CodeGen and InCoder “off-the-shelf” from Hug-
ging Face Transformers and estimate that we spent about
2 years of time on a variety of Volta/Ampere GPUs. We
used the Codex model when it was in limited beta, and
it is now available from Azure at 10 cents / 1,000 tokens.
The total length of all Codex completions in our dataset is
nearly 1.5 billion characters. With the OpenAI estimate of
0.25 characters per token, our experiment would have cost
approximately $37,000 if we had had to pay for it.

6 FACTORS IN CODE GENERATION SUCCESS

In this section, we explore factors that impact code gen-
eration success. Focusing specifically on the MultiPL-
HumanEval benchmark suite, we report results from a num-
ber of follow-up experiments, including an ablation study
of MultiPL-E’s translation components and finer-grained
examinations of language features and prompt translation
choices. We also provide a fine-grained analysis of the kinds
of errors that arise in NL2Code across several languages.

6.1 Ablation Study

Our compilers target multiple distinct regions of the prompt
for each problem. We explore the impact of each component
in an ablation study of our MultiPL-HumanEval benchmark
suite with Codex. We ran four versions of the MultiPL-
HumanEval prompts, with some or all regions translated:

• Original Prompt: does not translate doctests or nat-
ural language terminology (e.g. prompts as in Hu-
manEval);

• Test-only Translation: translates doctests but not
Python-specific terminology;

• Full Translation: translates unit tests, doctests, and
Python-terminology in the prompt; and

• No Doctests: removes doctests and does not translate
natural language terminology.

Language Implicit Explicit
D 0.22 0.17
R 0.23 0.21
Racket 0.18 0.20

Table 2: pass@1 with Codex on three languages where
Codex underperforms. The Implicit column is the full trans-
lation, and the Explicit column adds an explicit cue about
the desired language.

For Codex’s pass@1 results, translating doctests and Python-
specific terminology has little impact on better-performing
languages (Figure 10). However, translating these compo-
nents seems more important for certain languages: Bash,
PHP, Perl, R, Rust, Swift, and TypeScript.

We note that six of these languages are ones where
Codex does not perform substantially better on MultiPL-
MBPP than MultiPL-HumanEval (Figure 6). The perfor-
mance degradation observed for these languages when
doctests are removed from the MultiPL-HumanEval prob-
lems suggests that the worse than expected performance on
MultiPL-MBPP could be due to the lack of doctests in that
benchmark suite.

Overall, we find significant differences between the Full
Translation and Test-Only Translation experiments (p =

0.03), and between No Doctests and Test-Only Translation
(p < 0.001), but not between No Translation and Test-
Only Translation (p = 0.2). This suggests that the Python
terminology translation has a small but reliable effect, and
that the presence of the doctests is important, though their
translation is not.

6.2 Explicitly Prompting with Language Name

Our prompts do not explicit specify the name of a pro-
gramming language and instead relies on the models to
infer the desired language from other cues in the prompt
(§2.1). We run a small ablation study with Codex using three
programming languages on which Codex performs poorly:
D, R, and Racket.12 For each of these languages, we take
the original prompt (specifically, the full translation that
translates doctests and terminology) and add “Generate in
language” as a comment before the original prompt. Table 2
shows pass@1 rates with and without this explicit language
cue. The results are inconclusive across languages: Codex’s
performance on Racket improves slightly, but is slightly
worse on D and R.

6.3 Type Annotations

One may conjecture that type annotations improve model
performance by constraining the code generation search
space. Or, perhaps, they might hurt performance by compli-
cating the task, since the model must generate correct type
annotations.

In Figure 7 and Figure 9, the dashed lines in each
category separate languages with type annotations (left)
from languages without (right). We observe no overall effect
of type annotations on Codex pass@1 rates on MultiPL-
HumanEval (p = 0.33) or MultiPL-MBPP (p = 0.23).

12. We take care to add this after the #lang racket line for Racket.
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Figure 10: Ablation study of translation components, showing Codex pass@1 with original prompts; translated doctests;
translated text and doctests; and doctests removed.

To explore the impact of type annotations at a more
fine-grained level, we run a series of follow-up experiments
using the MultiPL-HumanEval benchmark suite. We focus
on two languages: Python, which allows optional type
annotations, and TypeScript, a gradually typed cousin of
JavaScript. Gradual typing allows us to weaken type anno-
tations or even configure the TypeScript compiler to ignore
all type errors.

6.3.1 Precise types improve TypeScript performance

TypeScript has an “Any” type, which is compatible with
all types. We run Codex on a variation of the MultiPL-
HumanEval TypeScript prompts where all types in the
function signature are translated to “Any”. We find that
the loss of precise types hurts performance on TypeScript
(-2.5%; p < 0.001).

6.3.2 TypeScript type errors correlate with runtime errors

Even gradual type-checking can reject programs that would
in fact run without error. We run the Codex-generated Type-
Script programs without first checking types. We observe no
significant difference in pass@1 rates (p = 0.14), suggesting
that typed programs are rejected for genuine errors.

6.3.3 Type annotations do not affect Python performance

We run a similar experiment with Codex and Python, where
we remove all the type annotations from the MultiPL-

HumanEval prompts. We find that this has no significant
effect on Codex’s pass@1 rate for Python (p = 0.23).

We interpret these results as evidence that type annotations
do not guide search in general, since they do not improve
Python performance, but that informative types are neces-
sary for languages where type annotations are standard,
perhaps in order to fit the token distribution of high-quality
typed code seen in training.

6.4 Sensitivity to Compilation Choices

Each MultiPL-E compiler makes small choices about how
to translate prompts that could have an impact on perfor-
mance. We explore some of these choices below.

6.4.1 Comment style affects performance

Most programming languages have several comment styles
(e.g., single-line vs. multi-line). To investigate their im-
pact, we ran follow-up experiments with Codex on the
MultiPL-HumanEval benchmark suite for two languages:
PHP (MEDIUM) and Racket (NICHE).

Our original prompts use single-line comments for both
PHP and Racket, following conventional style. We re-ran
Codex on versions of the MultiPL-HumanEval problems
for both languages using multi-line comments instead. This
improves the pass@1 rate for Racket (+1.9%, p < 0.001), but
decreases it for PHP (-3.1% , p = 0.001).
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Figure 11: Impact of programming language features on Codex pass@1 performance by language

6.4.2 Naming arguments improves performance for Perl

Functions in Perl do not have formal named arguments.
Instead, all arguments are passed in a special array. Our
compiler to Perl produces a prompt that pops elements off
the special array and names them, with the expectation that
this would improve model performance.

We ran a follow-up experiment on a version of the
MultiPL-HumanEval problems for Perl where we omit this
argument-naming prompt, so the model has to infer every-
thing about arguments from the natural language descrip-
tion and examples. This significantly lowers Codex’s pass@1
rate (-8%; p < 0.001).

In summary, our results show that code generation perfor-
mance can be sensitive to prompt engineering choices for
both high and low frequency languages.

6.5 Impact of Language Features

One challenge of extending existing benchmarks to new
programming languages is that not all programming lan-
guages have the same features. Although the MBPP and Hu-
manEval benchmarks consist of relatively simple functions,
they exercise a variety of datatypes, not all of which have
a straightforward equivalent in all programming languages
in our dataset.

To explore whether model success is impacted by the
Python language features used in the program, we catego-
rized all problems from the HumanEval benchmark suite
into groups based on the Python language features used in
their type annotations: Booleans, dictionaries, lists, tuples,
or none of the above.

Figure 11 shows the performance by language on each
type of problem. A mixed-effects model finds no significant

effect of problem type, when programming language is
treated as a random effect.

Many models appear to struggle with questions involv-
ing tuples. Some of these are on languages that lack a native
tuple type, such as Java. However, JavaScript performs well
despite lacking tuples.

Although many languages show poor performance on
dictionary problems, there are only 3 problems in this cate-
gory, so these results should be interpreted with caution.

6.6 Fine-grained Error Analysis

Code generation models generate many more failing
programs—programs that produce errors or fail to pass
unit tests—than programs which run successfully. This
section presents a detailed evaluation of errors present in
the Codex-generated completions for MultiPL-HumanEval
problems in 4 languages: Python, C#, Swift, and Racket. See
Appendix D for a full categorization.

We first identified specific error labels for each lan-
guage and then grouped them into themes (e.g. “NullRef-
erence”). We produced five general error categories: RUN-
TIME, STATIC, TYPE, LANGUAGE, and MODEL. We group
similar error sources together across languages, even if they
occur in different contexts: for example, calling a function
with a value of the wrong type may fail at compile-time or
run-time, depending on the language’s type system.

The most common STATIC theme across all languages
is “UndefinedIdentifier”, which contains errors related to
referencing non-existent terms (e.g., Figure 12a). These er-
rors can be caused in many ways – calls to functions not in
the local context, use of Python-like keywords, or calls to
methods from external libraries that were not imported.
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public static string Intersection(

Tuple<long, long> interval1,

Tuple<long, long> interval2) {

long start = Math.Max(interval1.Item1, interval2.Item1);

long end = Math.Min(interval1.Item2, interval2.Item2);

if (start > end) {

return "NO";

}

long length = end - start + 1;

return IsPrime(length) ? "YES" : "NO";

}

(a) A C# completion refers to a non-existent IsPrime method (Hu-
manEval #127).

def find_closest_elements(numbers):

# YOUR CODE HERE

raise NotImplementedError()

(b) A Python completion that always fails (HumanEval
#20).

(define (solve s)

(if (string-contains s #\a)

(string-map (lambda (c) (if (char-alphabetic? c)

(char-upcase c)

(char-downcase c)))

s)

(string-reverse s)))

‘‘‘

### [Reverse the order of words in a string](...

‘‘‘racket

#lang racket

(c) A Racket completion that turns into Markdown (HumanEval #161).

func starts_one_ends(n: Int) -> Int {

if n == 1 {

return 2

}

if n == 2 {

return 4

}

return starts_one_ends(n - 1) +

starts_one_ends(n - 2)

}

(d) A Swift completion that does omits required argument
labels in function (HumanEval #83).

Figure 12: Some examples of different types of errors produced by Codex. For brevity, we have removed the problem
descriptions (comments) from the prompts.

Some errors in the RUNTIME category mimic those we
expect from software engineers (e.g., index-out-of-range
errors). However, others are unlike human mistakes. No-
table themes in the latter group (MODEL) include generat-
ing code that throws exceptions on purpose (e.g., Figure
12b) and generating code in an entirely different language.
For instance, Codex frequently generates Markdown code
for Racket problems. Although we don’t have access to
the Codex dataset, we suspect that Racket is not well-
represented in the dataset. We posit that these errors oc-
cur because Racket files begin with a language declaration
(#lang racket) that is easily mistaken for a Markdown
heading (e.g., Figure 12c).

Finally, the category LANGUAGE includes multiple
themes related to the specifics of the target language itself.
The “LanguageSpecific” theme contains idiosyncratic errors
such as the requirement of labeled arguments in Swift (e.g.,
Figure 12d). An additional theme (“DoesNotKnowSyntax”)
includes errors in Racket caused by incorrectly generated
core language constructs.

7 THREATS TO VALIDITY

Our work translates two Python code generation bench-
marks into 18 other languages and evaluates the perfor-
mance of three code generation models on the translated
benchmarks.

The principal threat to validity is that the (translated)
benchmarks may not be representative of the kinds of prob-
lems that programmers typically solve in each languages.
For example, we evaluate both scripting languages (e.g.,
Python and JavaScript) and systems languages (e.g., C++
and Rust) on the same task, but programmers frequently

use these languages for very different tasks. We characterize
the HumanEval and MBPP benchmarks as a mix of ba-
sic programming problems and straightforward interview
questions. Thus, performance on benchmarks may not ac-
curately represent real-world performance.

Code generation models are sensitive to small changes in
how prompts are designed, as we show in our exploration
of prompt design choices for three of our languages (§6.4).
It is likely that the pass rate on individual languages could
be improved with even more language-specific effort. We do
provide an ablation study on prompts for all languages in
our dataset (§6.1) to investigate the impact of our different
translation components. All our prompts use >>> to mark
examples, which is Python doctest notation. It is possible
that a different marker may improve performance on some
other languages.

The quality of generated code is also sensitive to de-
cisions about how to sample completions (§2.2). We use
the same sampling configuration that is used in most prior
work on code generation. Empirical results show these
settings are optimal for Python [1], but it is possible that
different settings would be better for other programming
languages.13 However, in a practical deployment of a multi-
language code generation model, it may not be feasible to
adjust the sampler for every input language.

8 RELATED WORK

In this section we focus on related work on evaluating
neural code generation models.

13. This would be a very resource-intensive experiment, beyond
the scope of an academic group. The original experiment on sampler
configurations by Chen et al. [1] has not been repeated by any lab.
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Early approaches. Early work on neural network code
generation relied on textual similarity metrics for evalua-
tion. For instance, Feng et al. [17] evaluate their CodeBERT
model on six programming languages using BLEU [36]. Ren
et al. [27] proposes a code generation-specific formulation of
this metric. However, previous work has found that textual
similarity metrics correlate only weakly with code correct-
ness [1, 2, 27], highlighting the importance of benchmark
suites with unit tests.

Other benchmark formats. The benchmarks that we
translate pair code with comments; some other benchmarks
pair natural language descriptions of other kinds. For in-
stance, the CoNaLa [11] benchmark consists of matching
natural language questions and code snippets mined from
StackOverflow. We note that MCoNaLA [37], which extends
CoNaLa to Spanish, Japanese, and Russian, is the only cur-
rently available benchmark for evaluating code generation
from multiple natural languages.

CodeGen [3] introduces a multi-turn benchmark that
involves interleaving prompts and results. We believe it
could be translated to other languages with some effort,
using a variation of the MultiPL-E approach.

InCoder [4] supports “in-filling” or “fill-in-the-middle”
and presents a number of infilling tasks, of which the most
general is to fill in an arbitrary line of code in the middle of
a function. This article does not benchmark in-filling, since
the other two models that we evaluate do not support it.
However, MultiPL-E-generated solutions are used as multi-
language infilling benchmarks for the SantaCoder [34] code
generation models, which do support in-filling.

MathQA [2] is benchmark of math word problems,
where answers are number-valued expressions in Python
and a DSL. Since the canonical solutions are number-valued,
it is easy to check that a solution in another lanugage
produces the same number, within some epsilon. However,
MathQA requires some formulas to be translated for either
fine-tuning or few-shot prompting.

Other monolingual benchmarks. There are monolingual
code generation benchmarks in languages beyond Python.
Kulal et al. [9] presents a C++ dataset consisting of crowd-
sourced descriptions of lines of code. Iyer et al. [38] present a
Java benchmark taken from online code repositories. Zhong
et al. [29] and Yu et al. [39] propose benchmarks for SQL.
However, we do not believe SQL is amenable to translation,
since conventional types in programming languages do not
naturally translate to the types of relational tables. More-
over, of these datasets, only Kulal et al.’s includes unit tests
to enable evaluation of code correctness [9].

Our approach could be applied to other Python code
generation benchmark suites like MathQA-Python [2], a
set of mathematical word problems with multiple choice
answers, or APPS [10], a set of problems taken from open-
access code competition websites like Codeforces.

Other tasks. Although we focus specifically on bench-
marks for the code generation task, there are many other
tasks that have been used to evaluate code generation
models, including generating unit tests from code [19], code
search [17, 21], and type inference [22, 23, 24]. Lu et al.
[20] propose a suite of evaluation datasets for ten tasks,
including code translation, docstring generation, and code
summarization.

Other code generation models. We evaluate three state-
of-the-art code generation models, but many other models
that have been proposed. Two influential early models were
CodeBERT [17] and PyMT [18]. More recent models include
PolyCoder [7], CodeParrot [40], AlphaCode [41], and PaLM-
Coder [42]. PolyCoder was not trained on natural language
text, and its authors explicitly state that it may not be
suitable for NL2Code. AlphaCode and PaLM-Coder are not
available for academic researchers to investigate.

Other multi-language evaluation. Xu et al. [7] measure
the performance of several code generation models on 12
languages. However, they evaluate model performance us-
ing perplexity, rather than building a benchmark with unit
tests, as we do; they test code correctness only for Python.

HumanEval-X14 is an unpublished benchmark that
appeared after our work that manually translates the
HumanEval problems into four languages (C++, Java,
JavaScript, and Go).

MBXP [43] is a concurrent effort to evaluate code genera-
tion models. We support more languages (13 vs. 19), though
MBXP translates an additional benchmark (MathQA). Both
MBXP and our work could be extended to support more
languages and benchmarks. However, there are deeper dif-
ferences in the nature of our translation and evaluation:

• We believe our approach to testing is more reliable.
Rather than keeping the unit tests hidden from the
model, MBXP prompts the model with the same unit
tests it uses to test the generated code. Thus the code
generation model can “see” the test cases that it will
be evaluated on. In contrast, we use a hidden set of
unit tests to evaluate code correctness.

• Our work is more faithful in translating types
from Python into typed languages. For example,
our type inference infers types like Either[X,Y]

and Optional[X] and translates them to algebraic
datatypes in typed languages (§6.3). MBXP produces
types such as Object and Any in languages like Java
and Scala, which are less idiomatic. For languages
that do not support Any, such as C++, MBXP fail to
translate these benchmarks altogether.

• MBXP uses greedy decoding in their evaluation of
public models. Greedy decoding produces a single
candidate program which may not be the most likely
program. Prior work has shown that sampling the
output of a code generation model significantly im-
proves the correctness of generated code [1]. We
follow standard practices for sampling (§2.2).

• Finally, MBXP has publicly released a subset of their
benchmarks, but not their system used to build them.
All code and data for MultiPL-E is open source.

9 CONCLUSION

We propose MultiPL-E, the first massively parallel, multi-
language benchmark for natural-language-to-code gener-
ation. We write compilers to translate code generation
benchmarks from Python to 18 additional programming
languages that span a spectrum of language features and
popularity.

14. http://keg.cs.tsinghua.edu.cn/codegeex
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We translate two widely used unit test-driven bench-
marks for code generation: HumanEval and MBPP. Using
our multi-language parallel versions, we present the first
multi-language code correctness evaluation of three state-of-
the-art models: Codex, CodeGen, and InCoder. We demon-
strate that Codex displays high performance across a variety
of programming languages, performing similarly to Python
on several languages, most notably, JavaScript.

In our detailed by-language analysis, we find a pre-
dictable effect of language frequency, but draw mixed con-
clusions about the impact of type annotations. Our de-
tailed error analysis highlights common patterns in four
languages, finding model errors that are both like and unlike
those of human programmers. We hope that our in-depth,
parallel evaluation of a large set of languages will be a useful
guide for developers weighing whether the utility of code
generation tools in their project context.

Our publicly available benchmark is also easy to extend
to new problems and languages. We hope it will help
evaluate and develop future work on multi-language code
generation models.
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