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Abstract: The inverse problem in gravimetry is to find a domain D inside the reference domain Ω from bound-
ary measurements of gravitational force outside Ω. We found that about five parameters of the unknown D
can be stably determined given data noise in practical situations. An ellipse is uniquely determined by five
parameters. We prove uniqueness and stability of recovering an ellipse for the inverse problem fromminimal
amount of data which are the gravitational force at three boundary points. In the proofs, we derive and use
simple systems of linear and nonlinear algebraic equations for natural parameters of an ellipse. To illustrate
the technique, we use these equations in numerical examples with various location of measurements points
on ∂Ω. Similarly, a rectangular D is considered. We consider the problem in the plane as a model for the
three-dimensional problem due to simplicity.
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1 Introduction

One of the classical inverse problems, the one of gravimetry, is to find a mass density distribution μ in
a domain Ω from the gravity force induced by this mass outside Ω. This problem has a long history, a rather
complete theory and important applications to geophysics. One of the interesting applications is locating
underground cavities/water lakes from exterior gravitational measurements. Moreover, inverse gravimetry
can serve as a model for some other important inverse problems, like magnetoencephalography [1] and the
linearized inverse conductivity problem [9]. Mathematical features of this inverse problem are a substantial
non-uniqueness and exponential instability [5, 7, 9]. To regain uniqueness and still be useful in applications,
one assumes that μ = fχD, D ⊂ Ω, where f is a known constant and χD is the indicator function of D. Even
so, for uniqueness, one needs additional geometrical assumptions on D, like star shapedness or convexity
with respect to some direction. In practical situations, μ = f b + fχD, where f b is the (background) density
of Ω which is not known but can be assumed to be relatively small. Contemporary gradiometers canmeasure
gravitational force with a very high precision (up to six digits), but the contribution of unknown f b dramat-
ically reduces this precision by contaminating the gravity force. As a result, in practical situations, one can
rigorously recover only few parameters of D. Use of powerful and sophisticated numerical algorithms cannot
change the unstable nature of the problem and substantially increase the resolution [11]. An exponential
instability is also a feature of inverse source and obstacle problems for more general elliptic equations [4, 6],
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so one expects a robust recovery of only few parameters of unknown objects. One of the ways to increase
a number of such parameters and hence the numerical resolution is to use prospecting by stationarywaves of
higher wave numbers (to consider inverse problems for the Helmholtz type equations). For a recent analytic
and numerical progress in this direction, we refer to [2, 8, 10, 12, 13].

In this paper, we consider a simpler two-dimensional case when one can use powerful methods of theory
of one complex variable. Let D be a domain inside a disk Bρ = {x : |x| < ρ}, ρ < 1, and the unit disk B1 is
contained in a domainΩ. In Section 2,we analyze stability of recovery of generalD ⊂ B0.5 byusing a standard
expansion of gradient of its external logarithmic potential into power series and deriving boundswhich show
that only the first three terms of this expansion can be found in a stable way. In Section 3, we derive simple
algebraic equations for natural parameters of an ellipseD in terms of the coefficients of three expansion terms
and use these equations to demonstrate uniqueness, Lipschitz stability and some existence results. Similarly,
we handle rectangles D, with weaker results. In Section 4, by using the same algebraic equations, we support
analytic results with rigorous numerical examples.

Let x = (x1, x2) = x1 + ix2, ̄x = x1 − ix2, ∂
∂x =

1
2 (

∂
∂x1 − i

∂
∂x2 ),

∂
∂ ̄x =

1
2 (

∂
∂x1 + i

∂
∂x2 ). We will consider x simul-

taneously as two-dimensional vectors and as elements of the field of complex numbers. In the rest of the
paper, we let f = 1.

2 Stability and approximation

As known, the logarithmic potential of a domain D is

uD(x) =
1
2π ∫

D

log|x − y| dy.

We have
uD(x) =

1
4π ∫

D

[log(x − y) + log( ̄x − ̄y)] dy;

therefore,
∂uD(x)
∂ ̄x
=

1
4π ∫

D

1
̄x − ̄y

dy = 1
4π ̄x ∫

D

∞

∑
n=0
(
̄y
̄x)
n
dy,

and hence
∇uD(x) = 2

∞

∑
n=0

Ān ̄x−n−1, |x| = 1, where An =
1
4π ∫

D

yn dy. (2.1)

Denote
∇uD(;N) =

1
2π

∞

∑
n=N+1
̄x−n−1 ∫

D

̄yn dy.

Lemma 2.1. Let D ⊂ Bρ. Then

‖∇uD(x;N)‖∞(∂B1) ≤
ρN+3

(N + 3)(1 − ρ) , (2.2)

‖∇uD(;N)‖22(∂B1) ≤
2πρ2N+6

(N + 3)2(1 − ρ2)
. (2.3)

Proof. We have

|∇uD(x;N)| ≤
1
2π

∞

∑
n=N+1
| ̄x|−n−1 ∫

D

| ̄y|n dy.

Since |x| = 1 and D ⊂ Bρ, we have

|∇uD(;N)| ≤
1
2π

∞

∑
n=N+1

2π

∫
0

ρ

∫
0

rn+1 dr dθ =
∞

∑
n=N+1

ρn+2

n + 2 ≤
ρN+3

N + 3

∞

∑
n=0

ρn = ρN+3

(N + 3)(1 − ρ) ,

which proves (2.2).
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Similarly, using the orthogonality of the trigonometric system and (2.1) yields

‖∇uD(;N)‖22(∂B1) = 4
2π

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
n=N+1

Ānei(n+1)θ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
dθ = 4

2π

∫
0

∞

∑
n=N+1
|An|2 dθ =

1
2π

∞

∑
n=N+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
D

yn dy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤
1
2π

∞

∑
n=N+1
(2π)2 ρ2(n+2)

(n + 2)2
≤ 2π ρ2(N+3)

(N + 3)2
∞

∑
n=0

ρ2n = 2πρ2(N+3)
(N + 3)2(1 − ρ2)

,

as in the above argument, which proves (2.3).

Corollary 2.2. Let ∇ub be the gradient of the logarithmic potential of the disk B1 of the constant density δ and
D ⊂ Bρ, ρ < 1. Then

‖∇uD(;N)‖∞(∂B1)
‖∇ub‖∞(∂B1)

≤
2ρN+3

(N + 3)δ(1 − ρ) , (2.4)

‖∇uD(;N)‖2(∂B1)
‖∇ub‖2(∂B1)

≤
2ρN+3

(N + 3)δ√1 − ρ2
. (2.5)

As known [7], ∇ub(x) = δ x
2|x|2 , so (2.4) follows from (2.2).

As above,

‖∇ub‖22(∂B1) =
2π

∫
0

δ2

4 dθ = πδ
2

2 ,

and (2.5) follows from (2.3).
Despite an extremely high precision of contemporary gradiometers, the omnipresent density f b of

amedium (background) cannot be identified from the exterior data due to a very substantial non-uniqueness
in the inverse gravimetry problem [7]. However, background in many cases is known only approximately; it
produces a contribution to the gravity force which can be included into an error in the data. The relative error
in determination of the background density in a real situation can reach 0.05. If we let ρ = 0.5, δ = 0.05
and N = 2, then the right-hand side in (2.4) is 0.5 and the right-hand side in (2.5) is 1

2√3 . Therefore, only
the terms in (2.1) with n = 0, 1, 2 and accordingly the coefficients A0, A1, A2 can be viewed as detectable.
Since 0 < A0, we are given only five real numbers. Hence we arrive at the following inverse problem.

Inverse gravimetry problemwithminimal data. Find a domain D from the gradient of its approximate gravity
potential

∇uD,a(x(j)), j = 1, 2, 3, (2.6)

where x(1), x(2), x(3) are three distinct points of ∂Ω and the approximate gradient is

∇uD,a(x) = 2A0 ̄x−1 + 2Ā1 ̄x−2 + 2Ā2 ̄x−3.

3 Uniqueness and stability of an ellipse and of a rectangle

Let us write data (2.6) as the system of equations

(
∇uD,a(x(1))
∇uD,a(x(2))
∇uD,a(x(3))

) =(
2 ̄x(1)−1 2 ̄x(1)−2 2 ̄x(1)−3
2 ̄x(2)−1 2 ̄x(2)−2 2 ̄x(2)−3
2 ̄x(3)−1 2 ̄x(3)−2 2 ̄x(3)−3

)(
A0
Ā1
Ā2

); (3.1)

its determinant is
8( ̄x(1) ̄x(2) ̄x(3))−3( ̄x(1) − ̄x(2))( ̄x(1) − ̄x(3))( ̄x(2) − ̄x(3))

which is not zero since x(1), x(2), x(3) are distinct, and hence data (2.6) uniquely determine the coefficients
A0, A1, A2.
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Using (2.1), we have

∫
D

1 = 4πA0, (3.2)

∫
D

y1 dy = 2π(A1 + Ā1), ∫
D

y2 dy = −2iπ(A1 − Ā1), (3.3)

∫
D

(y21 − y
2
2) dy = 2π(A2 + Ā2), ∫

D

y1y2 dy = −iπ(A2 − Ā2). (3.4)

Let D be the ellipse with the center of gravity (b1, b2), the semi-axes a1, a2 (a2 ≤ a1) and the angle θ,
0 ≤ θ < π, between the greater semi-axis and the x1-axis. Wewill call b = (b1, b2), a = (a1, a2), θ parameters
of the ellipse.

Lemma 3.1. Let D be the ellipse with the parameters b1, b2, a1, a2, θ and A0, A1, A2 solve system (3.1) for the
gradient of the potential of the ellipse. Then

b1 =
A1 + Ā1
2A0

, b2 = −i
A1 − Ā1
2A0

, (3.5)

a1a2 = 4A0, a21 − a
2
2 =

4
A2
0
|A0A2 − A2

1|, (3.6)

and if in addition 0 < |A0A2 − A2
1|, then

cos2θ =
(A2 + Ā2)A0 − (A2

1 + Ā
2
1)

2|A0A2 − A2
1|

, sin2θ =
i(−(A2 − Ā2)A0 + A2

1 − Ā
2
1)

2|A0A2 − A2
1|

. (3.7)

Moreover, if b1, b2, a1, a2, θ satisfy equations (3.5), (3.6), (3.7), D is the ellipse with these parameters and
A∗0 , A∗1 , A∗2 are coefficients obtained by solving system (3.1), then A0 = A∗0 , A1 = A∗1 , A2 = A∗2 .

Proof. Since the area of the ellipse D is πa1a2, from (3.2), we obtain the first equality in (3.6).
As known,

b1 =
∫D y1 dy
∫D 1
=
A1 + Ā1
2A0

, b2 =
∫D y2 dy
∫D 1
= −i A1 − Ā1

2A0

when we use (3.2), (3.3). Now we introduce new orthogonal coordinates

Y1 = (y1 − b1) cos θ + (y2 − b2) sin θ, Y2 = −(y1 − b1) sin θ + (y2 − b2) cos θ. (3.8)

The point Y1 = a1, Y2 = 0 corresponds to the point y1 = b1 + a1 cos θ, y2 = b2 + a1 sin θ, and the point
Y1 = 0, Y2 = a2 corresponds to the point y1 = b1 − a2 sin θ, y2 = b2 + a2 cos θ. Hence, in this new coordi-
nate system, the ellipse D becomes the ellipse D(0) with the semi-axes (0, a1) and (0, a2). By elementary
integration,

∫
D(0)

(Y2
1 − Y

2
2) dY =

π
4 a1a2(a

2
1 − a

2
2), ∫

D(0)

Y1Y2 dY = 0 (3.9)

due to symmetry reasons. By direct calculations, from (3.8),

Y2
1 − Y

2
2 = ((y

2
1 − y

2
2) + 2b2y2 − 2b1y1 + (b21 − b22)) cos2θ + 2(y1y2 − b1y2 − b2y1 + b1b2) sin2θ,

so using (3.2), (3.3), (3.4), (3.5), (3.9) yields
π
4 a1a2(a

2
1 − a

2
2)

= π(2(A2 + Ā2) − 2
(A1 + Ā1)2

A0
− 2 (A1 − Ā1)2

A0
+
(A1 + Ā1)2 + (A1 − Ā1)2

A0
) cos2θ

+ 2πi(−(A2 − Ā2) +
A1 − Ā1
A0
(A1 + Ā1) +

A1 + Ā1
A0
(A1 − Ā1) −

(A1 + Ā1)(A1 − Ā1)
A0

) sin2θ

= 2π
(A2 + Ā2)A0 − A2

1 − Ā
2
1

A0
cos2θ + 2πi(

−(A2 − Ā2)A0 + (A2
1 − Ā

2
1)

A0
) sin2θ
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or
a21 − a

2
2 = 2
(A2 + Ā2)A0 − A2

1 − Ā
2
1

A2
0

cos2θ + 2i(
−(A2 − Ā2)A0 + (A2

1 − Ā
2
1)

A2
0

) sin2θ. (3.10)

Similarly,

Y1Y2 = (y1y2 − b2y1 − b1y2 + b1b2) cos2θ − (
1
2 (y

2
1 − y

2
2) − b1y1 + b2y2 +

1
2 (b

2
1 − b

2
2)) sin2θ,

so using (3.2), (3.3), (3.4), (3.9) yields

0 = (−πi(A2 − Ā2) + πi
A1 − Ā1
A0
(A1 + Ā1) + πi

A1 + Ā1
A0
(A1 − Ā1) − πi

A1 + Ā1
A0
(A1 − Ā1)) cos2θ

− (π(A2 + Ā2) − π
A1 + Ā1
A0
(A1 + Ā1) − π

A1 − Ā1
A0
(A1 − Ā1) +

π
2
(A1 + Ā1)2 + (A1 − Ā1)2

A0
) sin2θ

= πi
−(A2 − Ā2)A0 + A2

1 − Ā
2
1

A0
cos2θ − π

(A2 + Ā2)A0 − 1
2 (A1 + Ā1)2 − 1

2 (A1 − Ā1)2

A0
sin2θ

or
0 = ((A2 + Ā2)A0 − (A2

1 + Ā
2
1)) sin2θ − i(−(A2 − Ā2)A0 + A2

1 − Ā
2
1)) cos2θ. (3.11)

Letting
A = (A2 + Ā2)A0 − (A2

1 + Ā
2
1), B = i(−(A2 − Ā2)A0 + A2

1 − Ā
2
1), (3.12)

we can write (3.11) as A sin2θ = B cos2θ, which implies that A2 sin2 2θ = B2 cos2 2θ, and hence

A2 = (A2 + B2) cos2 2θ, B2 = (A2 + B2) sin2 2θ. (3.13)

By elementary calculations,

A2 + B2 = ((A2 + Ā2)A0 − (A2
1 + Ā

2
1))

2 − (−(A2 − Ā2)A0 + A2
1 − Ā

2
1)

2

= 4(A2Ā2A2
0 − A2A0Ā2

1 − Ā2A0A2
1 + A

2
1Ā

2
1) = 4(A2A0 − A2

1)(Ā2A0 − Ā2
1) = 4|A2A0 − A2

1|
2.

Using (3.10), (3.11) and the condition0 < a2 ≤ a1 yields (3.7). Now, from (3.10), (3.12) and (3.13),we obtain
the second equality in (3.6).

To demonstrate the second statement, observe that, according to the first part of this lemma, A∗0 , A∗1 , A∗2
satisfy the same equations (3.5), (3.6), (3.7) as A0, A1, A2. Since the solution to system (3.5), (3.6), (3.7) with
respect to A0, A1, A2 is unique, we complete the proof.

We let a = a1 + ia2, b = b1 + ib2, d = cos θ + i sin θ.

Corollary 3.2. Under the conditions of Lemma 3.1,

b = A1
A0

, (3.14)

a2 = 4
A2
0
|A0A2 − A2

1| + 8A0i, (3.15)

and if in addition 0 < |A0A2 − A2
1|, then the direction d of the longer semi-axis satisfies the equation

d2 =
A0A2 − A2

1
|A0A2 − A2

1|
. (3.16)

Moreover, a, b are Lipschitz continuous with respect to data (2.6) at any ∇uD,a such that 0 < A0, and d is
Lipschitz continuous if in addition 0 < |A0A2 − A2

1|.

Proof. Since a2 = a21 − a22 + 2ia1a2, (3.15) follows from (3.6). Similarly, (3.14) follows from (3.5). Also,

d2 = cos2θ + i sin2θ =
(A2 + Ā2)A0 − (A2

1 + Ā
2
1) − (−(A2 − Ā2)A0 + (A2

1 − Ā
2
1))

2|A0A2 − A2
1|

due to (3.7), and we obtain (3.16).



6 | V. Isakov and A. Titi, Stability and the inverse gravimetry

To demonstrate local Lipschitz stability, we observe that, from the linear algebraic system (3.1) (with
non-zero determinant), we have Lipschitz dependence of A0, A1, A2 on data (2.6). Lipschitz dependence of
a, b, d on A0, A1, A2 follows from the formulae (3.15), (3.14) and (3.16).

Observe that (3.16) implies that
θ = 12 arg(A0A2 − A2

1),

where 0 ≤ arg z < 2π.

Theorem 3.3. The ellipse D ⊂ B1 is uniquely determined by data (2.6).

Proof. Let a1 and a2 be the semi-axes of the ellipse D with (a2 ≤ a1), (b1, b2) is the center of gravity, and let
θ be the angle between a1 and the x1-coordinate.

As observed after (3.1), data (2.6) uniquely determine A0, A1, A2. The center of gravity (b1, b2) can be
uniquely found from equation (3.5). From equations (3.6), it follows that

a21 −
16A2

0
a21
=

4
A2
0
|A0A2 − A2

1|.

Since the left-hand side is increasing with respect to positive a1, we have uniqueness of a1; then uniqueness
of a2 follows from the first equation in (3.6).

If 0 < |A0A2 − A2
1|, then, from (3.16), we have the uniqueness for the direction d. If |A0A2 − A2

1| = 0, then
the second equation in (3.6) implies that a1 = a2, and so D is a disk which is uniquely determined by its
center of gravity and its area πa21.

Corollary 3.4. Let

0 < A0, |A1| +√2|A0A2 − A2
1| +√4|A0A2 − A2

1|2 + 16A
6
0 < ρA0. (3.17)

Then there is a unique ellipse D ⊂ Bρ with the potential generating the data A0, A1, A2 via (2.6), (3.1).

Proof. Equations (3.5) can be written as b = A1
A0
. Equations (3.6) are equivalent to the equalities

a1 =
√2|A0A2 − A2

1| +√4|A0A2 − A2
1|2 + 16A

6
0

A0
, a2 =

4A0
a1

.

Let D be the ellipsewith the parameters a1, a2, b and θ, satisfying equations (3.7). Hence, due to the assump-
tions (3.17), |b| + a1 < ρ, and therefore D ⊂ Bρ. Using the second statement of Lemma 3.1, we conclude that
∇uD generates data (2.6).

Observe that conditions (3.17) are sufficient but not necessary for existence of an ellipse generating the coeffi-
cients A0, A1, A2. They are relatively simple and clear. More complicated necessary and sufficient conditions
can be derived by requiring that the ellipse D ⊂ Bρ by using the same equations. In a simpler situation, when
the gradient of the potential is a polynomial A0 ̄x−1 + A1 ̄x−2, they are obtained in [7, p. 48]. More results with
higher-order polynomials are given in [3].

Now let D be the rectangle with the center of gravity (b1, b2), length 2a1, width 2a2, a2 ≤ a1, and the
angle θ, 0 ≤ θ < π, between the greater side and the x1-axis.

Lemma 3.5. Let D be the rectangle with the parameters b1, b2, a1, a2, θ and A0, A1, A2. Then

b1 =
A1 + Ā1
2A0

, b2 = −i
A1 − Ā1
2A0

, (3.18)

a1a2 = πA0, a21 − a
2
2 =

3
A2
0
|A0A2 − A2

1|, (3.19)

cos2θ =
(A2 + Ā2)A0 − (A2

1 + Ā
2
1)

2|A0A2 − A2
1|

, sin2θ =
i(−(A2 − Ā2)A0 + A2

1 − Ā
2
1)

2|A0A2 − A2
1|

. (3.20)
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Moreover, if b1, b2, a1, a2, θ satisfy equations (3.18), (3.19), (3.20), D is the rectangle with these parameters,
uD is its logarithmic potential and A∗0 , A∗1 , A∗2 are coefficients obtained by solving the system with u = uD, then
A0 = A∗0 , A1 = A∗1 , A2 = A∗2 .

Proof. As known,

b1 =
∫D y1 dy
∫D 1
=
A1 + Ā1
2A0

, b2 =
∫D y2 dy
∫D 1
= −i A1 − Ā1

2A0

when we use (3.2), (3.3).
As in the proof of Lemma 3.1, in the new coordinate system (3.8), the rectangle D becomes the rectangle

D(0) = {Y : −a1 < Y1 < a1, −a2 < Y2 < a2}. By elementary integration,

∫
D(0)

(Y2
1 − Y

2
2) dY =

4
3a1a2(a

2
1 − a

2
2), ∫

D(0)

Y1Y2 dY = 0 (3.21)

due to symmetry reasons. As in the proof of Lemma 3.1, from (3.2), (3.3), (3.4), (3.18), (3.21), we obtain

4
3a1a2(a

2
1 − a

2
2) = 2π

(A2 + Ā2)A0 − A2
1 − Ā

2
1

A0
cos2θ + 2πi(

−(A2 − Ā2)A0 + (A2
1 − Ā

2
1)

A0
) sin2θ

or
a21 − a

2
2 = 3
(A2 + Ā2)A0 − A2

1 − Ā
2
1

2A2
0

cos2θ + 3i(
−(A2 − Ā2)A0 + (A2

1 − Ā
2
1)

2A2
0

) sin2θ. (3.22)

Using (3.11) and the condition 0 < a2 ≤ a1 yields (3.20). Now, from (3.22), (3.12) and (3.13), we get the
second equality in (3.19).

To demonstrate the second statement, we observe that, according to the first part of this lemma,
A∗0 , A∗1 , A∗2 satisfy the same equations (3.18), (3.19), (3.20) as A0, A1, A2, and a solution to (3.18), (3.19),
(3.20) with respect to A0, A1, A2 is unique.

Theorem 3.6. A rectangle D which is not a square is uniquely determined by data (2.6).

Proof. The center of gravity (b1, b2) can be uniquely found from equation (3.18). From equations (3.19), it
follows that

a21 −
π2A2

0
a21
=

3
A2
0
|A0A2 − A2

1|.

Since the left-hand side is increasing with respect to positive a1, we have uniqueness of a1; then uniqueness
of a2 follows from the first equation in (3.19).

If 0 < |A0A2 − A2
1|, then from (3.20), we have the uniqueness for the angle θ. If |A0A2 − A2

1| = 0, then,
from the second equation in (3.19), we have uniqueness of the angle.

Observe that a square D cannot be uniquely determined by data (2.6). Indeed, let b = 0, and let D(0) be
a square {−a1 < Y1 < a1, −a1 < Y2 < a1}. Then, as in (3.21),

∫
D(0)

(Y2
1 − Y

2
2) dY = ∫

D(0)

Y1Y2 dY = 0. (3.23)

Wewill use the substitution y(Y) in (3.8). Solving for y yields y1 = Y1 cos θ − Y2 sin θ, y2 = Y1 sin θ + Y2 cos θ;
therefore,

y21 − y
2
2 = cos2θ(Y2

1 − Y
2
2) − 2 sin2θY1Y2, y1y2 =

1
2 sin2θ(Y2

1 − Y
2
2) + cos2θY1Y2,

and from (3.23), we obtain
∫
D

(y21 − y
2
2) dy = ∫

D

y1y2 dy = 0,

where D is D(0) in y-variables, which is the square D(0) rotated by the angle θ. Using (3.4), we conclude that
A2 = 0 for any angle θ, which therefore cannot be uniquely determined by A0, A1, A2.
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4 Numerical results for an ellipse and a rectangle

In this section, we consider different numerical examples based on the location of the points on the unit
circle, and we used Matlab to get numerical results.

To recover an ellipse D from our data on a unit circle, given approximation errors in Corollary 2.2 and
a discussion after it, we replace (3.1) by

G = BA, (4.1)

where

B =(
2 ̄x(1)−1 2 ̄x(1)−2 2 ̄x(1)−3
2 ̄x(2)−1 2 ̄x(2)−2 2 ̄x(2)−3
2 ̄x(3)−1 2 ̄x(3)−2 2 ̄x(3)−3

), A =(
A0
Ā1
Ā2

).

To create

G =(
∇uD(x(1))
∇uD(x(2))
∇uD(x(3))

),

we can use the formula for exterior potential of an ellipse with b = 0, θ = 0,

∇uD(x) = 2
∂
∂ ̄x

u(x) = 2 ∂
∂x

u(x) = a1a2
̄x +√ ̄x2 − e2

, (4.2)

where e = √a21 − a22, given in [7, p. 100, (4.4.4)]. We choose a1 = 0.5 and a2 = 0.25 to make sure that the
ellipse lies inside the disk B0.5. The function√x2 − e2 has branch points at x = e and x = −e. To avoid branch
cuts, we use the principal branch given by the power series as follows:

√x2 − e2 =
∞

∑
n=0

(−1)2n−1(2n)! e2n
22n(n!)2(2n − 1)x2n−1

≈
5
∑
n=0

(−1)2n−1(2n)! e2n
22n(n!)2(2n − 1)x2n−1

, e < |x|,

By solving the system of equations in (4.1) using singular value decomposition, we can get A.
In order to find the center of gravity (b1, b2), we use equation (3.5). To obtain the semi-axes a1 and a2,

we solve the two equations (3.6) using substitution as in the proof of Corollary 3.4. For the angle θ, we plug
in the values of the coefficients in (3.7)

4.1 Recovery of an ellipse with a1 = 0.5, a2 = 0.25, b = 0 and θ = 0

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (−0.955, −0.296), x(2) = (0.654, 0.757), x(3) = (0.666, −0.746).

Then

G =(
−0.0615 − 0.0211i
0.0383 + 0.0486i
0.0392 − 0.0481i

),

the condition number of B is 1.4414 and

A =(
0.0312

−0.000105 − 0.0000434i
0.00149 + 0.0000312i

).

This implies that

(b1, b2) = (−0.00338, 0.00139), a1 = 0.50 and a2 = 0.24,
sin2θ = −0.0206, cos2θ = 0.999 and θ = −0.0103.
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Example 2. Here we have three points on the right half of the circle,

x(1) = (0.967, 0.256), x(2) = (0.589, −0.809), x(3) = (0.112, 0.994).

Then the condition number of B is 4.0879 and

A =(
0.0314

−0.000189 − 0.000178i
0.00161 + 0.0000868i

).

This implies that

(b1, b2) = (−0.00601, 0.00568), a1 = 0.51 and a2 = 0.24,
sin2θ = −0.0524, cos2θ = 0.999 and θ = −0.0262.

Example 3. Here we choose the points to be

x(1) = (0.654, 0.757), x(2) = (−0.709, 0.706), x(3) = (−0.540, −0.842).

Then the condition number of B is 1.8971 and

A =(
0.0311

0.0000128 + 0.0000302i
0.00141 + 0.00000589i

).

This implies that

(b1, b2) = (0.000410, −0.000971), a1 = 0.49 and a2 = 0.25,
sin2θ = −0.00416, cos2θ = 0.999 and θ = −0.00208.

4.2 Recovery of an ellipse with a1 = 0.5, a2 = 0.25, b = 0 and θ = 0 after adding
random noise to G

4.2.1 Relative random noise of 0.01

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (0.112, 0.994), x(2) = (0.801, −0.599), x(3) = (−0.983, 0.182).

Then

G =(
0.00617 + 0.0596i
0.0488 − 0.0401i
−0.0641 + 0.0132i

)

and the condition number of B is 1.6499. We use

noise =(
−0.000872 − 0.000498i
−0.000301 + 0.000201i
−0.000139 + 0.0000331

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0312

−0.0000987 − 0.0000329i
0.00169 − 0.000238i

).

This implies that

(b1, b2) = (−0.00316, 0.00105), a1 = 0.52 and a2 = 0.23,
sin2θ = 0.139, cos2θ = 0.99 and θ = 0.0701.
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Example 2. Here we have three points on the right half of the circle,

x(1) = (0.416, −0.909), x(2) = (0.998, 0.0584), x(3) = (0.0124, 0.999).

Then

G =(
0.0234 − 0.0559i
0.0656 + 0.00425i
0.00068 + 0.0598i

)

and the condition number of B is 3.0629. We use

noise =(
0.000591 + 0.000757i
−0.0000803 + 0.000129i
0.000165 + 0.000414i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0316

−0.000482 − 0.000219i
0.00169 − 0.0000337i

).

This implies that
(b1, b2) = (−0.0153, 0.00696), a1 = 0.52 and a2 = 0.24,
sin2θ = 0.0239, cos2θ = 0.999 and θ = 0.0119.

Example 3. Here we choose the points to be

x(1) = (−0.921, −0.389), x(2) = (0.791, 0.612), x(3) = (0.857, −0.516).

Then

G =(
−0.0585 − 0.0273i
0.048 + 0.0409i
0.0531 − 0.0352i

)

and the condition number of B is 2.1317. We use

noise =(
0.000179 + 0.000375i
−0.0000612 − 0.000708i
0.000489 + 0.000287i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0312

−0.000102 + 0.00000741i
0.00137 + 0.000233i

).

This implies that

(b1, b2) = (−0.00327, −0.000238), a1 = 0.49 and a2 = 0.25,
sin2θ = −0.168, cos2θ = 0.986 and θ = −0.0845.

4.2.2 Relative random noise of 0.05

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (−0.0875, 0.996), x(2) = (−0.98, −0.199), x(3) = (0.971, −0.239).
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Then

G =(
−0.00481 + 0.0597i
−0.0638 − 0.0143i
0.0629 − 0.0172i

)

and the condition number of B is 1.5306. We use

noise =(
−0.00135 + 0.00079i
−0.00106 − 0.000545i
0.00141 − 0.00312i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0318

0.000439 − 0.000656i
0.00202 − 0.000406i

).

This implies that
(b1, b2) = (0.0138, 0.0206), a1 = 0.56 and a2 = 0.23,
sin2θ = 0.188, cos2θ = 0.982 and θ = 0.0946.

Example 2. Here we have three points on the upper half of the circle,

x(1) = (0.897, 0.443), x(2) = (−0.997, 0.0831), x(3) = (0.575, 0.818).

Then

G =(
0.0564 + 0.0307i
−0.0654 + 0.00605i
0.0331 + 0.0517i

)

and the condition number of B is 6.1187. We use

noise =(
0.00172 + 0.000322i
−0.00095 − 0.00296i
0.00122 − 0.00237i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0314

0.00138 − 0.00123i
0.00269 + 0.00239i

).

This implies that
(b1, b2) = (0.0438, 0.0389), a1 = 0.70 and a2 = 0.18,
sin2θ = −0.68, cos2θ = 0.728 and θ = −0.373.

Example 3. Here we choose the points to be

x(1) = (0.654, 0.757), x(2) = (0.99, −0.141), x(3) = (−0.765, −0.644).

Then

G =(
0.0383 + 0.0486i
0.0648 − 0.0102i
−0.0461 − 0.0427i

)

and the condition number of B is 2.5824. We use

noise =(
−0.00105 + 0.00331i
0.00326 + 0.000814i
0.00249 − 0.00145i

).
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Solving linear system (4.1) with the noise added to G yields

A =(
0.0318

0.000622 − 0.000492i
0.00198 + 0.000444i

).

This implies that
(b1, b2) = (0.0196, 0.0155), a1 = 0.55 and a2 = 0.23,
sin2θ = −0.229, cos2θ = 0.973 and θ = −0.115.

4.2.3 Random noise of 0.1

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (−0.983, 0.182), x(2) = (0.967, 0.256), x(3) = (0.0292, −0.999).

Then

G =(
−0.0641 + 0.0132i
0.0626 + 0.0183i
0.0016 − 0.0598i

)

and the condition number of B is 1.4951. We use

noise =(
−0.00276 − 0.00608i
−0.00249 + 0.0000232i
−0.00319 − 0.000509i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0317

−0.000249 − 0.000972i
0.000735 + 0.00197i

).

This implies that
(b1, b2) = (−0.00785, 0.0307), a1 = 0.56 and a2 = 0.23,
sin2θ = −0.932, cos2θ = 0.363 and θ = −0.599.

Example 2. Here we have three points on the left half of the circle,

x(1) = (−0.454, −0.891), x(2) = (−0.378, 0.926), x(3) = (−0.96, 0.279).

Then

G =(
−0.0257 − 0.0551i
−0.0212 + 0.0566i
−0.0619 + 0.0199i

)

and the condition number of B is 4.9316. We use

noise =(
0.00577 + 0.000403i
−0.00677 + 0.00249i
0.00341 − 0.00164i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0303

−0.000819 − 0.00537i
0.000246 − 0.0039i

).

This implies that
(b1, b2) = (−0.0269, 0.176), a1 = 0.78 and a2 = 0.16,
sin2θ = 0.949, cos2θ = 0.266 and θ = 0.604.
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Example 3. Here we choose the points to be

x(1) = (−0.469, 0.884), x(2) = (0.416, −0.909), x(3) = (−0.765, −0.644).

Then

G =(
−0.0266 + 0.0547i
0.0234 − 0.0559i
−0.0461 − 0.0427i

)

and the condition number of B is 2.2949. We use

noise =(
0.00229 + 0.00366i
0.00794 − 0.00114i
−0.00205 − 0.00314i

).

Solving linear system (4.1) with the noise added to G yields

A =(
0.0314

−0.00217 + 0.0017i
0.000724 + 0.00115i

).

This implies that
(b1, b2) = (−0.0691, −0.0542), a1 = 0.51 and a2 = 0.25,
sin2θ = −0.904, cos2θ = 0.434 and θ = −0.563.

In the next two sections, we use the substitution x󸀠 = (x − b)eiθ to use formula (4.2) in x󸀠-variables. To return
to x-variables, we use that, by the chain rule,

∇xu(x) = 2
∂u(x)
∂x
= 2∂u(x(x

󸀠))
∂x󸀠

∂x󸀠
∂x
=

a1a2
̄x󸀠 +√ ̄x󸀠2 − e2

e−iθ .

4.3 Recovery of an ellipse with a1 = 0.5, a2 = 0.25, b = (0, 0) and θ = π/4

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (0.012, 0.999), x(2) = (−0.921, −0.389), x(3) = (0.942, −0.335).

Then the condition number of B is 1.2342 and

A =(
0.0312

0.00000136 + 0.000127i
−0.0000284 − 0.00146i

).

This implies that

(b1, b2) = (0.0000437, −0.00408), a1 = 0.50 and a2 = 0.249,
sin2θ = 0.999, cos2θ = −0.0191 and θ = 0.773.

Example 2. Here we have three points on the upper half of the circle,

x(1) = (0.988, 0.158), x(2) = (−0.997, 0.083), x(3) = (0.211, 0.978).

Then the condition number of B is 2.6672 and

A =(
0.0311

−0.0000189 − 0.00007303i
0.0000346 − 0.00153i

).

This implies that

(b1, b2) = (−0.000608, 0.00235), a1 = 0.51 and a2 = 0.245,
sin2θ = 0.999, cos2θ = 0.0227 and θ = 0.763.
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Example 3. Here we choose the points to be

x(1) = (0.967, 0.256), x(2) = (0.211, 0.978), x(3) = (−0.9801, −0.199).

Then the condition number of B is 2.5801 and

A =(
0.0311

0.00000231 − 0.0000169i
0.0000114 − 0.00158i

).

This implies that

(b1, b2) = (0.0000741, 0.000546), a1 = 0.512 and a2 = 0.243,
sin2θ = 0.999, cos2θ = 0.00723 and θ = 0.777.

4.4 Recovery of an ellipse with a1 = 0.5, a2 = 0.25, b = (0.125, 0.05) and θ = π/4

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (0.897, 0.443), x(2) = (0.227, −0.974), x(3) = (−0.96, 0.279).

Then the condition number of B is 1.2799 and

A =(
0.0319

0.00396 − 0.00195i
0.000125 − 0.002004i

).

This implies that
(b1, b2) = (0.124, 0.0611), a1 = 0.506 and a2 = 0.252,
sin2θ = 0.988, cos2θ = −0.161 and θ = 0.706.

Example 2. Here we have three points on the right half of the circle,

x(1) = (0.129, −0.992), x(2) = (0.998, 0.058), x(3) = (0.401, 0.916).

Then the condition number of B is 3.4376 and

A =(
0.0303

0.00473 − 0.000497i
−0.00008203 − 0.00303i

).

This implies that
(b1, b2) = (0.156, 0.0164), a1 = 0.652 and a2 = 0.186,
sin2θ = 0.967, cos2θ = −0.273 and θ = 0.651.

Example 3. Here we choose the points to be

x(1) = (0.988, 0.158), x(2) = (−0.0875, 0.996), x(3) = (−0.622, −0.783).

Then the condition number of B is 1.5457 and

A =(
0.0307

0.00394 − 0.00162i
0.000617 − 0.00219i

).

This implies that
(b1, b2) = (0.128, 0.0526), a1 = 0.534 and a2 = 0.230,
sin2θ = 0.998, cos2θ = 0.111 and θ = 0.703.
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4.5 Recovery of a rectangle with 2a1 = 0.5, 2a2 = 0.25, b = 0 and θ = 0

Equivalently, we can use (4.1). To find G, we can use the exterior potential formula for a rectangle

∇u(x) = −14πi

4
∑
j=1
(e(j) − e(j − 1))( ̄x − y(j)) log( ̄x − y(j)), (4.3)

where e(j) = (y(j+1)−y(j))(y(j+1)−y(j)) and y(j) are the vertices of the rectangle, j = 1, 2, 3, 4.
We choose

y(1) = 0.25 + 0.125i, y(2) = −0.25 + 0.125i, y(3) = −0.25 − 0.125i, y(4) = 0.25 − 0.125i

to make sure that the rectangle lies inside the unit circle.
The function log( ̄x − y(j)) has branch points. So, to avoid branch cuts, we used the first four terms of the

power series for this function as follows:

log( ̄x − y(j)) ≈ log( ̄x) −
4
∑
n=0

(y(j))n+1
̄xn+1(n + 1)

, |y(j)| < |x|,

where log on the right-hand side can be any branch. Using this representation in (4.3), after summation and
using the behavior at infinity, we conclude that the sum of the terms containing log( ̄x) is zero, so we only
need the single-valued function given by the partial sum of the series.

By solving the system of linear equations in (4.1), we can get A. To find b1, b2, a1, a2 and θ, we plug in
the values of the coefficients in equations (3.18), (3.19), (3.20).

Example 1. In this example, we consider three almost equidistant points on the unit circle,

x(1) = (0.112, 0.994), x(2) = (0.737, −0.676), x(3) = (−0.997, 0.0831).

Then the condition number of B is 1.4601 and

A =(
0.00995

−0.00000704 − 0.00000517i
0.000155 − 0.00000565i

).

This implies that

(b1, b2) = (−0.000707, 0.000519), a1 = 0.249 and a2 = 0.125,
sin2θ = 0.0364, cos2θ = 0.999 and θ = 0.0182.

Example 2. Here we have three points on the upper half of the circle,

x(1) = (0.998, 0.0584), x(2) = (−0.886, 0.465), x(3) = (−0.378, 0.926).

Then the condition number of B is 4.6101 and

A =(
0.00996

0.000000464 + 0.0000125i
0.000149 − 0.0000116i

).

This implies that

(b1, b2) = (0.0000466, −0.00125), a1 = 0.247 and a2 = 0.127,
sin2θ = 0.0777, cos2θ = 0.997 and θ = 0.0389.

Example 3. Here we choose the points to be

x(1) = (−0.825, −0.565), x(2) = (−0.187, 0.983), x(3) = (0.726, 0.688).
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Then the condition number of B is 2.8999 and

A =(
0.00994

−0.00000325 + 0.0000000805i
0.000147 + 0.00000498i

).

This implies that

(b1, b2) = (−0.000327, −0.00000809), a1 = 0.246 and a2 = 0.127,
sin2θ = −0.0339, cos2θ = 0.999 and θ = −0.0169.

5 Conclusion

The next goal is to extend the results onto the fundamental three-dimensional case. While it is not hard to
derive an analogue of Lemma 2.1 by using spherical harmonics, proving uniqueness of an ellipsoid from the
data similar to (2.1) is gettingmore complicated, and at present, we can only accomplish it in some particular
cases. Another goal of practical importance for magnetoencephalography is to handle Maxwell systems, in
particular, to find a minimal amount of useful data/sensors. Finally, we hope to adjust the methods of this
paper to a linearized inverse problem of conductivity when, in addition to locating an ellipse or ellipsoid D,
one expects to find also constant conductivities of D and of the background. An effective numerical algorithm
in some cases was designed and tested in [14].
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ship and the NSF grant DMS 20-08154.

References
[1] H. Ammari, G. Bao and J. L. Fleming, An inverse source problem for Maxwell’s equations in magnetoencephalography,

SIAM J. Appl. Math. 62 (2002), no. 4, 1369–1382.
[2] J. Cheng, V. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential

Equations 260 (2016), no. 5, 4786–4804.
[3] V. G. Cherednichenko, Inverse Logarithmic Potential Problem, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 1996.
[4] M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems, Inverse

Problems 19 (2003), no. 3, 685–701.
[5] A. Elcrat, V. Isakov, E. Kropf and D. Stewart, A stability analysis of the harmonic continuation, Inverse Problems 28 (2012),

no. 7, Article ID 075016.
[6] R. Griesmaier and J. Sylvester, Uncertainty principles for three-dimensional inverse source problems, SIAM J. Appl. Math.

77 (2017), no. 6, 2066–2092.
[7] V. Isakov, Inverse Source Problems, Math. Surveys Monogr. 34, American Mathematical Society, Providence, 1990.
[8] V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discrete Contin. Dyn. Syst.

Ser. S 4 (2011), no. 3, 631–640.
[9] V. Isakov, Inverse Problems for Partial Differential Equations, 3rd ed., Appl. Math. Sci. 127, Springer, Cham, 2017.
[10] V. Isakov, On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity

assumptions, Inverse Probl. Imaging 13 (2019), no. 5, 983–1006.
[11] V. Isakov, S. Leung and J. Qian, A three-dimensional inverse gravimetry problem for ice with snow caps, Inverse Probl.

Imaging 7 (2013), no. 2, 523–544.
[12] V. Isakov and S. Lu, Inverse source problems without (pseudo) convexity assumptions, Inverse Probl. Imaging 12 (2018),

no. 4, 955–970.
[13] V. Isakov, S. Lu and B. Xu, Linearized inverse Schrödinger potential problem at a large wavenumber, SIAM J. Appl. Math. 80

(2020), no. 1, 338–358.
[14] O. Kwon, J. K. Seo and J.-R. Yoon, A real-time algorithm for the location search of discontinuous conductivities with one

measurement, Comm. Pure Appl. Math. 55 (2002), no. 1, 1–29.


	Stability and the inverse gravimetry problem with minimal data
	1 Introduction
	2 Stability and approximation
	3 Uniqueness and stability of an ellipse and of a rectangle
	4 Numerical results for an ellipse and a rectangle
	4.1 Recovery of an ellipse with $a_{1} = 0.5$, $a_{2} = 0.25$, $b = 0$ and $\theta = 0$
	4.2 Recovery of an ellipse with $a_{1} = 0.5$, $a_{2} = 0.25$, $b = 0$ and $\theta = 0$ after adding random noise to $\mathbf{G}$
	4.2.1 Relative random noise of 0.01
	4.2.2 Relative random noise of 0.05
	4.2.3 Random noise of 0.1

	4.3 Recovery of an ellipse with $a_{1} = 0.5$, $a_{2} = 0.25$, $b = (0,0)$ and $\theta = \pi/4$
	4.4 Recovery of an ellipse with $a_{1} = 0.5$, $a_{2} = 0.25$, $b = (0.125,0.05)$ and $\theta = \pi/4$
	4.5 Recovery of a rectangle with $2a_{1} = 0.5$, $2a_{2} = 0.25$, $b = 0$ and $\theta = 0$

	5 Conclusion


