

1 **Implementation of a machine learning technique for estimating gamma
2 direction using a coaxial High Purity Germanium detector**

4 R. W. Gladen^{*1}, T. J. Harvey^{2,3}, S. S. Chirayath^{2,3}, A. J. Fairchild¹, A. R. Koymen¹, A. H.
5 Weiss¹, V. A. Chirayath^{†1}

7 ¹*Department of Physics, University of Texas at Arlington, Arlington, TX, USA 76019*

8 ²*Center for Nuclear Security Science & Policy Initiatives, Texas A&M University, College
9 Station, TX 77843-3473, USA*

10 ³*Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-
11 3133, USA*

13 [†]Corresponding author e-mail: chirayat@uta.edu

14 ^{*}Corresponding author e-mail: randall.gladen@uta.edu

16 **Abstract**

17 We demonstrate the ability to obtain the direction of the gamma rays using a standard coaxial
18 high purity germanium (HPGe) detector using the direction-sensitive information embedded in
19 the shape of the pre-amplified HPGe signals. We deduced the complex relationship between
20 the shape of the signal and the direction from which the gamma-ray enters the detector active
21 volume using a two-step machine learning technique. In the first step, we collected pulses from
22 the HPGe detector due to a ¹³³Ba source placed in four distinct positions around the detector
23 while keeping the distance from the center of the detector crystal constant. A subset of the
24 pulses collected with radioactive source kept at the four positions was used to train an artificial
25 neural network (ANN) called a self-organizing map (SOM) to cluster the HPGe waveforms
26 based on their shape. The trained SOM network was then utilized to produce direction-specific
27 maps corresponding to pulses generated when the ¹³³Ba source is at a specific location with
28 respect to the detector. In the second step, we used the SOM-generated direction-specific maps
29 to train another network composed of a single feedforward layer for predicting the direction of
30 the gamma photon from the pulses produced by the HPGe detector because of the gamma
31 energy deposition. Our results show that even without employing complex methodologies, a
32 standard coaxial HPGe detector can estimate the direction of incoming gamma rays and thus,
33 provide initial guidance on the gamma-emitting radioactive source direction with reference to
34 the detector.

35 **1. Introduction and Background**

36 Typical radiation detectors used in search procedures for obscured radioactive materials
37 include commonplace and well-characterized detectors that can detect alpha, beta, gamma rays,
38 or neutrons emissions. Neutron and gamma-ray detection are generally more applicable for
39 source search due to those radiation types' longer mean free paths. Detectors like end-window
40 Geiger-Mueller (G-M) tubes or compact scintillator detectors are most commonly used in
41 searches due to their mobility and sensitivity to various particle types [1]. Detectors used in
42 source searching commonly rely on count rate changes with source-to-detector distance to
43 physically locate the material. These detectors are widely used in source search applications
44 during which the count rate is monitored as the detector's spatial location is varied. This
45 technique can generate a field of dose rates that can infer the most likely spatial location or a
46 sought-after source since count rates are more likely to increase in areas nearer to the
47 radioactive material. Alternatively, a user of a mobile detector can appropriately adjust their
48 searching path as they see the count rate change with their spatial position. These methods can
49 effectively track down lost or hidden sources but feature some drawbacks. Count rate search
50 methods can be time-consuming if the search area is large and there is no initial guidance on
51 the source direction. Count rate methods can also be limited by difficult terrain or inaccessible
52 areas. Spatial radiation surveys also typically do not feature a vertical height component on 2-
53 D count rate maps, leaving ambiguity concerning the position of potential radioactive material
54 on upper floors of buildings or below ground.

55 Detection systems that have sought to resolve some of these problems include radiation
56 imaging detectors such as coded aperture systems [2,3], Compton-scatter cameras [4], neutron-
57 scatter cameras [5], and time projection chambers [6]. These detectors provide directional and
58 spatial data along with count rate and spectroscopic data. Imaging detectors can also perform
59 rough imaging of the size and shape of radioactive material close to the detector systems.
60 Compton scatter cameras are already widely used in medical imaging applications, and compact,
61 mobile designs have been demonstrated in source searching applications. Compact neutron-
62 scatter camera systems have also been proposed as detectors to perform source searching.
63 Because of their relatively large size, high complexity, and required particle flux, time
64 projection chambers and coded aperture systems have not been proposed as possible source
65 localizers except in minimal scenarios. Though imaging systems provide a plethora of spatial
66 data that could be valuable in source searching, they also feature many drawbacks. Compact
67 imaging systems tend to be much more expensive than G-M tubes and simple scintillators due

68 to multiple detector volumes, complex photoelectronic readouts, and computationally taxing
69 post-processing needs. In many cases, imaging systems may be overengineered for source
70 localization since what is sought in that application is the general direction of nearby sources
71 rather than the level of detail yielded by a complete image. These facts point toward the
72 usefulness of a simple source-direction-pointing detector intermediate in complexity between
73 directionality "blind" standard detectors and more complex imaging detectors.

74 Several detector designs have been proposed to "point" towards a nearby radiation source.
75 These detectors broadly can be grouped into three classes: spectral comparison-type systems,
76 count rate occlusion-type systems, and multi-channel readout-type systems. Fig. 1 demonstrates
77 the general operating principle of each of these detector types. Spectral comparison-type
78 systems use multiple types of scintillator materials in a single system. The spatial arrangement
79 of each scintillator relative to the position of a nearby radiation source will result in differential
80 feature prominence in the characteristic spectra produced by each material. This type of
81 directional detector has been little explored since its initial proposal as a passive directional
82 monitor of radiation release events [7], though it does allow for direction detection using only
83 a single photomultiplier tube (PMT). Much more widely prototyped are occlusion-type
84 detectors. These systems rely on differential count rates attained from separate detector volumes.
85 The detector volumes are arranged so that volumes nearer to a radiation source will record the
86 highest count rate while simultaneously occluding the radiation flux arriving at the other
87 detector volumes and depressing their count rates via the "shadow effect." The real-time
88 differential count rates determined by the detector system can be used to estimate the direction
89 of a stationary source or track the movement of a mobile source. Occlusion-type systems may
90 or may not use shielding in addition to the detector volumes and may operate in a stationary
91 position or may be rotated around a central axis to better estimate source positions. Occlusion-
92 type detectors have been well explored in the literature [8-17]. The third general class of simple
93 directional detectors uses a single detector volume coupled to pixelated or otherwise distributed
94 photodetectors. In these systems, source direction is estimated by observing the differential
95 response across all data channels. The channels closer to or oriented towards the radiation
96 source will generally show a more significant response. The concept behind these detectors is
97 similar to occlusion-type systems, though they allow for more compact designs by removing
98 the need for multiple detector volumes. Several examples of purpose-built non-imaging multi-
99 channel readout directional detectors have been demonstrated [18, 19], though pixelated single
100 volume detectors can often also act as imagers.

101 Simple directional detector systems need not be purpose-built: Many detectors initially
102 designed for standard spectroscopic capabilities may provide spatial information if the signals
103 change when the source position is altered. During typical measurements with an HPGe system,
104 it was observed that the average signal characteristics of collected pulses varied with the
105 positioning of the radioactive source with reference to the detector. This is not surprising as the
106 shape of the pre-amplified HPGe signals depend critically on (i) the point of interaction of the
107 γ photon in the detector, (ii) the number of interactions per γ photon, and (iii) the carrier
108 transport dynamics across the electrodes. Thus, standard HPGe detectors with asymmetrical
109 geometry have directionally sensitive information buried in the signals to act analogously to the
110 purpose-built occlusion or pixelated directional detectors. Therefore, we can use a standard
111 asymmetric semiconductor detector to infer the direction of a nearby gamma source if we can
112 deduce the complex relationship between the radiation source position, the average intra-
113 detector particle interaction location, and the shape of the detector voltage pulses.

114 Advancements in Artificial Intelligence and machine learning algorithms have made it
115 possible to derive complex relationships from data that are difficult to obtain using conventional
116 methods and, therefore, have found increasing application in all aspects of nuclear physics
117 experiments [20, 21]. Machine learning methods have been successfully integrated with
118 directional detectors that incorporate multi-channel readout [19] or employ separated
119 scintillation volumes [22]. Our group recently employed unsupervised machine learning to
120 cluster HPGe pulses according to their shape and derived the most suitable shape-dependent
121 discrimination parameters for obtaining the time information. By employing the shape-
122 dependent "variable fraction discrimination" method, we could bring the timing resolution of
123 an HPGe detector down to a few nanoseconds without rejecting any signals [23]. Here we
124 employ a similar strategy to cluster HPGe detector pulse shapes using a SOM network to obtain
125 a map related to the gamma entry direction. We further train a second network with a single
126 feedforward layer to deduce the relationship between the direction-specific SOM-generated
127 map and the source position. Our results show that we can estimate the general direction of the
128 gamma source with a standard coaxial HPGe detector with good reliability. Combined with the
129 superior energy resolution of an HPGe detector, our method converts a standard HPGe detector
130 into an effective tool for searching and identifying nuclear and radiological materials.

131

132 **2. Monte Carlo Simulations**

133 We used a Monte Carlo model of an HPGe detector system to confirm the relationship
134 between the source position with reference to the detector volume and the intra-detector
135 interaction position. The model's cells, surfaces, and materials were set according to the
136 manufacturer specifications of an Ortec GEM-10195 detector. Fig. 2 shows an axial and radial
137 view of the simulation model of the active detector volume, cold finger, and surrounding layers.
138 The geometric model was run in MCNPX-PoliMi, a Monte Carlo code helpful in examining
139 the details of individual interaction events rather than tallies. MCNP-PoliMi can output the 3-
140 D interaction position, energy deposition, and timing values for particles interacting in cells of
141 interest. Using the capabilities of MCNPX-PoliMi, we simulated the positions at which the
142 gamma photon deposits its energy in the active detector volume as a function of the azimuthal
143 position of a ^{133}Ba point with reference to the center of the active detector volume. The source
144 was placed 25 cm from the center of the detector volume for the simulations to match the
145 measurement conditions as shown in Fig. 3. A total of 10 million decay histories were simulated
146 at each position. We confirmed the ability of the simulation in MCNPX-PoliMi to accurately
147 represent our detector system and experiment by comparing the experimental energy spectrum
148 to the one produced by the simulation (Fig. 4). Here we applied a standard MCNP F8 energy
149 deposition tally with Gaussian peak broadening to the simulated detector cell consisting of the
150 HPGe material. The simulated energy spectrum compares favorably with the experimental
151 gamma energy spectrum. Please note that instrumental broadening of the gamma peaks was
152 included in the simulation using empirical parameters (a , b & c) obtained by fitting the variation
153 of the full width at half maximum (FWHM) of the experimental gamma peaks with the gamma
154 energy (E) using the equation $a + b\sqrt{E + cE^2}$.

155 The MCNPX- PoliMi output file containing the spatial positions of each interaction in
156 the active volume was saved at each source position. Fig. 5 shows 3-D scatter plots of the saved
157 interaction positions within the cylindrical detector volume for four source positions. Only
158 10,000 interactions are shown in each plot for clarity. The scatter plots clearly show that the
159 interaction positions tend to cluster close to the surfaces nearer to the source for the gamma
160 energies used in the simulation. Based on the scatter plots, it is evident that the charge carriers
161 (electrons and holes) generated by the gamma travel have different transport paths to the
162 respective electrodes, ultimately leading to different pulse shapes. Fig. 6 shows the distributions
163 in interaction position in the x and y directions for the ^{133}Ba point source at positions 0, 45, 90,
164 and 180 azimuthal degrees from the front face of the detector active volume. The changes in
165 interaction position distribution with source spatial position show that the coaxial HPGe

166 detector can infer the average interaction position and thus the general source direction by
167 calculating the average charge carrier travel time from the position of interaction in the axial
168 direction to the point of charge collection. We achieve this using machine learning capabilities,
169 allowing us to bypass complex charge transport modeling [25, 26] or segmentation of coaxial
170 HPGe detectors [27].

171

172 **3. Methods**

173 The data needed for training and testing the two-step machine learning algorithm was
174 collected using a coaxial HPGe detector system consisting of a single p-i-n (p-n junction with
175 an intrinsic region) region and readout (i.e., not segmented). The details of the data collection,
176 curation prior to training, and the network architectures employed are discussed below.

177

178 *3.1 Apparatus*

179 Detector pulses from a coaxial Ortec GEM HPGe detector were obtained by placing a one
180 microcurie ^{133}Ba source at 25 cm from the center of the detector crystal along its axis, as shown
181 in Fig. 3. At this initial position, \sim 200,000 pulses were collected with a Lecroy HDO with a 12-
182 bit resolution and a sampling rate of 2.5 GS/s. Following this collection, the source was moved
183 to the 90° position (with respect to the detector axis) and then to the 180° position—kept at a
184 constant distance of 25 cm from the crystal center—and \sim 200,000 pulses were collected for
185 each direction. Finally, the source was moved to the 45° position, and another 100,000 pulses
186 were collected. Due to the inherent asymmetry of the detector, the voltage pulses generated by
187 the detector with the source at different directions are expected to have distinguishable features.
188 There are several methods for clustering pulses together with similar features. The most
189 straightforward and visually interpretable is the self-organizing map (SOM) [23]. It should be
190 noted for clarification that the direction of the source is not estimated from a single interaction
191 event, but from a distribution of events whose mean position in the active detector volume
192 determines the shape of the pulse. This information is reduced in dimensionality by the self-
193 organizing map.

194

195 *3.2 Self-organizing map*

196 The digitized pre-amplified pulses were analyzed and cleaned using the software described
197 in [24]. Following this, we created a single data set using 10,000 pulses from the 0°, 90°, and
198 180° positions and 5,000 pulses from the 45° source (i.e., a data set consisting of 35,000 pulses).

199 The data set had all types of pulses, including saturated and noisy pulses, as in Fig. 7, which
200 shows a small subset of voltage pulses used. The amplitude normalized data set was used to
201 train the SOM, an unsupervised neural network that reduces the input space by grouping similar
202 pulses together [28]. The training was done using the SOM algorithm provided in the Deep
203 learning toolbox of MATLAB® [29]. The trained SOM consisted of 12×12 neurons connected
204 in a hexagonal topology. The SOM was trained for 2000 iterations, and the resulting sample
205 hits plot from the training is given in Fig. 8. Fig. 8 shows the result of shape-based pulse
206 clustering with the number of pulses associated with each of the 144 neurons shown. The trained
207 SOM network was then used to produce direction-specific maps similar to Fig. 8, but for voltage
208 pulses produced by gamma entering the detector from one direction. We created two data sets
209 (each consisting of both training and testing data subsets) comprised of either (i) one thousand
210 or (ii) one hundred pulses acquired with the ^{133}Ba source at a specific position to feed into the
211 trained SOM network. The network now produces maps characteristic of the position of the
212 source about the detector. Fig. 9 is a sample of direction-specific maps produced using an input
213 data set with one thousand detector pulses. To emphasize the direction specificity of these maps,
214 we show in Fig. 10 the pulses corresponding to the neuron with the highest number of hits (or
215 highest number of pulses) in the direction-specific maps shown in Fig. 9. The fact that gamma
216 entering the detector from different directions produces pulses with visibly different shapes
217 shows that even a standard coaxial HPGe detector can be used as a direction-sensitive detector
218 with pulse clustering and analysis. These direction-specific maps are represented as one-
219 dimensional 144-length vectors with the number of hits represented as integer entries and the
220 neuron represented by the vector index. Since we took only one thousand (or one hundred)
221 input pulses at a time from the data that was not used in the initial training, multiple vectors
222 were produced corresponding to each direction. These vectors were labelled according to the
223 source direction (0° (0), 45° (1), 90° (2), and 180° (3)), resulting in four distinct classes.
224

225 3.3 *Prediction model*

226 We trained a model composed of a single feedforward layer with a ReLU activation to
227 predict the direction of the source. The direction-specific 144-length vectors generated using
228 the trained SOM network for the different positions of the ^{133}Ba source were the input to the
229 second network for direction prediction. Other machine learning algorithms were tested,
230 including decision trees and support vector machines, but only the neural network architecture
231 met the requirements of high accuracy on the test set while also producing reasonable accuracy

232 on a second test set composed of a "mixture" of vectors, as described in Section 4.1. It needs to
233 be emphasized that the simple feedforward network was suitable for the present experiment as
234 we are trying to distinguish between pulses collected only from four source locations around
235 the detector. In a more comprehensive experiment that includes many source locations and a
236 larger SOM architecture, such a simple network may no longer be sufficient. Our aim here is
237 to present a proof of concept for a method using pulse clustering algorithms (the SOM in our
238 case) in the analysis of determining the location of radioactive sources.

239 The model was developed and trained using the PyTorch library. The dimension of the
240 feedforward layer was 144 (the same dimension as the input vectors). The model was trained
241 in two different ways to test the feasibility of applying the methodology with limited data for
242 training or during testing. The training was performed using direction-specific vectors
243 generated using SOM taking 1000 input pulses in one method. In a second way, the network
244 was trained with direction-specific vectors generated using SOM taking 100 input pulses.
245 Similarly, the testing was done with SOM vectors generated with 1000 or 100 input pulses. For
246 the method that used 1000-input pulses for both training and testing, the training and testing
247 accuracies were 100% (the confusion matrix for this set is given in Figure 10(a)), and for the
248 100-pulse training & testing method, the training and testing accuracies were 94.5% and 72.5%,
249 respectively (see Fig. 11(b) for the confusion matrix). The total number of vectors used in
250 training was 671 (or 6710) for SOM vectors produced with 1000 (or 100) vectors each, with
251 10% set aside for testing. The accuracy of the prediction algorithm depends on the size (number
252 of vectors used to train the prediction model) and the density (number of pulses per SOM used
253 to generate the vectors) of the data, which has been discussed in the next section.

254

255 **4. Results and Discussion**

256 *4.1 Mixture of directions*

257 To test the ability of our algorithm to predict the direction of gamma rays with our limited
258 dataset, we combined random SOM vectors (from the test set; these vectors were not exposed
259 to the algorithm during training) two at a time and provided the resulting vector to the network
260 for prediction. The prediction accuracy was measured by the probabilities generated by the final
261 activation function (softmax). This output consists of four values that give the probability that
262 the source is in one of the four locations. If the two highest probabilities of the softmax
263 activation function corresponded to the correct locations of the source, the prediction was
264 labeled as correct (for testing with SOM vectors from a single direction, only the maximum

265 probability was considered). The network successfully predicted the components in this way
266 with $\sim 70\%$ accuracy on the 1000-pulse set (training & testing). In addition to the original test
267 set accuracy, the reasonable accuracy provided by this method indicates that the network is
268 learning the patterns produced by the SOM and not simply memorizing the data. An application
269 of this method may allow the detection of multiple radiation sources in different locations,
270 provided the total count rate does not lead to shape variations due to pulse pile-up.

271

272 *4.2 Training and Testing Variations*

273 An additional test of the algorithm was the variation of the amount of information contained
274 in each SOM vector to answer the following question: Is it better to train the feedforward
275 network on *more* data (size) with *fewer* pulses per SOM (density) or *less* data with *more* pulses
276 per SOM? Each SOM prediction vector was produced by feeding the SOM network 1000 pulses
277 in the initial training and testing method for the feedforward network. This results in fewer total
278 SOM vectors, as more pulses are used to produce each vector. We obtained the best results
279 (100% accuracy) when training and testing were performed with SOM vectors was produced
280 with 1000 pulses (Fig. 11(a)). Another option is to reduce the number of pulses used to create
281 each SOM vector. Doing so will result in more total SOM vectors with which to train & test the
282 feedforward prediction network. Reducing the number of pulses in each map to 100 for both
283 training and testing resulted in a testing accuracy of $\sim 72.5\%$, as stated earlier (Fig. 11(b)).
284 However, keeping the training set at 1000 pulses per SOM vector and reducing only the testing
285 set to 100 pulses per SOM resulted in a reduced test set accuracy of $\sim 67.5\%$. The confusion
286 matrix for this result is given in Fig. 11(c). Using a training set consisting of 100 pulses per
287 SOM vector and a test set that consisted of 1000 pulses per map resulted in training and test set
288 accuracies of $\sim 94.5\%$ and $\sim 80\%$, respectively (confusion matrix in Fig. 11(d))—an
289 improvement compared to the 100-pulse test set. Our results suggest that a denser testing set
290 leads to better accuracy. With more pulses per map, the SOM network may be able to recognize
291 the direction-specific patterns better even though there were fewer total maps with which to
292 train.

293

294 **5. Conclusions**

295 We have shown the feasibility of acquiring source position information from coaxial HPGe
296 detectors using a combination of unsupervised and supervised machine learning algorithms.
297 The results we have presented were using data obtained under ideal conditions for gamma

298 energies generated by a ^{133}Ba source. Further work—in particular, the collection of a larger
299 dataset consisting of a significantly larger variety of directions, distances from the detector, and
300 source isotopes—is needed to select the appropriate size of the SOM network and depth of the
301 neural network required for use in the field. Applications of this technique may include
302 implementation into handheld/portable coaxial HPGe detectors, which may be able to provide
303 not only a high-resolution gamma spectrum but indicate a general direction from which the
304 gamma rays are originating. Other applications include extracting the components in
305 experimental data due to gamma originating away from the direct field of view. For example,
306 there is an appreciable background in time-of-flight spectroscopy of electrons generated by
307 positrons due to the electrons being correlated with delayed gamma produced by ortho
308 Positronium (o-Ps) annihilation [30, 31]. Because of its long lifetime, o-Ps travel tens of
309 centimeters away from the sample before annihilation. This causes the annihilation gamma to
310 enter the detector active volume from positions away from the sample. We aim to implement
311 the present algorithm to extract the component of the time-of-flight spectrum associated with
312 gamma photons originating away from the sample, allowing us to study o-Ps formation in more
313 detail.

314

315 **Acknowledgments**

316 A.H.W, A.R.K and V.A.C gratefully acknowledge the support of the National Science
317 Foundation, USA (CHE-2204230). A. H. W gratefully acknowledge the support of the Welch
318 Foundation, USA (Y-1968-20180324). A.H.W and A.R.K gratefully acknowledge the support
319 of the National Science Foundation, USA (DMR-1338130 & DMR-1508719). S. S. C and T. J.
320 H gratefully acknowledge the support of the Stanton Foundation.

321

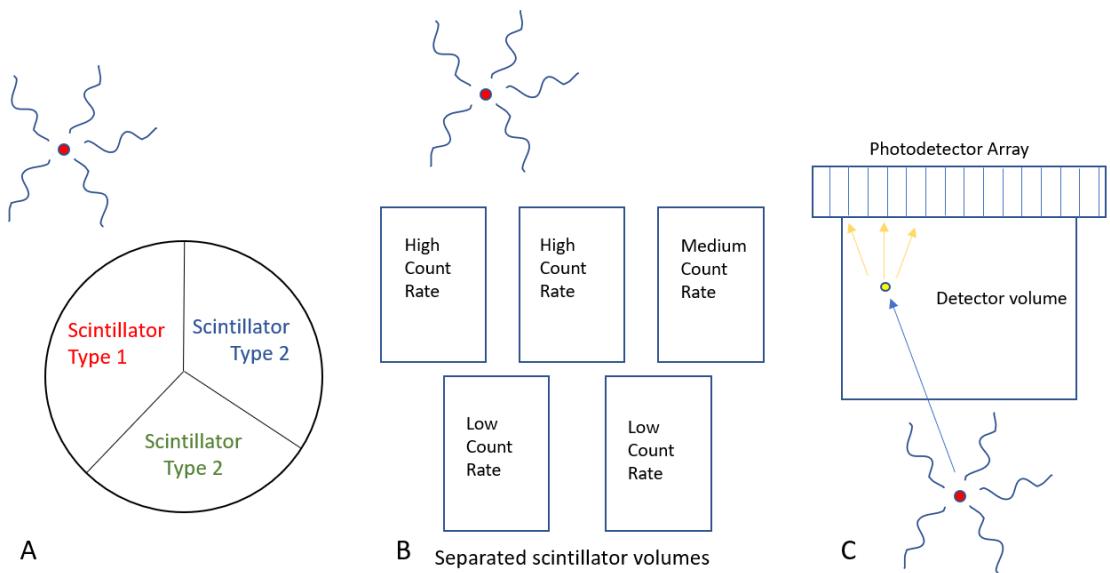
322 **References**

- 323 1. International Atomic Energy Agency, Methods to identify and locate spent radiation
324 sources, Vienna, 1995. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/te_804_prn.pdf (accessed on November 15th,
325 2021).
- 326 2. M. J. Cieślak, K. A. A. Gamage, R. Glover, “Coded-aperture imaging systems: Past,
327 present and future development – A review”, *Radiation Measurements*, 92, 59 –71
328 (2016).
- 329

- 330 3. L. J. Schultz, et al., "Hybrid coded aperture and Compton imaging using an active mask",
331 *Nuclear Instruments and Methods in Physics Research Section A: Accelerators,*
332 *Spectrometers, Detectors and Associated Equipment*, 608, 267-274 (2009).
- 333 4. Anthony Sweeney "Compton imaging for homeland security", PhD dissertation,
334 University of Liverpool, 2014.
- 335 5. T. Harvey, E. Andreas, K. Bachner, "Applications and Deployment of Neutron Scatter
336 Cameras in Nuclear Safeguards Scenarios", *Journal of Nuclear Materials*
337 *Management*, 48, 4-21 (2020).
- 338 6. I. Jovanovic, N. S. Bowden, G. P. Carosi, M. Heffner, C. Roecker. "Neutron Time
339 Projection Chamber for Nuclear Security and Verification Applications" *AIP*
340 *Conference Proceedings*, 1412, 370-376 (2011).
- 341 7. Y. Shirakawa, "Development of a direction-finding gamma-ray detector", *Nuclear*
342 *Instruments and Methods in Physics Research Section B: Beam Interactions with*
343 *Materials and Atoms*, 263, 58-62 (2007).
- 344 8. J. Uher, C. Frojdh, J. Jakubek, S. Pospisil, G. Thungstrom, Z. Vykydal, "Directional
345 radiation detector", *2007 IEEE Nuclear Science Symposium Conference Record*, 1162-
346 1165 (2007).
- 347 9. G. L. Randall, E. Iglesia, H. F. Wong, R. S. Speller, "A method of providing
348 directionality for ionising radiation detectors — RadICAL" *Journal of Instrumentation*,
349 9, P10011 (2014).
- 350 10. D. Hanna, L. Sagnières, P. J. Boyle, A. M. L. MacLeod, "A directional gamma-ray
351 detector based on scintillator plates", *Nuclear Instruments and Methods in Physics*
352 *Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*,
353 797, 13-18 (2015).
- 354 11. B. Ayaz-Maierhafer, C. G. Britt, A. J. August, H. Qi, C. E. Seifert, J. P. Hayward,
355 "Design optimization for a wearable, gamma-ray and neutron sensitive, detector array
356 with directionality estimation", *Nuclear Instruments and Methods in Physics Research*
357 *Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 870, 131-
358 139 (2017).
- 359 12. A. Farzanehpoor Alwars, F. Rahmani, "Development of a high-precision gamma-ray
360 source finder based on a single detector", *Sensors and Actuators A: Physical*, 300,
361 111633 (2019).

- 362 13. A. Guckes, A. Barzilov, P. Guss, “Directional detection of neutrons and photons using
363 elpasolites: Computational study”, *Radiation Measurements*, 124, 127-131 (2019).
- 364 14. R. J. Olesen, B. E. O’Day, D. E. Holland, L. W. Burggraf, J. E. Bevins,
365 “Characterization of novel rotating scatter mask designs for gamma direction
366 identification”, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 954, 161232 (2020).
- 367 15. J. F. Liang, K. Talley, “Enhanced directional detection of gamma sources”, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 1002, 165304 (2021).
- 368 16. C. Britt, X. Wen, H. Qi, J. P. Hayward, “Directionality for wearable, closely packed
369 radiation detector arrays”, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 986,
370 164708 (2021).
- 371 17. B. Egner, D. E. Holland, L. W. Burggraf, J. E. Bevins, “Development of a modular
372 mixed-radiation directional rotating scatter mask detection system”, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 987, 164820 (2021).
- 373 18. R. Wang, et al., “Absolute Gamma Source Positioning with Position-sensitive
374 Scintillation Detector Arrays”, *2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)*, 1-4 (2018).
- 375 19. L. Buonanno, D. di Vita, M. Carminati, C. Fiorini, “A Directional Gamma-Ray
376 Spectrometer with Microcontroller-Embedded Machine Learning”, *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, 10, 433-443 (2020).
- 377 20. A. Boehnlein, et al. Artificial Intelligence and Machine Learning in Nuclear Physics.
378 arXiv:2112.02309 (2021).
- 379 21. R. W. Gladen, et al., “Neural Assessment of Non-Destructive Assay for Material
380 Accountancy”, *INMM Annual Meeting proceedings* (2021)
381 (<https://resources.inmm.org/annual-meeting-proceedings/neural-assessment-non-destructive-assay-material-accountancy>).
- 382 22. M. Durbin, R. Sheatsey, P. McDaniel, A. Lintereur, “A Multi-Step Machine Learning
383 Approach to Directional Gamma Ray Detection”, *2020 IEEE Nuclear Science
384 Symposium and Medical Imaging Conference (NSS/MIC)*, 1-3 (2021).

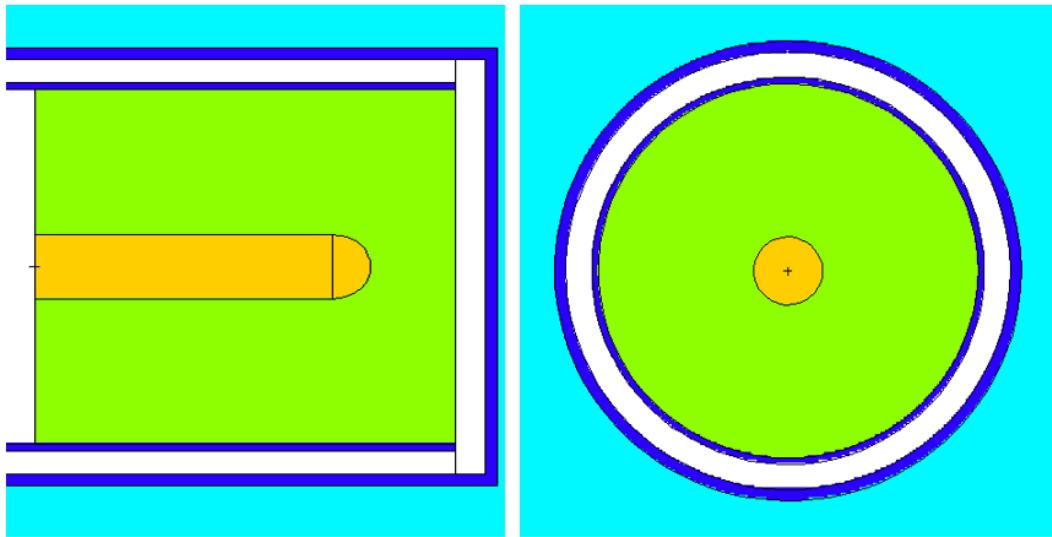
- 394 23. R.W. Gladen, V. A. Chirayath, A.J. Fairchild, M. T. Manry, A. R. Koymen, A. H. Weiss,
395 “Efficient machine learning approach for optimizing the timing resolution of a high
396 purity germanium detector”, *Nuclear Instruments and Methods in Physics Research*
397 *Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 981,
398 164505 (2020).
- 399 24. R.W. Gladen, V.A. Chirayath, A.J. Fairchild, A.R. Koymen, A.H. Weiss, “Digital
400 methods for the coincident measurement of the energies of positron-induced electrons
401 and Doppler-shifted annihilation gamma quanta”, *Nuclear Instruments and Methods in*
402 *Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated*
403 *Equipment*, 953, 162887 (2019).
- 404 25. B. Bruyneel, P. Reiter, G. Pascovici, “Characterization of large volume HPGe detectors.
405 Part I: Electron and hole mobility parameterization”, *Nuclear Instruments and Methods*
406 *in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated*
407 *Equipment*, 569, 764–773 (2006).
- 408 26. L. Mihailescu, W. Gast, R.M. Lieder, H. Brands, H. JaKger, “The influence of
409 anisotropic electron drift velocity on the signal shapes of closed-end HPGe detectors”,
410 *Nuclear Instruments and Methods in Physics Research Section A: Accelerators,*
411 *Spectrometers, Detectors and Associated Equipment*, 447, 350-360 (2000).
- 412 27. T. Niedermayr, K. Vetter, L. Mihailescu, G.J. Schmid, D. Beckedahl, J. Blair, J.
413 Kammeraad, Gamma-ray imaging with a coaxial HPGe detector, *Nuclear Instruments*
414 *and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors*
415 *and Associated Equipment*, 553, 501–511 (2005).
- 416 28. T. Kohonen, The self-organizing map. *Proceedings of the IEEE*, 78, 1464-1480 (1990).
- 417 29. The Mathworks Inc., Deep learning toolbox: User’s guide (R2020a), 2020, Retrieved
418 from www.mathworks.com/help/deeplearning/ug/cluster-with-selforganizing-map-neural-network.html.
- 419
- 420 30. Shuping Xie, “Positron Annihilation Induced Auger Electron Spectroscopy of Inner
421 Shell Transitions Using Time of Flight Technique”, PhD dissertation, University of
422 Texas at Arlington (2002).
- 423 31. V. A. Chirayath, et al., “Modeling Positronium induced background in the time-of-flight
424 (TOF) spectra of positron induced secondary electrons using Monte Carlo methods”,
425 *APS March Meeting 2022*, March 14–18, 2022; Chicago.
- 426



427
428

429 **Fig. 1** Three general concepts for scintillator-based, non-imaging directional detectors. Type A
430 uses the relative prominences of the peaks corresponding to each of the three scintillator types
431 estimate the radial direction of the source. Type B infers the source direction through the
432 differential count rates generated in separate scintillator volumes and their spatial arrangement.
433 Type C estimates the source direction by comparing which channels in a multi-channel
434 photomultiplier system coupled to the detector volumes receive the most light during a series
435 of scintillation events.

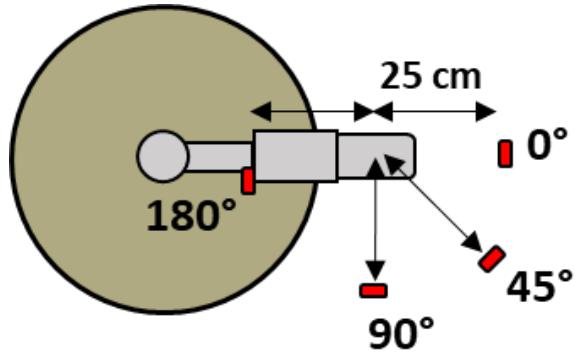
436
437
438
439
440
441



442
443

444 **Fig. 2** MCNPX-PoliMi model of the simulated detector. The green region is the HPGe crystal,
445 the yellow regions is the copper cold finger, the dark blue regions are aluminium and mylar
446 casing and structural material, and the white and light blue regions are air.

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465



466

467 **Fig. 3** Experimental geometry showing the position of the ^{133}Ba source. Each position was
468 placed 25 cm from the center of the crystal, which is also the distance between the back of the
469 detector electronics shroud and the center of the crystal. The digitally collected pulses were
470 analyzed using the internally developed software to generate the energy spectrum [24].

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

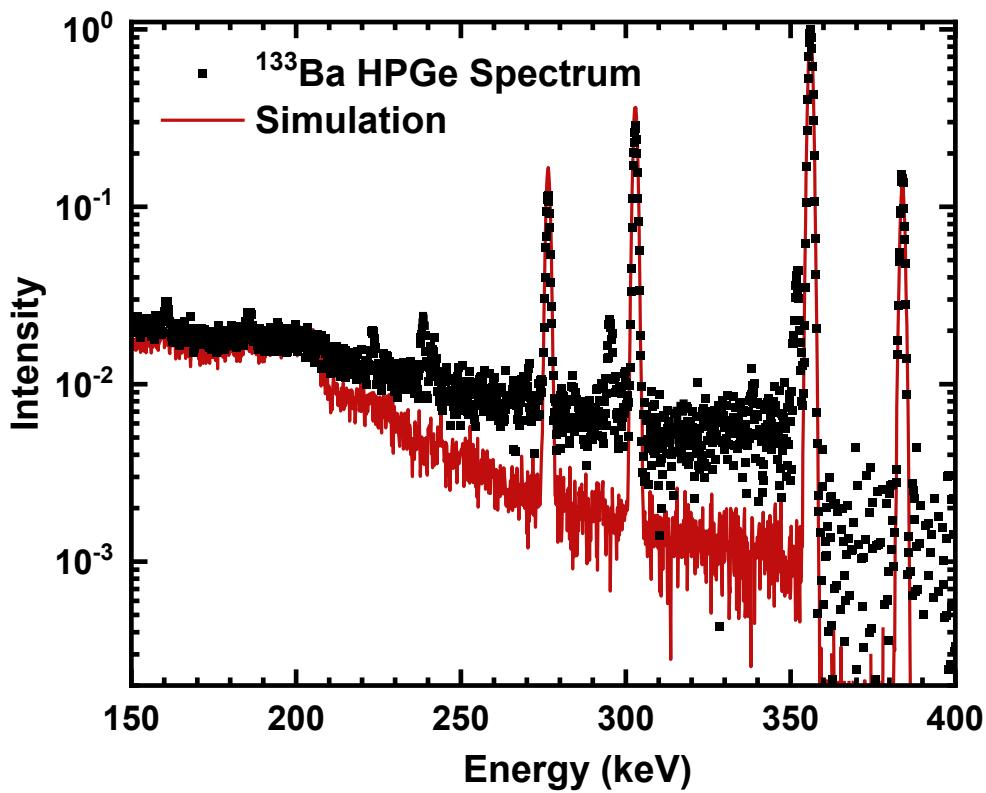
498

499

500

501

502



503
504

505 **Fig. 4** The background subtracted experimental (red) and simulated (black) ^{133}Ba spectra,
506 including all four positions of the source.

507

508

509

510

511

512

513

514

515

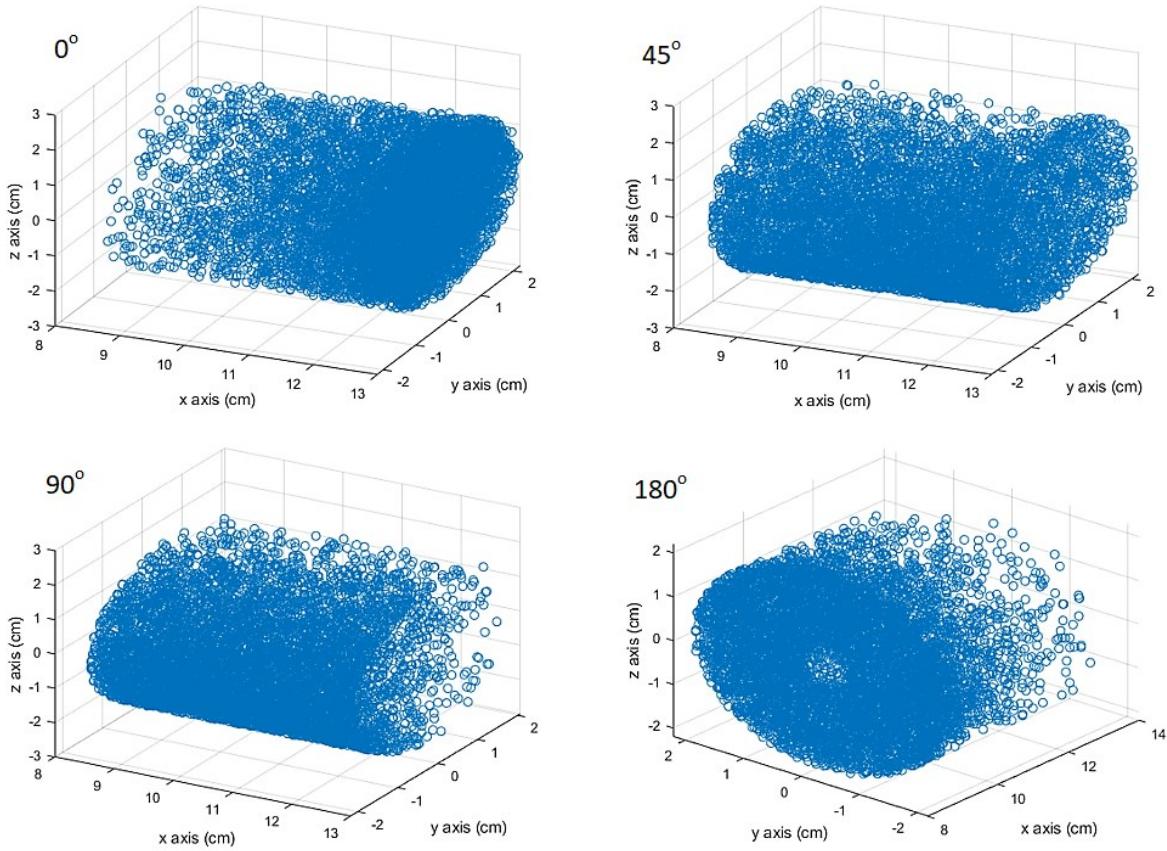
516

517

518

519

520

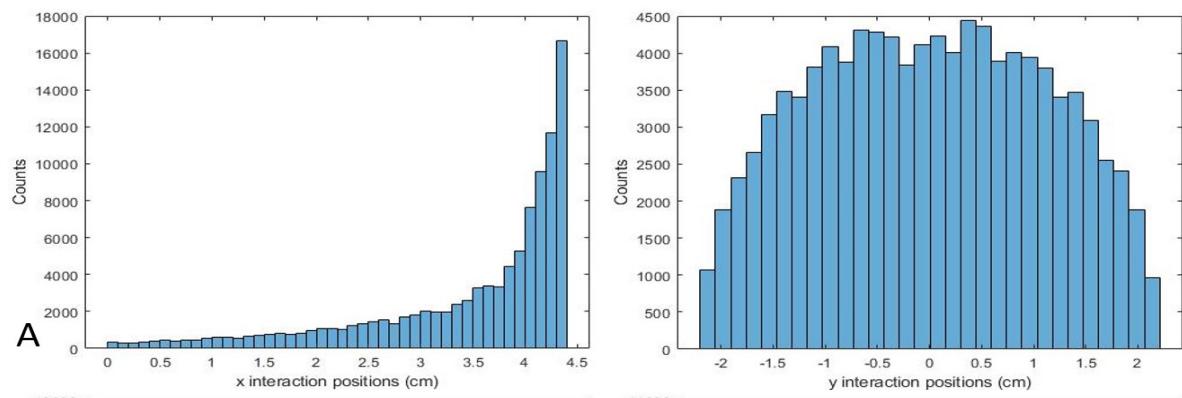


521

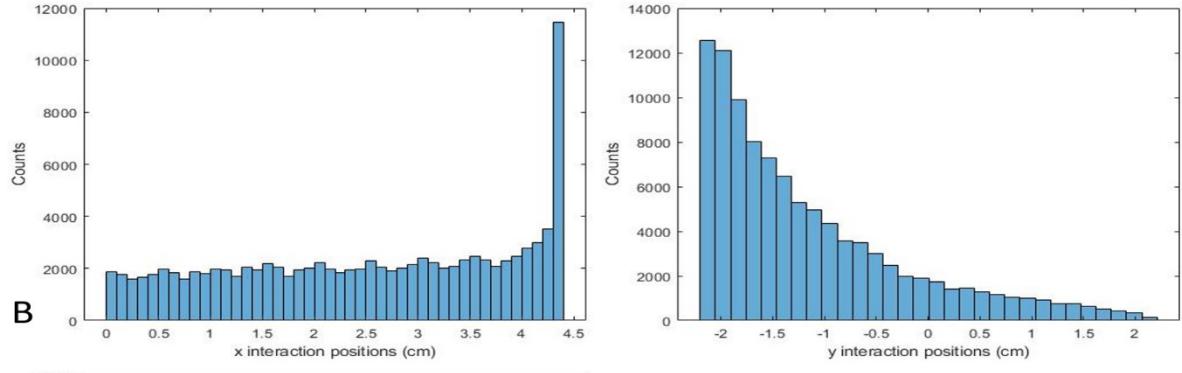
522 **Fig. 5** Gamma energy deposition locations for 10,000 events. 0° , 45° , 90° , 180° represent the
 523 azimuthal position of the source from the normal of the detector front face. Note that the
 524 horizontal axes for 180° are rotated for clarity. These energy deposition locations will have an
 525 effect on the resulting pulse shape, which will in turn be represented by the SOM as a specific
 526 pattern unique to the source location.

527

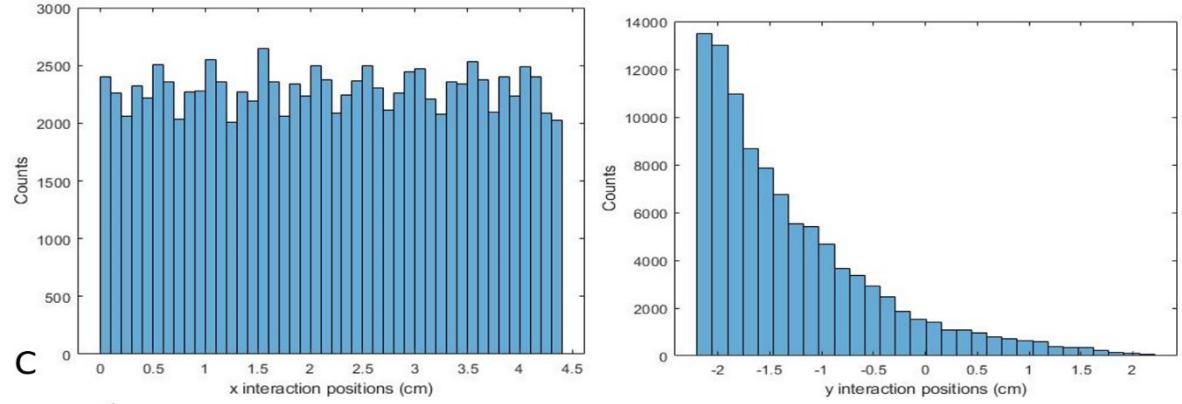
528



529



530



531

532

533

534

535

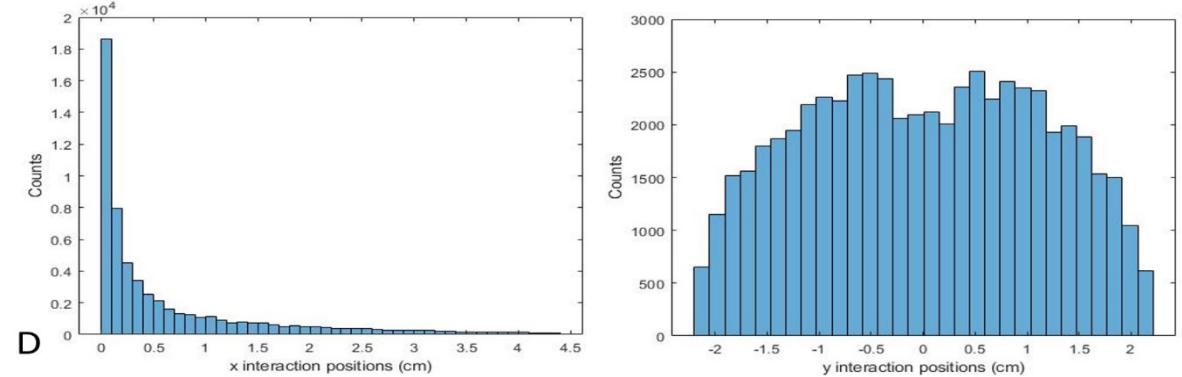


Fig. 6 Intra-detector volume interaction distributions in the x and y directions for a gamma point source located at A) 0^0 B) 45^0 C) 90^0 and D) 180^0 degrees from the normal of the detector front face. The coordinates for the distributions are defined so that the origin is at the radial center and axial base of the detector volume and cold finger, with the x axis pointing towards

536 the front detector face and the y axis pointing away from the source at 90 degrees. The
537 distributions of the z-coordinates are not shown as the source is not varied in z-plane.

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

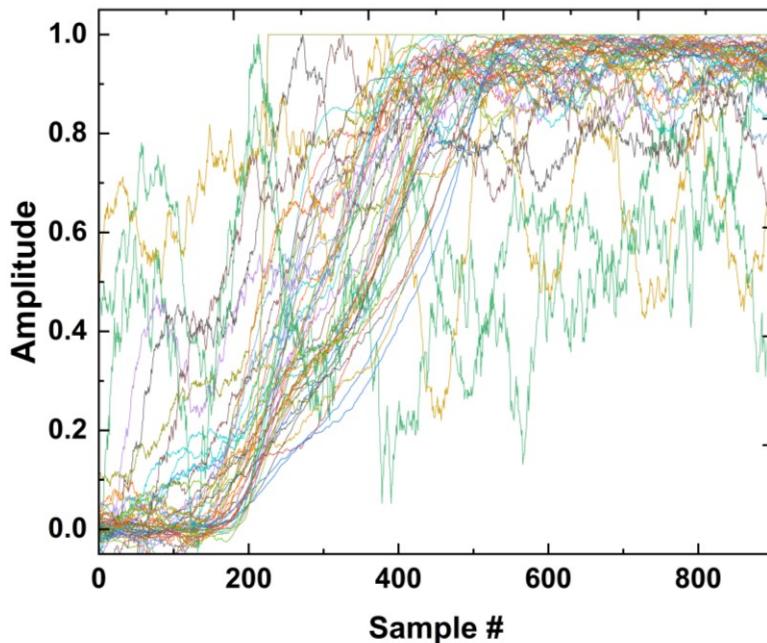
560

561

562

563

564



565

566 **Fig. 7** Normalized pulses collected from the HPGe detector pre-amplifier. The pulses were the
 567 inputs to the SOM network. The noisy and saturated pulses were allowed in the training and
 568 left in the figure for emphasis on the variety of pulses included in the procedure. These pulses
 569 will then be sorted into a specific neuron of the SOM depending on their similarity.

570

571

572

573

574

575

576

577

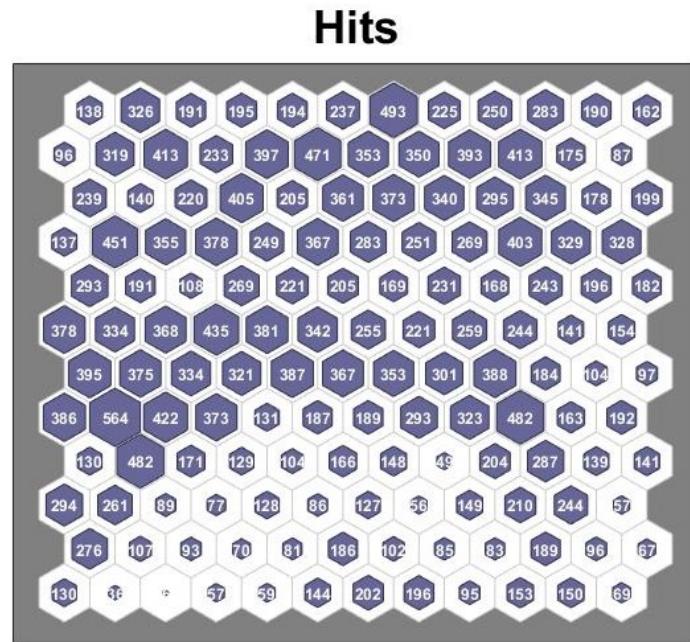
578

579

580

581

582



583

584 **Fig. 8** The sample hits of the trained SOM, which was trained using input pulses collected from
 585 all source positions. Each neuron represents a group of pulses with similar characteristics. This
 586 trained SOM, when provided a group of pulses originating from a single source location, will
 587 then produce a pattern specific to that location.

588

589

590

591

592

593

594

595

596

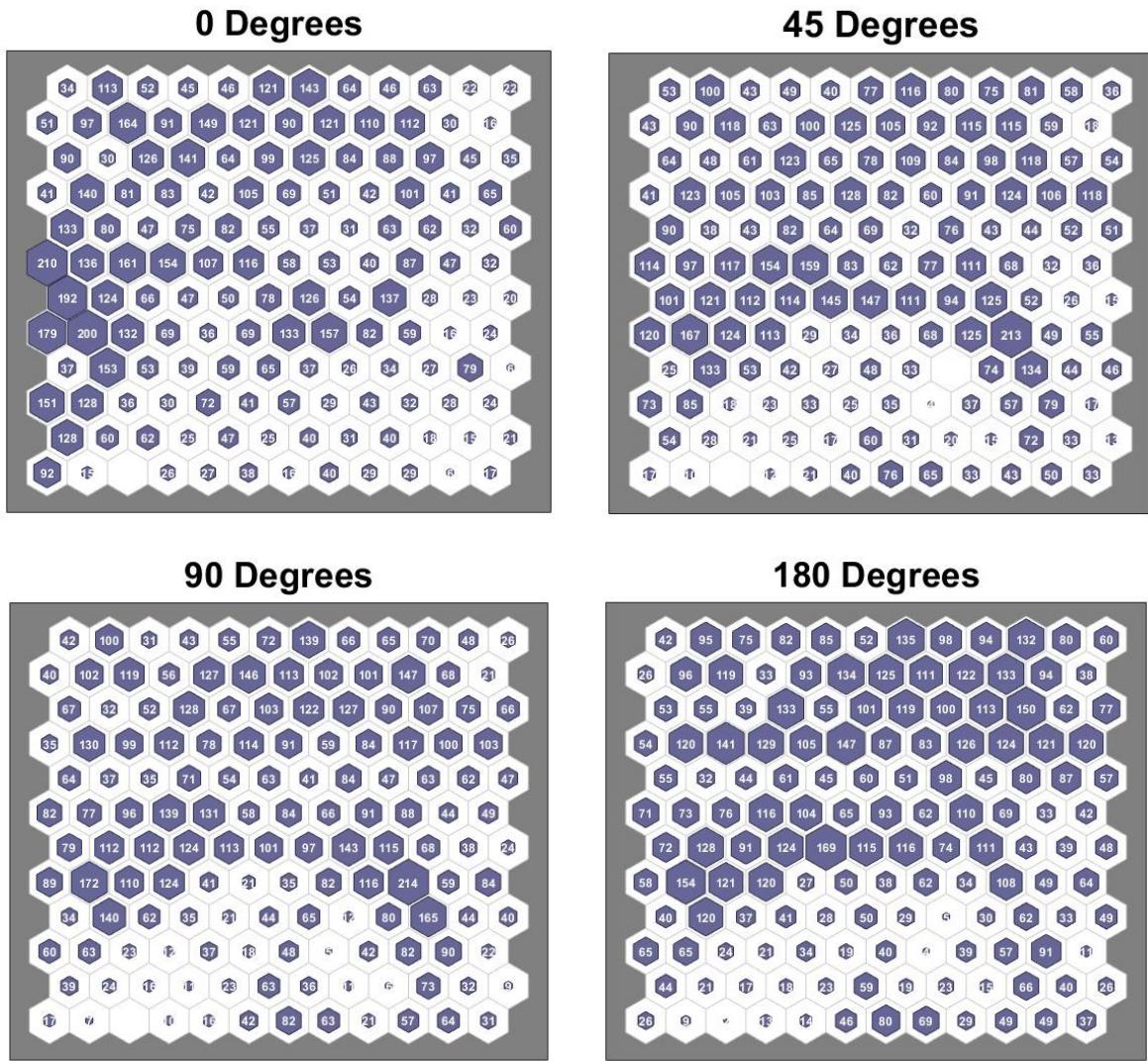
597

598

599

600

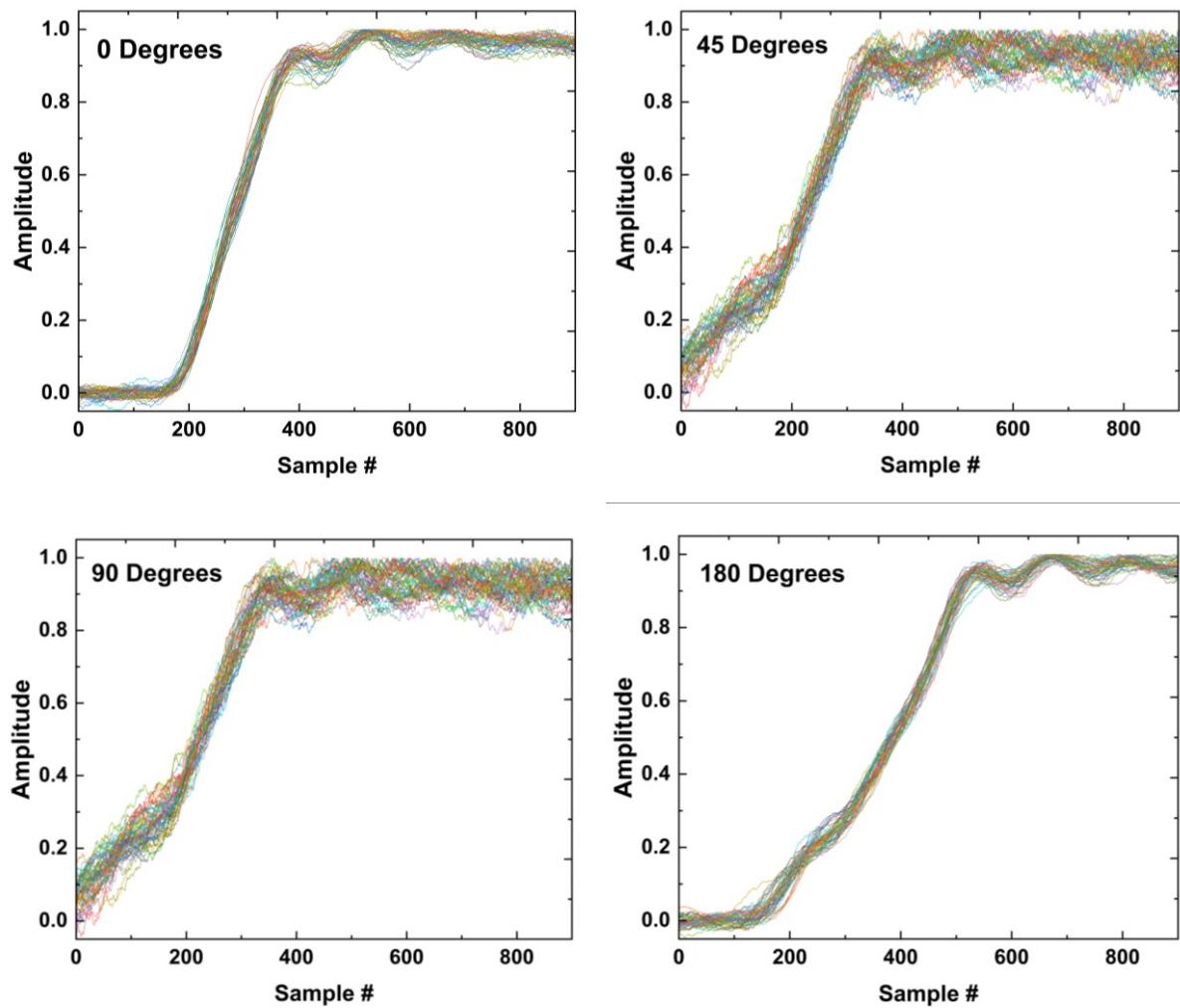
601



602 **Fig. 9** Representative sample hits of the SOMs produced by the four source positions when
603 1000 pulses were given to the trained SOM. Each map represents a unique pattern, with some
604 overlap between them. This pattern is consistent across different groups of pulses originating
605 from the same source location, allowing a second neural network to learn to recognize and
606 classify the pattern accordingly.

607
608
609
610
611
612
613
614

615



616 **Fig. 10** Example of pulse clusters for the most active neuron in each of the four directional
617 SOMs. Each neuron within the SOM represents a group of pulses with a unique structure—in
618 turn caused by the various locations of gamma energy deposition within the detector.

619

620

621

622

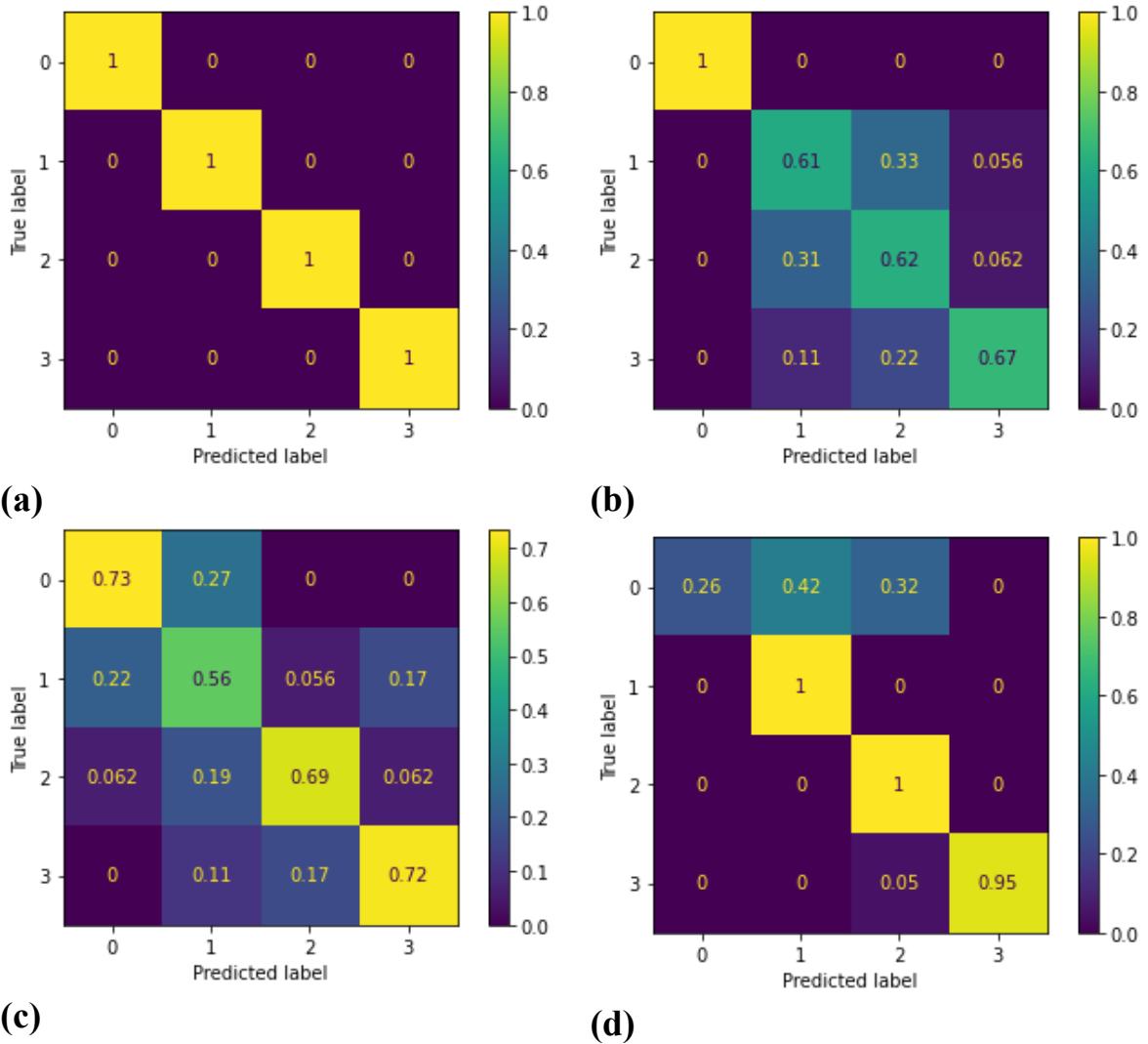
623

624

625

626

627



628

629 **Fig. 11 (a)** The confusion matrix of the simple single-layer feedforward model trained on 1000-pulse SOM vectors and tested on 1000-pulse SOM vectors. “1” would represent 100% accuracy.
630 Label 0: 0°; 1: 45°; 2: 90°; 3: 180°. **(b)** The confusion matrix of the model trained and tested
631 on 100-pulse SOM vectors. **(c)** Training set: 1000 pulses per SOM vector; testing set: 100 pulses
632 per SOM vector. **(d)** Training set: 100 pulses per SOM vector; testing set: 1000 pulses per SOM
633 vector.

635

636