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Abstract—Modern networked robotic platforms operating au-
tonomously on the ground, in the air, or in space over high-
frequency bands (e.g., mm-wave or future THz) require rapid
and effective estimation of the direction of arrival (DoA) of
signals of interest to maintain high data rate connectivity with
each other and avoid interference from external in-band sources.
High robotic platform mobility limits -or completely negates- our
ability to wait and collect the necessary statistically stationary
sequence of antenna-array-front measurements. As a result, con-
ventional statistical DoA estimation optimization methods may
not be applicable. In this paper, we present for the first time in
the literature a single-sample DoA estimation algorithm based on
Hankel-matrix-representation and singular-value decomposition
(SVD) of the individual antenna-array snapshot. We compare
the newly proposed estimator against the Maximum Likelihood
(ML) single-sample estimator of the DoA of a signal observed
in white Gaussian noise and -arguably surprisingly- demonstrate
significant superiority in each metric of interest, such as mean-
square estimation error, bias, and variance.

Index Terms—Cramér-Rao bound (CRB), direction of arrival
(DoA) estimation, Hankel matrices, maximum likelihood estima-
tion, sensor arrays, small sample support.

I. INTRODUCTION

The advent of networked autonomous platforms commu-
nicating over high-frequency bands in diverse environments
(ground, air, and space) brings renewed interest and a new
twist to the problem of real-time accurate localization and
tracking by effective Direction of Arrival (DoA) estimation
of signals of interest in the presence of noise [1], [2]. His-
torically, DoA estimation of signals impinging on antenna
arrays is carried out by statistical optimization methods that
can be broadly categorized into Maximum-Likelihood (ML)
techniques (for example, [3], [4]) and vector subspace analysis
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techniques with subspaces drawn from the estimated space-
domain signal autocorrelation matrix (for example, [5]-[8].)
Achievable estimation accuracy has been established only
asymptotically in the number of antenna array samples, the
number of antenna elements, and the signal-to-noise ratio
(SNR) [4]. Non-asymptotic (finite number of data samples,
finite number of elements, finite SNR value) performance is
yet generally unknown.

Modern high-mobility robotic platform applications may
operate in environments of severely limited statistical coher-
ence time. In this paper, we consider specifically the extreme
case of attempting to carry out signal direction-of-arrival
estimation in white Gaussian noise from one -just one- antenna
array sample. For this purpose, we propose to harness the
power of leading advancements in linear algebra. In particular,
represent our single antenna-array sample in the form of a
Hankel matrix and execute standard Singular-Value Decom-
position (SVD) as pursued in conventional Singular-Spectrum-
Analysis (SSA) literature [9] and other similar approaches [10]
aiming to separate signal components from present noise. The
calculated principal singular-vector component(s) constitutes
our “filtered” single data point representation. Then, array-
response-vector matched-filtering (MF) of the SVD-filtered
data point and energy scanning over the angle-of-arrival hori-
zon returns the estimate of the angle of arrival.

We compared numerically the proposed single-sample DoA
estimator against the well-researched ML single-sample es-
timator under conditions of varying number of antenna el-
ements and SNR values and we benchmarked against the
known Cramér—Rao lower bound (CRB) on the variance of
all estimators [4] (the ML estimator is asymptotically unbiased
and asymptotically efficient.) Extensive studies demonstrated
that the newly developed SVD-filtering single-sample DoA
estimator has at all times lower bias, lower MS error and
lower variance than the ML estimator. In the case of small
and moderate antenna-array sizes and SNR values, the perfor-
mance gains are -arguably unexpectedly- very significant.
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II. SIGNAL MODEL AND BACKGROUND

For clarity and simplicity in our presentation, we consider a
uniform linear antenna array (ULA) of M elements with array
response vector

eijﬂ(]fol)%sine T
K K (1)
6 € [—90°,90°)

5(9) A |:1767j277% sine’.“

where d is the inter-element spacing, A is the received-signal
wavelength, 6 represents the incidence angle with respect to
broadside, and T' denotes the transpose operator. In this work,
we consider only the fundamental case where we observe
one narrowband signal transmission from the far field in
the presence of additive white Gaussian noise (AWGN) that
is independent and identically distributed (i.i.d.) across the
antenna elements. If we denote the baseband received antenna-
array data vector by x € CM, then

x = As(f) + n 2

where A > 0 is the received signal amplitude that we treat
as deterministic and n ~ CN (0, O'QIM) is a complex white
Gaussian vector with i.i.d. real and imaginary parts.

In this paper, we are interested in the practical case when
we have available just one sample x € CM from which we
want to estimate the signal angle of arrival 6. In the single-
sample case under the model in (2), it is straightforward to
calculate [11] that the ML estimator of # is independent of A
and of the form

s(¢)7x|”. 3)

max
$E€[—900,90°)

Onrr = arg

Using the general Cramér—Rao lower bound (CRB) expres-
sion of Stoica and Nehorai [4] for the variance of estimators
of w = 27r%sin9, we can calculate that for single-sample

estimation and Nyquist inter-element spacing d = % the CRB
of estimators of sinf, say sinf, is
6
B 0 4
CRB(sind) = SNRM (M2 — 1)72 @

where SNR = |’:L2. Evidently, as SNR or M increases to
infinity the CRB decreases to zero at the rate of ﬁ and the
much faster rate of Md, correspondingly. This establishes the
asymptotic consistency in M of the ML estimator in (3) for
the signal model in (2) [12].

III. PROPOSED SINGLE-SAMPLE DOA ESTIMATION
METHOD

Asymptotic performance characteristics of estimators (ML
DoA estimators, in our case) can be both illuminating and
misleading when it comes down to field deployment [13]. For
the purposes of this present work, we are interested in the
development of DoA estimators that operate effectively with
very few data samples (one actually, herein), small number of
antenna elements, and low SNR. To accomplish this objective,
we turn to modern advances in linear algebra and exploit their
power.

Consider a single received data sample from a ULA
X = [w1,22, - ,zym]|T and let R{-}, S{-} denote the real
and imaginary-part extractor operator, correspondingly. For a
“window” parameter D, 2 < D < M, we construct the side-
by-side block Hankel matrix' X € RP*2W in (5) (top of the
next page) where W £ M — D + 1.

Subsequently, we carry out rank k, 1 < k < min{D,2W},
decomposition of X by executing standard SVD to produce
its corresponding low-rank representation as

Y = UpsurZixt Vigow- (6)

For k less than the full rank of X, it is worth noting that Y
in (6) is not in general a side-by-side block Hankel matrix
anymore. We next convert Y to the closest in the Frobenius
norm sense side-by-side block Hankel matrix

Y~vD><2W == [Hmea71(Y§R)DXW7Hmean(YS)DXW] (7)

where Hnean(:) denotes the matrix operator that replaces
all anti-diagonals entries of a matrix by their correspond-
ing mean value, Y 2 [y1,¥2,---,yw], and Yg =
[YW+1,YW+2, -+ ,yow]. Thereafter, we directly extract the
filtered antenna-array sample y € CM from Y as the first-
column, last-row readout from each constituent Hankel matrix

as seen below (j = v/—1),
Y =1[01+ 0w, P21 + JP2,w1, -
Yp2+ JjYp,w+2, -

»UD,1 + JYD,W+1,
TecM

®)
Finally, we perform single-sample DoA estimation by carrying

out response-vector matched-filter energy scanning on the
SVD-filtered data point y over the [—90°,90°) continuum,

Hyl? )

Up,w + JUD2w]

max
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The proposed algorithm for single-sample DoA estimation is
summarized in Fig. 1.

Proposed Algorithm: Side-by-Side Block Hankel SVD Method

Input: Single received antenna array sample x € C*.
1:  Form side-by-side block Hankel matrix X € RDXQ(M b+1)

by (5) for chosen “window” parameter D € {2,--- , M — 1}.
2: Forrank k, 1 <k <min{D,2(M — D + 1)},
decompose X t0 Y = UpyrZixe Vivow by (6).
3:  Transform Y to side-by-side block Hankel matrix Y by (7).
4:  Extract y from Y by (8).
5:  Estimate 0 by (9).
Output: 0.

Fig. 1: Summary of proposed single-sample DoA estimator
based on SVD decomposition of side-by-side block Hankel
matrix.

'A matrix is called Hankel if each anti-diagonal has elements of constant
value [14].
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IV. NUMERICAL STUDIES

In this section, we examine and illustrate via extensive
numerical studies and comparisons the performance of the
newly proposed single-sample DoA estimator against the ML
estimator for the signal model in (2) with Nyquist inter-
element distance set to half of the signal wavelength (d = %
In all numerical studies presented herein, the window and low-
rank parameters D and k of the algorithm (see Fig. 1) are
genie-assisted chosen on a sample-by-sample basis. We recall
that subspace-type DoA estimators for the single-sample case
are not defined.

First, we investigate the behavior of the two estimators in
conjunction with the CRB for estimators of sinf given in (4).
In Fig. 2, we plot the mean-square error of the estimate sinf
as the number of antenna elements M varies from 4 to 32
for SNR values —2 dB, 0 dB, and 2dB (Fig. 2(a), 2(b), and
2(c), respectively.) We observe the significant superiority of
the proposed SVD-filtering method over ML; see for example,
the system case scenario M = 16 or 32 antenna elements and
SNR= 0dB in Fig 2(b). We also observe that the MSE of the

performance of the proposed estimator and very significant
gains in both mean-square error and bias over ML estimation.
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Fig. 2: Mean-square error of sinf estimates versus number of
antenna elements: (a) SNR = -2 dB, (b) SNR = 0 dB, and (¢)
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Fig. 3: Squared bias versus number of antenna elements: (a)
SNR = -2 dB, (b) SNR = 0 dB, and (c) SNR =2 dB.
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Fig. 4: Mean-square error of 0 estimates versus number of
antenna elements: (a) SNR = -2 dB, (b) SNR = 0 dB, and (¢)
SNR = 2 dB.
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