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Abstract 16 

We demonstrate the ability to obtain the direction of the gamma rays using a standard coaxial 17 

high purity germanium (HPGe) detector using the direction-sensitive information embedded in 18 

the shape of the pre-amplified HPGe signals. We deduced the complex relationship between 19 

the shape of the signal and the direction from which the gamma-ray enters the detector active 20 

volume using a two-step machine learning technique. In the first step, we collected pulses from 21 

the HPGe detector due to a 133Ba source placed in four distinct positions around the detector 22 

while keeping the distance from the center of the detector crystal constant. A subset of the 23 

pulses collected with radioactive source kept at the four positions was used to train an artificial 24 

neural network (ANN) called a self-organizing map (SOM) to cluster the HPGe waveforms 25 

based on their shape. The trained SOM network was then utilized to produce direction-specific 26 

maps corresponding to pulses generated when the 133Ba source is at a specific location with 27 

respect to the detector. In the second step, we used the SOM-generated direction-specific maps 28 

to train another network composed of a single feedforward layer for predicting the direction of 29 

the gamma photon from the pulses produced by the HPGe detector because of the gamma 30 

energy deposition. Our results show that even without employing complex methodologies, a 31 

standard coaxial HPGe detector can estimate the direction of incoming gamma rays and thus, 32 

provide initial guidance on the gamma-emitting radioactive source direction with reference to 33 

the detector. 34 
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1. Introduction and Background 35 

 Typical radiation detectors used in search procedures for obscured radioactive materials 36 

include commonplace and well-characterized detectors that can detect alpha, beta, gamma rays, 37 

or neutrons emissions. Neutron and gamma-ray detection are generally more applicable for 38 

source search due to those radiation types' longer mean free paths. Detectors like end-window 39 

Geiger-Mueller (G-M) tubes or compact scintillator detectors are most commonly used in 40 

searches due to their mobility and sensitivity to various particle types [1]. Detectors used in 41 

source searching commonly rely on count rate changes with source-to-detector distance to 42 

physically locate the material. These detectors are widely used in source search applications 43 

during which the count rate is monitored as the detector's spatial location is varied. This 44 

technique can generate a field of dose rates that can infer the most likely spatial location or a 45 

sought-after source since count rates are more likely to increase in areas nearer to the 46 

radioactive material. Alternatively, a user of a mobile detector can appropriately adjust their 47 

searching path as they see the count rate change with their spatial position. These methods can 48 

effectively track down lost or hidden sources but feature some drawbacks. Count rate search 49 

methods can be time-consuming if the search area is large and there is no initial guidance on 50 

the source direction. Count rate methods can also be limited by difficult terrain or inaccessible 51 

areas. Spatial radiation surveys also typically do not feature a vertical height component on 2-52 

D count rate maps, leaving ambiguity concerning the position of potential radioactive material 53 

on upper floors of buildings or below ground.  54 

      Detection systems that have sought to resolve some of these problems include radiation 55 

imaging detectors such as coded aperture systems [2,3], Compton-scatter cameras [4], neutron-56 

scatter cameras [5], and time projection chambers [6]. These detectors provide directional and 57 

spatial data along with count rate and spectroscopic data. Imaging detectors can also perform 58 

rough imaging of the size and shape of radioactive material close to the detector systems. 59 

Compton scatter cameras are already widely used in medical imaging applications, and compact, 60 

mobile designs have been demonstrated in source searching applications. Compact neutron-61 

scatter camera systems have also been proposed as detectors to perform source searching. 62 

Because of their relatively large size, high complexity, and required particle flux, time 63 

projection chambers and coded aperture systems have not been proposed as possible source 64 

localizers except in minimal scenarios. Though imaging systems provide a plethora of spatial 65 

data that could be valuable in source searching, they also feature many drawbacks. Compact 66 

imaging systems tend to be much more expensive than G-M tubes and simple scintillators due 67 
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to multiple detector volumes, complex photoelectronic readouts, and computationally taxing 68 

post-processing needs. In many cases, imaging systems may be overengineered for source 69 

localization since what is sought in that application is the general direction of nearby sources 70 

rather than the level of detail yielded by a complete image. These facts point toward the 71 

usefulness of a simple source-direction-pointing detector intermediate in complexity between 72 

directionality "blind" standard detectors and more complex imaging detectors. 73 

      Several detector designs have been proposed to "point" towards a nearby radiation source. 74 

These detectors broadly can be grouped into three classes: spectral comparison-type systems, 75 

count rate occlusion-type systems, and multi-channel readout-type systems. Fig. 1 demonstrates 76 

the general operating principle of each of these detector types. Spectral comparison-type 77 

systems use multiple types of scintillator materials in a single system. The spatial arrangement 78 

of each scintillator relative to the position of a nearby radiation source will result in differential 79 

feature prominence in the characteristic spectra produced by each material. This type of 80 

directional detector has been little explored since its initial proposal as a passive directional 81 

monitor of radiation release events [7], though it does allow for direction detection using only 82 

a single photomultiplier tube (PMT). Much more widely prototyped are occlusion-type 83 

detectors. These systems rely on differential count rates attained from separate detector volumes. 84 

The detector volumes are arranged so that volumes nearer to a radiation source will record the 85 

highest count rate while simultaneously occluding the radiation flux arriving at the other 86 

detector volumes and depressing their count rates via the "shadow effect." The real-time 87 

differential count rates determined by the detector system can be used to estimate the direction 88 

of a stationary source or track the movement of a mobile source. Occlusion-type systems may 89 

or may not use shielding in addition to the detector volumes and may operate in a stationary 90 

position or may be rotated around a central axis to better estimate source positions. Occlusion-91 

type detectors have been well explored in the literature [8-17]. The third general class of simple 92 

directional detectors uses a single detector volume coupled to pixelated or otherwise distributed 93 

photodetectors. In these systems, source direction is estimated by observing the differential 94 

response across all data channels. The channels closer to or oriented towards the radiation 95 

source will generally show a more significant response. The concept behind these detectors is 96 

similar to occlusion-type systems, though they allow for more compact designs by removing 97 

the need for multiple detector volumes. Several examples of purpose-built non-imaging multi-98 

channel readout directional detectors have been demonstrated [18, 19], though pixelated single 99 

volume detectors can often also act as imagers.  100 
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      Simple directional detector systems need not be purpose-built: Many detectors initially 101 

designed for standard spectroscopic capabilities may provide spatial information if the signals 102 

change when the source position is altered. During typical measurements with an HPGe system, 103 

it was observed that the average signal characteristics of collected pulses varied with the 104 

positioning of the radioactive source with reference to the detector. This is not surprising as the 105 

shape of the pre-amplified HPGe signals depend critically on (i) the point of interaction of the 106 

γ photon in the detector, (ii) the number of interactions per γ photon, and (iii) the carrier 107 

transport dynamics across the electrodes. Thus, standard HPGe detectors with asymmetrical 108 

geometry have directionally sensitive information buried in the signals to act analogously to the 109 

purpose-built occlusion or pixelated directional detectors. Therefore, we can use a standard 110 

asymmetric semiconductor detector to infer the direction of a nearby gamma source if we can 111 

deduce the complex relationship between the radiation source position, the average intra-112 

detector particle interaction location, and the shape of the detector voltage pulses. 113 

      Advancements in Artificial Intelligence and machine learning algorithms have made it 114 

possible to derive complex relationships from data that are difficult to obtain using conventional 115 

methods and, therefore, have found increasing application in all aspects of nuclear physics 116 

experiments [20, 21]. Machine learning methods have been successfully integrated with 117 

directional detectors that incorporate multi-channel readout [19] or employ separated 118 

scintillation volumes [22]. Our group recently employed unsupervised machine learning to 119 

cluster HPGe pulses according to their shape and derived the most suitable shape-dependent 120 

discrimination parameters for obtaining the time information. By employing the shape-121 

dependent "variable fraction discrimination" method, we could bring the timing resolution of 122 

an HPGe detector down to a few nanoseconds without rejecting any signals [23]. Here we 123 

employ a similar strategy to cluster HPGe detector pulse shapes using a SOM network to obtain 124 

a map related to the gamma entry direction. We further train a second network with a single 125 

feedforward layer to deduce the relationship between the direction-specific SOM-generated 126 

map and the source position. Our results show that we can estimate the general direction of the 127 

gamma source with a standard coaxial HPGe detector with good reliability. Combined with the 128 

superior energy resolution of an HPGe detector, our method converts a standard HPGe detector 129 

into an effective tool for searching and identifying nuclear and radiological materials.  130 

  131 

2. Monte Carlo Simulations 132 
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 We used a Monte Carlo model of an HPGe detector system to confirm the relationship 133 

between the source position with reference to the detector volume and the intra-detector 134 

interaction position. The model's cells, surfaces, and materials were set according to the 135 

manufacturer specifications of an Ortec GEM-10195 detector. Fig. 2 shows an axial and radial 136 

view of the simulation model of the active detector volume, cold finger, and surrounding layers. 137 

The geometric model was run in MCNPX-PoliMi, a Monte Carlo code helpful in examining 138 

the details of individual interaction events rather than tallies. MCNP-PoliMi can output the 3-139 

D interaction position, energy deposition, and timing values for particles interacting in cells of 140 

interest. Using the capabilities of MCNPX-PoliMi, we simulated the positions at which the 141 

gamma photon deposits its energy in the active detector volume as a function of the azimuthal 142 

position of a 133Ba point with reference to the center of the active detector volume. The source 143 

was placed 25 cm from the center of the detector volume for the simulations to match the 144 

measurement conditions as shown in Fig. 3. A total of 10 million decay histories were simulated 145 

at each position. We confirmed the ability of the simulation in MCNPX-PoliMi to accurately 146 

represent our detector system and experiment by comparing the experimental energy spectrum 147 

to the one produced by the simulation (Fig. 4). Here we applied a standard MCNP F8 energy 148 

deposition tally with Gaussian peak broadening to the simulated detector cell consisting of the 149 

HPGe material. The simulated energy spectrum compares favorably with the experimental 150 

gamma energy spectrum. Please note that instrumental broadening of the gamma peaks was 151 

included in the simulation using empirical parameters (𝑎, 𝑏 & 𝑐) obtained by fitting the variation 152 

of the full width at half maximum (FWHM) of the experimental gamma peaks with the gamma 153 

energy (𝐸) using the equation 𝑎 + 𝑏√𝐸 + 𝑐𝐸2 .  154 

The MCNPX- PoliMi output file containing the spatial positions of each interaction in 155 

the active volume was saved at each source position. Fig. 5 shows 3-D scatter plots of the saved 156 

interaction positions within the cylindrical detector volume for four source positions. Only 157 

10,000 interactions are shown in each plot for clarity. The scatter plots clearly show that the 158 

interaction positions tend to cluster close to the surfaces nearer to the source for the gamma 159 

energies used in the simulation. Based on the scatter plots, it is evident that the charge carriers 160 

(electrons and holes) generated by the gamma travel have different transport paths to the 161 

respective electrodes, ultimately leading to different pulse shapes. Fig. 6 shows the distributions 162 

in interaction position in the x and y directions for the 133Ba point source at positions 0, 45, 90, 163 

and 180 azimuthal degrees from the front face of the detector active volume. The changes in 164 

interaction position distribution with source spatial position show that the coaxial HPGe 165 
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detector can infer the average interaction position and thus the general source direction by 166 

calculating the average charge carrier travel time from the position of interaction in the axial 167 

direction to the point of charge collection. We achieve this using machine learning capabilities, 168 

allowing us to bypass complex charge transport modeling [25, 26] or segmentation of coaxial 169 

HPGe detectors [27].  170 

 171 

3. Methods 172 

 The data needed for training and testing the two-step machine learning algorithm was 173 

collected using a coaxial HPGe detector system consisting of a single p-i-n (p-n junction with 174 

an intrinsic region) region and readout (i.e., not segmented). The details of the data collection, 175 

curation prior to training, and the network architectures employed are discussed below.  176 

 177 

3.1 Apparatus 178 

 Detector pulses from a coaxial Ortec GEM HPGe detector were obtained by placing a one 179 

microcurie 133Ba source at 25 cm from the center of the detector crystal along its axis, as shown 180 

in Fig. 3. At this initial position, ~200,000 pulses were collected with a Lecroy HDO with a 12-181 

bit resolution and a sampling rate of 2.5 GS/s. Following this collection, the source was moved 182 

to the 90° position (with respect to the detector axis) and then to the 180° position—kept at a 183 

constant distance of 25 cm from the crystal center—and ~200,000 pulses were collected for 184 

each direction. Finally, the source was moved to the 45° position, and another 100,000 pulses 185 

were collected. Due to the inherent asymmetry of the detector, the voltage pulses generated by 186 

the detector with the source at different directions are expected to have distinguishable features. 187 

There are several methods for clustering pulses together with similar features. The most 188 

straightforward and visually interpretable is the self-organizing map (SOM) [23]. It should be 189 

noted for clarification that the direction of the source is not estimated from a single interaction 190 

event, but from a distribution of events whose mean position in the active detector volume 191 

determines the shape of the pulse. This information is reduced in dimensionality by the self-192 

organizing map. 193 

 194 

3.2 Self-organizing map 195 

 The digitized pre-amplified pulses were analyzed and cleaned using the software described 196 

in [24]. Following this, we created a single data set using 10,000 pulses from the 0°, 90°, and 197 

180° positions and 5,000 pulses from the 45° source (i.e., a data set consisting of 35,000 pulses). 198 
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The data set had all types of pulses, including saturated and noisy pulses, as in Fig. 7, which 199 

shows a small subset of voltage pulses used. The amplitude normalized data set was used to 200 

train the SOM, an unsupervised neural network that reduces the input space by grouping similar 201 

pulses together [28]. The training was done using the SOM algorithm provided in the Deep 202 

learning toolbox of MATLAB® [29]. The trained SOM consisted of 12 ×12 neurons connected 203 

in a hexagonal topology. The SOM was trained for 2000 iterations, and the resulting sample 204 

hits plot from the training is given in Fig. 8. Fig. 8 shows the result of shape-based pulse 205 

clustering with the number of pulses associated with each of the 144 neurons shown. The trained 206 

SOM network was then used to produce direction-specific maps similar to Fig. 8, but for voltage 207 

pulses produced by gamma entering the detector from one direction. We created two data sets 208 

(each consisting of both training and testing data subsets) comprised of either (i) one thousand 209 

or (ii) one hundred pulses acquired with the 133Ba source at a specific position to feed into the 210 

trained SOM network. The network now produces maps characteristic of the position of the 211 

source about the detector. Fig. 9 is a sample of direction-specific maps produced using an input 212 

data set with one thousand detector pulses. To emphasize the direction specificity of these maps, 213 

we show in Fig. 10 the pulses corresponding to the neuron with the highest number of hits (or 214 

highest number of pulses) in the direction-specific maps shown in Fig. 9. The fact that gamma 215 

entering the detector from different directions produces pulses with visibly different shapes 216 

shows that even a standard coaxial HPGe detector can be used as a direction-sensitive detector 217 

with pulse clustering and analysis. These direction-specific maps are represented as one-218 

dimensional 144-length vectors with the number of hits represented as integer entries and the 219 

neuron represented by the vector index. Since we took only one thousand (or one hundred) 220 

input pulses at a time from the data that was not used in the initial training, multiple vectors 221 

were produced corresponding to each direction. These vectors were labelled according to the 222 

source direction (0° (0), 45° (1), 90°, (2), and 180° (3)), resulting in four distinct classes. 223 

 224 

3.3 Prediction model 225 

 We trained a model composed of a single feedforward layer with a ReLU activation to 226 

predict the direction of the source. The direction-specific 144-length vectors generated using 227 

the trained SOM network for the different positions of the 133Ba source were the input to the 228 

second network for direction prediction. Other machine learning algorithms were tested, 229 

including decision trees and support vector machines, but only the neural network architecture 230 

met the requirements of high accuracy on the test set while also producing reasonable accuracy 231 
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on a second test set composed of a "mixture" of vectors, as described in Section 4.1. It needs to 232 

be emphasized that the simple feedforward network was suitable for the present experiment as 233 

we are trying to distinguish between pulses collected only from four source locations around 234 

the detector. In a more comprehensive experiment that includes many source locations and a 235 

larger SOM architecture, such a simple network may no longer be sufficient. Our aim here is 236 

to present a proof of concept for a method using pulse clustering algorithms (the SOM in our 237 

case) in the analysis of determining the location of radioactive sources.  238 

      The model was developed and trained using the PyTorch library. The dimension of the 239 

feedforward layer was 144 (the same dimension as the input vectors). The model was trained 240 

in two different ways to test the feasibility of applying the methodology with limited data for 241 

training or during testing. The training was performed using direction-specific vectors 242 

generated using SOM taking 1000 input pulses in one method. In a second way, the network 243 

was trained with direction-specific vectors generated using SOM taking 100 input pulses. 244 

Similarly, the testing was done with SOM vectors generated with 1000 or 100 input pulses. For 245 

the method that used 1000-input pulses for both training and testing, the training and testing 246 

accuracies were 100% (the confusion matrix for this set is given in Figure 10(a)), and for the 247 

100-pulse training & testing method, the training and testing accuracies were 94.5% and 72.5%, 248 

respectively (see Fig. 11(b) for the confusion matrix). The total number of vectors used in 249 

training was 671 (or 6710) for SOM vectors produced with 1000 (or 100) vectors each, with 250 

10% set aside for testing. The accuracy of the prediction algorithm depends on the size (number 251 

of vectors used to train the prediction model) and the density (number of pulses per SOM used 252 

to generate the vectors) of the data, which has been discussed in the next section.   253 

 254 

4. Results and Discussion 255 

4.1 Mixture of directions 256 

 To test the ability of our algorithm to predict the direction of gamma rays with our limited 257 

dataset, we combined random SOM vectors (from the test set; these vectors were not exposed 258 

to the algorithm during training) two at a time and provided the resulting vector to the network 259 

for prediction. The prediction accuracy was measured by the probabilities generated by the final 260 

activation function (softmax). This output consists of four values that give the probability that 261 

the source is in one of the four locations. If the two highest probabilities of the softmax 262 

activation function corresponded to the correct locations of the source, the prediction was 263 

labeled as correct (for testing with SOM vectors from a single direction, only the maximum 264 
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probability was considered). The network successfully predicted the components in this way 265 

with ~70% accuracy on the 1000-pulse set (training & testing). In addition to the original test 266 

set accuracy, the reasonable accuracy provided by this method indicates that the network is 267 

learning the patterns produced by the SOM and not simply memorizing the data. An application 268 

of this method may allow the detection of multiple radiation sources in different locations, 269 

provided the total count rate does not lead to shape variations due to pulse pile-up. 270 

 271 

4.2 Training and Testing Variations 272 

 An additional test of the algorithm was the variation of the amount of information contained 273 

in each SOM vector to answer the following question: Is it better to train the feedforward 274 

network on more data (size) with fewer pulses per SOM (density) or less data with more pulses 275 

per SOM? Each SOM prediction vector was produced by feeding the SOM network 1000 pulses 276 

in the initial training and testing method for the feedforward network. This results in fewer total 277 

SOM vectors, as more pulses are used to produce each vector. We obtained the best results 278 

(100% accuracy) when training and testing were performed with SOM vectors was produced 279 

with 1000 pulses (Fig. 11(a)). Another option is to reduce the number of pulses used to create 280 

each SOM vector. Doing so will result in more total SOM vectors with which to train & test the 281 

feedforward prediction network. Reducing the number of pulses in each map to 100 for both 282 

training and testing resulted in a testing accuracy of ~ 72.5%, as stated earlier (Fig. 11(b)). 283 

However, keeping the training set at 1000 pulses per SOM vector and reducing only the testing 284 

set to 100 pulses per SOM resulted in a reduced test set accuracy of ~ 67.5%. The confusion 285 

matrix for this result is given in Fig. 11(c). Using a training set consisting of 100 pulses per 286 

SOM vector and a test set that consisted of 1000 pulses per map resulted in training and test set 287 

accuracies of ~ 94.5% and ~ 80%, respectively (confusion matrix in Fig. 11(d))—an 288 

improvement compared to the 100-pulse test set. Our results suggest that a denser testing set 289 

leads to better accuracy. With more pulses per map, the SOM network may be able to recognize 290 

the direction-specific patterns better even though there were fewer total maps with which to 291 

train.   292 

 293 

5. Conclusions 294 

 We have shown the feasibility of acquiring source position information from coaxial HPGe 295 

detectors using a combination of unsupervised and supervised machine learning algorithms. 296 

The results we have presented were using data obtained under ideal conditions for gamma 297 
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energies generated by a 133Ba source. Further work—in particular, the collection of a larger 298 

dataset consisting of a significantly larger variety of directions, distances from the detector, and 299 

source isotopes—is needed to select the appropriate size of the SOM network and depth of the 300 

neural network required for use in the field. Applications of this technique may include 301 

implementation into handheld/portable coaxial HPGe detectors, which may be able to provide 302 

not only a high-resolution gamma spectrum but indicate a general direction from which the 303 

gamma rays are originating. Other applications include extracting the components in 304 

experimental data due to gamma originating away from the direct field of view. For example, 305 

there is an appreciable background in time-of-flight spectroscopy of electrons generated by 306 

positrons due to the electrons being correlated with delayed gamma produced by ortho 307 

Positronium (o-Ps) annihilation [30, 31]. Because of its long lifetime, o-Ps travel tens of 308 

centimeters away from the sample before annihilation. This causes the annihilation gamma to 309 

enter the detector active volume from positions away from the sample. We aim to implement 310 

the present algorithm to extract the component of the time-of-flight spectrum associated with 311 

gamma photons originating away from the sample, allowing us to study o-Ps formation in more 312 

detail.      313 
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 427 
 428 

Fig. 1 Three general concepts for scintillator-based, non-imaging directional detectors. Type A 429 

uses the relative prominences of the peaks corresponding to each of the three scintillator types 430 

estimate the radial direction of the source. Type B infers the source direction through the 431 

differential count rates generated in separate scintillator volumes and their spatial arrangement. 432 

Type C estimates the source direction by comparing which channels in a multi-channel 433 

photomultiplier system coupled to the detector volumes receive the most light during a series 434 

of scintillation events. 435 
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 442 
 443 

Fig. 2 MCNPX-PoliMi model of the simulated detector. The green region is the HPGe crystal, 444 

the yellow regions is the copper cold finger, the dark blue regions are aluminium and mylar 445 

casing and structural material, and the white and light blue regions are air. 446 
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 466 

Fig. 3 Experimental geometry showing the position of the 133Ba source. Each position was 467 

placed 25 cm from the center of the crystal, which is also the distance between the back of the 468 

detector electronics shroud and the center of the crystal.  The digitally collected pulses were 469 

analyzed using the internally developed software to generate the energy spectrum [24].   470 
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 503 
 504 

Fig. 4 The background subtracted experimental (red) and simulated (black) 133Ba spectra, 505 

including all four positions of the source.  506 
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 521 

Fig. 5 Gamma energy deposition locations for 10,000 events. 00, 450, 900, 1800 represent the 522 

azimuthal position of the source from the normal of the detector front face. Note that the 523 

horizontal axes for 180° are rotated for clarity. These energy deposition locations will have an 524 

effect on the resulting pulse shape, which will in turn be represented by the SOM as a specific 525 

pattern unique to the source location. 526 

 527 
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528 

 529 

 530 

 531 
Fig. 6 Intra-detector volume interaction distributions in the x and y directions for a gamma 532 

point source located at A) 00 B) 450 C) 900 and D) 1800 degrees from the normal of the detector 533 

front face. The coordinates for the distributions are defined so that the origin is at the radial 534 

center and axial base of the detector volume and cold finger, with the x axis pointing towards 535 
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the front detector face and the y axis pointing away from the source at 90 degrees. The 536 

distributions of the z-coordinates are not shown as the source is not varied in z-plane.  537 
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 565 

Fig. 7 Normalized pulses collected from the HPGe detector pre-amplifier. The pulses were the 566 

inputs to the SOM network. The noisy and saturated pulses were allowed in the training and 567 

left in the figure for emphasis on the variety of pulses included in the procedure. These pulses 568 

will then be sorted into a specific neuron of the SOM depending on their similarity.  569 
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 583 

Fig. 8 The sample hits of the trained SOM, which was trained using input pulses collected from 584 

all source positions. Each neuron represents a group of pulses with similar characteristics. This 585 

trained SOM, when provided a group of pulses originating from a single source location, will 586 

then produce a pattern specific to that location. 587 
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Fig. 9 Representative sample hits of the SOMs produced by the four source positions when 602 

1000 pulses were given to the trained SOM. Each map represents a unique pattern, with some 603 

overlap between them. This pattern is consistent across different groups of pulses originating 604 

from the same source location, allowing a second neural network to learn to recognize and 605 

classify the pattern accordingly. 606 
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 615 

  

  

Fig. 10 Example of pulse clusters for the most active neuron in each of the four directional 616 

SOMs. Each neuron within the SOM represents a group of pulses with a unique structure—in 617 

turn caused by the various locations of gamma energy deposition within the detector. 618 
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(a) (b) 

(c) (d) 

 628 

Fig. 11 (a) The confusion matrix of the simple single-layer feedforward model trained on 1000-629 

pulse SOM vectors and tested on 1000-pulse SOM vectors. “1” would represent 100% accuracy. 630 

Label 0: 0°; 1: 45°; 2: 90°; 3: 180°. (b) The confusion matrix of the model trained and tested 631 

on 100-pulse SOM vectors. (c) Training set: 1000 pulses per SOM vector; testing set: 100 pulses 632 

per SOM vector. (d) Training set: 100 pulses per SOM vector; testing set: 1000 pulses per SOM 633 

vector. 634 
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