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Abstract—We consider the distributed Cholesky factorization
on homogeneous nodes. Inspired by recent progress on asymp-
totic lower bounds on the total communication volume required
to perform Cholesky factorization, we present an original data
distribution, Symmetric Block Cyclic (SBC), designed to take
advantage of the symmetry of the matrix. We prove that SBC
reduces the overall communication volume between nodes by a
factor of square root of 2 compared to the standard 2D block-
cyclic distribution. SBC can easily be implemented within the
paradigm of task-based runtime systems. Experiments using the
Chameleon library over the StarPU runtime system demonstrate
that the SBC distribution reduces the communication volume as
expected, and also achieves better performance and scalability
than the classical 2D block-cyclic allocation scheme in all config-
urations. We also propose a 2.5D variant of SBC and prove that
it further improves the communication and performance benefits.

I. INTRODUCTION

Matrix operations, and particularly matrix factorizations,
are at the heart of many applications and have received
considerable interest for many years. In this paper, we focus
on the dense Cholesky factorization, which, given a dense
symmetric positive definite matrix A, consists in computing
L, the lower triangular matrix, such that A = LLT . This
factorization is an essential step for solving linear systems
of type Ax = B, by reducing it to computing solutions of
Ly = B, and then LTx = y.

Parallel algorithms for matrix operations are often obtained
with tile-based approaches, where the matrix is divided in tiles
and operations on individual tiles are performed in parallel
with optimized sequential implementations. The distribution of
the tiles of the matrix over the computing nodes of the platform
has a strong influence on the performance, by affecting both
the load balancing and the amount of required communica-
tions. Available implementations mostly rely on static data
partitioning strategies, to avoid a significant communication
overhead; these strategies are most of the time simple and
regular to facilitate their implementation using traditional
programming models such as MPI.

However, the high-level abstraction provided by modern
task-based runtime systems such as StarPU [1], [2] or
ParSEC [3] makes it possible to use more optimized strate-
gies, even irregular ones, since all communications are trans-
parently handled by the runtime system. Such systems use
dynamic priority-based approaches to schedule the tasks inside
a compute node, and rely on static placement decisions to
balance the tasks among the nodes.

In the case of Cholesky factorization (and of the nonsym-
metric variant LU factorization), the standard approach is to
use a 2D block-cyclic distribution, as is typically done in the
linear algebra algorithms in ScaLAPACK [4]. This approach
is efficient in terms of load balancing (each node receives the
same number of tasks to compute) and even in terms of load
balancing over time, in the case where the trailing matrix on
which the algorithm is applied decreases over time, such as in
Cholesky factorization.

Research works on communication-avoiding algorithms
have proposed improved 2.5D block-cyclic distributions [5],
[6], which trade additional storage for lower communications.
Based on lower bounds on the minimal communication volume
that must be performed to compute the factorization [7], these
algorithms can be proven asymptotically optimal, within a
constant factor. Recent works on more refined lower bounds
have attempted to improve this factor, relying on compilation
techniques like the analysis of loop nests [8], [9]. However,
these 2.5D distributions are still based on the block-cyclic
approach, which does not take advantage of the symmetry of
the data in the Cholesky factorization. Our work is orthogonal
to these approaches.

In this paper, we propose SBC, a symmetric version of
the block-cyclic distribution tailored for the Cholesky factor-
ization, which achieves the same load-balancing benefits as
the usual block-cyclic and results in a smaller communication
volume. We start by presenting related works on communi-
cation lower bounds and communication-avoiding algorithms
in Section II. In Section III, we describe the 2D variant of
SBC, and derive its respective communication cost, showing



an asymptotic improvement of a factor of
√
2 over the 2D

block-cyclic distribution. We describe and analyze the 2.5D
variant of SBC in Section IV. Finally, we show in Section V
that the proposed SBC distribution significantly reduces both
the communication volume and the computational time for
the Cholesky factorization. We also consider the resolution of
symmetric linear systems and inversion of symmetric matrices,
both based on Cholesky factorization, where SBC achieves
smaller but promising gains. Concluding remarks are provided
in Section VI.

II. RELATED WORK

Research work on communication-avoiding algorithms for
linear algebra operations has advanced through the develop-
ment of lower bounds, which express the minimal communica-
tion volume necessary to perform a given operation. Striving
to reach these lower bounds has led to the design of more
efficient algorithms. In order to obtain these lower bounds,
simplified machine models are considered:

1) Two-levels memory model: the machine features one
fast and limited memory of size M and one “slow” and
unlimited memory. Input required for any computation
must reside in fast memory to be performed. This model
is also referred to as the “out-of-core” setting.

2) Parallel model: P nodes, all equipped with a memory
of size M , can communicate through a network.

The first model can be used to study the volume of
communication of a single node in a parallel machine since
the set of all other nodes can be viewed as a single ”slow”
memory with which data transfers occur. The first results
on communication lower bounds were obtained for classical
matrix multiplication [7], [10]: multiplying two n×n matrices

with a limited memory of size M requires transferring Θ( n3

√
M
)

elements. This asymptotic result was generalized to LU and
Cholesky factorization of an n × n matrix [6], which also

require Θ( n3

√
M
) data transfers. The same authors later showed

in [11] that those bounds are part of a more general framework.
Thus similar bounds of the form Ω( #arithmetic operation

√
M

) can be

derived for a wide range of operations.

More recently, automatic cDAG analysis led to the refine-
ment of these lower bounds by providing explicit leading terms
for several operations, including Cholesky factorization. Based
on a discrete version of classical Loomis-Whitney projection
argument developed in [12], Olivry et al. establish in [8], that

Cholesky factorization requires at least n3

6
√
M

data transfers.

A specific analysis adapted to the symmetric nature of this
factorization allowed Beaumont et al. [13] to further improve

the bound and obtain an optimal value of n3

3
√
2
√
M

.

In 2009, Béreux [14] proposed a sequential out-of-core
Cholesky algorithm with “narrow blocks” that performs at

most n3

3
√
M

+ O(n2) data transfers. The authors of [13]

have improved this result with an algorithm which performs
n3

3
√
2
√
M

+ O(n5/2), showing that the lower bound can not

be improved. However, these algorithms are not directly
applicable to a parallel setting. We discuss the relationship

between the sequential and parallel models in more details in
Section III-E.

ScaLAPACK library [4] contains parallel implementations
of many linear algebra operations, based on the 2D block-
cyclic distribution. For matrix multiplication, the correspond-
ing algorithm is proven asymptotically optimal in the following

sense: assuming M = Θ(n
2

P ), it performs O( n2

√
P
) data

transfers per node, and Irony et al. [7] proved that with such

an assumption on M , any algorithm has to perform Ω( n2

√
P
)

data transfers per node. This shows that the ratio between the
algorithm and the lower bound is bounded, without providing
an explicit value for the bound. A similar result is proven
by Ballard et al. [6] for the parallel distributed Cholesky
algorithm of ScaLAPACK.

When more memory is available, it is possible to design
3D and 2.5D algorithms, by replicating the input and/or
output data on several nodes. Similar asymptotic optimality
results are proven for the 3D matrix multiplication [7] and
2.5D matrix multiplication and LU factorization [15]. An
early implementation of fully 3D distributed algorithms for
triangular solve and LU factorization without pivoting is
proposed in [16] that are asymptoticaly optimal for the total
volume of communications. The 2.5D algorithms bring a
continuum between 2D and 3D algorithms where the trade-off
between memory footprint and communication is controlled by
a parameter. An implementation of 2.5D Cholesky on a Cray
system is proposed in [17], introducing some overlap between
the iterations to minimize the impact of communications.
Experimental results show the superiority of 2.5D algorithms
over conventional 2D algorithms. In 2021, Kwasniewski et

al. [9] present COnfLUX and COnfCHOX, parallel distributed
2.5D LU and Cholesky algorithms based on a block-cyclic
distribution. They prove that these algorithms induce a com-

munication volume n3

√
M

+O(n2).
Chameleon [18] is a state-of-the art dense linear alge-

bra library, which features tiled implementations of many
operations. Chameleon follows a task-based approach: the
computation is abstracted as a directed acyclic graph of tasks
whose dependencies are handled automatically by the underly-
ing runtime system. In a distributed setting, the runtime system
also automatically infers the necessary communications based
on the task placement which is provided by the application.
As shown in [18], careful management of task submission and
pruning of the task graph ensures that the approach remains
scalable. In the case of Cholesky factorization, viewing the
computation as a task graph with fine-grain dependencies
makes it possible to avoid synchronization between iterations1:
tasks of the next iteration can start even if the current iteration
is not yet completed. This means that tasks on the critical path
can be executed sooner, and in turn it provides more paral-
lelism than static, synchronized, MPI-based implementations.
The result is a generalization of the overlap approach proposed
in [17], performed automatically by the runtime system. To

1These iterations refer to the outer for loop of the Cholesky factorization,
line 1 of Algorithm 1.



ensure that the computation can be performed asynchronously,
each tile is sent to its destination as a separate message, so that
the number of messages is proportional to the communication
volume. Furthermore, thanks to the asynchronous approach,
the latency is hidden by the overlap with computations. For
these reasons, in this paper we focus on communication
volume and not on number of messages.

In Section III of this paper, we propose SBC, a symmetric

block-cyclic distribution, which can be used either in the
2D or 2.5D setting. These algorithms perform the Cholesky

factorization with a communication volume n3

2
√
M

+ O(n2),
which represents a factor of 2 improvement over the result
of COnfCHOX. We also show in Section V that implement-
ing these distributions in the task-based Chameleon library
significantly improves running time over the classical block-
cyclic distribution.

III. 2D SYMMETRIC BLOCK CYCLIC DISTRIBUTION

We start by describing the 2D version of the Symmetric
Block Cyclic (SBC) distribution. In a 2D distribution, each tile
of the matrix is assigned to only one node, whereas with the
2.5D distribution described in Section IV, tiles are replicated
to further reduce the communication volume.

A. Overview

We consider throughout the paper a symmetric positive
definite matrix A, and we assume that it is divided into N×N
tiles of size b2, for a fixed tile size b. We denote by Ai,j

the tile of matrix A in position (i, j), for 0 ≤ i ≤ j < N .
Algorithm 1 provides the pseudo-code for the tiled Cholesky
factorization, based on 4 different types of operations (POTRF,
TRSM, SYRK, GEMM) performed at the tile level, which we
denote as tasks in the rest of the paper.

Algorithm 1 Tiled Cholesky Factorization Algorithm

1: for i = 1 . . . N − 1 do
2: Ai,i ← POTRF(Ai,i)
3: for j = i+ 1 . . . N − 1 do
4: Aj,i ← TRSM(Aj,i, Ai,i)

5: for k = i+ 1 . . . N − 1 do
6: Ak,k ← SYRK(Ak,k, Ak,i)
7: for j = k + 1 . . . N − 1 do
8: Aj,k ← GEMM(Aj,k, Aj,i, Ak,i)

In this paper, we consider a task-based execution, in which
task dependencies and communications are entirely handled by
a runtime system. During the execution of a given algorithm,
the runtime system ensures that each task is executed only
after its input data has been computed. However, tasks which
do not share any dependency can be executed in parallel.

All of the tasks referenced in Algorithm 1 are a set of
elementary computations performed on the data of the input
tile(s). They are executed sequentially on one worker of the
node, typically on one core, generally relying on classical
low level implementation such as BLAS. Since nodes usually

feature manycore CPUs or even GPUs, the orchestration of
those computations within a node is necessary in order to
achieve high performance. From the perspective of this paper,
this orchestration is left to the responsibility of the runtime
system.

The focus of this paper is rather on the distribution of
the data and the computations between the nodes. A data
distribution for a tiled algorithm like Algorithm 1 is an

assignment of the
N(N+1)

2 tiles of the input matrix A to the P
computing nodes: each node owns the data corresponding to
the tiles which are assigned to it. In this paper, we consider that
tasks are distributed among nodes according to the standard
owner computes rule, which means that all the tasks that
modify a given tile are performed by the node to which that
tile is assigned.

Since data chunks are distributed among nodes as tiles,
the execution of one task by a given node P1 often requires
accessing to the value of a tile Ai,j that is owned by another
node P2. In that case, the runtime system is in charge of
requesting the communication of Ai,j to P1 so that it can be
used as input to perform the task. Nevertheless, the ownership
of the tile is not modified: the data is still stored by P2,
and P2 will still receive all future requests for this tile. An
implementation of this kind of model of execution is detailed
in Section V-C, using StarPU as runtime system and an MPI
library as inter-nodes communication layer.

To motivate the introduction of the SBC distribution, let us
focus on the dependencies between TRSM and GEMM tasks
in Algorithm 1, and consider a given tile Aj0,i computed
by a TRSM task. It can be used as the second parameter
of a GEMM task on Aj0,k or as the third parameter of a
GEMM task on Aj,j0 . Classical data distributions do not take
advantage of this additional data reuse possibility, which does
not exist for the LU factorization. Indeed, in that case, matrix
A is not symmetric, and line 8 becomes Aj,k ← GEMM(Aj,k,
Aj,i, Ai,k): a given tile Aj0,i can only be used as a second
parameter.

The standard 2D block-cyclic distribution (denoted 2DBC
in the rest of the paper) is based on a repeating p× q pattern,
where P = pq: each node is associated to a 2-dimensional
index (x, y) with 0 ≤ x < p and 0 ≤ y < q (see Figure 1).
Tile (i, j) is assigned to the node whose index is (i mod p, j
mod q). With this distribution, a tile Aj0,i produced by a
TRSM task is required by the p nodes which are assigned
tiles Aj0,k for k ≤ j0 and the q nodes which are assigned
Aj,j0 for j > j0. This involves p+ q− 1 different nodes, and
since one of them performed the TRSM task, this tile Aj0,i

needs to be sent to p + q − 2 nodes. This is highlighted on
Figure 1: a tile produced by node 1 is sent to nodes 2 and 0
on the same row, and to node 4 on the corresponding column.

In the following, we introduce a new distribution called
SBC, in which the two sets of nodes (for rows and columns)
are always the same, thus reducing the communication volume.
This is achieved with a slightly larger pattern, so that each
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Fig. 1: 2D block-cyclic allocation: repetition of the 2 × 3
pattern (using P = 6 nodes; one color per node) over a 12×12
matrix. The communication of one tile is highlighted.

node appears twice in the pattern. We will prove that this
reduces the communication volume by a factor of

√
2.

B. Generic SBC distribution

Let us consider that the number of nodes is given by

P = r(r−1)
2 nodes for some integer r ≥ 2. The SBC

distribution is built from a r×r pattern, which is to be repeated
over the whole matrix. In the pattern, each node is assigned
a pair (x, y) with x < y, and is associated with two indices,
at coordinates (x, y) and (y, x). This pattern is then repeated
across the matrix just like for the block-cyclic distribution:
tile (i, j) is assigned to the node associated with the index (i
mod r, j mod r). The resulting distribution for r = 4 and
N = 12 can be seen on Figure 2.

We provide below two possibilities for the allocation of
diagonal indices of the pattern (those with coordinates (x, x)).
We first notice, as highlighted on Figure 2, that a tile produced
by node 0 is sent to nodes 1 and 3 on the same row, and the
nodes on the corresponding column are the same.

C. Allocation of diagonal indices

Let us now discuss how to allocate the diagonal indices of
the pattern. To achieve a good load balance, it is important
to have each node appear the same number of times on the
diagonal (the rest of the pattern is already balanced). We
present two possible solutions: the basic version of SBC is
only valid for even values of r, and uses r

2 additional nodes
on the diagonal, while the extended version does not use any
additional node and is valid for all r.

1) Basic version of SBC: For even values of r, we can add
r
2 nodes to the generic pattern, and assign each of them to two
coordinates on the diagonal of the pattern. We assign them in
a round-robin fashion, as indicated on Figure 3. The resulting
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Fig. 2: Symmetric Block Cyclic allocation: repetition of the
4× 4 pattern (using P = 6 nodes; one color per node) over a
12× 12 matrix. Diagonal positions in the pattern are omitted.
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Fig. 3: Basic version of SBC pattern, with additional nodes,
for r = 4.

allocation has P = r2

2 nodes, and each tile is communicated
to r − 1 nodes: all nodes on a row are different, but the tile
needs not be communicated to the node that produced it. On
the example of Figure 3, we have r = 4, thus 8 nodes, and
each tile is communicated to 3 nodes. For comparison, the
equivalent block-cyclic distribution has p = 4 and q = 2, thus
each tile is communicated to 4 nodes.

2) Extended version of SBC: Another solution is to keep

the same set of P = r(r−1)
2 nodes, and assign them on

the diagonal. To avoid additional communication, we want to
choose nodes that already appear in the same row or column.
Since there are only r positions on the diagonal, achieving
load balance requires to consider a set of patterns, which will
be repeated alternatively over the matrix.

Let us first consider the case of odd r. We build r−1
2 patterns

(they only differ by their diagonal entries) in the following
way: for l from 1 to r−1

2 , the diagonal entries of the l-th
pattern contains the nodes (1, 1 + l), (2, 2 + l), ..., (r − l, r)
(first group) and the nodes (1, r + 1 − l), ..., (l, r) (second
group). Both patterns are depicted on the right of Figure 4,
where nodes of the first group are in blue, nodes of the second
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Fig. 4: Extended SBC distribution for r = 5, P = 10.
Left: generic pattern, right: patterns with diagonal nodes.

group are in red. Each node appears on the diagonal of exactly
one pattern, and always on the same row (for the first group)
or on the same column (for the second group).

The case of even r is based on the same idea, but with
an additional complication: using the same construction leads
to both groups of the last pattern containing the same nodes,
which would not result in good load balancing. We thus create
r − 1 patterns (only described by the nodes on the diagonal):

• The first r
2 − 1 patterns are obtained just like previously;

for each pattern, its diagonal nodes are considered as two
packs of r

2 nodes, the left pack and the right pack.
• A last bonus pack is obtained with nodes (r/2 +

1, 1), ..., (r, r/2), this pack can be placed both at the
beginning (same row) or at the end (same column) of the
diagonal. At this point any combination of a left pack
and a right pack can be used to create a valid pattern,
and the bonus pack can be used either as a left or as a
right pack.

• We create r
2 additional patterns by shifting the packs of

the first r
2 − 1 patterns: we add the bonus pack at the top

of the list of the left packs and at the bottom of the list
of the right packs, and we combine them together.

The result for r = 6 is shown on Figure 5, where packs
are represented with different colors. With this construction,
each node appears on the diagonal of exactly two patterns, and
always on the same row or column. A complete allocation for
r = 4 and N = 12 is depicted in Figure 6. For both cases

(even and odd r), the result is an allocation with P = r(r−1)
2

nodes, in which each tile is communicated to r − 2 nodes:
each row of the generic pattern contains r− 1 nodes, and the
diagonal node is one of them. We can see on Figure 6 that the
tile produced by node 0 is sent to nodes 1 and 3.

D. Analysis of the Communication Volume

The description of the tiled Cholesky factorization given in
Algorithm 1 indicates that when using the “owner computes”
rule, two types of communication happen:

• the results of POTRF tasks have to be sent along the
corresponding column to TRSM tasks;

• the results of TRSM tasks have to be sent along a row
and a column to feed GEMM and SYRK tasks.

The result of GEMM and SYRK tasks is not sent over the
network because the next task that requires this result (either
an intermediate GEMM or a terminal TRSM or POTRF)
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Fig. 5: Example of the SBC distribution for r = 6, P = 15.
Left: generic pattern, right: 5 sets of diagonal nodes, with four
normal packs and one bonus pack.
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Fig. 6: Diagonal patterns: two normal packs and one bonus
pack generate 3 diagonal patterns used in a round-robin
column-wise fashion.

is performed on the same node. With the SBC distribution,
each of these two types of communication are sent to either
r − 1 nodes (for the basic version) or r − 2 nodes (for the
extended version). Furthermore, each tile is involved in such a
communication exactly once. This yields the following result.

Theorem 1: Let S be the total size required to store
matrix A. The total communication volume generated when
performing Cholesky factorization with the SBC distribution
with parameter r is:

• Dbasic = S · (r − 1) for the basic version,
• Dextended = S · (r − 2) for the extended version,

We can compare this result with the square block-cyclic
distribution when P grows to infinity. For a given value of P ,

the parameter r using extended SBC is such that P = r(r−1)
2 ,

and the parameter p of square 2DBC is such that P = p2.



When P grows to infinity, r ∼
√
2P (for both basic and

extended versions) and p ∼
√
P .

For a matrix with S elements, SBC induces a communica-
tion volume of S · (r − 2) ∼ S

√
2P , whereas square 2DBC

induces a communication volume of S · (2p − 2) ∼ 2S
√
P .

For both weak scaling (where S grows at the same rate as P )
and strong scaling (where S remains constant while P grows),
SBC induces a communication volume

√
2 smaller than 2D

block-cyclic.

E. Connection between sequential and parallel models

In this section, we provide some insight on the differences
between 2DBC and SBC, by comparing them to sequential
out-of-core approaches. For ease of presentation, we dis-
cuss about the gains on communication volume in terms of
arithmetic intensity, defined at the level of one computing
node. The arithmetic intensity of a given node is the ratio
between the number of arithmetic operations divided by the
communication volume performed by this node. Similarly to
the sequential out-of-core methodology, we express how this
arithmetic intensity depends on the amount of data M stored
on a node.

To highlight the differences between the sequential out-
of-core and parallel models, we start with the simpler, non-
symmetric case of LU factorization without pivoting. In that
context, it is possible to prove that

√
M is an upper bound on

the arithmetic intensity [8]. Béreux’s algorithm [14] is an out-
of-core sequential algorithm, with a narrow-block, left-looking
approach, which achieves

√
M arithmetic intensity for the

Cholesky factorization and for LU factorization (this amounts

respectively to N3

3
√
M

and 2N3

3
√
M

data transfers in total). Asymp-

totically, for both symmetric and nonsymmetric factorizations,
GEMM tasks are dominant in terms of computation, and the
dependencies from TRSM to GEMM tasks are dominant in
terms of communication.

We first analyze the arithmetic intensity obtained with 2D
block-cyclic distribution for LU factorization. Assume the
optimistic case where P = p2 and N = p · k for some
k. There are N2 tiles in the matrix, so each node stores
M = N2

P = k2 tiles. Let us consider the updates related to the
first iteration of the LU factorization. Each node performs 2k2

arithmetic operations: one multiplication and one addition for
each tile. Each node receives 2k tiles: k from the first column,
and k from the first row. This yields an arithmetic intensity

ρ = 2k2

2k = k =
√
M , reaching the optimal upper bound.

However, in the following iterations, the arithmetic intensity
is lowered because the factorization continues on the trailing
matrix (the loops on j and k lines 8 and 6 of Algorithm 1
start at i+ 1): the local domain on which the computation is
performed shrinks, and parts of the data stored in the node are
actually no longer useful for the computations. In total, since
each tile is sent to p−1 nodes, the number of tiles transferred
is D = N2 · (p − 1) ∼ N2

√
P . Since the data stored on

each node is M = N2

P , we get
√
P = N√

M
and D = N3

√
M

.

Asymptotically, the total number of arithmetic operations is
2N3

3 , which yields an average arithmetic intensity of 2
3

√
M .

This ratio 2
3 comes from the fact that the local domain shrinks

with the iterations.

Let us now consider Cholesky factorization, still with 2D
block-cyclic distribution. The main difference is that only half
of the matrix is stored (thanks to symmetry), so that M =
N2

2P , and thus k =
√
2M since each node stores k2

2 tiles. In
the first iteration, each node performs half as many arithmetic
operations as for LU (k2), but receives the same number of

tiles (2k). This yields an arithmetic intensity of k
2 =

√
M√
2

. This

shows that 2DBC is well-suited for LU factorization, but not
for Cholesky factorization where it cannot reach the maximal
arithmetic intensity, even for the first iteration.

For SBC distribution, P ∼ r2

2 and let us assume that N =
r · k for some k. Since the distribution is balanced, we still
have M = N2

2P , which means that each node stores M =
k2 tiles and that k =

√
M . In the first iteration, each node

performs 2k2 arithmetic operations, and receives 2k tiles: this
leads to the same arithmetic intensity k =

√
M as Béreux’s

algorithm. Just like for LU factorization above, the shrinking
of the local domain induces a lower arithmetic intensity over
the whole computation, with the same factor of 2

3 . Indeed,

the number of transfers is D = N2

2 ·
√
2P = N3

2
√
M

for a

total number of arithmetic operations of N3

3 . This leads to an

average arithmetic intensity ρ = 2
3

√
M .

In summary, the sequential algorithm of Béreux achieves the
same arithmetic intensity for LU and Cholesky factorizations,
and is optimal for LU. The 2D block-cyclic distribution can
match this arithmetic intensity for LU (with a 2

3 factor), but not
for Cholesky. The SBC distribution is an adequate adaptation
of Béreux’s algorithm for the parallel distributed Cholesky fac-
torization. A recent result [13] shows that Béreux’s algorithm
is actually not optimal for Cholesky: it is possible to achieve√
2M arithmetic intensity. However, adapting the algorithm

of [13] to the parallel setting is beyond the scope of this work.

IV. 2.5D SYMMETRIC BLOCK-CYCLIC DISTRIBUTION

Similarly to the 2.5D block-cyclic distribution (used for
example in [9]), it is possible to use SBC distribution in a 2.5D
context. We describe it here with the basic version of SBC,
but the extended version can be used as well. Assume that we
have P = c r

2

2 nodes for some value or r > 1 and c > 1. In
the 2.5D SBC distribution, these P nodes are partitioned into

c slices of r2

2 nodes. Each slice stores a copy of the matrix
A, distributed with the SBC distribution with parameter r.

Each iteration is performed by a different slice, in a round-
robin fashion: iteration i is performed on slice i mod c. This
means that the GEMM or SYRK updates corresponding to a
given tile are accumulated on c different nodes (one in each
slice). Before performing the corresponding TRSM or POTRF
task on that tile, these updates are aggregated with a reduction
operation onto the slice that performs this iteration. This adds
a new source of communication: each tile is thus part of c−1
communications (whether by a reduce over c nodes or by c−1
point-to-point communications, this does not change the total
communication volume). However, the result of POTRF and



TRSM tasks are always communicated within a slice, and are
thus communicated r − 1 times.

With a synchronized, pure MPI implementation, performing
each iteration on a subset of the nodes would result in each
slice working one after the other, thus preventing parallelism.
But a task-based implementation allows an iteration to be
started before all the GEMM updates are finished. Nodes on
one slice can thus start working while tasks of the previous
slice are still ongoing, and parallelism can be achieved. We
show in Section V that our 2.5D implementation achieves
higher performance compared to the simple 2D approach.

A. Communication volume with limited memory

Let us consider a 2.5D SBC distribution as defined above:
c slices, each containing a basic 2D SBC distribution with

parameter r. This distribution involves r2

2 · c nodes. We

denote again the total size of matrix A as S = N(N+1)
2 . As

mentioned in Theorem 1, each tile is sent to r − 1 nodes,
so the communication volume for the intermediate results is
D1 = S(r−1). In addition, each tile of the result is replicated
c times, and needs to be aggregated on one node, resulting in
D2 = S · (c − 1) communication volume. The total is thus
D = D1 +D2 = S(r + c− 2).

Let us consider that we have P nodes with an amount of
memory M per node, and that the dimension N of the matrix

grows to infinity while M = o
(

N2

P 2/3

)

. We can (in a way

similar to [9]) use as many slices as memory size allows,

i.e. set c to PM
S . Since S ∼ N2

2 , this gives c ∼ 2PM
N2 , and

r =
√

2P
c ∼

N√
M

. We thus have D1 ∼ N3

2
√
M

and D2 ∼ PM
N2 .

The assumption on M ensures that the overall data movement
is dominated by D1, and asymptotically, we obtain

D ∼
1

2
·
N3

√
M

+ o(N3).

This can be compared to the previous result by Kwasniewski
et al. [9], who prove that their 2.5D block-cyclic algorithm

performs a volume of communication of N3

√
M

+ o(N3): our

result is a factor of 2 improvement.

B. Number of slices with large memory

If M is large enough, using as many slices as possible may
result in a too large communication volume for the reductions.
In this section we assume that the P nodes have sufficient
memory, and we search for the value of c that achieves the
minimum communication volume. Since D = S(r+c−2) and
2P = r2c, we want to minimize r+ c subject to r2 · c ≥ 2P .
We can write Karush-Kuhn-Tucker necessary conditions: if
(r, c) is a local optimum to this optimization problem, then
∃u, 1 + u · 2rc = 0 and 1 + u · r2 = 0.

We obtain u = −1
r2 , and then r = 2c. Plugging this into

2P = r2c, we get c ∼ 3

√

P/2 and r ∼ 2 3

√

P/2. This yields
the following total communication volume

D ∼ 3 3
√

1/2 · S 3
√
P

In the same context, a 2.5D block-cyclic distribution has
D = S(p + q + c − 3) and P = pqc, thus the parameters

that minimize the communication cost are p = q = c = 3
√
P ,

which yields a total communication cost D2.5DBC = 3 · S 3
√
P .

SBC provides an improvement on the communication volume
of a factor of 3

3 3
√

1/2
= 3
√
2 ) 1.26 over the 2D block-cyclic

distribution. Furthermore, this is achieved with a lower value
of c and thus requires a lower amount of memory, again by a
factor of 3

√
2.

V. EXPERIMENTS

A. Experimental Setup

All experiments are performed in double precision on the
bora cluster of PlaFRIM2, which contains 42 nodes each with
36 Intel Xeon Skylake Gold 6240 cores, for a total of 1512
cores. The nodes are connected with a 100Gb/s OmniPath
network. We use Intel MKL 2020, Open MPI version 4.0.3,
StarPU version 1.3.8, and Chameleon version 1.1.0. The
hardware peak for one core in this setup is estimated as
follows: 2.6 GHz (core base frequency) × 8 (double-precision
Flop per cycle) × 2 (FMA feature). It yields a maximum rate
of 41.6 GFlop/s for each core, equivalent to 1497.6 GFlop/s
for one node (36 cores) and 1414.4 GFlop/s for 34 cores.

We consider three different operations: the main one is
Cholesky factorization (POTRF), but we also evaluate the
performance of SBC for two other operations which make use
of the Cholesky factorization: linear system solving (POSV)
and matrix inversion (POTRI). For each operation and each al-
location scheme, a random symmetric positive definite matrix
A is generated (along with a matrix B as right-hand-side for
POSV), and distributed among nodes according to the given
allocation scheme. Once the matrix has been generated and
distributed, the computing time to perform the operation is
measured, and the process is repeated 5 times to ensure a
good reproducibility of the results.

We ran 50000× 50000 Cholesky factorizations on a single
node using different tile sizes from 100 to 1000 to determine
the most appropriate for this operation and this hardware. As
shown on Figure 7, almost maximum performance is reached
as soon as tile size is at least 500 × 500. Therefore we use
tile size b = 500 for all subsequent experiments in order to
maximize computation throughput and parallelism.

Throughout the rest of the paper and in all experiments
with SBC, all individual tasks are executed with this block
size and on a single core. In the experiments presented, the
only parameter to tune on a new architecture is the tile size.

We consider matrix sizes ranging from N = 25 tiles
(corresponding to n = 12, 500 elements) to N = 600 tiles
(n = 300, 000) for POTRF and POSV operations. The POSV
operation is performed using a right-hand-side matrix B of
size n× b: matrix B is one tile wide.

B. Allocation schemes

We compare different allocation schemes within the
Chameleon framework:

2https://plafrim.fr

https://plafrim.fr
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Symmetric Block Cyclic 2D Block Cyclic
r P p q P

6 15 5 3 15
4 4 16

7 21 5 4 20
7 3 21

8 28 7 4 28
6 5 30

9 36 7 5 35
6 6 36

TABLE I: Sizes of the considered distributions

• The extended SBC distribution, with values of r ranging
from 6 to 9, which respectively correspond to a number of
nodes P = 15, 21, 28 and 36. Since each node contains
36 cores, the number of cores ranges from 510 to 1224.

• The 2D block-cyclic (2DBC) allocation scheme, imple-
mented by default in Chameleon, featuring two options
with a similar number of nodes, in order to cover the best
possible parameters p and q. This ensures that we avoid
any unfairness based on a choice of P that would be ill
adapted to the 2DBC scheme (for example for r = 7,
using P = 21 forces to use a 7 × 3 pattern, whereas a
5×4 pattern is closer to a square and thus generates fewer
communications). The parameters used are summarized
on Table I.

• The corresponding 2.5D variants of both SBC and block-
cyclic, as described in Section IV.

The Chameleon library was shown to be very compet-
itive with other state-of-the-art implementations by Agullo
et al [18]. In these experiments, we focus on the benefits
of our newly proposed data distribution, compared to the
standard 2DBC distribution. In addition, we also compare with
the recently proposed COnfCHOX library. COnfCHOX is able
to use a 2.5D distribution, but in our cases, its automatic
parametrization selects a 2D distribution. The experiments on
our platform confirmed that the 2.5D distributions resulted in
worse performance than the plain 2D distribution. This is why
we only present results for COnfCHOX with a 2D block-cyclic
allocation.

C. Task-based implementation

As mentioned above, we have implemented the SBC distri-
bution within the Chameleon library3, on top of the StarPU
runtime system4 [1]. This combination offers a high level of
abstraction to the end user by automatically managing de-
pendencies between tasks and the associated data movements.
Our implementation of the 2D SBC distribution thus simply
consists in providing a function to specify the node responsible
for each tile of the input matrix. The 2.5D variants of SBC and
2DBC are obtained by inserting explicit reduction operations
before each TRSM and POTRF tasks in Algorithm 1. When
performing an operation such as Cholesky factorization using
this distribution, the Chameleon library submits the corre-
sponding tasks to the runtime system along with the access
mode (read and/or write) associated to each input and output
tile. From this description of data dependencies, StarPU then
infers task dependencies and the necessary communications.

The implementation used for the experiments relies on the
MPI library, with one MPI process on each node. Each MPI
process uses the StarPU runtime system to orchestrate all the
tasks performed by this node, so that each node can perform
several tasks in parallel.

At the level of one node, Chameleon and StarPU apply
dynamic scheduling strategies to distribute the tasks among
workers, and are thus able to manage heterogeneous ressources
(CPUs and GPUs). Each elementary task assigned to a node is
performed sequentially by a worker (a CPU core or a GPU). In
our experiments however, only CPU cores are used, so that all
tasks are performed at the scale of a single core. The efficiency
of the computation at the node level comes from all those
elementary tasks performed in parallel by all cores. Also note
that in the following, the possibility of using several cores in
parallel for one task (in case of lack of work in particular) is
not used.

At the platform level, tasks are assigned to nodes via
the owner computes rule and inter-node communications that
occur are handled asynchronously by StarPU. Besides, the
current Chameleon implementation does not make use of
complex collective communication schemes: each inter-node
communication uses a point-to-point MPI communication op-
eration. Our theoretical analysis of communication volume
thus matches the actual experimental setup. However, the
dynamic scheduling policies of StarPU result in a large
amount of communication time overlapped by computation,
which yields a high level of parallelism.

In StarPU, the management of tasks (submission and
scheduling) and the management of MPI communications are
handled by one core reserved for each, so on our platform 34
cores remain available for actual computations. More details
about the Chameleon library, and in particular the distributed
aspects, can be found in [18].

The flexibility and high-level view provided by the runtime
system has an additional benefit: when performing several op-

3https://project.inria.fr/chameleon/
4https://starpu.gitlabpages.inria.fr/

https://project.inria.fr/chameleon/
https://starpu.gitlabpages.inria.fr/
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Fig. 8: Measured volume of inter-node communication during
POTRF, for P = 20 and 21 (one tile of dimension b × b in
double precision is 2 MB).

erations in sequence (for example, the POSV operation is a se-
quence of POTRF and TRSM operations), no synchronization
is needed between the operations. Instead, the task graphs of
the operations are merged, and one operation can start working
as soon as data is available, while the previous operation is still
ongoing. This results in much higher parallelism. The same
mechanism allows to transparently perform data redistribution
between operations: this is done asynchronously and can be
overlapped with the rest of the computation. We use this
feature in the experiments for the POTRI operation.

D. Communication reduction

Figure 8 shows the evolution with input matrix size of the
overall communication volume (in GBytes) when performing
Cholesky factorization using 2DBC or SBC data distribution.
The test case used as illustration is r = 7. As expected, the
Symmetric Block Cyclic distribution induces a significantly
smaller communication volume, for all values of n, even for
cases where 2DBC uses fewer nodes.

The results shown in the figure are experimental results, but
it is easy to compute analytically, for a given distribution, what
volume of data is induced by SBC. Indeed, on the one hand,
Chameleon and StarPU do not modify the initial placement
of data and tasks (only their scheduling). On the other hand,
they take care of the data movements in an asynchronous way
and thus ensure an excellent overlap between calculations and
communications. Note that all communications are done at
the tile level, without additional optimizations (no detection
of collective communications or message aggregation).

E. Performance results for Cholesky

Figure 9 shows the results obtained by all approaches for
the r = 8 case, which corresponds to P = 28, where the
2.5D variants use c = 3 slices. The COnfCHOX library
obtains significantly better performance with power-of-two
number of nodes, so we present the results with P = 32
for this implementation. In all plots in this section, each
point represents the average result over the 5 runs for each
experiment, in terms of performance per node in GFlop/s
(Figures 9, 10, 11, 13 and 14), total volume of inter-node
communications in GB (Figure 8) and total running time

(Figure 12). For each point the shaded zone shows the actual
range of minimum to maximum values over the 5 runs.

Regarding performance evaluation, for an execution of
duration t using P nodes, this value is given by F = #flops

t·P ,
where #flops is the number of flops for the factorization, that
depends on the matrix size n. This allows to fairly compare
results obtained by approaches using different numbers of
nodes (in Figure 9, some allocations use 28 nodes while
others use 30 nodes, so comparing execution times is not
relevant). The theoretical peak is computed based on hardware
specifications of the processors of the platform. A dotted
line indicates the theoretical peak achievable by StarPU, by
counting only the performance of 34 cores.

The Chameleon library clearly outperforms the
COnfCHOX implementation, and manages to approach
the peak performance for very large matrix sizes. The
dynamic nature of the StarPU runtime system also results
in a higher variability compared to the static COnfCHOX

library. The comparison between the allocation schemes in
Chameleon shows that reducing the communication volume
increases the performance further; this is particularly true for
intermediate values of N where the communication has the
most impact (when N is large, the O(N3) computation cost
overshadows the O(N2

√
P ) communication cost). In this

particular case, the benefit gained from the SBC distribution
over the 2DBC distribution is similar to the benefit gained by
the 2.5D approach (which SBC achieves without increasing
the memory requirements). Furthermore, these benefits are not
exclusive, and the 2.5D SBC distribution yields even better
performance than all other schemes. In total, the 2D SBC
distribution obtains up to 23% improvement over 2DBC and
the 2.5D SBC distribution achieves up to 11% improvement
over 2D SBC. 2.5D SBC also achieves improvement of up
to 27% over the standard 2DBC distribution.

Figure 10 displays similar results for other values of r,
focusing on the relative performance of SBC and 2DBC. We
can see that the improvement observed above is valid over
all tested values of P . In the end, SBC has a much better
scalability than 2DBC: for a matrix size n = 200, 000, SBC
with P = 36 achieves roughly the same performance per node
as 2DBC with P = 16, as can be observed on Figure 11.

The evolution of the total running time against matrix size
is depicted Figure 12 for the same values of P . The plots
illustrate the overall reduction of running time achieved by
SBC mapping compared to 2DBC. Since the performance gain
is limited for very large matrices, only results for n ≤ 200000
are shown to highlight the differences.

F. Performance for other operations

Cholesky factorization is generally used as one stage of
a multi-operations workflow applied to matrix A. Common
uses include solving linear systems, (POSV operation), and
computing the inverse of the matrix (POTRI operation).

1) Solving linear systems: POSV aims at solving the linear
system Ax = B for the unknown x where A is symmetric
definite positive. Multiple right-hand-side can be gathered as
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Fig. 9: Performance of Cholesky factorization using 2D and 2.5D versions of BC and SBC for P = 28, 30 and 32.

columns of B to perform several resolutions simultaneously.
Operations on B are column-wise independent and thus totally
parallel. Our test case uses a right-hand-side of dimensions
N × 1 tiles which is customary. POSV involves three steps:

1) Cholesky factorization A = LLT : A← POTRF(A)
2) solve the system Ly = B in y: B← TRSM(B,A)
3) solve the system LTx = y in x: B← TRSM(B,AT )

Task dependencies of TRSM require two types of data
transfers at each iteration i: (a) each tile of column i of matrix
A is necessary to compute the tile of B on the same row, (b)

in B, the tile on row i is necessary to update the values of all
tiles on rows j > i.

The communication volume of the first one depends on the
number of different nodes that owns tiles of B on the same
row. The cost of the second only depends on the variety of
nodes owning tiles in a given column of B. Since B is one
tile wide, the first type of communication dominates. Hence
to limit the volume of communication, we use a 1D row-
cyclic data allocation for the right-hand-side B, regardless of
the distribution used for A.

The resulting performance for r = 8 is presented in Fig-
ure 13. We can observe that SBC achieves better performance
than 2DBC as well, however the improvement ratio is lower.
This can be explained easily: the additional time (both in terms
of communications and computations) induced by TRSM
during POSV compared to POTRF alone is independent from
the distribution of A, so the benefit of using SBC is lower
compared to the total execution time of the operation.

2) Inversion operation with data redistribution: POTRI
is the operation used to compute the inverse of symmetric
definite positive matrix A. It is composed of three steps:
(i) Cholesky factorization A = LLT : A← POTRF(A)
(ii) triangular inversion, compute L−1: A← TRTRI(A)
(iii) symmetric matrix multiplication A−1 = (L−1)TL−1:
A← LAUUM(A)

LAUUM features the same data dependencies pattern as
POTRF, so both operations induce the same communication
volume for a given distribution scheme. However, the com-
putations involved in TRTRI require nonsymmetric input: at
iteration i, the computation for tile (x, y) with x > i and
y < i requires data from tiles (i, y) and (x, i). These data
dependencies make it necessary to broadcast to all nodes along
a row and a column independently. Keeping the same notation
as for Theorem 1, the leading term of communication volume
when performing TRTRI is:

• S(p+ q−2) when using 2DBC (asymptotically 2S
√
P );

• S(2r−2) with extended SBC (asymptotically 2
√
2S
√
P ).

Since 2DBC generates a smaller communication volume
than SBC for this operation, we consider a mixed strategy
involving remapping of data between operations, denoted
SBC remap 2DBC on Figure 14: POTRF and LAUUM are
performed using SBC allocations while TRTRI is done with
2DBC. Data redistribution of the whole matrix occurs before
and after TRTRI to change the allocation. Higher order terms
of the communication volume for the whole POTRI are then
given by

• 3S(p+ q − 2) ∼ 6S
√
P with 2DBC;
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• S(2r+p+q−4) ∼ 2(
√
2+1)S

√
P with remapped SBC.

The remapped version of SBC asymptotically generates a
smaller communication volume than 2DBC, though its relative
advantage is smaller than for POTRF alone: the reduction ratio
is 3√

2+1
) 1.24 instead of

√
2. A small performance gain

can thus be expected when comparing this strategy against
2DBC. However, this asymptotic performance gain is achieved
for values of P which are large enough so that the cost of
redistribution (which does not depend on P ) is negligible
compared to the communication cost (which is proportional
to
√
P ). Figure 14 presents the case r = 8 (P = 28), p = 7

and q = 4, so that the communication volume is reduced by
a factor of only 27/23 = 1.17. In that case, the reduction in
communication is too low to obtain a visible improvement in
performance. Still, SBC reduces the communication volume
(and thus energy consumption and contention with other
applications) without degrading performance. In addition, this
experimental result shows that SBC data allocation can be
seamlessly integrated to multi-operation workflow via data
redistribution, to reduce the communication volume on specific
symmetric steps while leaving the others untouched, hence
resulting in global better performance.

VI. CONCLUSION

In this paper, we study the Cholesky factorization and
propose SBC, a data distribution scheme adapted to the
symmetry in its data accesses. We show that SBC induces
a smaller communication volume than the standard 2D block-
cyclic distributions, increasing the arithmetic intensity by a
factor of

√
2: the arithmetic intensity of Cholesky with SBC

matches the arithmetic intensity of the LU factorization with
2DBC. We also propose a 2.5D variant of SBC and prove that

it results in a communication volume of 1
2 · n3

√
M

with limited

memory M , which improves over the previous best result by
a factor of 2. We present experimental results obtained with
the Chameleon library over the StarPU runtime system,
and prove that SBC allows to obtain significantly improved
performance for the Cholesky factorization. The high-level,
task-based approach of the Chameleon library allows a
seamless integration of this new distribution scheme without
changing the Cholesky implementation. Our work highlights

the importance to use a data distribution scheme adapted to the
data access pattern. Experiments with the solve and inversion
operations (POSV and POTRI) show that SBC can be used in a
wide variety of operations. Furthermore, there is still a

√
2 gap

between the arithmetic intensity of SBC and the upper bound
for Cholesky factorization: it might be possible to design even
more efficient data distribution schemes.
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