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ABSTRACT

In this paper, we consider two fundamental symmetric kernels in
linear algebra: the Cholesky factorization and the symmetric rank-k
update (SYRK), with the classical three nested loops algorithms for
these kernels. In addition, we consider a machine model with a fast
memory of size S and an unbounded slow memory. In this model,
all computations must be performed on operands in fast memory,
and the goal is to minimize the amount of communication between
slow and fast memories. As the set of computations is fixed by the
choice of the algorithm, only the ordering of the computations (the

schedule) directly influences the volume of communications.

3
We prove lower bounds of —1- N for the communication vol-

3vV2 VS

ume of the Cholesky factorization of an N X N symmetric positive

definite matrix, and of % NZTM for the SYRK computation of A - AT,

where A is an N X M matrix. Both bounds improve the best known
lower bounds from the literature by a factor V2.

In addition, we present two out-of-core, sequential algorithms
with matching communication volume: TBS for SYRK, with a vol-

ume of \%NZWM + O(NMlogN), and LBC for Cholesky, with a

volume of 3‘#& }\\/]—; +O(N 5/ 2). Both algorithms improve over the

best known algorithms from the literature by a factor V2, and prove
that the leading terms in our lower bounds cannot be improved fur-
ther. This work shows that the operational intensity of symmetric
kernels like SYRK or Cholesky is intrinsically higher (by a factor
V/2) than that of corresponding non-symmetric kernels (GEMM and
LU factorization).
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1 INTRODUCTION

Dense matrix factorizations play a significant role in scientific com-
puting. In particular, symmetric positive definite matrices appear in
many applications; the Cholesky factorization is a dedicated factor-
ization algorithm for such matrices. With the increase of both the
scale of the platforms and the problems to solve, minimizing com-
munications for scientific computing, and in particular for these
factorization kernels, is crucial to reach the peak performance from
modern hardware. In addition to its effect on execution time, the
volume of data movement has a major impact on energy consump-
tion during a computation, so that reducing the volume of data
movement will result in a reduction of the energy required by a
computation.

To evaluate data movement, we consider in this paper an elemen-
tary model from the literature, with a computation unit associated
to a fast memory of size S where the operands of computations
must be located, and a slow memory. In this context, the objective
is to perform a set of computations, given by the algorithm, while
minimizing the data movement between the fast memory and the
slow memory. Different orderings (schedules) for a given set of
computations (algorithm) may induce different volume of commu-
nication between slow and fast memories. We are interested both
in establishing the minimum volume of communication needed for
a given computation and in finding optimal schedules.

The operational intensity (OI), defined as the ratio of the number
of arithmetic operations to the volume of data movement to/from
memory, is a critical metric for comparing the efficiency of various
algorithms and their schedules. Since the number of operations
for our computation is known and fixed, studying the operational
intensity is similar to studying the volume of data movement. We
want to increase OI by reducing the volume of communication.

In this paper, we study the OI of the Cholesky factorization and
of the symmetric rank-k update (SYRK): we derive lower bounds
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of the volume of data movement that any schedule has to per-
form for each of these algorithms. Such bounds are valid both for
parallel algorithms and out-of-core sequential algorithms, and we
provide out-of-core sequential algorithms whose communication
complexities asymptotically match our lower bounds.

It is known [3] that performing a Cholesky factorization of an Nx

3
N matrix with a memory of size S requires Q (N—) data transfers.

Regarding the optimal constant, on the one hand, recent work on
automated lower bound derivation [14] show that the constant
is at least %; and, on the other hand, an algorithm by Béreux [5]
proves that the constant is at most % This represents a factor of 2
between the largest known lower bound and the smallest known
upper bound. In this paper, we close this gap by increasing the
lower bound by a factor of V2 and decreasing the upper bound by
the same factor therefore reaching optimality. This also shows that
the algorithm of Béreux [5] is not optimal.

Similar results exist for the SYRK kernel, which computes the
symmetric matrix C = A - AT where A is a N x M matrix. With a

memory of size S, © (NZTQ/I) transfers are required. The OOC_SYRK

algorithm by Béreux [5] achieves a constant of 1, and a recent
work [14] provides a lower bound with a constant of % Again, it
was believed that the optimal value was 1. Again, in this paper, we
prove that the best known lower bound [14] can be increased by a
factor of V2 and the I/O volume of the best known algorithm [5]
decreased by the same factor, hence reaching optimality.

Previous works on the SYRK kernel take the symmetry of the
operation C = A - AT into account by computing the lower half of
the matrix C. However the fact that the matrix A appears twice
on the right-hand side has not been exploited: if A;; is required
while A; ; is in the fast memory, the schedule loads A ; anyway.
Indeed it is akin to computing the lower half of C = A - B, where
A is a N X M matrix and B is a M X N matrix. Similarly, a lower
bound for Cholesky is derived in [11] under the constraint that it
is forbidden to use A; j when Aj; is available. The lower bound
obtained with such a constraint is potentially too large: there may
exist algorithms which perform fewer data transfers by making a
better use of symmetry.

In this paper, we precisely show how to exploit the symmetry of
input to evaluate the volume of I/O actually required to perform
SYRK and Cholesky and derive lower bounds (thus potentially
lower than bounds that do not take it into account). We also present
algorithms which make explicit use of the symmetry to reduce data
movement.

After a more detailed presentation of the related works in Sec-
tion 2 and a presentation of the methodology in Section 3, we thus
present our 4 contributions:

e an improvement by a factor V2 of the best known lower
bound for the communication requirements of the SYRK
kernel (from % to ‘/lﬁ Section 4.1);

e an application of this result to the Cholesky factorization,
improving over the best known lower bound by a factor V2

f 1 1 ion 4.2):
(from s to v Section 4.2);
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o the TBS algorithm for the SYRK kernel which makes use
of the symmetry of the computations to reduce the commu-
nication volume by a factor V2 over previous approaches
(from 1 to Lz’ Section 5.1);

o the LBC algorithm for the Cholesky factorization, which
uses TBS and a large-block, right-looking approach to obtain
a communication-optimal schedule (Section 5.2), providing
a V2 improvement over the best known algorithm (from %
to —1=).

3V2

Our results provide a proof that the maximal operational inten-
sity for the multiplication operations in SYRK and Cholesky is \/g ,

or equivalently V2S5 when also counting the addition operations.
This is to be compared to the equivalent results for matrix-matrix
multiplication (GEMM) and LU factorization, for which the maximal
operational intensity is VS (see Table 1 in [14]). Our work shows
that symmetric operations have intrinsically higher operational
intensity, and our algorithms provide insight about how to take
advantage of that. At this stage, we do not claim that our algorithms
can be used in a practical setting, but their existence shows that
the lower bounds that we obtain are the best possible.

2 RELATED WORKS

Research work regarding the estimation of data transfers required
to perform linear algebra kernels heavily relies on two simplified
machine models:

(1) External memory model: the machine features one fast and
limited memory of size S, one “slow” and unlimited mem-
ory. Input required for any computation must reside in fast
memory to be performed, while the data initially resides in
slow memory.

(2) Parallel model: P nodes, each with a memory of size S, can
communicate through a network.

Both models are highly related: the external memory model can
be used to study the volume of communication of a single node in
a parallel machine, since the set of all other nodes can be viewed
as a single “slow” memory with which data transfers occur. Thus,
most lower bounds are actually obtained in the external memory
model, and then transferred to the parallel model. For the purpose
of comparison, only bandwidth communication cost estimations
are of interest to us: we do not consider latency issues or bound
the number of messages, we focus on the number of data elements
transferred.

2.1 External memory sequential model

The paper from Hong and Kung [10] can be considered as the
founding piece of subsequent development on the topic. In this
work, the authors consider a two-level memory machine. A set
of rules referred as the pebbling game models the required data
transfers between the two types of memory. Based on the analysis
of the graph describing the dependencies between tasks, the authors
derive asymptotic lower bounds for the number of data transfers
required between the two levels of memory. For classical N x N
matrix multiplication (i.e. requiring O(N?) operation), Hong and

Kung prove that Q (1\\/]—;) data transfers are required.
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Irony et al. improve this result in [9] through the expression of
a “memory-communication tradeoff” in the context of the external
memory model. For N X N matrix multiplication, the total number

of data transfers between slow and fast memory actually is ©( 2= )

This however assumes a limited fast memory size: S < é}%
In [3], Ballard et al. extend Hong and Kung’s result to Cholesky

factorization using a reduction technique: by observing thata 5 Ny %

matrix multiplication can be carried out through a N X N Cholesky
factorization, they prove that the communication costs of the latter
method are only a constant factor of the former. Therefore, the
asymptotic bounds established in [10] hold: performing a N X N

Cholesky factorization requires at least Q( f;—;) data transfers. This

result has been later generalized to a broader variety of kernels [1,
4].

This line of work enables to establish very general bounds, for a
broad range of kernels, including sparse computations, and provides
algorithms with matching communication complexity. However,
these algorithms are only asymptotically optimal: they achieve a

communication volume O( NS) for Cholesky for example, but the

respective hidden constant factors of the lower bounds and the
algorithms can be significantly different.

Very recently, automatic cDAG analysis techniques have led to
refinement of lower bounds for several kernels at once, meaning
that the constant factor of the dominant term is explicitly provided.
In particular, Olivry et al. [13, 14] derive lower bounds on data
transfers (in the context of the out-of-core model) for any kernel
expressed as an affine program. Among other results, they estab-

N—\; +O(N?) 1/0

N M
§NM L o(vM) 10

operations. This work also presents a tool which computes an ef-
ficient tiling scheme according to the available memory size. The
tool is however limited to rectangular tilings.

Independently, using explicit enumeration of data reuse, Kwas-
niewski et al. [11] obtain a corresponding lower bound for LU
factorization: their proof is in a parallel context, but their argu-
ments show that the minimum number of data transfers is lower
bounded by %i\/[—; They also propose a generalization to Cholesky

lish that Cholesky factorization requires at least

operations, and that SYRK requires at least 1

factorization and obtain an improved 1N Jower bound, which

\f

however makes the implicit assumption that there is no data reuse
related to the symmetry of the matrix as discussed in Section 1.
In 2009, Béreux [5] proposes a sequential out-of-core Cholesky
algorithm with “narrow blocks” that performs % +O(N?) /O
operations, without making use of the symmetry of the matrix.
This matches the lower bound from Kwasniewski et al., showing
that this is the best possible bound in the context of this implicit
assumption. The same paper also mentions an out- of core SYRK
algorithm, based on similar ideas, which performs M \f +O(MN)

I/0O operations.

2.2 Parallel model

In [9] Irony et al. apply their "memory-communication tradeoft”
for matrix multiplication in the context of parallel execution. Using
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P nodes to perform the multiplication of M X N and N X R ma-
trices, it states that at least one of them must send or receive at
TN S data. The authors also present 2D and 3D task

distributions for matrix multiplication as parallel implementation

2
in the two limit cases for memory size: S = O (i) for the first case,

§$=0 ( ) for the second. They prove that those algorithms are

asymptotieally optimal regarding communications since they match
the lower bound derived from the “memory-communication trade-
off”. More recent work by Solomonik et al. [15] presents an original
way of modeling dependencies of any cDAG as a lattice-hypergraph
which enables the authors to extend the “memory-communication
tradeoff” to take into account synchronization and express bounds
about the communication on the critical path.

In 2011, Solomonik and Demmel [16] introduced the 2.5D algo-
rithms for matrix multiplication and LU factorization, bringing a
continuum between 2D and 3D algorithms. Experimental results
show the superiority of 2.5D algorithms over conventional 2D al-
gorithms.

Regarding Cholesky, Ballard et al. [3] reviewed existing par-
allel distributed algorithms and, based on their lower bound on
communication, proved that LAPACK and other block recursive
implementations are asymptotically optimal for a carefully selected
block size. The work on lower bounds by Kwasniewski et al. [11]
leads to the design of parallel distributed 2.5D LU (COnfLUX) and
Cholesky (COnfCHOX) algorithms. These algorithms perform a

N? 2

3 ASSUMPTIONS AND METHODOLOGY

We consider a computational platform with a slow memory of un-
bounded size and a fast memory of bounded size S. We fix a given
computation described with a computational directed acyclic graph
c¢DAG G = (V,E), where each vertex in V represents a computa-
tion operation and each edge in E represents a data dependency
between operations. An operation can only be performed if the
corresponding input data is in fast memory. We assume that the
algorithms explicitly control which data is loaded and removed
from the fast memory. The operations in V can be performed in
different orders, and we are interested in finding orderings which
induce the minimum amount of transfers between slow and fast
memory, also called I/O operations.

volume of communication per node of

3.1 Lower bound methodology

The lower bounds of this paper are based on a careful application
of Lemma 1 in [11], which states:

LEMMA 3.1. Fix a constant X > S and assume that any subcom-
putation H of a cDAG G = (V, E) which reads at most X elements
and writes at most X elements performs a number of operations |H|
bounded by |H| < Hmax-

Consider any execution of G with memory S. Its operational inten-
Hmax

sity p is bounded by p <
bounded by

, and its number of I/O operations Q is

0s M IMxX-9)

P Hmax
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Algorithm 1: Pseudo-code of SYRK, where only the lower
triangular part of C is referenced and computed.

Input: A of size N X M, C symmetric of size N X N
Output: C+=A- AT
fori=1to N do
for j=1toido
for k =1to M do
| Cij+=Aik-Ajk

Algorithm 2: Pseudo-code of Cholesky, where only the
lower triangular parts of A and L are referenced.

Input: A symmetric positive definite of size N X N
Output: Replace A with L such that A = L - LT
fork =1to N do
Ak = VA
fori=k+1toN do
Ak = Aje/As ke
for j=k+1toido

‘ Aij—=Ajr-Ajk update operations

In [11], the number of elements read and written by a subset
of computations H are expressed in terms of dominator sets and
minimum sets in the graph G. In our case however, the graph is
quite regular, so we do not need to introduce these notions.

We consider the SYRK and Cholesky kernels, as described in
Algorithms 1 and 2. In the following, N and M always denote the
sizes of the matrices used in the kernels. In the Cholesky kernel, for
the lower bound target we will focus on the update operations only.
We can thus describe each operation by a triplet of positive integers
(i, j, k), and for both SYRK and Cholesky kernels, we will further
ignore the diagonal operations where i = j. The sets of operations
are denoted S for the SYRK kernel and C for Cholesky, and are
given by:

S={Gjk) e{l,...N¥?*x{1,....M}|i > j}
C={(i,jk)e{l,....NY¥|i>j>k},

where {a, ..., b} denotes the set of integers between a and b (inclu-
sive).

We can see that for each statement of these algorithms, the set
of written variables is included in the set of read variables, so we
only focus on the input data of each operation. In the rest of the
paper H is used to denote a set of operations, subset of S or C.

Definition 3.2. Given a set H of operations, H is the restriction
of H to iteration k:

Hye = {(i,j) e N*| (i, j, k) € H} .
Definition 3.3. Given a subset U of N2, 7 (U) is the symmetric
footprint of U:
t(U) ={i e N|3j,(i,j) € Uor (j,i) e U}.

If i > jforall (i, j) € U, then |U| < w In particular,
this holds for any H.
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With these definitions, we can express the number of elements
accessed by a set H: using the SYRK kernel as an example, Uy Hx

is the set of elements C; ; accessed by H, and for any k, 7 (H|k) is
the set of A; ;. elements accessed by H.

ProOPOSITION 3.4. For any set H of operations, the number of
elements accessed by H is

D(H) = |UkH\k| +Z ‘T (H|k)‘-
k

3.2 Triangle blocks

Many results in this paper are obtained by considering triangle
blocks, which are generalizations of the diagonal tiles in a tile de-
composition of a symmetric matrix. In particular, the SYRK lower
bound shows that accessing the result matrix by triangle blocks is
the most efficient, and the TBS algorithm describes how to partition
the result matrix in disjoint triangle blocks. Figure 3 (page 8) depicts
examples of triangle blocks.

Definition 3.5 (Triangle block). Given a set R of integer indices,
the triangle block TB(R) is the set of all subdiagonal pairs of ele-
ments of R:

TB(R) = {(r,r')|r,r’ € Rand r > r'}

It is clear that |[TB(R)| = w, We say that TB(R) has side
length |R|.

For any m € N, we define o(m) to be the smallest possible side
length of a triangle block with at least m elements. o(m) is thus the
smallest element of N such that m < w By solving the
quadratic equation, we get:

LEMMA 3.6. Form € N*, o(m) = [{/1 +2m + 1, and o(0) = 0.

We define T(m) as any size-m subset of TB({1, ..., 0(m)}), for
any m € N. We use T(m) as a canonical way of performing m
computations in an iteration, while minimizing the number of
accessed elements. Indeed, by definition |T(m)| = m, and it is easy
to see that |z (T (m))| = o(m).

4 LOWER BOUNDS
4.1 Symmetric Multiplication (SYRK)

As mentioned in Lemma 3.1, in order to obtain a lower bound on
the I/O operations required for the SYRK computation, we first
provide an upper bound on the largest subcomputation H than
can be performed while accessing at most X elements. We are
thus looking for (a bound on) the optimal value of the following
optimization problem:

P(X): max |H|
M
st. D(H) = |UkH|k|+Z T(H|’<)| <X
k=1
HCS

The main result of this section can be stated as:

THEOREM 4.1. The optimal value of P (X) is at most %X%.
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Figure 1: An optimal solution H(X) to problem #(X).

To prove this theorem, we first show that # (X) admits triangle-
shaped optimal solutions, which we call balanced solutions. We then

compute an upper bound on the size of such a balanced solution.
4.1.1 Balanced Solutions.

Definition 4.2. For a given x and m, we define the balanced solu-
tion B = B(x, m) by:

Bjg=T(m) forallke{0,...,K-1},
B =T(m’) fork=K,
B =0 for all k > K,

where K = | & ] and m’ = x — Km < m.

It is clear that |B(x, m)| = x (since K - m + (x — Km) = x) and
|UkB(x, m)) k| = m. The next lemma shows that any solution H can
be turned into a balanced solution with lower cost.

LEMMA 4.3. IfH is a solution of P (X), let the corresponding bal-
anced solution be B= B (|H| , maxy |H|k|). Then D(B) < D(H).

ProOF. Given a solution H, let us define m; = |H‘k| and de-
note m = maxy mg. As mentioned above, we have |B| = |H| and

|UkB|k| = m = max; my < |UkH|k|. Furthermore, since )} my =
|H| = K - m + m’ and since the o(+) function is concave, we have:

Zk:)T(B“C)) = Ko(m) + o(m’)
< Za(mk)
S

This shows that D(B) < D(H). O

In particular, if H is an optimal solution, we obtain the following
corollary.

COROLLARY 4.4. There exist x and m such that B(x, m) is an opti-
mal solution to P(X).

Figure 1 shows an optimal solution H(X) of problem #:

e it is balanced: H, = T(%() for all k;
e it requires no more than X accessed elements:

D(H)=|U/(H‘k|+ =%+ =X;
ﬁx%.

e it is optimal according to Lemma 4.6: |[H(X)| = V3
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4.1.2 Optimal Balanced Solution. A balanced solution B can be
described with three integer values I, J in {1,...,N} with J < [,
and K € {1,..., M} such that

{ Vk €{0,...,K -1}, B =T(I)
Bk =T())

Such a solution satisfies |B| = K@ + ](]Tﬂ) and D(B) =
I(I-1)

2

+KI + J. By relaxing integrity constraints and upper bounds
on I, J, K, we get that the optimal size of a balanced solution is at
most the optimal value of the following problem #’(X):

ax (KI(I — +
2

1(I-1)
s.t. 2
{J<I

LEMMA 4.5. For any (I, ], K) solution to P’(X), define K’ = K +

{E{:ll)) . Then (I,0,K’) is a solution to P’ (X) with the same value.

Proor. The solution (I, 0,K’) is feasible:

JU-1)
2

P’ (X):

+KI+] <X

I(I-1 I(I-1 -1
( )+K’I= ( )+KI+]]—
2 2 I-1
I(I-1) .
< 5 +KI+] since J < I
<X since (I, ], K) is feasible

Furthermore, its objective value is K’I(Iz_l) = KI(IZ_D + ](]Z_l),
which is the objective value of (I, J, K). o

This lemma shows that the optimum value of P’ is equal to the
optimum value of the simpler $”” problem below:

P(X):  max (KI—(I; 1))

I(I-1
¥+KI<X

This problem is now simple enough and we can provide a direct
bound on its optimum value.

LEMMA 4.6. The optimum value of "’ (X) is at most 3\_\%)(%

Proor. Reformulated as a minimization problem, P’ (X) be-
comes:

min (—KI(I ) )
2

I(I-1)

s.t. +KI-X<0

We define functions f and g as:

I(I-1)

VK,I>0 f(KI) =-K

I(I-1
(2 )+KI—X

VK,I>0 g(K,I) =
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Since the regularity conditions are met over the whole defini-
tion space of variables I and K, we can write Karush-Kuhn-Tucker
necessary conditions: if (K, I) is a local optimum for "’ (X) then

Ju=>0, V(K I)+uVg(K,I) =0
“KI-H+ul-3+K) =0
& Juz0
“ { I(I 1)+ ul =0

which implies u = I_Tl, and then KI = (I - 1)(I - %)
If (K,I) is a local minimum of f, Then KI = (I - 1)(I - l)
Besides we can select (K, I) such that I(I Y 4 KI - X = 0. This

yields 312 — 41 — (2X — 1) = 0, and we obtalnI =%+ m_
An optimal solution of P/ (X) is thus given by

r-Ha-4
and its objective value is
LT -1
—

—-1%@err-1

K* =

H"(X) =K

1
:—I*
2

= ﬁ(\/us)(—l) 2V1+6X +1)
V6X\3
(&%) \/§X§

2 3\/_

To understand why the last inequality holds, one can observe
that the function X +— H""(X)— %X% equals 0 for X = 0. Besides,

S

7] 2 1 X
—W"(X)—iX%]z—(\/l+6X—1)— =
ox 3v3 6 3
1
= g[\/l+6X— (1+V6x)]
which is obviously negative. O

4.1.3 Final Result.

Proor oF THEOREM 4.1. The result follows directly from Corol-
lary 4.4, Lemma 4.5 and Lemma 4.6. O

CoROLLARY 4.7. The number of 1/0 operations required to perform
a SYRK operation where A has size N X M, with memory S, is at least

1 N*M

Qsyr(N, M, S) > — ——.
V2 R

PRrOOF. Consider the computational DAG of the SYRK operation,

which has |S]| = NM yertices. According to Theorem 4.1, for any X,

any subcomputatlon H of this DAG which reads at most X elements

. V2 2
< —=X2.
has size |H| 3‘/§X2

In particularl, for X = 3S, we get |H| < V2 - S%, According
to Lemma 3.1, the maximal operational intensity of SYRK is p =

IThe value X = 3 is chosen to obtain the strongest possible bound by maximizing

the ratio ‘ l
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3 S S \/7 This yields the following bound on the number of /O
operations for the complete SYRK operation:

IS| _ 1 N°M

N,M,S) > = — .
OsyRk ( ) > N

4.2 Cholesky factorization

We now consider the Cholesky factorization, as described by Algo-
rithm 2. As mentioned above, we focus on the update operations,
described by the set

c={Gjke{1...,

For a given X, the largest subset H that accesses at most X
elements can be found by solving £ (X), in which the constraint
H C S is replaced by H C C. We consider a relaxed version, in
which the constraint is instead H C C’, where

C'={@ijk) e{1,....NY¥|i> j}.

Since C C C’, the optimal value of this relaxed version is not
smaller than the optimal value of the original one. We can now
remark that the relaxed version is a special case of £ (X) where
M = N, so that we can directly apply Theorem 4.1, which leads to
the following corollary:

NYli>j>k}.

CoROLLARY 4.8. The number of 1/O operations required to perform
a Cholesky operation on a matrix A of size N X N, with memory S, is
at least

Qcnn(N.$) > =
Chol
NN

Proor. The computational DAG of the update operations of the
Cholesky kernel contains |C| = = update operations. According
to Theorem 4.1, for any X, any subcomputatlon H of this DAG
N2 3
3 ‘/§X z.

As previously, we apply Lemma 3.1 to the case where X = 3S,
and obtain that the maximal operational intensity of the update

which reads at most X elements has size |H| <

operations in Cholesky is p = % < \/g . Since a Cholesky kernel
needs to perform all update operations, this yields the following
bound on the number of I/O operations

(¢

P 3v2ZS

1 N3

QOchol (N, S) >

O

5 COMMUNICATION-OPTIMAL ALGORITHMS

In this section, we propose algorithms which perform the same
operations as Algorithms 1 and 2, but with an ordering that requires
fewer I/O operations. We start by presenting an algorithm for the
SYRK kernel, which we then use to design an algorithm for the
Cholesky kernel.

To simplify the presentation of the algorithms, we index the
matrices in the range {0, ..., N — 1} instead of {1, ..., N}. Our al-
gorithms rely on previously proposed algorithms from Béreux [5],
more specifically the one-tile, narrow-block variants of 0OC_SYRK
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//////

//////
//////

b S

Figure 2: A block in Béreux’s algorithm (left) is a VS x V5
square, and requires 2V5S rows of A. A triangle block along
the diagonal (right) only requires V2S rows of A for the same
amount of computation.

and OOC_TRSM, and the one-tile, left-looking variant of Cholesky
OOC_CHOL. For conciseness, we denote them respectively by
OCS, OCT and OCC, with the following number of I/O operations:
2

Qocs (N M) = X g +O(NM)
2
Ooct (N.M) = XM 4 o(Nm)
N3 0
N)=—— NM
Qocc (N) 3\/§+ (NM)

The analysis of the number of I/O operations in this section
is asymptotic in the following sense: we assume that S remains
constant, and that the sizes N and M of the matrices grow without
bounds.

In the following algorithms, given a matrix A and two sets of
indices X and Y, we use A[X,Y] to denote the submatrix of A
indexed with indices in X X Y.

5.1 TBS: Triangular Block SYRK

The proof of Theorem 4.1 shows that the largest operational inten-
sity in the SYRK kernel is achieved when computing the elements
of C in a triangle T(m), which is located at the top-left of matrix
C. The right of Figure 2 shows that a triangle along the diagonal

does achieve the maximal operational intensity of \/g . The result of
Corollary 4.7 is tight if all (or at least most) parts of the computation
have the same operational intensity. But it is not clear whether it
is possible to tile the whole computation space with triangles. It
is easy around the diagonal, but what about the elements of the
matrix away from the diagonal?

Algorithm 3: Generic out-of-core SYRK algorithm

Partition C in blocks of size S
for each block B do
Load the corresponding elements of C in memory
fori=0toM—1do
Load the required elements of A[-, i]
Update block B with these elements
Remove block B from memory

Our algorithm uses the generic scheme described in Algorithm 3:
store a block of elements of the result matrix in memory, and it-
eratively load elements from A to update this block. To maximize
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memory efficiency, it makes sense that blocks would contain S
elements. In the OOC_SYRK algorithm proposed by Béreux, the
blocks are squares of VS x VS, which is the optimal shape without
data reuse (for example, squares are the optimal shape for non-
symmetric GEMM multiplication). For each block, performing the
computation requires to transfer 2vS rows of A (see left of Figure 2).

Our TBS algorithm achieves a better operational intensity by
using blocks shaped as triangles, up to row and column reordering
(see right of Figure 2): for a triangle along the diagonal, transferring
V2S5 rows of A is enough to perform all the computations in the
block. More generally, this is also true for triangle blocks TB(R)
of size S, as defined in Definition 3.5. Indeed, TB(R) is the set of
indices of the elements of C that can be updated with elements of
A whose row belong in R.

We prove here that it is actually possible to tile (almost all) the
result matrix C with triangle blocks, each containing roughly S
elements.

5.1.1 Partitioning the result matrix. We fix k such that

k(k—1) k(k+1)
+— = >
This ensures that the memory can fit a triangle of side length k
from the result matrix C, plus a vector of k elements of A used for
the update. Let us assume for the moment that N = ck for some
value c. We will see later that not all values of c are eligible, and we
will discuss how to choose an appropriate value. We decompose the
result matrix C in k(k2—1) square zones of size ¢ X c. The rest of the
matrix (k triangle-shaped zones on the diagonal) will be considered
later. In TBS, a block contains exactly one element from each of
these square zones, as depicted in Figure 3. For 0 < i,j < ¢, we
denote by B*/ the block which contains the element (i, j) of the
top-most zone (which is the element (i + ¢, j) of the matrix C).

Let R™/ be the row indices of block B>/. Since we search for
blocks with one element per zone, we can write

B" =TB(R™), with R = {u-c+fu)|0o<u<k}, (1)

S>k

where 0 < 5/ (u) < c gives the position of the row of B>/ within
the u-th row of zones (see left of Figure 4). To ensure that B>/
contains (i + ¢, j), we just need to have f*/(0) = j and f*/ (1) = i.
We can thus specify our triangle blocks with an indexing family:

Definition 5.1 (Indexing family). A (c,k)-indexing family is a
family of functions £/ (u), defined for (i, j) in {0, ..., c— 1}2, with:

i {o,...,k=1} > {0,...,c— 1}
Vi,j, f0)=j and fY(1)=i

To enforce the validity of the algorithm, triangle blocks B>/ must
not overlap. If two functions >/ and f .y agree for two different
values u and v, the corresponding blocks B>/ and B/ have two
row indices in common, and as can be seen on Figure 3, these blocks
are not disjoint. We thus need to consider valid indexing families:

Definition 5.2 (Validity). A (c, k)-indexing family f is valid if
i j _ l",j,
veso {f W@ =@

= i=i"andj=j".

@) =" (v)
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4 triangle blocks

the corresponding row indices

a ¢ by ¢ square zone

two triangle blocks
with two common row
indices (%) overlap

AN

I N

Figure 3: Zones and blocks in the TBS algorithm. Each block
has one element in each zone.

o oI\

Recursive calls

| |
ck
N
: B 5 m
| Triangle blocks
" s m =m
I=N-ck OOC_SYRK

Figure 4: Left: f*/(u) gives the position of the row of B>/
within the u-th row of zones. Right: Which parts of the matrix
C are computed by which method in the TBS Algorithm.

It turns out that this condition is sufficient to ensure no collisions:

LemMA 5.3. If f is a valid (c, k)-indexing family, then the sets B
defined in Equation 1 are pairwise disjoint.

Proor. We prove the contrapositive of this statement: if two
BbJ sets are not disjoint, then f is not valid. Indeed, let us consider
two different pairs (i, j) and (i’, j’) such that B>/ NB"J" # 0. There
exist (u,v) and (u’,v’), with u # v and v’ # v/, such that:

uc+ A () =u'c +fi/’j/(u')
ve+ fH (0) =v'c +fi/’j/(v')
Since the values of an indexing function are in {0, ..., c — 1}, this
implies u = v’ and v = 0’.
Thus, there exist u # v and i, j, i/, j/, with (i, j) # (i’,j’), such
that f*(u) = f**/(u) and f*/ (v) = f*+ (v): f is not valid. O

This shows that with a valid indexing family, it is possible to
partition the square zones from Figure 3 in disjoint triangle blocks.
The remaining elements, from the triangular zones close to the
diagonal, can be computed by recursive calls to the TBS algorithm.
We thus require several valid indexing families for a fixed k and
different values of ¢, since the recursive calls will be made with
different value of c. However, we see below that we cannot obtain
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valid indexing families for all values of ¢, so we are not yet ready
to describe the complete algorithm.

5.1.2  Defining a valid indexing family. In this section, we show
that it is possible to define a valid indexing family for some values
of ¢ > k — 1. We do this using simple modulo operations:

Definition 5.4. The cyclic (c, k)-indexing family is defined by:
fi’j(u)—{j ifu=0
- =

i+j(u—1) modc ifu=0
LEMMA 5.5. Ifc > k—1is coprime with all integersin{2, ..., k—2},
then the cyclic indexing family f; is valid.

Proor. Consider any u,v € {0,...,k—1} withu < v, and assume
that i, j, i, j* in {0,...,c — 1} are such that £/ (u) = £/ (u) and
[ ) = £ (o).

We first prove j = j’. If u = 0, this is direct. Otherwise, we can
write

i+jlu—-1) =i’+j(u—1) modc
i+j(o-1)

i—i
AT
i—i

This implies:

(=-Nu-1)=G"-Hl-1)
e (' -Nu-v=0

Sinceu <v,0 <u,0 < k—1,weknowthat0 <ov—u < k-—2.
From our assumption, v —u is coprime with ¢, so we obtain j'—j = 0
mod ¢, and thus j = j’.

Then, since i + j(v — 1) =i’ + j(v — 1) mod ¢, we deduce i = i’
mod c. Since i,i’ are in {0,...,c — 1}, we have i = i’. O

=i’"+j(v-1) mod ¢

=('-j)(u-1) modc
=(’-j)(v—1) modec

mod ¢

mod ¢

We define the constant integer q as the product of all primes no

[

p prime,p<k-2
integers in {2, ...,k — 2} if and only if ¢ is coprime with ¢. Notice
that g is constant: it only depends on k, thus on S, but not on N or
M.

Now that we know how to build valid indexing families, we are
ready to describe the TBS algorithm. However, with the constraints
on ¢ imposed by Lemma 5.5, it is not possible to use triangle blocks
on the whole matrix C. Instead, given a matrix size N, we set ¢ to be
the largest number coprime with g such that ¢ < % If the obtained
c is lower than k — 1, we can use the simple OOC_SYRK with
square blocks. Otherwise, ¢ satisfies the condition of Lemma 5.5,
so we can use triangle blocks to compute the first ck rows of C,
and the OOC_SYRK algorithm for the remaining [ = N — ck rows
(see right of Figure 4). The resulting algorithm is called TBS, and is
described in Algorithm 4.

larger than k — 2: g = p. Then c is coprime with all

5.1.3  Analysis of the number of 1/0 operations. Let us first notice
that the TBS algorithm loads each entry of C exactly once (even
for the elements computed with OOC_SYRK), so loading these

2
elements induces NT I/O operations. In the following, we denote
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Algorithm 4: Triangle Block Syrk TBS(A, C)
Input: matrices A of size N X M and C symmetric of size
NxN
Output: C+=A - AT
Assumes: memory of size S =
q < product of all primes in {2,...,k — 2}

k(k+1)
2

¢ « the largest integer coprime with g below %

I — N-ck
if ¢ <k —1then
| OOC_SYRK (A, C);
else
Use OOC_SYRK to compute the last [ rows of C
fori=0tok—1do recursive calls for triangular zones
R« {ic,...,(i+1)c}
TBS(A[R,-],C[R,R])
for (i, j) € {0,...,c— 1}?> do loop over all blocks
R<—{ru:uc+fcl’j(u)|0<u<k} see Def. 5.4
Load the elements of C indexed by TB(R)
fori=0toM—1do loop over columns of A
Load elements of A indexed by {(r,i) | r € R}
foru=0tok—-1do
forv=0tou—1do
‘ Croro 7= Aryi - Ari

¢ is too small

loops over elements
of the block

by Ortss (N, M) the number of /O operations of TBS related to
elements of A, for a matrix A of size N X M.

The definition of ¢ implies that there exists g € Ry such that
% = c+g, and we need an upper bound on g to estimate the amount
of work performed by OOC_SYRK. It is easy to see that for any
integer a, aq + 1 is coprime with q. In particular, | N/kq] q + 1
is coprime with g, thus ¢ > [N/kq|q + 1, and g < gq. Since ¢
only depends on S and not on N or M, we get g = O(1). Even
though q is a constant, it may be considered very large relative to
S. However, the bound g < q is very pessimistic: sieve methods
show that the number of integers coprime with g in any interval
{(a—1)q,...,aq— 1} is exactly [T(p — 1), where p spans the prime
numbers below k — 1 (see Example 1.5 in [7]). In practice, one can
expect the value of g to be much lower than q.

We first consider the elements computed with the TBS algorithm
(in the first ck rows). There are c? triangle blocks, and each triangle
block loads kM elements of A. This yields Q1 = ¢2kM I/O operations,
and with ¢ < %, we obtain Q1 < NZ—M.

Elements computed with OOC_SYRK (in the last [ = gk rows)
are computed by square VSx VS blocks, and each block loads 2MVS
elements from matrix A. Since there are at most gkN such elements,
this yields a number of I/O operations Qy < ngN -2MVS = O(NM).

Adding the elements covered by the recursive calls, we get:

2

Otps (N, M) < p

+ k@TBS (%,M) + O(NM)

We can iteratively apply this inequality ¢ times, where ¢ is the
smallest integer such that k—l\{ < k- 1. We thus have k! < % and
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t = O(log N). Then we get:

_ LON2M _
Orss (N.M) < ) == +KQocs (kM) +1 - O(NM)
i=1
< i N*M +N KM +O(NMlogN)
x ] A — (o]
= K Vs
< N2M(—— ~ 1) + O(NMlog N)
-z
2
< j,:] Af +O(NMlogN)

Remember that k is defined by S = M, sothatk -1~ \/ﬁ
In total (with the communications required to load elements of C),
we get:

THEOREM 5.6. The total number of 1/O operations Qrgs (N, M)
of the TBS algorithm for a matrix A of size N X M, with a memory
of size S, is bounded by:

1 N?M  N?
Qs (N, M) < AT + +O(NMlogN)

5.1.4 Tiled version of TBS. The TBS algorithm, as presented in

Algorithm 4 achieves an asymptotic complexity which matches the

lower bound from Theorem 4.7. However, this requires very large

values of N, since the condition ¢ > k — 1 together with k = V28

means that the triangular block approach can only be used for

N > 25.In that case, the matrix is so large that half a column does
not fit in memory.

To make the TBS algorithm more practical, it is possible to design

a tiled version of it, where elements of C are no longer considered

individually, but as tiles of size b x b. We thus choose b and k such

that § = bzw, and set ¢ = k% (actually the largest integer
coprime with g below this value). Instead of loading elements of
C, we thus load complete tiles; however we still load elements of
A one row at a time. The update operation C,, ,, += Ay,i - Ar, ;i
thus becomes an outer product.

The analysis of the number of I/O operations is very similar,
only the value of Q1 changes. There are still ¢? blocks, each of
which loads kbM elements of A. We get Q1 = c2kbM, with ¢ < N

E.
Thus Q7 < If—bM In turn, this yields Orss (N, M) <

N?M
&b T
O(NMlogN). With b = %, we get:

NZ

2
NM + — +O(NMlogN).

k-1
V23S

The leading term is now larger than the lower bound by a fac-
tor y/k/(k — 1), but this tiled version of the algorithm is valid for
smaller values of N. Indeed, the constraint ¢ > k — 1 implies
N > % = 4/25 - k(k — 1), and thus NTZ > k(k —1): TBS is useful
as soon as storing the matrix requires k(k — 1) times more memory
than available.

QtBs (N, M) <
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[0 ooc_cHOL
[[] OOC_TRSM
[ T1BS

A[IO’ IO]

All, 1]

L

Figure 5: Algorithm LBC: updating the three parts of A at
iteration i.

5.2 LBC: Large Block Cholesky

The lower bound detailed in Section 4.2 is based on the idea that
Cholesky factorization generates at least as many /O operations as
the SYRK operation. Since TBS algorithm performs the SYRK kernel
with the minimum amount of I/O operations, the idea is to use it
for the largest possible part of the computation of the Cholesky
factorization.

5.2.1 Algorithm description. We implement this strategy in the
Large Block Cholesky (LBC) algorithm. It is a right-looking,
blocked algorithm which performs the Cholesky factorization of
any input symmetric positive definite matrix A making use of
OOC_CHOL, OOC_TRSM and TBS algorithms. Note that it would
be possible to use a recursive call to LBC instead of OOC_CHOL,
since LBC performs fewer transfers. However, it turns out that the
successive Cholesky factorizations of A[I, Iy] do not contribute to
the higher order term, so we opt for OOC_CHOL to simplify the
presentation. LBC modifies A in-place to yield a lower triangular
matrix L as output such that A = L - LT. The steps of the algorithm
are detailed in Algorithm 5 and illustrated in Figure 5.

Algorithm 5: Large Block Cholesky LBC(A)
Input: A: N X N symmetric positive definite matrix
Input: b: block size
Assumes: b|N
Output: L: N x N lower triangular matrix s.t. A=L- L'
fori=0to L%J do
Ip={i-b,....(i+1)-b}
A[I(),I()] — OOC_CHOL (A[Io, I()])
if (i+1)-b < N then
L ={(i+1)-b,...,N}
AlL, Iy] < OOC_TRSM (A[ly, Ih], AlL1, Ib])
All, I;] < TBS (A[L, lo], A[l1, h])

LBC is a so-called right-looking variant of Cholesky factorization.
At each iteration, the final values of the two leftmost panels A[ Iy, I]
and A[I1, Ip] are computed; A[I4, Ip] is then used to update the right
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panel A[I3, I;] whose values are still temporary. By contrast, left-
looking variants perform all the updates of a given value of A one
after the other, allowing to write each element only once.

Right-looking implementations of Cholesky are known to per-
form more I/O operations than their left-looking counterparts, be-
cause the lower right panel Ay, j, needs to be reloaded at each
iteration, so as to be updated using the SYRK kernel. Nevertheless,
this overhead can be rendered negligible. Indeed, the main point of
LBC is to use large enough blocks (of size VN), so that the num-
ber of iterations is low (VN): then, the volume of communications
induced by loading Ay, j, remain negligible compared to the one
required to update its values.

5.2.2  Analysis of the number of 1/0O operations. Let us now an-
alyze the total number Qrpc (N) of I/O operations required by
Algorithm LBC onan N X N matrix A As mentioned above, we

get from [5] that Qoct (N, M) = \f + O(NM) and Qpcc (N) =

3 \/§ +O(NM).
Furthermore, as detailed in 5.1, we also know that Qrgs (N, M) =

N\}M N+ O(NMlogN). Then:

1
N

OLpc (N) = i Qocc (b) + Qoct (b, (% - i) b)
i1

+ Orps ((% —i) b,b)

N

b
= 2 oce (b)+ Y Qocr (b, ib) + Orss (ib,b)

i=1

PN owt
T3S
¥ Dt
N )

i=1

Since 0 < b < N, O(b?) = O(N?).
Besides:

sz

-1z

O(b%ilog(ib)) < ZO(bZNlogN)
1—1

1l
-

= O(N%logN)

The number of I/O operations necessary to perform algorithm
LBC is therefore:
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N
BN & (bz(ib) b(ib)®  (ib)? )
N) < —+ + + +O(N-°log N
Orpc (N) w5 L\ E TV 5 ( g N)
2 b3 N2 b3 N3 b2 N3
N %) G, &%) +O(N?log N)
3WS  2VS  3v2VS 6
b2N  bN? N3 Nf
S —+—+——+ —— +O(N?logN
w5 oG avavs 6 TNl
~—— —— —,— —
o @ (3) @)

As previously discussed the number of I/O operations induced
by loading Ay, 1, at each step (4) clearly becomes dominant if b is a
constant. On the other hand, if the chosen value for b is of order
N, the communications required to perform all TRSM operations
(2) becomes dominant. Hence, to ensure that the number of I/O
operations used for Ay, ;, update (3) is the only dominant term in
the formula, we choose to implement LBC using b = VN as block
size. Then:

N2 N2YN N® NZN
N)< — + + + +O(N?logN
Qrac ( 5T Vs T avavs . ( gN)
3
=——+0(N°?

3vV2VS

THEOREM 5.7. The total number of 1/O operations Qrpc (N) of
the LBC algorithm for a matrix A of size N X N, with a memory of
size S, is bounded by:

1 N3 5
. — +O(N?).
Vs (N%)

3

Qrec (N) <

S

6 CONCLUSION

This paper provides a definitive answer to the asymptotic com-
munication complexities of both the SYRK and Cholesky kernels.
The perhaps surprising answer is that the symmetric nature of
these computations can actually be taken advantage of, so that
their operational intensities are intrinsically higher than those of
their non-symmetric counterparts (matrix multiplication and LU
factorization). In addition to our theoretical lower bound results,
our algorithms provide insights about how to make use of the
symmetry to reduce communications. In future works, it might be
possible to improve the lower order terms of our results, to obtain
efficient algorithms for not so large values of N. More importantly,
we believe that the insight provided by this paper can be a start-
ing point to obtain communication efficient parallel algorithms for
symmetric linear algebra kernels. Finally, our work might also be
extended to other kernels which use the same input several times.
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