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A B S T R A C T

The parallel strong-scaling of iterative methods is often determined by the number of global reductions at
each iteration. Low-synch Gram–Schmidt algorithms are applied here to the Arnoldi algorithm to reduce
the number of global reductions and therefore to improve the parallel strong-scaling of iterative solvers for
nonsymmetric matrices such as the GMRES and the Krylov–Schur iterative methods. In the Arnoldi context,
the QR factorization is ‘‘left-looking’’ and processes one column at a time. Among the methods for generating
an orthogonal basis for the Arnoldi algorithm, the classical Gram–Schmidt algorithm, with reorthogonalization
(CGS2) requires three global reductions per iteration. A new variant of CGS2 that requires only one reduction
per iteration is presented and applied to the Arnoldi algorithm. Delayed CGS2 (DCGS2) employs the minimum
number of global reductions per iteration (one) for a one-column at-a-time algorithm. The main idea behind the
new algorithm is to group global reductions by rearranging the order of operations. DCGS2 must be carefully
integrated into an Arnoldi expansion or a GMRES solver. Numerical stability experiments assess robustness for
Krylov–Schur eigenvalue computations. Performance experiments on the ORNL Summit supercomputer then
establish the superiority of DCGS2 over CGS2.

1. Introduction

Let A be an m ù m real-valued matrix. In this manuscript, A is
employed in two parallel computations: (1) finding a solution of the
linear system Ax = bwith a Krylov subspace method such as GMRES [1]
and (2) finding the eigenvalues of A using Krylov–Schur [2]. In both
instances, the Arnoldi algorithm is used to generate an orthonormal
basis V

m
for the Krylov subspace K

n
and the matrix H

n+1,n such that
AV

n
= V

n+1Hn+1,n. The Gram–Schmidt algorithm produces a QR de-
composition of the matrix B = [ b, AV

n
] for the Arnoldi algorithm. The

size of this basis is n ~ m.
The orthogonality of the basis, Q

n
, for the Krylov subspace K

n
(B)

is desirable for convergence of Krylov methods for linear systems and
eigenvalue solvers. However, in finite-precision arithmetic, Q

n
might

‘‘lose’’ orthogonality. The loss of orthogonality of the computed basis –
as measured by ÒI*Q

T

n
Q

n
Ò
F
– may deviate substantially from machine

precision O("), (see Giraud et al. [3]). When linear independence
is completely lost, the Krylov iterations, may fail to converge. For
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example, the GMRES iteration will stall and fail to converge if linear
independence of the Krylov vectors is completely lost. This is the case
when ÒSÒ2 = 1 as described by Paige [4], where the matrix S was
introduced in Paige et al. [5]. Also, in order to obtain backward stable
eigenvalues from Krylov–Schur, Stewart [2] demonstrates that O(") loss
of orthogonality suffices.

Krylov linear system and eigenvalue solvers are often required for
extreme scale physics simulations and implemented on parallel (dis-
tributed memory) machines. Their strong-scaling is limited by the num-
ber and frequency of global reductions, in the form of
MPI_AllReduce. These communication patterns are expensive [6].
Our new algorithms are designed such that they require only one
reduction per iteration to normalize each vector and apply projections.
During the Arnoldi expansion, the vectors are processed by the orthog-
onalization scheme in a ‘‘left-looking’’ fashion [7–9]. The focus here is
on methods that process the Krylov vectors one column at a time (as
opposed to blocks).
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For a single program multiple data (SPMD) model of computation,
classical Gram–Schmidt (CGS) requires two global reductions for each
column vector (a projection step, followed by a vector normalization).
In practice, however, CGS leads to numerical instability because the
loss of orthogonality can be as large as O(")2(A), where (A) refers
to the 2-norm condition number of the matrix A. This bound was
conjectured for a long time and finally proven in two papers [10,11].

To reduce the loss of the orthogonality to machine precision O("),
the CGS projection can be applied twice (CGS2) to reorthogonalize
the basis vectors. This is related to the ‘‘twice is enough’’ result from
Kahan and Parlett [12], where stability was proven for n = 2 vectors by
Kahan and Parlett, and the proof was generalized to any n by Giraud
et al. [10]. Given the assumption that c"(A) < 1 for a given m ù n

input matrix A and constant c = O(m2
n
3), then CGS2 constructs columns

orthogonal to machine precision (Theorem 2 in [10]). The improved
numerical properties of CGS2 over CGS are at the expense of a 2ù
increase in floating-point operations (flops), from 2mn2 for CGS to 4mn2
for CGS2, and an 1.5ù increase in global reductions, from 2 for CGS to
3 for CGS2.

Extensive numerical results are presented for the Krylov–Schur al-
gorithm to demonstrate the numerical stability and accuracy of DCGS2-
Arnoldi. Strong-scaling results are presented for the ORNL Summit
supercomputer to demonstrate that the DCGS2 algorithm improves the
CGS2 compute times by a factor of up to 2ù on many-core architectures
such as GPUs, while maintaining the same loss of orthogonality as the
original CGS2-Arnoldi algorithm.

2. Low-synch Gram–Schmidt algorithms

A comprehensive review of Gram–Schmidt algorithms and their
computational costs is given in [13]. These costs will be important
considerations in strong scaling studies of these new algorithms on the
ORNL Summit supercomputer.

The development of low-synch Modified Gram–Schmidt (MGS) and
low-synch CGS2 was largely driven by applications that need stable,
yet scalable solvers. Both MGS and CGS2 are stable orthogonalization
schemes for a GMRES solver. Indeed, CGS2 produces an O(") loss of
orthogonality, which suffices for GMRES to converge. Paige et al. [5]
show that, despite a O(")(B) loss of orthogonality MGS-GMRES is
backward stable for the solution of linear systems. Here, (B) is the
condition number (B) = �max(B)_�min(B), where �i(B) are the singular
values of the matrix B.

While MGS performs half the number of flops of CGS2, the need
for scalability has rendered MGS impractical as shown as early as
1998 in a study on a Cray T3D by Frayssé et al. [14]. For these
two reasons (stable and more scalable), CGS2 is currently the de-facto
orthogonalization scheme for iterative methods and is, for example,
included in Trilinos [15], PETSc [16], Hypre [17], and Ginko [18].

As previously stated, the CGS2 algorithm requires three global
reductions per iteration: one for the first projection, another for the
second projection (reorthogonalization) and a third for the normal-
ization. Our one-synch DCGS2 delays the reorthogonalization and the
normalization of the current vector to the next iteration. The reorthog-
onalization delay to the next iteration in the QR framework is called
‘‘Stephen’s trick’’ and is named after the third author of this paper.

To save one reduction, Kim and Chronopoulos [19] proposed either
to use the ‘‘Pythagorean trick’’, (explained in the third paragraph of
Section 3,) or to delay the normalization to the next iteration. This idea
can be used in all Gram–Schmidt algorithms. With either one of these
tricks, the number of synchronizations is reduced for CGS from 2 to 1,
for CGS2 from 3 to 2, and for Level-2 MGS from 2 to 1, etc. Carson
et al. [20] generalize the Pythagorean trick to block Gram–Schmidt
algorithms.

Delaying the normalization and/or reorthogonalization to the next
iteration implies some complications for an Arnoldi expansion that
are not present in a QR factorization algorithm. Whereas, in a QR

factorization the columns to be processed are independent from Q and
R, the Arnoldi algorithm relies on a ‘‘finished’’ vector q to perform Aq

and then provides this vector to the orthogonalization scheme. Because
these computations are delayed, Arnoldi is passed an ‘‘unfinished’’
vector q to perform Aq. Therefore, the computation of q is completed
at the next iteration. Aq and other quantities are then corrected accord-
ingly. The impact of delaying normalization in the Arnoldi iteration is
explained in Hernandez et al. [21] and the resulting algorithm is called
‘‘Arnoldi with Delayed Reorthogonalization’’ (ADR). In this paper, a
correction is introduced with the delayed reorthogonalization, and is
called the ‘‘Arnoldi trick’’. A delayed classical Gram–Schmidt algorithm
with reorthogonalization, was proposed by Hernandez et al. [21]. This
is similar to our algorithm (DCGS2), and referred to as DCGS2-HRT.
The DCGS2-HRT-Arnoldi algorithm is missing Stephen’s trick and the
Arnoldi correction trick and is therefore quite unstable.

One-reduce MGS and CGS Gram–Schmidt algorithms are presented
in [22]. These are based upon the application of an operator

P = I *Q T Q
T

where Q is m ù n, I is the identity, and T is an n ù n correction matrix.
To obtain a one-reduce algorithm, the normalization is either delayed
to the next iteration or employs the ‘‘Pythagorean trick’’. T is obtained
for MGS from L = tril( QT

Q, *1 ), the strictly lower triangular part of
Q

T
Q. Note that, because Q has almost orthonormal columns, the norm

of L is small, and T is close to I .
In the case of the one-reduce CGS algorithm,

P = I *Q T Q
T
, T = I

which, assuming Q has linearly independent columns, is the orthogonal
projection onto the orthogonal complement of Q. Then, one can also
employ

T = 2I *Q
T
Q = I * L * L

T

where T is derived from two applications of the operator

P = ( I *QQ
T )( I *QQ

T ) = I *Q ( 2I *Q
T
Q )QT

Note that T above is the first order approximation of

P = I *Q T Q
T
, T = (QT

Q )*1 = ( I + L + L
T )*1

The inverse compact W Y form for MGS is the lower triangular
matrix T = (I + L)*1, analogous to Puglisi [23]. An upper triangular
T for MGS is derived in [24] and corresponds to the Schreiber and Van
Loan compact W Y Householder [25] representation. This was recently
generalized to block Gram–Schmidt algorithms by Barlow [26]. The
inverse compact W Y form of MGS was recently derived in [22]. One
can also use T = I * L when ÒLpÒ

F
= O("p)p

F
(B) in the MGS-GMRES

algorithm, which is a truncated Neumann series for (I + L)*1. While
there are many possible MGS variants, these are performing one pass
of the operator P on a column vector.

Our DCGS2 algorithm performs two passes of the operator on each
vector. This results in O(") loss of orthogonality that the one-pass
variants cannot achieve. There are two reasons for this. The first reason
is that, if Q does not have orthonormal columns, then P = I * QQ

T

is not the orthogonal projection onto the orthogonal complement of
Q; however, provided Q has almost orthonormal columns, repeated
applications of the operator P leads to the orthogonal projection on
the orthogonal complement of Q. In other words, if ⇢(I * Q

T
Q) < 1,

(where ⇢ is the spectral radius,) then it follows that

lim
kôÿ

( I *QQ
T )k = ( I *Q (QT

Q )*1 QT )

Therefore, repeating the projection step enables correction for the po-
tential lack of orthogonality in Q. The second reason is that, even with
the ‘‘perfect’’ projection P , given a, a column of A, the computation of
w with w = Pa may suffer from cancellation errors leading to w being
relatively far from orthogonal with Q, therefore a second pass (which
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will, provided that A is numerically nonsingular, have provably less
cancellation errors), is necessary.

To obtain a one-synch algorithm and two passes per vector, in our
DCGS2 algorithm, the second pass is delayed to the next iteration and
grouped with the first pass on the next vector. The resulting algorithm
combines the two steps, (1) first pass on current vector and (2) second
pass on previous vector, into one global reduction and is referred to as
the delayed DCGS2. DCGS2 is explained in detail in Section 3.

3. DCGS2 algorithm for the QR decomposition

In this section, the classical Gram–Schmidt algorithm to compute
the QR decomposition of an m ù n matrix A is presented. Algorithm 1
displays the steps for the jth iteration of CGS2. First, the column vector
a
j
is projected onto the orthogonal complement of Q1:j*1

w
j
=

⇠
I *Q1:j*1 Q

T

1:j*1

⇡
a
j

= a
j
*Q1:j*1 S1:j*1,j where S1:j*1,j = Q

T

1:j*1aj ,

followed by a second application of the operator in the form

u
j
= w

j
*Q1:j*1 C1:j*1,j where C1:j*1,j = Q

T

1:j*1wj
.

Finally, the vector u
j
is normalized to produce the vector q

j
,

q
j
= u

j
_↵

j
where ↵

j
= Ò u

j
Ò2.

The QR decomposition of A1:j = Q1:jR1:j,1:j , is produced at the end
of the jth iteration, where

R1:j*1,j = S1:j*1,j + C1:j*1,j and R
j,j

= ↵
j
.

The jth iteration of CGS2 is displayed in Algorithm 1. The three global
reductions appear in steps 1, 3, and 5.

Algorithm 1 Classical Gram–Schmidt with reorthogonalization (CGS2)
// first projection

1: S1:j*1,j = Q
T

1:j*1aj // global reduction
2: w

j
= a

j
*Q1:j*1S1:j*1,j

// second projection
3: C1:j*1,j = Q

T

1:j*1wj
// global reduction

4: u
j
= w

j
*Q1:j*1C1:j*1,j

// normalization
5: ↵

j
= Ò u

j
Ò2 // global reduction

6: q
j
= u

j
_↵

j

// representation R
j

7: R1:j*1,j = S1:j*1,j + C1:j*1,j
8: R

j,j
= ↵

j

The jth iteration of DCGS2 is displayed in Algorithm 2. In order to
perform one global reduction, the second projection and normalization
are delayed to the next iteration. To understand how to integrate
DCGS2 in a QR factorization, refer to the implementation https://
github.com/dbielich/DCGS2.git.

The norm of u
j
, ↵

j
, is computed using the ‘‘Pythagorean trick’’. The

explanation goes as follows

↵
2
j
= u

T

j
u
j

=
�
w

j
*Q1:j*1 C1:j*1,j

�T �
w

j
*Q1:j*1 C1:j*1,j

�

= w
T

j
w

j
* 2CT

1:j*1,j C1:j*1,j

+ C
T

1:j*1,j

⇠
Q

T

1:j*1 Q1:j*1

⇡
C1:j*1,j

= w
T

j
w

j
* C

T

1:j*1,j C1:j*1,j

* C
T

1:j*1,j

⇠
I *Q

T

1:j*1 Q1:j*1

⇡
C1:j*1,j

= w
T

j
w

j
* C

T

1:j*1,j C1:j*1,j

where C1:j*1,j = Q
T

1:j*1 wj
is employed. Now, neglecting the term with⇠

I *Q
T

1:j*1 Q1:j*1

⇡
and using the fact that �

j
= w

T

j
w

j
, the norm of

the updated vector u
j
, ↵

j
, is computed as

↵
j
=
$
�
j
* C

T

1:j*1,j C1:j*1,j

%1_2

This is the Pythagorean trick and corresponds to Step 2 in Algorithm
2.

Note that the normalization was at first delayed to the next iter-
ation. The initial idea was to have a pipeline of length three. In a
single reduction, each iteration would perform: (1) the first projection
of the current vector a

j
, (2) the second projection of the previous

vector w
j*1 (delayed by one iteration), (3) the normalization of the

previous–previous vector u
j*2 (delayed by two iterations). The code

with a pipeline of length three would have been quite complex. The
Pythagorean trick reduces the length by one. Thus, the pipeline is of
length two (instead of three) because the Pythagorean trick allows us
to compute the norm of u

j*1 at iteration j by utilizing w
j*1 (which

is available at the start of iteration j) instead of u
j*1 (which is not

available at the start of iteration j). Hence the Pythagorean trick in
DCGS2 leads to a pipeline of length two. Initially it was thought that
the ‘‘Pythagorean trick’’ should be avoided because it could lead to a
less stable algorithm. Numerical experiments were performed with the
Pythagorean trick (see Section 6.1), and the results were satisfactory,
thus the Pythagorean trick was deemed appropriate in this context.

For the column vector a
j
, the scalar S

j*1,j is computed with S
j*1,j =

w
T

j*1 a
j
instead of q

T

j*1 a
j
. This is Stephen’s trick, it captures the

computation q
T

j*1aj using wj*1 instead of qj*1 and results in a corrected
projection step within the Gram–Schmidt process,

q
T

j*1 aj = 1
↵
j*1

�
w

j*1 *Q1:j*2C1:j*2,j*1
�T

a
j

= 1
↵
j*1

⇠
w

T

j*1aj * C
T

1:j*2,j*1 Q
T

1:j*2 aj

⇡

= 1
↵
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡

The correction of the vector norm corresponds to Steps 3 and 6 in
Algorithm 2 given below.

Algorithm 2 Delayed Classical Gram–Schmidt with reorthogonaliza-
tion (DCGS2)
1: [Q1:j*2, wj*1 ]T [w

j*1, aj ] // global reduction

S1:j*2,j = Q
T

1:j*2 aj and S
j*1,j = w

T

j*1aj
C1:j*2,j*1 = Q

T

1:j*2 wj*1 and �
j*1 = w

T

j*1wj*1

// delayed correction steps
2: ↵

j*1 =
$
�
j*1 * C

T

1:j*2,j*1 C1:j*2,j*1

%1_2

3: S
j*1,j =

1
↵
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡

// projection & delayed reorthogonalization
4: [ u

j*1,wj
] = [w

j*1, aj ] *Q1:j*2 [C1:j*2,j*1,S1:j*2,j ]
5: q

j*1 =
1

↵
j*1

u
j*1

6: w
j
= w

j
* q

j*1Sj*1,j

// representation R
j*1

7: R1:j*2,j*1 = S1:j*2,j*1 + C1:j*2,j*1
8: R

j*1,j*1 = ↵
j*1

For the nth iteration, CGS2 is applied and incurs two additional
global reductions.

https://github.com/dbielich/DCGS2.git
https://github.com/dbielich/DCGS2.git
https://github.com/dbielich/DCGS2.git
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4. DCGS2 algorithm for the Arnoldi expansion

Algorithm 3 displays CGS2 for the Arnoldi expansion. The only
difference from the QR decomposition in Algorithm 1 is that the next
basis vector v

j
is generated by applying a matrix–vector product to the

previously normalized column vector q
j*1. At the end of iteration j*1,

in exact arithmetic, the matrices would satisfy the Arnoldi expansion,

AQ1:j*2 = Q1:j*1 H1:j*1,1:j*2. (1)

Algorithm 3 Arnoldi (CGS2)
// generation of next vector

1: v
j
= A q

j*1

// first projection
2: S1:j*1,j = Q

T

1:j*1 vj // global reduction
3: w

j
= v

j
*Q1:j*1 S1:j*1,j

// second projection
4: C1:j*1,j = Q

T

1:j*1 wj
// global reduction

5: u
j
= w

j
*Q1:j*1 C1:j*1,j

// normalization
6: ↵

j
= Ò u

j
Ò2 // global reduction

7: q
j
= 1

↵
j

u
j

// representation H
j

8: H1:j*1,j = S1:j*1,j + C1:j*1,j
9: H

j,j
= ↵

j

A one-reduction DCGS2-Arnoldi will now be derived. The represen-
tation error and loss of orthogonality are maintained at the same level
as the CGS2-Arnoldi.

With lagged vector updates, the next basis vector is generated by
applying a matrix–vector product to the current vector. Namely, the
next vector v

j
is computed as A w

j*1 by using the vector wj*1 instead
of q

j*1, where q
j*1 is the previously constructed orthogonal column.

Thus, an effective strategy is required to compute w
j
from Aw

j*1 and
also to generate the Hessenberg matrix H

j
in the Arnoldi expansion.

After a delay of one iteration, the vector q
j*1, is computed using

w
j*1 as follows

q
j*1 =

1
↵
j*1

�
w

j*1 *Q1:j*2C1:j*2,j*1
�

(2)

Eq. (2) may also be interpreted as a QR factorization of the matrix
W1:j*1, with columns [w1, … , w

j*1 ]

Q1:j*1 = W1:j*1C
*1
1:j*1,1:j*1, (3)

where C is an upper triangular matrix.
Multiplying (2) by A from the left, it follows that

v
j
= A q

j*1 (4)

= 1
↵
j*1

�
Aw

j*1 * AQ1:j*2 C1:j*2,j*1
�

= 1
↵
j*1

�
Aw

j*1 *Q1:j*1 H1:j*1,1:j*2 C1:j*2,j*1
�

Next the vector w
j
is computed, which is the vector produced after

projection of v
j
onto the basis vectors in Q1:j*1,

w
j
= A q

j*1 *Q1:j*1 Q
T

1:j*1 A q
j*1 (5)

= 1
↵
j*1

�
Aw

j*1 *Q1:j*1H1:j*1,1:j*2C1:j*2,j*1
�

*Q1:j*1Q
T

1:j*1

ù 1
↵
j*1

�
Aw

j*1 *Q1:j*1 H1:j*1,1:j*2 C1:j*2,j*1
�

w
j
= 1

↵
j*1

⇠
Aw

j*1 *Q1:j*1 Q
T

1:j*1 Aw
j*1

⇡

+ 1
↵
j*1

Q1:j*1

⇠
I *Q

T

1:j*1 Q1:j*1

⇡
H1:j*1,1:j*2 C1:j*2,j*1

The last term is dropped from (5), for two reasons,

• DCGS2 is constructed such that the loss of orthogonality ÒI *
Q

T

1:j*1 Q1:j*1ÒF is O("), and
• C1:j*2,j*1_↵j*1 is expected to be O(")(A). Hence, when (A) f

O(1_"), the norm of the term is O(1).

Therefore, at this point (5) becomes an approximation and

w
j
= 1

↵
j*1

⇠
Aw

j*1 *Q1:j*1 Q
T

1:j*1 Aw
j*1

⇡

= 1
↵
j*1

⇠
Aw

j*1 *Q1:j*2 Q
T

1:j*2 Aw
j*1

⇡

* 1
↵
j*1

q
j*1 q

T

j*1 Aw
j*1

Noting that S1:j*2,j = Q
T

1:j*2 Aw
j*1, it follows that

w
j
= 1

↵
j*1

⇠
Aw

j*1 *Q1:j*2 S1:j*2,j * q
j*1 q

T

j*1 Aw
j*1

⇡

Finally, from (2), it is possible to compute

q
T

j*1 Aw
j*1 = 1

↵
j*1

�
w

j*1 *Q1:j*2 C1:j*2,j*1
�T

Aw
j*1

= 1
↵
j*1

⇠
w

T

j*1Aw
j*1 * C

T

1:j*2,j*1 Q
T

1:j*2 Aw
j*1

⇡

= 1
↵
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡

where S
j*1,j = w

T

j*1Awj*1. This step is Stephen’s trick in the context of
Arnoldi.

After substitution of this expression, it follows that

w
j
= 1

↵
j*1

�
Aw

j*1 *Q1:j*2 S1:j*2,j
�

(6)

* 1
↵
2
j*1

q
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡

= 1
↵
j*1

�
Aw

j*1 *Q1:j*1 S1:j*1,j
�

where

S
j*1,j =

1
↵
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡
.

is corrected prior to its application. The (j * 1)th column of the
Hessenberg matrix H is computed as follows and satisfies the Arnoldi
relation (1). First, reorder (6) into a factorization form

Aw
j*1 = Q1:j*2 S1:j*2,j (7)

+ 1
↵
j*1

q
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡
+ ↵

j*1 wj

From (2), it also follows that

w
j
= Q1:j*1 C1:j*1,j + ↵

j
q
j

(8)

which represents the orthogonalization of the vector w
j
. By replacing

w
j
in (7) with the expression in (8), obtain

Aw
j*1 = Q1:j*2 S1:j*2,j

+ 1
↵
j*1

q
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1S1:j*2,j

⇡

+ ↵
j*1 Q1:j*1 C1:j*1,j + ↵

j
↵
j*1 qj

Aw
j*1 = Q1:j*2

�
S1:j*2,j + ↵

j*1 C1:j*2,j
�

(9)

+ 1
↵
j*1

q
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1S1:j*2,j

⇡

+ ↵
j*1 Cj*1,j qj*1 + ↵

j
↵
j*1 qj .
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This is the representation of Aw
j*1 in the Krylov subspace spanned by

the orthogonal basis vectors Q1:j using the matrices S and C. However,
the representation of A q

j*1 in Q1:j with the matrix H is still required.
Namely, write (5) as

Aq
j*1 = 1

↵
j*1

�
Aw

j*1 *Q1:j*2 H1:j*2,1:j*2 C1:j*2,j*1
�

* 1
↵
j*1

q
j*1 Hj*1,j*2 Cj*2,j*1

H
j*1,j*1 is now computed using C

j*2 and H1:j*1,j*2.
Replacing Aw

j*1 with (9), it follows that

Aq
j*1 = Q1:j*2

0
1

↵
j*1

S1:j*2,j + C1:j*2,j

1
(10)

+ 1
↵
2
j*1

q
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡

+ ↵
j
q
j
* 1

↵
j*1

Q1:j*2 H1:j*2,1:j*2 C1:j*2,j*1

+ C
j*1,j qj*1 * 1

↵
j*1

H
j*1,j*2 Cj*2,j*1 qj*1

To summarize

1. A q
j*1 = Q1:j*2 A1:j*2,j + q

j*1 s
j*1,j + ↵

j
q
j
is a standard QR

decomposition obtained by a Gram–Schmidt process.
2. C1:j*2,j and C

j*1,j are the standard reorthogonalization terms in
the representation equation,

3. CT

1:j*2,j*1 S1:j*2,j is Stephen’s trick.
4. H1:j*2,1:j*2C1:j*2,j*1 and H

j*1,j*2Cj*2,j*1 are the representation
error correction terms.

5. 1
↵
j*1

is due to using unnormalized quantities and these must be
corrected by scaling.

Items 1, 2 and 3 are present in both the QR decomposition and Arnoldi
expansion. Items 4 and 5 are specific to Arnoldi.

According to (10), in order to obtain the (j * 1)th column of the
Arnoldi relation (1), the column H1:j,j*1 is computed as follows

H1:j*2,j*1 = 1
↵
j*1

S1:j*2,j + C1:j*2,j

* 1
↵
j*1

H1:j*2,1:j*2 C1:j*2,j*1

= C1:j*2,j +
1

↵
j*1

�
S1:j*2,j *H1:j*2,1:j*2 C1:j*2,j*1

�

H
j*1,j*1 = 1

↵
2
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡
+ C

j*1,j

* 1
↵
j*1

H
j*1,j*2 Cj*2,j*1

H
j,j*1 = ↵

j

Finally, the DCGS2-Arnoldi is presented in Algorithm 4.

Step 6 in Algorithm 4 can be separated for their mathematical
derivation, but is combined into a Level 2.5 BLAS operation (one
DGEMM with 2 columns versus two DGEMV). Thus, the j*1th orthogonal
column is employed in step 9 and not in step 7. The Level 2.5 DGEMM
operation is of size j * 2 ù 2, (ignoring the j * 1th column of step
9) and once q

j*1 is available, a DAXPY is performed to finish the
current projection on w

j
. In addition, the 1_↵

j*1 scaling is applied in
one step. For practical implementation, refer to https://github.com/
dbielich/DCGS2.git.

5. Computation and communication costs

The computation and communication costs of the algorithms are
listed in Tables 1 and 2. Although theoretically equivalent, they ex-
hibit different behavior in finite precision arithmetic. All the schemes,

Algorithm 4 Arnoldi (DCGS2)
1: [Q1:j*2, wj*1 ]T [w

j*1, Awj*1 ] // global reduction

2: S1:j*2,j = Q
T

1:j*2Awj*1 and S
j*1,j = w

T

j*1Awj*1
3: C1:j*2,j*1 = Q

T

1:j*2wj*1 and �
j*1 = w

T

j*1wj*1

// delayed correction terms
4: ↵

j*1 =
$
�
j*1 * C

T

1:j*2,j*1C1:j*2,j*1

%1_2

5: S
j*1,j =

1
↵
j*1

⇠
S
j*1,j * C

T

1:j*2,j*1 S1:j*2,j

⇡

// projection & delayed reorthogonalization
6: [ u

j*1,wj
] = [w

j*1,Awj*1 ] *Q1:j*2 [C1:j*2,j*1,S1:j*1,j ]
7: q

j*1 =
1

↵
j*1

u
j*1

8: w
j
= 1

↵
j*1

�
w

j
* q

j*1 Sj*1,j
�

// representation H
j*1

9: H1:j*2,j*2 = K1:j*2,j*2 + C1:j*2,j*1

10: K1:j*1,j*1 =
1

↵
j*1

�
S1:j*1,j *H1:j*1,1:j*2 C1:j*2,j*1

�

11: H
j*1,j*2 = ↵

j*1

except MGS, are based upon cache-blocked matrix operations. MGS
applies elementary rank–1 projection matrices sequentially to a vector
and does not take advantage of the DGEMM matrix–matrix multiplica-
tion kernel. In addition, this algorithm requires one global reduction
(MPI_AllReduce) in the inner-most loop to apply a rank-1 projec-
tion matrix. Thus, j global reductions are required at iteration j * 1.
The implementation of ICWY-MGS batches the projections together
and computes one row of the strictly lower triangular matrix, see
ëwirydowicz et al. [22],

L
k*1,1:k*2 =

�
Q

T

1:k*2 qk*1
�T

.

The resulting inverse compact W Y operator P is given by

P a =
⇠
I *Q1:j*1 T1:j*1,1:j*1 Q

T

1:j*1

⇡
a

where the triangular correction matrix is given by

T1:j*1,1:j*1 = ( I + L1:j*1,1:j*1 )*1, T1:j*1,1:j*1 ˘ (QT

1:j*1 Q1:j*1 )*1

The implied triangular solve requires an additional (j * 1)2 flops at
iteration j*1 and thus leads to a slightly higher operation count com-
pared to the original MGS orthogonalization scheme, the operation
Q

T

1:k*2qk*1 increases ICWY-MGS complexity by mn
2 (3mn2 total) but

reduces synchronizations from j*1 at iteration j to 1. This reasoning
also follows for the CWY-MGS algorithm, which is 1.5ù more expensive
compared to the sequential implementation of MGS. However, only one
global reduction is required per iteration, and the amount of inter-
process communication does not depend upon the number of rank–1
projections applied at each iteration.

In the case of the DCGS2 algorithm, the symmetric correction matrix
T
j*1 was derived in Appendix 1 of [22] and is given by

T1:j*1,1:j*1 = I * L1:j*1,1:j*1 * L
T

1:j*1,1:j*1

This form of the operator was employed in the s-step and pipelined
GMRES described in Yamazaki et al. [27]. When the matrix T1:j*1,1:j*1
is split into I * L1:j*1,1:j*1 and L

T

1:j*1,1:j*1 and applied across two
iterations of the DCGS2 algorithm, the resulting loss of orthogonality
is O(") in practice.

Block generalizations of the DGCS2 and CGS2 algorithm are pre-
sented in Carson et al. [20,28]. These papers generalize the Pythagorean
trick to block form and derive BCGS-PIO and BCGS-PIP algorithms
with the more favorable communication patterns described herein. An

https://github.com/dbielich/DCGS2.git
https://github.com/dbielich/DCGS2.git
https://github.com/dbielich/DCGS2.git
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Table 1
Cost per iteration for Gram–Schmidt algorithms. Where p is the number of processes
used.
Scheme Flops per iter Synchs Bandwidth

MGS Level 1 4(m_p)j j j

MGS Level 2 6(m_p)j + j
2 1 2j

CGS 4(m_p)j 2 j

CGS2 8(m_p)j 3 2j
CGS2 (lagged norm) 8(m_p)j 2 2j
DCGS2-HRT 8(m_p)j 1 2j
DCGS2 (QR) 8(m_p)j 1 2j
DCGS2 (Arnoldi) 8(m_p)j + j

2 1 2j

Table 2
Total cost of Gram–Schmidt algorithms. Where p is the number of processes used.
Scheme Flops per iter Synchs Bandwidth

MGS Level 1 2(m_p)n2 1
2 n

2 1
2 n

2

MGS Level 2 3(m_p)n2 + 1
3 n

3
n n

2

CGS 2(m_p)n2 2n 1
2 n

2

CGS2 4(m_p)n2 3n n
2

CGS2 (lagged norm) 4(m_p)n2 2n n
2

DCGS2-HRT 4(m_p)n2 n n
2

DCGS2 (QR) 4(m_p)n2 n n
2

DCGS2 (Arnoldi) 4(m_p)n2 + 1
3 n

3
n n

2

Fig. 1. Loss of orthogonality comparison for a QR factorization, m = 500, n = 100.

Fig. 2. Loss of representation comparison with increasing condition numbers, m = 500,
n = 100.

analysis of the backward stability of the these block Gram–Schmidt
algorithms is also presented.

Table 3
Loss of orthogonality (LOO).
Scheme LOO Proven

MGS Level 1 O(")(A) [30]
MGS Level 2 O(")(A) Conjectured
CGS O(")2(A) [10]
CGS2 O(") [10]
CGS2 (lagged norm) O(") Conjectured
DCGS2-HRT O(")2(A) Conjectured
DCGS2 (QR) O(") Conjectured
DCGS2 (Arnoldi) O(") Conjectured

It is important to note that there are a variety of ways to implement
a compact W Y MGS algorithm. The correction matrix T can be formed
recursively from a block triangular inverse, as in the compactW Y MGS
derived by Björck [29]. Barlow [26] employs the inverse compact ICWY
form of Puglisi [23]. However, a lagged normalization is not applied
and two reductions are required. These are summarized in [22]. For all
results reported herein employing MGS, these are based upon CWY-
MGS. Except when using the one-reduce GMRES solver with lagged
normalization, where ICWY-MGS is applied. For this reason Tables 1,
2, and 3 refer to the MGS implementation as Level 2 versus ICWY-MGS.
In addition, MGS Level 1 refers to the sequential BLAS implementation.

Both CGS and CGS2 are based upon matrix–vector operations. CGS
applies a single projection, and then normalizes, requiring two separate
steps. This projection step consists of two DGEMV kernel calls and one
DDOT for the normalization. CGS suffers from at least an O(")2(A) loss
of orthogonality. CGS2 achieves O(") through two passes (see Fig. 1).
The additional projection within CGS2 accounts for one additional
global reduction per iteration and an additional 4(m_p)j operations.

DCGS2 requires one reduction and employs matrix–matrix multi-
plies for the computation in a tall-and-skinny DGEMM. This leads to the
higher sustained execution rate of DCGS2 (e.g. 2ù the GigaFlop/sec).
In the context of Arnoldi, DCGS2 requires an additional j2 flops at the
jth iteration. The additional cost is due to the Arnoldi representation
trick described in Section 4. The representation error correction terms
require an additional n2 operations from a matrix–vector product with
the Hessenberg matrix.

6. Numerical results

In this section, the numerical stability of the Arnoldi algorithm
is investigated for the different orthogonalization schemes. In addi-
tion to the method studied in Section 5 (MGS, CGS, CGS2, DCGS2,
DCGS2-HRT), we also study Householder-based methods (HH).

The methodology for the numerical stability analysis is presented
in Section 6.1 along with the experiments. The same methodology is
employed in Section 7. Four stability metrics are examined,

1. representation error
2. loss of orthogonality
3. forward error in the eigenvalue solutions, < threshold
4. dimension of converged invariant subspace, < threshold

The metrics (1) and (2) are sufficient to analyze the stability of an
orthogonalization scheme. However to give a broader perspective the
metrics (3) and (4) are also examined. Additional metrics that can be
considered are:

1. convergence of GMRES
2. achievable backward error of GMRES
3. number of eigenvalue-pairs (Ritz values) with a backward error

< threshold (see Hernandez et al. [21])

The convergence of GMRES and the achievable backward error are
informative metrics, however, Paige et al. [5] proved that GMRES
(with one right-hand side) only needs an O(") (B) LOO to converge.
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Table 4
Differential operator specs for k = 50, m = k

2 = 2500.
ÒAÒ2 7.99e+00
Cond(A) 3.32e+02
Cond(V ) 3.96e+11
Cond(W ) 3.74e+11
ÒAT

A * AA
T Ò

F
_ÒAÒ2

F
2.81e*04

max
i
( Cond( �

i
) ) 1.46e+10

min
i
( Cond( �

i
) ) 2.38+02

Therefore, GMRES is tolerant of ‘‘bad’’ orthogonalization schemes and
is not a stringent enough test.

The number of eigenvalue-pairs with a backward error less than a
threshold should not be used to assess the quality of an orthogonal-
ization scheme because, for example, a scheme that always returns
the same eigenvalue-pair n times would score the highest possible
score (n) according to this metric, while performing very poorly in any
reasonable metric.

6.1. Manteuffel matrix and experimental stability methodology

The matrix generated by ‘‘central differences’’ introduced by Man-
teuffel [31] is employed in a series of tests designed for the Krylov–
Schur eigenvalue solver based upon DCGS2–Arnoldi. This matrix is
convenient for computing the forward error solution because the ex-
plicit computation of each eigenvalue is possible, thus the comparison
against a converged eigenvalue is possible. For m ù m block diagonal
matrices M and N , where M and N have k ù k sub-blocks such that
m = k

2. M is positive definite and N is skew-symmetric. An explicit
formulation of M and N is given in [31]. The Manteuffel matrix is
expressed as the sum

A = 1
h2

M + �

2hN (11)

where the matrix blocks and k
2 eigenvalues are generated by

�l,j = 2
b
f
fd
2 *

v
1 *

0
�

2

12 0
cos

0
l⇡
L

1
+ cos

0
j⇡

L

11c
g
ge

(12)

For l = 1,… , k and j = 1,… , k. As can be seen in (12), � is a
scalar that governs the spectrum of the eigenspace. L is defined by the
domain of the differential operator, [0,L] ù [0,L] and h = L _ (k + 1) is
the discretization parameter. For the experiments within this section,
� = 0.5 and L = k + 1 so that h = 1 (� f 2 implies all eigenvalues are
real). For k = 50, relevant numerical metrics are summarized in Table 4.
Here, V and W are the left and right eigenvectors. The Manteuffel
matrix is employed to evaluate the convergence of Krylov–Schur.

The Arnoldi residual and error metrics employed herein are de-
scribed in Hernández et al. [32]. Fig. 4 displays the loss of orthogonality
Ò I

j*1 * Q
T

1:j*1Q1:j*1 ÒF , while Fig. 3 is a plot of the Arnoldi relative
representation error, from (1)

RRE(j) =
ÙÙÙ AQ1:j*2 *Q1:j*1H1:j*1,1:j*2

ÙÙÙF
ÒAÒ

F

Each of the algorithms, except for the DCGS2-HRT presented in
[21], achieve machine precision level relative error. Fig. 4 displays
the loss of orthogonality for each scheme. It was noted earlier that
CGS exhibits an O(")2(A) loss of orthogonality. The plot illustrates
that DCGS2-HRT follows CGS while the other algorithms construct
orthonormal columns to the level of machine precision.

The results from a Krylov–Schur eigenvalue experiment to evaluate
the convergence properties of the different Arnoldi algorithms are
plotted in Fig. 5. The solver relies upon the Schur decomposition of the
Hessenberg matrix H

n
generated in the Arnoldi expansion. To assess

the convergence rates, the Arnoldi residual (13) is compared to the
absolute error tolerance. The approximate eigenvector (or Ritz vector)

Fig. 3. Normed representation residual for the Arnoldi expansion on the
convection–diffusion operator matrix (� = 0.5,m = 2500).

Fig. 4. Level of orthogonality of the Arnoldi expansion on the convection–diffusion
operator matrix (� = 0.5,m = 2500).

Fig. 5. Number of converged eigenvalues with absolute forward error less than 10*7.

associated with the eigenvalue �
i
is defined by z

i
= V

n
y
i
, where y

i
is

the corresponding eigenvector of H
n
, see [21].

Ò ( A * �
i
I ) z

i
Ò2 = H

n+1,n  eTn yi  < tol (13)

where tol = 1e*7. If this threshold is satisfied, the iteration is consid-
ered to have found an invariant subspace and the associated diagonal
element in the Schur triangular matrix T

l,l
is an eigenvalue. The repre-

sentation error and loss of orthogonality can be easily computed. It is
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Fig. 6. Dimension of invariant subspace computed at iteration n.

important to note if these quantities are not close to machine precision,
a converged invariant subspace has not been found. After the size of the
invariant subspace has been found, the k2 eigenvalues from the formula
in (12) are computed and compared with the ‘‘converged’’ eigenvalues
in the Schur triangular matrix T . In addition, rather than computing the
same eigenvalue twice, the multiplicity is obtained to determine if the
Krylov–Schur algorithm has computed the same eigenvalue, or unique
eigenvalues in the decomposition. The exact multiplicity of any given
eigenvalue was always found.

The plot in Fig. 5 displays the number of converged eigenvalues
at each restart n of the Arnoldi algorithm according to the absolute
forward error �

i
* T

l,l
 < tol, where tol = 1e * 7. In practice, at

each iteration n, for each l from 1 to n, the �
i
are scanned for each

i closest to T
l,l
, which has not been found for a previous l, and which

satisfies the tolerance is selected. Our code will return an error flag if
an iteration returns more eigenvalues than the expected multiplicity.
The flag was never triggered during our experiments. At iteration n, at
most n eigenvalues are found and these correspond to the solid black
line. There are three reasons why the number of eigenvalues found
is not n. First, the eigenvalues must be converged. At iteration n, in
exact arithmetic, all eigenvalues would have been found. For iteration
n < m, the number of eigenvalues found is between 0 and n. Second, the
forward error is sensitive to the condition number of the eigenvalues.
Some eigenvalues have condition number of the order 1e+10, (see
Table 4), therefore, using " = 2.2e*16 accuracy, our algorithms are not
expected to find all eigenvalues at iteration m = 2, 500. The maximum
number of eigenvalues found is about 2100 with CGS2 and DCGS2
methods. This condition number problem is present at any restart n
and is intrinsic when using a forward error criteria. Third, the Arnoldi
factorization could have errors in fundamental quantities such that the
loss of orthogonality and representation error are large. This may affect
the number of eigenvalues found at restart n.

Fig. 6 displays, at each restart n, the size of the invariant subspace
found. None of the methods can follow this line, but as the full Arnoldi
expansion of the Manteuffel matrix is approached, any scheme that
maintains orthogonality can continually find new eigenvalues, or new
directions to search. Comparing both plots illustrates that in practice,
when eigenvalues are not known, looking at the size of the invariant
subspace can be a good metric. Note that between the two plots, there
is a small gap for the error formula at a restart of n = 2500, where
this gap is not present in the invariant subspace plot. The different
Arnoldi variants cannot find all of the invariant subspaces, which is due
to the condition number of the eigenvalues. Comparing the different
QR factorization schemes and the invariant subspace found, although
it loses orthogonality, Arnoldi with MGS can still find new search
directions. Arnoldi based on Householder (HH), CGS2 and DCGS2, can
find a subspace that spans the entire space, but for this matrix MGS still
performs well and generates a subspace size close to 2000.

Table 5
Comparison of various orthogonalization schemes using an Arnoldi expansion of length
n = 75 on 635 matrices from the Suite-Sparse collection.
Scheme RRE LOO Invariant

< 1e*7 < 1e*7 subspace

DCGS2 631 621 9844
DCGS2 HRT 435 463 7168
CGS2 635 622 9677
CGS 635 374 8370
HH Level 2 635 635 9783
MGS Level 2 634 519 9580

Fig. 7. Comparison of Arnoldi representation error for Suite-Sparse matrices at a given
iteration n, ÒAQ *QHÒ_ÒAÒ > 1e * 7.

6.2. Matrix market

The Arnoldi factorization algorithms are now compared for matrices
gathered from the Suite-Sparse collection maintained by Tim Davis at
Texas A&M University [33]. A total of 635 matrices were chosen by
the following criteria: (1) number of nonzeros < 500, 000, (2) the
matrix is REAL, (3) the matrix is UNSYMMETRIC and (4) the number
of columns and rows > 100. The Krylov basis is computed for each of
the 635 matrices in the collection. The representation error and loss of
orthogonality are computed for every 5 columns until 75 (making sure
the dimension of any matrix is not exceeded). Meaning the restart in
an Arnoldi expansion varies from n = 5 to n = 75 in increments of 5.

Figs. 7 and 8 display these metrics for each of the schemes. At each
iteration the tolerance is set to 1e*7. If the representation error or loss
of orthogonality is above this threshold the matrix is flagged. The y-
axis represents the total number of matrices above the given threshold
and the x-axis indicates the Krylov subspace dimension (restart m)
employed by the Arnoldi expansion.

Fig. 8 clearly indicates that Krylov vectors generated using CGS and
MGS lose orthogonality at different rates. It is observed that the DCGS2-
HRT curve falls between these. For the Manteuffel matrix, DCGS2-HRT
appears to perform more like CGS and lies somewhere in between. It is
important to note, in Fig. 7, that DCGS2-HRT does not maintain a low
representation error for the Arnoldi expansion. This is also apparent in
Fig. 2.

With a restart of n = 75, these metrics are plotted in Table 5. The
additional metric displayed is the size of the invariant subspace found,
described in Section 6.1.

7. Parallel performance results

Parallel performance results are now presented for the Summit Su-
percomputer at Oak Ridge National Laboratory. Each node of Summit
consists of two 22-core IBM Power 9 sockets and six NVIDIA Volta
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Fig. 8. Comparison of loss of Orthogonality at a given iteration n for Suite-Sparse
matrices. ÒI *Q

T
QÒ > 1e * 7.

100 GPUs. CGS2 and DCGS2 were implemented and tested using the
Trilinos-Belos iterative solver framework [15,34]. Therefore, although
NVIDIA V100 results are presented here, the implementation is portable
to different hybrid node architectures with a single code base.

To summarize, DCGS2 achieves faster compute times than CGS2
for two reasons. First, the former employs either matrix–vector or
matrix–matrix kernels, which provide greater potential for data reuse.
For tall-and-skinny matrices, employed by DGEMV and DGEMM, com-
putational time is often limited by data movement, and matrix–matrix
type kernels often achieve faster execution rates. Therefore, DCGS2 is
faster than CGS2, even on a single GPU. Second, on multiple GPUs,
the low-synch algorithm decreases the number of global-reductions.
Therefore, a greater speedup is achieved on a large number of GPUs.
In this section, the execution rates on a single and multiple GPUs are
compared.

Delayed schemes (DCGS2, and ICWY-MGS with lagged normal-
ization) have a start-up phase, they are in some sense running one
iteration behind non-delayed schemes (CGS2). For a fair comparison of
performance between delayed schemes (DCGS2, and ICWY-MGS with
lagged normalization) and non-delayed schemes (CGS2), a cleanup step
is applied for the last iteration of the delayed schemes, so that the
Arnoldi factorization returned by the non-delayed and the delayed
schemes are the same.

7.1. Single GPU performance

Table 6 provides the execution rates in GigaFlops/sec of the main
computational kernels on a single GPU, with an increasing number of
rows or columns, as reported in and columns respectively. Within the
plot,

• MvTransMv computes the dot-products, e.g., DGEMV to compute
S1:j*1,j = Q

T

1:j*1aj in CGS2 or DGEMM to compute [Q1:j*2, wj*1]T
[w

j*1, aj ] in DCGS2.
• MvTimesMatAddMv updates the vectors by applying the projec-
tion, e.g., DGEMV to compute w

j
= q

j
* Q1:j*1 S1:j*1,j in DCGS2

or DGEMM to compute
⌅
u
j*1, wj

⇧
=
⌅
w

j*1, aj
⇧
*Q1:j*2

⌅
C1:j*2,j*1, S1:j*1,j

⇧

• MvDot computes DDOT product of two vectors, and is used to
compute the normalization factor ↵

j*1 = Òu
j
Ò2.

Memory bandwidth utilization is a predictor of performance. For
example, at the jth iteration of CGS2, MvTransMV reads the mù (j*1)
matrix Q1:j*1 and the input vector aj of length m, then writes the result
back to the output vector S1:j*1,j , while performing (2m*1)ù(j*1) flops

Table 6
Execution rate (GigaFlops/s) of BLAS kernels (1 node, 1 GPU).
Scheme Number of rows, n, in millions

1 2 4 8 16

(a) Fixed number of columns n = 50.

DCGS2
MVTimes GF/s 300.3 319.1 302.3 320.3 331.4
MVTrans GF/s 201.4 211.8 191.4 150.2 126.8
Total GF/s 215.1 232.3 218.2 193.3 174.8

CGS2
MVTimes GF/s 132.0 136.4 153.4 163.8 169.5
MVTrans GF/s 128.5 141.0 146.4 135.3 122.2
Total GF/s 126.4 135.4 146.7 145.5 139.6

Scheme Number of columns, n

100 120 140 160 180

(b) Fixed number of rows m = 5e+6.

DCGS2
MVTimes GF/s 353.7 362.8 369.8 375.6 379.7
MVTrans GF/s 169.2 164.3 160.3 158.7 155.6
Total GF/s 221.2 219.8 218.4 218.5 216.6

CGS2
MVTimes GF/s 182.1 186.9 190.7 193.1 195.7
MVTrans GF/s 152.0 153.6 153.4 153.3 153.2
Total GF/s 163.8 167.1 168.6 169.7 170.8

Fig. 9. Execution rate (Gigaflops/sec, 1 GPU). n = 50 columns, varying number of rows
m.

with two flops per read, assuming the vectors remain in caches, or two
flops per two reads and one write with a read–write of vector elements
for each multiply-add. Thus, on the V100 with a memory bandwidth
of 800 GB/s, 200 GigaFlops/sec is expected from this kernel in double
precision. Figs. 9 and 10 display kernel compute times on one Summit
node using one GPU as the number of rows or columns is varied.

Note that DCGS2 combines two MvTransMv calls with a single
input and output vector into a call to MvTimesMatAddMv with two
input and output vectors. This can double the potential peak speed
(i.e. the m ù (j * 1) matrix is read only once to perform four flops per
read). Table 6 indicates that for a large number of rows or columns, that
DCGS2 increases the execution rate by up to 1.7 and 1.4ù, respectively.

7.2. Strong-scaling performance

The speedups obtained by DCGS2 for the two main kernels are
presented in Tables 8–10, while Figs. 11 and 12 and displays the
GigaFlops/sec execution rate achieved by the kernels on 30 nodes,
using 6 GPUs per node. Figs. 13 and 14 represent a strong-scaling study
and display the time to solution while varying the number of GPUs for
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Fig. 10. Execution rate (Gigaflops/sec, 1 GPU). m = 25e+6 rows, varying number of
columns n.

Table 7
Execution rate (GigaFlops/s) of BLAS kernels (30 nodes, 6 GPUs per node).
Scheme Number of rows, n, in millions

128 256 512 1024 2048

(a) Fixed number of columns n = 50. GigaFlops/s

DCGS2
MVTimes GF/s 194.2 248.9 285.9 312.5 324.2
MVTrans GF/s 129.4 170.4 179.9 154.1 128.6
Total GF/s 124.3 168.9 195.4 189.4 173.2

CGS2
MVTimes GF/s 99.6 126.6 145.1 158.9 167.1
MVTrans GF/s 73.9 100.8 124.9 128.4 119.3
Total GF/s 42.8 98.2 123.7 134.3 133.9

Scheme Number of columns, n

100 120 140 160 180

(b) Fixed number of rows n = 25e+6. GigaFlops/s

DCGS2
MVTimes GF/s 121.6 135.5 151.2 159.7 168.9
MVTrans GF/s 61.1 76.9 89.1 89.1 107.6
Total GF/s 61.4 74.4 84.4 90.1 103.4

CGS2
MVTimes GF/s 122.2 95.2 101.3 99.3 90.4
MVTrans GF/s 38.1 39.4 49.6 56.5 52.6
Total GF/s 36.4 38.9 47.7 54.5 53.4

a fixed matrix size. One run or trial for each node count was employed
for the algorithms in order to collect the performance data on Summit.

• Table 8 displays the speedup (ratio of DCGS2 to CGS2 compute
time) for MvTransMv. Because DCGS2 employs fewer global re-
ductions, as the number of GPUs increases, the speedup obtained
by MvTransMv increases, reaching up to 2.20ù faster times on
192 GPUs.

• Table 9 displays the speedup for the MvTimesMatAddMv kernel.
DCGS2 merges two MvTransMv calls into one MvTimesMatAd-
dMv and achieves 2ù speedup on a single GPU. With more GPUs,
the number of local rows and speedup decrease. However, the
compute time is dominated by the MvTimesMatAddMv kernel.

Table 10 displays the speedup obtained by DCGS2, when varying
the number of rows. By combining matrix–vector products with global
reductions, the speedup obtained by DCGS2 in some instances was
significant, up to 3.6ù faster.

Figs. 13 and 14 display the time to solution for the GMRES linear
solvers. The latter achieves improved strong scaling due to the merged
MvTimesMatAddMv kernel.

Fig. 11. Execution rate per node (30 nodes, 6 GPUs per node), varying number of
rows m.

Fig. 12. Execution rate per node (30 nodes, 6 GPUs per node), varying number of
columns n.

Table 8
Speedup of DCGS2 over CGS2 for MvTransMv and MvDot.
# GPUs Number of rows, n, in millions

1 5 10 25 50

6 1.7 1.6 1.6 1.3 1.1
12 1.9 1.8 1.7 1.5 1.3
24 2.1 1.7 1.7 1.6 1.5
48 2.1 1.9 1.9 1.8 1.6
96 2.0 2.1 4.0 1.8 1.8
192 2.2 2.1 2.3 2.1 2.2

Table 9
Speedup of DCGS2 over CGS2 for MvTimesMatAddMv.
# GPUs Number of rows, n, in millions

1 5 10 25 50

6 0.8 2.0 2.0 1.9 2.0
12 1.9 2.0 1.9 2.0 1.9
24 1.3 0.9 1.2 2.0 2.0
48 1.1 0.9 0.9 1.9 2.0
96 1.1 0.8 5.2 1.1 1.3
192 0.9 0.7 0.7 0.9 1.3

Table 7 displays the GigaFlops/sec execution rates obtained by
CGS2 and DCGS2, along with the BLAS kernels for a fixed matrix size
(m = 25e+6 and n = 50). The MvTransMv operation requires a global
reduce, while the DGEMM operations do not require communication.
DCGS2 always outperforms CGS2 in these runs. MvTimesMatAddMv
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Table 10
Overall speedup of DCGS2 over CGS2.
# GPUs Number of rows, n, in millions

1 5 10 25 50

6 1.1 1.6 1.7 1.5 1.3
12 1.1 1.8 1.7 1.6 1.5
24 1.1 1.5 1.8 1.7 1.6
48 1.2 1.1 1.8 1.8 1.7
96 1.2 1.3 4.0 1.8 1.8
192 1.4 1.3 1.7 1.9 2.1

Fig. 13. GMRES time to solution on 3D Laplace matrix. m = 7503, n = 100 (256 nodes,
6 GPUs per node).

Fig. 14. GMRES time to solution on 3D Laplace matrix. m = 10003, n = 100 (256 nodes,
6 GPUs per node).

perform similarly for both schemes on 96 and 192 nodes. CGS2 exhibits
an increase in speed that matches DCGS2. For a large number of rows
or columns, DCGS2 obtains about 66 GigaFlops/sec per node at 192
nodes or about 6% of the single GPU sustained execution rate of 200
GigaFlops/sec.

Figs. 13 and 14 are strong scaling experiments for the 3D Laplace
equation with dimension m = 7503 and m = 10003. The simulations
employ from 8 to 256 Summit compute nodes. The GMRES solver
is run in five trials for each of the node counts using 6 GPUs per
node, in non-dedicated runs on Summit. The average compute times
are plotted in these Figures. A fixed number of n = 100 iterations are

Fig. 15. GMRES Gram–Schmidt time. m = 10003, n = 100 (256 nodes, 6 GPUs per
node). Left DCGS2. Right CGS2.

performed, without a restart, and a preconditioner is not applied. The
DCGS2-GMRES yields lower run times and exhibits better strong scaling
characteristics (see Fig. 15).

8. Conclusion

For distributed-memory computation, two passes of classical Gram–
Schmidt (CGS2) was the method of choice for Krylov solvers requiring
machine precision level representation errors and loss of orthogonality.
However, the algorithm requires three global reductions for each col-
umn of the QR decomposition computed and thus the strong-scaling
behavior can deviate substantially from linear as the number of MPI
ranks increases on Exascale class supercomputers such as the ORNL
Summit. In this paper, a new variant of CGS2 that requires only one
global reduction per iteration was applied to the Arnoldi algorithm. Our
numerical results have demonstrated that DCGS2 obtains the same loss
of orthogonality and representation error as CGS2, while our strong-
scaling studies on the Summit supercomputer demonstrate that DCGS2
obtains a speedup of 2ù faster compute time on a single GPU, and an
even larger speedup on an increasing number of GPUs, reaching 2.2ù
lower execution times on 192 GPUs. The impact of DCGS2 on the strong
scaling of Krylov linear system solvers is currently being explored, and
a block variant is also being implemented following the review article
of Carson et al. [20].
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