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Abstract: The inverse problem in gravimetry is to find a domain D inside the reference domain Q from bound-
ary measurements of gravitational force outside Q. We found that about five parameters of the unknown D
can be stably determined given data noise in practical situations. An ellipse is uniquely determined by five
parameters. We prove uniqueness and stability of recovering an ellipse for the inverse problem from minimal
amount of data which are the gravitational force at three boundary points. In the proofs, we derive and use
simple systems of linear and nonlinear algebraic equations for natural parameters of an ellipse. To illustrate
the technique, we use these equations in numerical examples with various location of measurements points
on 0Q. Similarly, a rectangular D is considered. We consider the problem in the plane as a model for the
three-dimensional problem due to simplicity.
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1 Introduction

One of the classical inverse problems, the one of gravimetry, is to find a mass density distribution y in
a domain Q from the gravity force induced by this mass outside Q. This problem has a long history, a rather
complete theory and important applications to geophysics. One of the interesting applications is locating
underground cavities/water lakes from exterior gravitational measurements. Moreover, inverse gravimetry
can serve as a model for some other important inverse problems, like magnetoencephalography [1] and the
linearized inverse conductivity problem [9]. Mathematical features of this inverse problem are a substantial
non-uniqueness and exponential instability [5, 7, 9]. To regain uniqueness and still be useful in applications,
one assumes that pu = fyp, D c Q, where f is a known constant and yp is the indicator function of D. Even
so, for uniqueness, one needs additional geometrical assumptions on D, like star shapedness or convexity
with respect to some direction. In practical situations, u = f? + fyp, where f? is the (background) density
of Q which is not known but can be assumed to be relatively small. Contemporary gradiometers can measure
gravitational force with a very high precision (up to six digits), but the contribution of unknown f? dramat-
ically reduces this precision by contaminating the gravity force. As a result, in practical situations, one can
rigorously recover only few parameters of D. Use of powerful and sophisticated numerical algorithms cannot
change the unstable nature of the problem and substantially increase the resolution [11]. An exponential
instability is also a feature of inverse source and obstacle problems for more general elliptic equations [4, 6],
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so one expects a robust recovery of only few parameters of unknown objects. One of the ways to increase
anumber of such parameters and hence the numerical resolution is to use prospecting by stationary waves of
higher wave numbers (to consider inverse problems for the Helmholtz type equations). For a recent analytic
and numerical progress in this direction, we refer to [2, 8, 10, 12, 13].

In this paper, we consider a simpler two-dimensional case when one can use powerful methods of theory
of one complex variable. Let D be a domain inside a disk B, = {x : |x| < p}, p < 1, and the unit disk B; is
contained in a domain Q. In Section 2, we analyze stability of recovery of general D c By 5 by using a standard
expansion of gradient of its external logarithmic potential into power series and deriving hounds which show
that only the first three terms of this expansion can be found in a stable way. In Section 3, we derive simple
algebraic equations for natural parameters of an ellipse D in terms of the coefficients of three expansion terms
and use these equations to demonstrate uniqueness, Lipschitz stability and some existence results. Similarly,
we handle rectangles D, with weaker results. In Section 4, by using the same algebraic equations, we support
analytic results with rigorous numerical examples.

Letx = (x1,X2) = X1 + X2, X = X1 — X2, & = 1(a_?(1 - i%), 2= 1(3‘)’(1 + ’ax ). We will consider x simul-
taneously as two-dimensional vectors and as elements of the field of complex numbers. In the rest of the
paper, we let f = 1.

2 Stability and approximation

As known, the logarithmic potential of a domain D is

1
up(x) = 5 J loglx — y| dy.

D
We have 1
up(x) = .~ [ llog(x - y) + log(x - )] dys
D
therefore,
oup(x) 1 1 < )7)n
| a2
D p "=
and hence
Vup(x) = 2 z A1 Ix|=1, where A, = 1 Jy" dy. (2.1)
o 47T J
Denote

1 & _
VupGN) = Y x”ljy"dy.
n

=N+1 i
Lemma 2.1. Let D c B,,. Then
Vutp (s M loo(0B1) < P (2.2)
(N+3)1-p)
IVupG NIZ(0By) < — 22 2.3)

(N+3)2(1-p?)’
Proof. We have
1 [ee]
Vup(s Ml < 5- Y 1k [yl dy.
n=N+1 D

Since |x| = 1 and D ¢ By, we have

2n

vwGMi< 5 Y |
0

n=N+1

N+3
n_ P

C(N+3)1-p)°

© n+2
miardg= Yy P <P

Ot——

which proves (2.2).
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Similarly, using the orthogonality of the trigonometric system and (2.1) yields

2n

||VuD(;N)II§(aB1):4J Y Ao

2 2n 0 1 [e%s) 2
2
av-4[ ¥ mlao-o 3 |[ya
n:N+1D

0 n=N+1 0 n=N+1
1 (e} 2(n+2) 2(N+3) ©o 2 2(N+3)
<o Y el 5 <ol 5y pro TR
2n S (n+2) (N+3) = (N+3)2(1-p?)
as in the above argument, which proves (2.3). O

Corollary 2.2. Let Vu? be the gradient of the logarithmic potential of the disk By of the constant density & and
D c By, p < 1. Then
IVupG Mlleo(0B1) _ 2pN+3
IVulllw(0B1)  ~ (N +3)8(1-p)’
IVupG Ml2(0B1) _ 2pN*+3
IVubl2(0B1)  ~ (N +3)6V1-p2

so (2.4) follows from (2.2).

(2.4)

(2.5)

As known [7], Vub(x) = 8
As above,

X
2|X|2 ’

IVu?|3(0B1) = S do=—-,

Te2 5
[ F 0=
0
and (2.5) follows from (2.3).

Despite an extremely high precision of contemporary gradiometers, the omnipresent density f? of
a medium (background) cannot be identified from the exterior data due to a very substantial non-uniqueness
in the inverse gravimetry problem [7]. However, background in many cases is known only approximately; it
produces a contribution to the gravity force which can be included into an error in the data. The relative error
in determination of the background density in a real situation can reach 0.05. If we let p = 0.5, § = 0.05
and N = 2, then the right-hand side in (2.4) is 0.5 and the right-hand side in (2.5) is %ﬁ Therefore, only
the terms in (2.1) with n = 0, 1, 2 and accordingly the coefficients Ag, A1, A, can be viewed as detectable.
Since 0 < Ag, we are given only five real numbers. Hence we arrive at the following inverse problem.

Inverse gravimetry problem with minimal data. Find a domain D from the gradient of its approximate gravity
potential
VuD,a(X(j))’ } = 19 2! 3a (2'6)

where x(1), x(2), x(3) are three distinct points of 0Q and the approximate gradient is

Vup,qa(x) = 2A0x 1 + 24172 + 2A,x73.

3 Uniqueness and stability of an ellipse and of a rectangle

Let us write data (2.6) as the system of equations

Vup,q(x(1)) 2x(1)7 2x(1)72 2x(1)73\ /Ao
Vup.(x(2)) | = 2x(2)' 2x(2)7%2 2x22)3 || A1 |; (3.1)
Vup,q(x(3)) 2x(3)7t 2x(3)2 2x(3)7% / \ 4,

its determinant is
8(X(1)X(2)x(3)) 2 (X(1) - x(2))(X(1) - X(3))(X(2) - X(3))

which is not zero since x(1), x(2), x(3) are distinct, and hence data (2.6) uniquely determine the coefficients
AOa Al ) AZ .
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Using (2.1), we have

J 1 = 4mAo, (3.2)
D
J)’l dy = 27(Aq + Av), JYZ dy = -2in(A, - A1), (3.3)
h) h)
J(J’% -y3)dy = 2n(A; +4,), IY1YZ dy = —in(A; - A,). (3.4)
D h)

Let D be the ellipse with the center of gravity (by, b;), the semi-axes ai, a, (a; < a) and the angle 6,
0 < 6 < m1, between the greater semi-axis and the x;-axis. We will call b = (b1, b>), a = (a1, a,), 6 parameters
of the ellipse.

Lemma 3.1. Let D be the ellipse with the parameters by, b,, a,, a», 0 and Ay, A1, A, solve system (3.1) for the
gradient of the potential of the ellipse. Then

_A1+A1 Al—Al

b R =-i R .
1 A, 2 =-i 24, (3.5)
4
aia, = 4Ao, a%-a§=P|A0A2—A§|, (3.6)
0
and if in addition 0 < |AgA, — A?|, then
Ay + Ay)Ag - (A2 + A? i(—(Ay - Ay))Ag + A2 — A2
c0529=( 2 +A3)Ao - (A7 1)’ sin 20 — (=(A2 - A3)Ap + A7 1). (3.7)

2|A0A; - A% 2|A0A; - A%

Moreover, if by, by, a1, az, 0 satisfy equations (3.5), (3.6), (3.7), D is the ellipse with these parameters and
Aj, AT, A3 are coefficients obtained by solving system (3.1), then Ao = A, Ay = A}, Ay = Aj.

Proof. Since the area of the ellipse D is ma a,, from (3.2), we obtain the first equality in (3.6).
As known,
Ipyidy Ay +4, ) [py2dy A1 Ay
= = N 2= = -
ID 1 ZAQ ID 1 ZA()

when we use (3.2), (3.3). Now we introduce new orthogonal coordinates

by

Yy =(y1-b1)cosO + (y2 — by)sinf, Y, =-(y1—-by)sin6+ (y, — by)cosé. (3.8)

The point Y; = a;, Y, = 0 corresponds to the point y; = b1 + a; cos 0, y, = b, + a; sin, and the point
Y, =0, Y, = a, corresponds to the point y; = by — a,sin 6, y, = b, + a; cos 6. Hence, in this new coordi-
nate system, the ellipse D becomes the ellipse D(0) with the semi-axes (0, a1) and (0, a,). By elementary
integration,
2 2 _n 22 _
(Y7 -Y35)dY = Zalaz(al as), Y1Y,dY =0 (3.9)
D(0) D(0)

due to symmetry reasons. By direct calculations, from (3.8),

Y% - Y% = ((y% - y%) + 2b2)’2 - 2b1y1 + (b% - b%)) cos 20 + 2(y1y2 - b1y2 - bzyl + b1b2)sin 29,
so using (3.2), (3.3), (3.4), (3.5), (3.9) yields

n
Ja(d - @)
(A1 + A1) , A1 -Ay)? L@ +A1)% + (A1 - 4y)?

AO AO AO

A -A - A +A . A +Ap) A -A
1 1(A1+A1)+1—1(A1—A1)_( 1 1)(A1 1)
Ap Ao A

Ay + Ay)Ag - A% - A2 —(Ay - A)Ao + (A2 - A?
2;1( 2 z)Ao 1 1c0526+2m'< (A 2)A0 (A] - A7)
0 0

=n(2(A2 +A4A5)-2 )cos 20

+2ni<—(A2 -A)+ )sin26

)sin 20
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or

As + Ay)Ag - A2 — A2 —(Ay — A5)Ap + (A2 — A2
2 2:2( 2 2) ()2 1 1C0529+2i< ( 2 2) 02 ( 1 1)
AO AO

a; —a;

)sin 2. (3.10)
Similarly,
1 1 .
Y1 Yz = (y1)/2 - bzyl - b1)’2 + blbz) cos 260 — (E(y% - y%) — b1y1 + bzyz + E(b% - b%)) sin 29,

so using (3.2), (3.3), (3.4), (3.9) yields

_ A -A _ A +A _ Al +A _
O:(—ﬂi(Az—A2)+m' Lo o v A+ mit A Ay — Ay - mit T 1(A1—A1))c0526
A() 0 AO
_ A1 +A _ Al -A _ A1 +A1)% + (A1 - A41)?
—(n(A2+A2)—r[ LA Ay - AN g gy TR A (A - Ay )sinZG
A, Ao 2 Ao
—(Ay —Ay)Ag + A2 — A2 As +A)Ag - L(A1 +A1)2 - 14, - 41)?
i (A2 - Az)Ao + A7 1(:0520—71( 2+ A2)Ap - 5(A1 +A1)” - 3(A1 - Ay) sin 20
Ao Ao
or
0=((Ay + Ay)A¢ - (A3 + A2))sin 20 — i(~(A; — A2)Ag + A2 — A?)) cos 26. (3.11)
Letting
A= (Ay +A))Ag - (A3 +A?), B=1i(-(Ay - Ay)A¢+ A7 - AD), (3.12)

we can write (3.11) as A sin 26 = B cos 26, which implies that A2 sin? 26 = B2 cos? 26, and hence
A% = (A2 + B*)cos®> 260, B? = (A% + B?)sin? 26. (3.13)
By elementary calculations,
A% + B? = (A2 + A3)Ag — (A2 + A2))? — (—(As - Ay)Ag + AT - A3)?
= 4(ArA2A5 - ArAoA2 — Ay AogAT + ATA2) = 4(ArA¢ — A3)(ArAo - AD) = 4|A2A0 - A3)2.

Using (3.10), (3.11) and the condition O < a; < a; yields (3.7). Now, from (3.10), (3.12) and (3.13), we obtain
the second equality in (3.6).

To demonstrate the second statement, observe that, according to the first part of this lemma, Aj, A}, A5
satisfy the same equations (3.5), (3.6), (3.7) as Ag, A1, A;. Since the solution to system (3.5), (3.6), (3.7) with
respect to Ag, A1, A, is unique, we complete the proof. O

Weleta =a; +iaz, b=by +iby,d=cos6 +isinf.

Corollary 3.2. Under the conditions of Lemma 3.1,

Aq
b=—, 14
. (3.14)
2 4 2 :
a” = —|AoA; - Aj| + 8Aol, (3.15)
Ap
and if in addition 0 < |AgA, — A% |, then the direction d of the longer semi-axis satisfies the equation
AgA, — A?
2. 22 L (3.16)
|[AoA; — A7l

Moreover, a, b are Lipschitz continuous with respect to data (2.6) at any Vup,q such that 0 < Ao, and d is
Lipschitz continuous if in addition 0 < |AgA, — A% R

Proof. Since a? = a? - a3 + 2iayas, (3.15) follows from (3.6). Similarly, (3.14) follows from (3.5). Also,

(Az + A2)Ag - (AT + A2) — (=(A; - Ay)Ap + (A2 - A2))

d? = cos20 +isin26 = 5
2|AOA2 _A1|

due to (3.7), and we obtain (3.16).
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To demonstrate local Lipschitz stability, we observe that, from the linear algebraic system (3.1) (with
non-zero determinant), we have Lipschitz dependence of Ag, A1, A> on data (2.6). Lipschitz dependence of
a,b,don Ag, Ay, A, follows from the formulae (3.15), (3.14) and (3.16). |
Observe that (3.16) implies that

1
0= 5 arg(AoA, - A?),

where 0 < argz < 2.
Theorem 3.3. The ellipse D c By is uniquely determined by data (2.6).

Proof. Let a; and a; be the semi-axes of the ellipse D with (a, < a1), (b1, b2) is the center of gravity, and let
0 be the angle between a; and the x;-coordinate.

As observed after (3.1), data (2.6) uniquely determine Ag, A1, A;. The center of gravity (b1, by) can be
uniquely found from equation (3.5). From equations (3.6), it follows that

16A2 4
2 0 2
ai — Y] |A0A2—A1|.
ay Aj

Since the left-hand side is increasing with respect to positive a1, we have uniqueness of a; ; then uniqueness
of a; follows from the first equation in (3.6).

If0 < |ApA; - A% |, then, from (3.16), we have the uniqueness for the direction d. If |AgA, — A%I =0, then
the second equation in (3.6) implies that a; = a,, and so D is a disk which is uniquely determined by its
center of gravity and its area ra?. O

Corollary 3.4. Let

0<Ao, I|A1l+ \/2|A0A2 - A3l + \/4|A0A2 - A2|2 + 16A§ < pA,. (3.17)
Then there is a unique ellipse D c B, with the potential generating the data Ao, A1, A, via (2.6), (3.1).

Proof. Equations (3.5) can be written as b = g—;. Equations (3.6) are equivalent to the equalities

\/2|A0A2 — A2+ \4lAoAs — A2 + 16A8 44,

a = a; =
Ao ’ ay

Let D be the ellipse with the parameters a1, a;, b and 6, satisfying equations (3.7). Hence, due to the assump-
tions (3.17), |b| + a1 < p, and therefore D c B),. Using the second statement of Lemma 3.1, we conclude that
Vup generates data (2.6). O

Observe that conditions (3.17) are sufficient but not necessary for existence of an ellipse generating the coeffi-
cients Ag, A1, A,. They are relatively simple and clear. More complicated necessary and sufficient conditions
can be derived by requiring that the ellipse D ¢ B, by using the same equations. In a simpler situation, when
the gradient of the potential is a polynomial Agx~! + A1 X2, they are obtained in [7, p. 48]. More results with
higher-order polynomials are given in [3].

Now let D be the rectangle with the center of gravity (b1, b,), length 2a,;, width 2a,, a, < a1, and the
angle 6, 0 < 6 < m1, between the greater side and the x; -axis.

Lemma 3.5. Let D be the rectangle with the parameters by, b,, a1, a, 0 and Ao, A1, A,. Then

A1 +A1 ,Al—A1
= = — ) -1
bl 2A() s 2 1 2A0 (3 8)
3
aray =mho, aj-aj= 7 1A0As - A%, (3.19)
0
Ay + Ay)Ap - (A% + A? i(—(A; — A5)Ag + A2 — A?
cos 26 = A2+ ADA0 ~ (4] 1), sin2g = [ A2~ A)Ao+ A7 -4 (3.20)

21404, - A3 2140A; - AZ]
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Moreover, if by, b, a1, az, 0 satisfy equations (3.18), (3.19), (3.20), D is the rectangle with these parameters,
up is its logarithmic potential and Ajj, A7, A3 are coefficients obtained by solving the system with u = up, then
Ao =A%, A= AL Ay = A

Proof. As known,

|pyidy Ay +4, |py2dy Ay -4
b1 = = 5 bz = = —1
.[D 1 240 JD 1 240

when we use (3.2), (3.3).
As in the proof of Lemma 3.1, in the new coordinate system (3.8), the rectangle D becomes the rectangle
D(0) ={Y: -a; < Y1 < a1, —a; < Y, < a}. By elementary integration,

4
J (Y7 -Y3)dY = §alaz(a}—ag), I Y1Y>dY =0 (3.21)
D(0) D(0)

due to symmetry reasons. As in the proof of Lemma 3.1, from (3.2), (3.3), (3.4), (3.18), (3.21), we obtain

4 Ay +A5)Ag - A2 — A? —(Ay —Ay))Ag + (A2 - A2
—alaz(af—aﬁ):Zrt( 2+ A2)A0 — 43 1cosZt9+2m’< (42 — A2)A0 + (4 1))sinza
3 Ao Ap
or 7 2 52 7 2 52
Ay, +A))Ag—As-A —(Ay —Ay))Ap + (A7 - A
al - %:3( 2+ 42) 02 ! 1c0529+3i< s~ 42) 02 (41 1)>sin2(9. (3.22)
242 242

Using (3.11) and the condition O < a; < a; yields (3.20). Now, from (3.22), (3.12) and (3.13), we get the
second equality in (3.19).

To demonstrate the second statement, we observe that, according to the first part of this lemma,
Af, A7, A3 satisfy the same equations (3.18), (3.19), (3.20) as Ao, 41, A,, and a solution to (3.18), (3.19),
(3.20) with respect to Ap, A1, A5 is unique. O

Theorem 3.6. A rectangle D which is not a square is uniquely determined by data (2.6).

Proof. The center of gravity (b1, b,) can be uniquely found from equation (3.18). From equations (3.19), it
follows that 22 ,
al - aio = A—%leAz - A2l
Since the left-hand side is increasing with respect to positive a;, we have uniqueness of a;; then uniqueness
of a, follows from the first equation in (3.19).
If 0 < |ApA; — A2|, then from (3.20), we have the uniqueness for the angle 6. If [Ag4, — A?| = 0, then,

from the second equation in (3.19), we have uniqueness of the angle. O

Observe that a square D cannot be uniquely determined by data (2.6). Indeed, let b = 0, and let D(0) be
asquare {-a; < Y; < ay, —a; < Y, < ay}. Then, asin (3.21),

J (Y? -Y3)dY = j Y1Y,dY = 0. (3.23)
D(0) D(0)

We will use the substitution y(Y) in (3.8). Solving for y yields y; = Y; cos0 — Y, sin 0, y, = Y; sin 6 + Y, cos 6;
therefore,

1
Y3 —y5 =cos20(Y? - Y3) - 2sin20Y1Y2, yiy2 = 5 sin 20(Y? - Y3) + cos 20Y, Y3,

and from (3.23), we obtain
J(y% ~y})dy = jylyz dy =0,
D D

where D is D(0) in y-variables, which is the square D(0) rotated by the angle 6. Using (3.4), we conclude that
A, = 0 for any angle 6, which therefore cannot be uniquely determined by Ag, A1, A5.
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4 Numerical results for an ellipse and a rectangle

In this section, we consider different numerical examples based on the location of the points on the unit
circle, and we used Matlab to get numerical results.

To recover an ellipse D from our data on a unit circle, given approximation errors in Corollary 2.2 and
a discussion after it, we replace (3.1) by

G =BA, (4.1)
where
2% 2% 2%(1)3 Ay
B=| 2x(2)1 2x(2)2 2x2)3 |, A=| A
2%(3)"1 2x%(3)2 2x(3)73 A4,
To create
Vup(x(1))
G=| Vup(x(2)) |,
Vup(x(3))

we can use the formula for exterior potential of an ellipse with b = 0, 6 = 0,

Vup(x) = Z%u(x) = Ziu(x) = - 4142 (4.2)

ox x+VxZi-e?’
where e = \/a% - a%, given in [7, p. 100, (4.4.4)]. We choose a; = 0.5 and a, = 0.25 to make sure that the
ellipse lies inside the disk By 5. The function Vx2 — e2 has branch points at x = e and x = —e. To avoid branch
cuts, we use the principal branch given by the power series as follows:

ey} _1\2n-1 2n 5 _1)2n-1 2n
m _ Z (-1) 2n)'e - Z (-1) 2n)le e <Ixl.
n=0

22n(n!)2(2n - 1)x2n-1 - &0 22n(nh)2(2n - 1)x2n-t’

By solving the system of equations in (4.1) using singular value decomposition, we can get A.

In order to find the center of gravity (by, b,), we use equation (3.5). To obtain the semi-axes a; and a,,
we solve the two equations (3.6) using substitution as in the proof of Corollary 3.4. For the angle 6, we plug
in the values of the coefficients in (3.7)

4.1 Recovery of an ellipse with a; = 0.5,a, =0.25,b=0and 0 =0

Example 1. In this example, we consider three almost equidistant points on the unit circle,
x(1) = (-0.955,-0.296), x(2)=(0.654,0.757), x(3)=(0.666,-0.746).

Then
-0.0615 - 0.0211i

G=| 0.0383+0.0486i |,
0.0392 - 0.04811

the condition number of Bis 1.4414 and

0.0312
A =| -0.000105 - 0.0000434i
0.00149 + 0.0000312i

This implies that

(b1, by) = (-0.00338,0.00139), aj; =0.50 and a; =0.24,
sin26 = -0.0206, c0s20=0.999 and 6 =-0.0103.
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Example 2. Here we have three points on the right half of the circle,
x(1) = (0.967,0.256), x(2) =(0.589,-0.809), x(3)=(0.112,0.994).

Then the condition number of Bis 4.0879 and

0.0314
A=| -0.000189 - 0.000178i
0.00161 + 0.0000868i

This implies that
(b1, by) = (-0.00601,0.00568), a; =0.51 and a; =0.24,
sin260 = -0.0524, c0s260=0.999 and 6 =-0.0262.

Example 3. Here we choose the points to be
x(1) =(0.654,0.757), x(2) =(-0.709,0.706), x(3)=(-0.540,-0.842).

Then the condition number of Bis 1.8971 and

0.0311
A =| 0.0000128 + 0.0000302i
0.00141 + 0.00000589i

This implies that

(b1, by) = (0.000410,-0.000971), a; =0.49 and a,=0.25,
sin26 = -0.00416, co0s260=0.999 and 6=-0.00208.

4.2 Recovery of an ellipse with a; = 0.5, a, = 0.25, b = 0 and 6 = 0 after adding
random noise to G

4.2.1 Relative random noise of 0.01

Example 1. In this example, we consider three almost equidistant points on the unit circle,
x(1) =(0.112,0.994), x(2)=(0.801,-0.599), x(3)=(-0.983,0.182).

Then
0.00617 + 0.0596i

G=| 0.0488-0.0401i
-0.0641 + 0.0132i

and the condition number of B is 1.6499. We use

—-0.000872 - 0.000498i
noise = [ —-0.000301 + 0.000201i
-0.000139 + 0.0000331

Solving linear system (4.1) with the noise added to G yields

0.0312
A =1 -0.0000987 — 0.0000329i
0.00169 - 0.000238i

This implies that

(b1, by) = (-0.00316,0.00105), a; =0.52 and a; =0.23,
sin20 = 0.139, c0s260=0.99 and 6=0.0701.
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Example 2. Here we have three points on the right half of the circle,
x(1) = (0.416,-0.909), x(2) =(0.998,0.0584), x(3)=(0.0124,0.999).

Then
0.0234 - 0.0559i

G = 0.0656 + 0.00425i
0.00068 + 0.0598i

and the condition number of Bis 3.0629. We use

0.000591 + 0.000757i
noise = [ -0.0000803 + 0.000129i
0.000165 + 0.000414i

Solving linear system (4.1) with the noise added to G yields

0.0316
A =[] -0.000482 -0.000219i
0.00169 - 0.0000337i

This implies that
(b1, by) =(-0.0153,0.00696), a; =0.52 and a; =0.24,

sin260 = 0.0239, ¢c0s26=0.999 and 6=0.0119.

Example 3. Here we choose the points to be
x(1) = (-0.921,-0.389), x(2)=(0.791,0.612), x(3)=(0.857,-0.516).

Then
—-0.0585 - 0.0273i

G-= 0.048 + 0.0409i
0.0531 -0.0352i

and the condition number of Bis 2.1317. We use

0.000179 + 0.000375i
noise = [ -0.0000612 — 0.000708i
0.000489 +0.000287i

Solving linear system (4.1) with the noise added to G yields

0.0312
A =| -0.000102 + 0.00000741i
0.00137 + 0.000233i

This implies that

(b1, by) = (-0.00327,-0.000238), a; =0.49 and a; =0.25,
sin260 = -0.168, c0s20=0.986 and 6O =-0.0845.
4.2.2 Relative random noise of 0.05

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (-0.0875,0.996), x(2)=(-0.98,-0.199), x(3)=(0.971,-0.239).
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Then
-0.00481 + 0.0597i

G=| -0.0638-0.0143i
0.0629 - 0.0172i

and the condition number of B is 1.5306. We use
—-0.00135 + 0.00079i

noise = [ -0.00106 — 0.000545i
0.00141 - 0.00312i

Solving linear system (4.1) with the noise added to G yields

0.0318
A =1 0.000439 - 0.000656i
0.00202 - 0.000406i

This implies that
(b1, by) =(0.0138,0.0206), a; =0.56 and a,=0.23,
sin260 =0.188, c0s20=0.982 and 60 =0.0946.

Example 2. Here we have three points on the upper half of the circle,
x(1) = (0.897,0.443), x(2)=(-0.997,0.0831), x(3)=(0.575,0.818).

Then
0.0564 + 0.0307i

G = -0.0654 + 0.00605i
0.0331 +0.0517i

and the condition number of Bis 6.1187. We use
0.00172 + 0.000322i

noise = { —0.00095 - 0.00296i
0.00122 - 0.00237i

Solving linear system (4.1) with the noise added to G yields

0.0314
A= 0.00138 -0.00123i
0.00269 + 0.00239i

This implies that
(b1, by) =(0.0438,0.0389), a; =0.70 and a, =0.18,
sin26 = -0.68, cos20=0.728 and 6 =-0.373.

Example 3. Here we choose the points to be
x(1) = (0.654,0.757), x(2) =(0.99,-0.141), x(3)=(-0.765,—-0.644).

Then
0.0383 + 0.0486i

G=| 0.0648-0.0102i
-0.0461 - 0.0427i

and the condition number of B is 2.5824. We use

—-0.00105 + 0.00331i
noise = [ 0.00326 + 0.000814i
0.00249 - 0.00145i
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Solving linear system (4.1) with the noise added to G yields

0.0318
A =1 0.000622 -0.000492i
0.00198 + 0.000444i

This implies that
(b1, by) =(0.0196,0.0155), a; =0.55 and a; =0.23,

sin260 = -0.229, co0s20=0.973 and 6=-0.115.

4.2.3 Random noise of 0.1

Example 1. In this example, we consider three almost equidistant points on the unit circle,
x(1) = (-0.983,0.182), x(2)=(0.967,0.256), x(3)=(0.0292,-0.999).

Then
-0.0641 +0.0132i
G=| 0.0626 +0.0183i
0.0016 — 0.0598i
and the condition number of Bis 1.4951. We use
-0.00276 - 0.00608i
noise = [ -0.00249 + 0.0000232i
-0.00319 - 0.000509i

Solving linear system (4.1) with the noise added to G yields

0.0317
A =[] -0.000249 - 0.000972i
0.000735 +0.00197i

This implies that
(b1, by) = (-0.00785,0.0307), a; =0.56 and a; =0.23,

sin26 = -0.932, cos20=0.363 and 6 =-0.599.
Example 2. Here we have three points on the left half of the circle,
x(1) = (-0.454,-0.891), x(2)=(-0.378,0.926), x(3)=(-0.96,0.279).

Then
-0.0257 - 0.0551i
G=| -0.0212 + 0.0566i

-0.0619 + 0.0199i
and the condition number of Bis 4.9316. We use

0.00577 + 0.000403i
noise = [ -0.00677 + 0.00249i
0.00341 - 0.00164i

Solving linear system (4.1) with the noise added to G yields

0.0303
A =[] -0.000819 - 0.00537i
0.000246 - 0.0039i

This implies that
(bl, bz) = (—0.0269, 0.176), a, =0.78 and a; = 0.16,

sin26 = 0.949, co0s260=0.266 and 6 =0.604.
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Example 3. Here we choose the points to be
x(1) = (-0.469,0.884), x(2)=(0.416,-0.909), x(3)=(-0.765,-0.644).

Then
-0.0266 + 0.0547i

G= 0.0234 - 0.0559i
-0.0461 - 0.0427i
and the condition number of B is 2.2949. We use
0.00229 + 0.00366i
noise = 0.00794 - 0.00114i
-0.00205 - 0.00314i

Solving linear system (4.1) with the noise added to G yields

0.0314
A= -0.00217 +0.0017i
0.000724 + 0.00115i

This implies that
(b1, by) = (-0.0691, -0.0542), a; =0.51 and a, =0.25,

sin26 = -0.904, co0s20=0.434 and 6 =-0.563.

In the next two sections, we use the substitution x’ = (x — b)e'® to use formula (4.2) in x'-variables. To return
to x-variables, we use that, by the chain rule,

out) _,ouxx) ox’  aids -i6

\Y =2 =
e ox ox'  ox g +\x'2_e2?

4.3 Recovery of an ellipse with a; = 0.5, a, =0.25, b= (0,0)and 0 = /4

Example 1. In this example, we consider three almost equidistant points on the unit circle,
x(1) = (0.012,0.999), x(2)=(-0.921,-0.389), x(3)=(0.942,-0.335).

Then the condition number of Bis 1.2342 and

0.0312
A =1 0.00000136 +0.000127i
-0.0000284 - 0.00146i

This implies that
(b1, by) = (0.0000437,-0.00408), a; =0.50 and a, =0.249,
sin260 = 0.999, cos26=-0.0191 and 6=0.773.
Example 2. Here we have three points on the upper half of the circle,
x(1) = (0.988,0.158), x(2)=(-0.997,0.083), x(3)=(0.211,0.978).

Then the condition number of Bis 2.6672 and

0.0311
A =] -0.0000189 - 0.00007303i
0.0000346 - 0.00153i

This implies that

(b1, by) = (-0.000608,0.00235), a;=0.51 and a, =0.245,
sin20 =0.999, co0s260=0.0227 and 6=0.763.
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Example 3. Here we choose the points to be
x(1) =(0.967,0.256), x(2)=(0.211,0.978), x(3) =(-0.9801,-0.199).

Then the condition number of Bis 2.5801 and

0.0311
A =1 0.00000231 - 0.0000169i
0.0000114 - 0.00158i

This implies that

(b1, by) = (0.0000741,0.000546), a; =0.512 and a, =0.243,
sin26 = 0.999, «cos26=0.00723 and 6=0.777.

4.4 Recovery of an ellipse with a; = 0.5, a, = 0.25, b = (0.125,0.05)and @ = /4

Example 1. In this example, we consider three almost equidistant points on the unit circle,
x(1) = (0.897,0.443), x(2)=(0.227,-0.974), x(3) =(-0.96,0.279).

Then the condition number of Bis 1.2799 and

0.0319
A= 0.00396 — 0.00195i
0.000125 - 0.0020041

This implies that
(b1, by) =(0.124,0.0611), a; =0.506 and a, =0.252,

sin260 = 0.988, co0s20=-0.161 and 6 =0.706.

Example 2. Here we have three points on the right half of the circle,
x(1) =(0.129,-0.992), x(2)=(0.998,0.058), x(3)=(0.401,0.916).

Then the condition number of Bis 3.4376 and

0.0303
A= 0.00473 - 0.000497i
—-0.00008203 - 0.00303i

This implies that
(b1, by) =(0.156,0.0164), a; =0.652 and a, =0.186,

sin260 = 0.967, cos260=-0.273 and 6=0.651.

Example 3. Here we choose the points to be
x(1) = (0.988,0.158), x(2)=(-0.0875,0.996), x(3)=(-0.622,-0.783).

Then the condition number of Bis 1.5457 and

0.0307
A=| 0.00394-0.00162i
0.000617 - 0.00219i

This implies that
(b1, by) =(0.128,0.0526), a; =0.534 and a; =0.230,

sin26 =0.998, cos20=0.111 and 6=0.703.
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4.5 Recovery of a rectangle with 2a, = 0.5,2a, =0.25,b=0and =0

Equivalently, we can use (4.1). To find G, we can use the exterior potential formula for a rectangle

_1 al ST BYTEEPES - e - e
Vue) = — ;(eo) - e(j - 1) (x - y(j)) log(x - y(j), (4.3)
where e(j) = %%% and y(j) are the vertices of the rectangle, j = 1, 2, 3, 4.
We choose

y(1) =0.25 +0.125i, y(2)=-0.25+0.125i, y(3)=-0.25-0.125i, y(4)=0.25-0.125i

to make sure that the rectangle lies inside the unit circle.
The function log(x — y(j)) has branch points. So, to avoid branch cuts, we used the first four terms of the

power series for this function as follows:

R } 4 (m)rHl

log(x - y(j)) = log(x) - z M i(nt 1)’

n=0

ly(l < Ixl,

where log on the right-hand side can be any branch. Using this representation in (4.3), after summation and
using the behavior at infinity, we conclude that the sum of the terms containing log(x) is zero, so we only
need the single-valued function given by the partial sum of the series.

By solving the system of linear equations in (4.1), we can get A. To find by, b, a1, a, and 6, we plug in
the values of the coefficients in equations (3.18), (3.19), (3.20).

Example 1. In this example, we consider three almost equidistant points on the unit circle,
x(1) =(0.112,0.994), x(2)=(0.737,-0.676), x(3)=(-0.997,0.0831).
Then the condition number of Bis 1.4601 and

0.00995
A = -0.00000704 - 0.00000517i
0.000155 - 0.00000565i

This implies that

(b1, by) = (-0.000707,0.000519), a; =0.249 and a, =0.125,
sin260 = 0.0364, ¢c0s20=0.999 and 6 =0.0182.

Example 2. Here we have three points on the upper half of the circle,
x(1) = (0.998,0.0584), x(2) =(-0.886,0.465), x(3)=(-0.378,0.926).
Then the condition number of Bis 4.6101 and

0.00996
A =1 0.000000464 + 0.0000125i
0.000149 - 0.0000116i

This implies that

(b1, by) = (0.0000466,-0.00125), a; =0.247 and a; =0.127,
sin26 = 0.0777, co0s20=0.997 and 6 =0.0389.

Example 3. Here we choose the points to be

x(1) = (-0.825,-0.565), x(2)=(-0.187,0.983), x(3)=(0.726,0.688).
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Then the condition number of B is 2.8999 and

0.00994
A =[] -0.00000325 + 0.0000000805i
0.000147 + 0.00000498i

This implies that

(b1, by) = (-0.000327,-0.00000809), a; =0.246 and a, =0.127,
sin26 = -0.0339, ¢c0s260=0.999 and 6=-0.0169.

5 Conclusion

The next goal is to extend the results onto the fundamental three-dimensional case. While it is not hard to
derive an analogue of Lemma 2.1 by using spherical harmonics, proving uniqueness of an ellipsoid from the
data similar to (2.1) is getting more complicated, and at present, we can only accomplish it in some particular
cases. Another goal of practical importance for magnetoencephalography is to handle Maxwell systems, in
particular, to find a minimal amount of useful data/sensors. Finally, we hope to adjust the methods of this
paper to a linearized inverse problem of conductivity when, in addition to locating an ellipse or ellipsoid D,
one expects to find also constant conductivities of D and of the background. An effective numerical algorithm
in some cases was designed and tested in [14].
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