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Abstract— The proofs of the groundbreaking theorems of [1]
rely on a lemma which states that if the stable manifold of a
first hyperbolic closed orbit intersects transversely the unstable
manifold of a second (possibly the same) hyperbolic closed orbit,
then the dimension of the unstable manifold of the first is strictly
less than the dimension of the unstable manifold of the second.
However, we provide an example meeting the conditions of
the lemma where the dimensions of the unstable manifolds
are equal, thereby disproving the lemma. In particular, we
present a hyperbolic closed orbit of a C°° vector field over R>
whose stable and unstable manifolds have nonempty, transverse
intersection.

I. INTRODUCTION

Consider the system:
&= f(x) (D

where f is a C! vector field over Euclidean space R" for
some 1 > 0. In [1, Theorem 4.2], the authors claim that if
a stable equilibrium point of (1) satisfies their assumptions,
then the boundary of its region of attraction (RoA) is equal
to the union of the stable manifolds of the equilibrium
points and periodic orbits it contains. The main technical
result behind their proof of this impressive theorem is [,
Theorem 3-8]. In turn, [1, Lemma 3-5] is crucial in their
proof of [1, Theorem 3-8]. This note is devoted to the
construction of a counterexample to [1, Lemma 3-5].
The exact statement of [1, Lemma 3-5] is as follows:

Lemma 3-5 of [1]. Let z; and x; be hyperbolic critical
elements of (1). Suppose that the intersection of stable
and unstable manifolds of x;, x; satisfy the transversality
condition and {W*"(x;) — z;} ({W?*(z;) — z;} # 0. Then
dim W"(z;) > dim W*"(z;), where the equality sign is true
only when z; is an equilibrium point and x; is a closed orbit.

II. CONTEXT

Before proceeding we provide some preliminary defini-
tions. Let a critical element refer to either an equilibrium
point or a closed orbit of (1). For any z € R", w(x) is the
set of limit points of its forward orbit under (1) as t — oo,
and «(z) is the set of limit points of its backwards orbit
under (1) as ¢ — —oo. An equilibrium point x. of (1) is
hyperbolic if df,_ has no purely imaginary eigenvalues. A
periodic orbit X of (1) is hyperbolic if there exists x € X,
a smooth cross section S containing x, and a C! first return
map 7 : S — S such that d7, has no eigenvalues of norm
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one. A hyperbolic critical element X possesses a local stable
manifold W (X) that is forward invariant under the flow,
and a local unstable manifold W% (X)) that is backward
invariant under the flow. Then its stable manifold W*(X)
is constructed by flowing W3 .(X) backward in time for
all negative times, and its unstable manifold is constructed
by flowing W% (X) forward in time for all positive times.
Hence, W*(X) and W*(X) are both invariant under the
flow. If A is a C' manifold and =z € A, let T, A denote
the tangent space of A at z. A pair of C'' submanifolds N
and S of the smooth manifold M satisfy the transversality
condition, or have transversal intersection, if either they are
disjoint or for every x € NS, T,N +T,S = T, M. If
N and M are smooth manifolds, V' is a vector field on N,
and F': N — M is an embedding, then the pushforward of
V under F is the unique vector field V on the image of F'
defined by V(p) = dFp-1(,)(V(F~(p))).

The authors of [1] attribute their Lemma 3-5 to a survey
paper by Smale [2] and do not provide a proof of the lemma.
However, we have not found the lemma in [2]. Furthermore,
in another paper by Smale [3] - which deals with the
particular setting of flows on compact boundaryless (closed)
manifolds, whereas [2] does not necessarily - he considers a
set of assumptions in which his conditions 1-4 include the
requirements that all equilibrium points and periodic orbits
are hyperbolic, and their stable and unstable manifolds have
transverse intersection. Yet Smale also includes a further
condition 5, which states that for any closed orbit X there
does not exist y such that w(y) = a(y) = X. In other words,
condition 5 states for every closed orbit X that its stable
and unstable manifolds have empty intersection outside of
X. In addition, Smale writes: “It is true that conditions 1—
5 are independent.” If [1, Lemma 3-5] were correct, then
conditions 1-4 would imply condition 5'. Therefore Smale’s
statement that conditions 1-5 are independent would neces-
sarily be incorrect. Consequently, attributing [1, Lemma 3-5]
to Smale seems inconsistent with his own claims in [3].

It should be noted that the example presented here does
not contradict [1, Theorem 4.2], and that the theorem may
be correct as stated. However, we have not seen a proof that
avoids the use of [1, Lemma 3-5]. We have recently shown
that the result of Theorem 4.2 can be proved analogously
to the original proof under a slightly stronger assumption
than the original theorem: namely, that the nonwandering
set on the RoA boundary consists of a finite union of

!'As a consequence of [1, Lemma 3-5], hyperbolic closed orbits could not
have nonempty, transverse intersections between their stable and unstable
manifolds.



critical elements [4]. The assumption of a finite number of
closed orbits makes it possible to complete the proof of [1,
Theorem 4.2] without the use of [1, Lemma 3-5].

Furthermore, it is possible that under the additional as-
sumptions of Theorem 4.2, which were not assumed in the
statement of Lemma 3-5, the conclusion of Lemma 3-5 may
in fact be true. However, such a result is not immediate,
and the validity of Lemma 3-5 even under these additional
assumptions is unclear.

III. EXAMPLE

To disprove [1, Lemma 3-5], we will provide an example
in which dim W*(z;) = dim W*"(x;) but both z; and
x; are closed (periodic) orbits. In particular, we will give
an example where z; = x; is a hyperbolic periodic orbit
whose stable and unstable manifolds are transverse and
dim W"(x;) because z; = ;.

Consider the classic example of the Duffing equation with
negative linear stiffness, weak damping, and weak periodic
forcing, which is given by the following C'*° nonautonomous
vector field on R? [5, p. 191]:

U =0
0 =u—u®+ e(ycost — dv),

where ¢,d,7y > 0 are parameters and u,v € R. At e = 0
this system possesses a hyperbolic saddle equilibrium point
at (0,0) whose stable manifold and unstable manifold are
equal (they consist of homoclinic orbits). We can rewrite
this system as an autonomous vector field on R? x S! by
introducing a time coordinate 7:

U=
¥ =u—u®+e(ycosT — dv)
7T=1

Letting w = [u v 7] € R? x S!, we can write the above
vector field as:

w = V(w). 2

Note that V' is a ' vector field. For ¢ = 0, this system
has a hyperbolic periodic orbit given by I'y = {(0,0,7) :
7 € S'} whose stable and unstable manifolds are each two-
dimensional. Since I'y is hyperbolic, for € > 0 sufficiently
small there exists a unique hyperbolic periodic orbit I'. which
is C'-close to I'y [6, Chapter 16].

For any 7 € S%, let S, = R2 x {r}. Let g : S, — S,
be the first return map, which is well-defined and C*°.
Let pT = T[S, which is a single point. Then it is
straightforward to see that p] is a hyperbolic fixed point of
g. Let W#(pT) and W*(p7) denote its stable and unstable
manifolds, respectively, in S;. Using Melnikov’s method
[5, Theorem 4.5.3], it can be shown [5, p. 193] that for
any 7 € S', € > 0 sufficiently small, and 1 sufficiently
large, W*(pT) and W*(p7) are transverse and {W*(p7) —
pI (W™ (pl) — pl'} # 0. Fig. 1 (originally appearing in
[5, p. 208]) shows W#(pl) and W*(p7) for a particular

Fig. 1. This figure originally appeared in [5, p. 208] and was computed
numerically by Y. Ueda. It shows the stable and unstable manifolds of the
first return map of a cross section of the Duffing equation for parameter
values e = 0.25 and ey = 0.30. Note that the stable and unstable
manifolds have nonempty, transverse intersection.

choice of 7, ¢ > 0 sufficiently small, and % sufficiently
large such that the intersection of {W#(pl) — pI} and
{W"(pT) —pl} is nonempty and transverse. As 7 € S was
arbitrary, it follows that W*(T'.) and W*(T';) are transverse
and {W*(T)—T} ({W*(T)—Tc} # 0. We fix e,7,d > 0
to preserve those properties.

However, the vector field (2) is over R? x S!, whereas [1,
Lemma 3-5] is stated for a vector field over Euclidean space.
So, we will modify the example to obtain a related vector
field over Euclidean space. To do so, it is natural to embed
R? x S' into R? as an open full torus (ie. a full torus that
does not contain its boundary), push the vector field forward
along this embedding, and then extend it to a smooth vector
field over all of R3. To ensure that the desired vector field
extension exists, and that the critical elements of V', along
with their stable and unstable manifolds, remain unchanged
after the extension, we will multiply V' by a scalar function h
which ensures that the product hV rapidly converges to zero
as the boundary of the open full torus is approached. Then the
vector field on the open full torus will be trivially extended
to R3 by defining it to be identically zero on the complement
of the open full torus. We will see that multiplication by the
scalar function h does not affect the critical elements or their
stable and unstable manifolds, so the nonempty, transversal
intersection of W*(T'.) with W*(T'.) will be preserved.

We begin by defining the embedding from R? x S! into
R3 whose image is an open full torus. Towards that end,
we will use standard cylindrical coordinates on R3, so let
x = [r 6 z]T € R®. In this setting, the 6 coordinate can
be related to S, and for each 6 the image of R? x {0} will
be an open ball of radius one, which is the cross section
of the open full torus at angle 6. In particular, the second
coordinate of (u,v) € R? transforms to the length coordinate
2z of the cylinder, and the first coordinate of (u,v) € R? is
shifted by the value 2 (so it is always positive) to become the
r coordinate. This defines the interior of an open full torus
centered at the origin in R® using cylindrical coordinates,
and allows us to embed R? x S! into R3 as desired. More
concretely, this embedding is accomplished by the following



smooth change of coordinates:
U

T:71+u2+1}2+2 (3)
0=r1 4
v

z =

—_— 5
iteTo ®

u v 1 3
Note that (u,v) — (\/1+u2+v2’ \/Hquz) is a diffeomor-

phism that maps R? onto the open ball of radius one [7,
Example 2.14]. Thus, the image of the above embedding of
R2 x S! is in fact the open full torus in R3, and the boundary
of the open full torus in R? is approached as (u,v) — oo
in R?. Note that proximity to the boundary of the open full
torus is independent of the coordinate 7 € S!.

Next we construct the scalar function h such that AV —
0 as the boundary of the open full torus is approached.
For the embedding of (3)-(5), the boundary of the open
full torus is approached as (u,v) — oo in R2. There-
fore, we select a function h : R? x S! — R which
is positive and such that for any sequence {wj}p>, =
{(Ulmvkﬂ—k)}zozl Cc R? x Sl, limy oo h(wk)V(wk) =0
and limy,_, W |w=w, = 0 for all positive integers
m. One such function is given by

1 1

T+ @ +02)2 1+ ||(uv)]}

Multiplying (2) by h yields the following vector field on
R? x St:

h(w) = h(u,v,7) =

V(w) = h(w)V (w). (6)

Since h is a positive scalar function, by [8, Proposition 1.2.2]
and its proof the flow of V is a time change of the flow of
V. This means that the orbits of V are precisely the orbits
of V. The intuition is that h represents a time rescaling of
V' and affects the rate at which the orbits of V' are traversed,
but does not change the orbits themselves. In particular,
the critical elements and their stable and unstable manifolds
under V are precisely the same as the critical elements and
their stable and unstable manifolds under V. Thus, I'. is a
hyperbolic periodic orbit under V, W*(T'.) and W*(I,) are
transverse, and {W*(T'.) — I} ({W*“(Te) — T} # 0.

Finally, we push V, given by (6), forward along the em-
bedding of (3)-(5), recalling that the image of this embedding
is the open full torus, and define it to be identically zero on
the complement of the open full torus. More explicitly, let
H:R? xS! — R3 send (u,v,7) to (r,0,z) by (3)-(5), and
let T? be the image of H. Then we define the vector field
V for z € R? by

V(r)= {gHH%m)(V(H (x))) z;gz .

For any sequence {zx}3°, C T? with =, — 9T2,
by definition of H the sequence {H '(zp)}52, =:
{(up, v, ) }52, satisfies (ug,vy) — oo. By the
choice of h above, limg oo V(H (z)) = 0 and

ZZ,SZ”) lw=F~1(zy) = 0 for all positive integers m.

limy s o0

As dH is smooth and dH, , ) (along with all higher order
derivatives) is bounded as (u,v) — oo, this implies that
limy, o0 V(ag) = 0 and limy, oo 08| = 0 for all
positive integers m. Thus, as V is defined piecewise by two
smooth vector fields which agree (including all derivatives)
on their boundary of definition OT?, it is a smooth vector
field over all of R3. As V|Tz is the pushforward of 1% by
the smooth embedding H, and H is a diffeomorphism onto
its image, the flow of V on R? x S! is conjugate by a C>
diffeomorphism (namely, H with its codomain restricted to
T?) to the flow of V on T2 [7, Corollary 9.14]. Now the flows
of V|'ﬂ-2 and V are smoothly conjugate, Vis identically zero
on the complement of T2, and smooth conjugacies preserve
critical elements, hyperbolicity, and transversal intersection
of stable and unstable manifolds. Therefore, I' := H(T'.) is a
hyperbolic periodic orbit of V' such that W*(I") and W*(T')
are transverse and {W*(T') — T} {W*(T') —T'} # (. As
V is a vector field over R3, the setting of Lemma 3-5, it is
therefore a counterexample to [1, Lemma 3-5].

IV. CONCLUSION

A counterexample to a key lemma [1, Lemma 3-5] used
in the proof of a highly regarded classical theorem [I,
Theorem 4.2] is presented. A consequence of the lemma is
that, for any C' 1 vector field over Euclidean space, it is not
possible for a hyperbolic periodic orbit to have nonempty,
transverse intersection of its stable and unstable manifolds.
However, a C*° vector field over Euclidean space is con-
structed which possesses a hyperbolic periodic orbit whose
stable and unstable manifolds do have nonempty, transverse
intersection, thereby disproving the lemma. Under the setting
of [1, Theorem 4.2], in which additional assumptions are
made, it may be possible that the conclusion of [1, Lemma 3-
5] is correct when restricted to critical elements in the RoA
boundary. However, this is not immediate, and may not hold
true even in this setting. The proof of [1, Theorem 4.2]
has been completed under the slightly stronger assumption
that the intersection of the nonwandering set with the RoA
boundary consists of a finite union of critical elements [4].
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