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Species interactions, forming ecological networks, are a backbone 
for key ecological and evolutionary processes; yet, enumerating 
all of the interactions between S species is a daunting task, as it 
scales with S2, that is, the squared species richness (Martinez, 1992). 
Recent contributions to the field of ecological network predic-
tion (Becker et al., 2022; Pichler et al., 2020; Strydom et al., 2021) 

highlight that although interactions can be predicted by adding eco-
logically relevant information (in the form of e.g. traits), we do not 
have robust guidelines as to how the predictive ability of models 
recommending species interactions should be evaluated, nor about 
how these models should be trained. Here, by relying on simple der-
ivations and a series of simulations, we formulate a number of such 
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Abstract
1.	 The prediction of species interactions is gaining momentum as a way to circum-

vent limitations in data volume. Yet, ecological networks are challenging to predict 
because they are typically small and sparse. Dealing with extreme class imbalance 
is a challenge for most binary classifiers, and there are currently no guidelines as 
to how predictive models can be trained for this specific problem.

2.	 Using simple mathematical arguments and numerical experiments in which a va-
riety of classifiers (for supervised learning) are trained on simulated networks, we 
develop a series of guidelines related to the choice of measures to use for model 
selection, and the ways to assemble the training dataset.

3.	 Neither classifier accuracy nor the area under the receiver operating character-
istic curve (ROC-AUC) are informative measures for the performance of inter-
action prediction. The area under the precision-recall curve (PR-AUC) is a fairer 
assessment of performance. In some cases, even standard measures can lead to 
selecting a more biased classifier because the effect of connectance is strong. 
The amount of correction to apply to the training dataset depends on network 
connectance, on the measure to be optimized, and only weakly on the classifier.

4.	 These results reveal that training machines to predict networks is a challenging 
task, and that in virtually all cases, the composition of the training set needs to be 
fine-tuned before performing the actual training. We discuss these consequences 
in the context of the low volume of data.
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guidelines, specifically for the case of binary classifiers derived from 
thresholded values. Specifically, we conduct an investigation of the 
models in terms of their skill (ability to make the right prediction), 
bias (trends towards systematically over-predicting one class) and 
class imbalance (the relative number of cases representing interac-
tions), and show how these effects interact. We conclude on the fact 
that models with the best interaction-scale predictive score do not 
necessarily result in the most accurate representation of the true 
network.

The prediction of ecological interactions shares conceptual and 
methodological issues with two fields in biology: species distribution 
modelling (SDMs) and genomics. SDMs suffers from issues affecting 
interactions prediction, namely low prevalence (due to sparsity of 
observations/interactions) and data aggregation (due to bias in sam-
pling some locations/species). An important challenge lies in the fact 
that the best measure to quantify the performance of a model is not 
necessarily a point of consensus (these methods, their interpretation 
and the way they are measured are covered in depth in the next sec-
tion). In previous work, Allouche et al. (2006) suggested that Cohen's 
� agreement score (� thereafter) was a better test of model perfor-
mance than the true skill statistic (TSS; which we refer to as Youden's 
informedness thereafter); these conclusions were later criticized by 
Somodi et al. (2017), who emphasized that informedness is affected 
both by prevalence and bias. Although this work offers recommen-
dations about the comparison of models, it does not establishes 
baselines or good practices for training on imbalanced ecological 
data, or ways to remedy the imbalance. Steen et al. (2021) show that, 
when applying spatial thinning (artificially re-balancing observation 
data in space to avoid artefacts due to auto-correlation), the best 
approach to train ML-based SDMs varies according to the balancing 
of the dataset and the evaluation measures used; there is no single 
‘recipe’ that is guaranteed to give the best model. By contrast to net-
works, SDMs have the advantage of being able to both thin datasets 
to remove some of the sampling bias (e.g. Inman et al., 2021) but also 
to create pseudo-absences to inflate the number of supposed nega-
tives in the dataset (e.g. Iturbide et al., 2015). These powerful ways 
to remove data bias often have no analogue in networks, removing 
one potential tool from our methodological toolkit, and making the 
task of network prediction through classification potentially more 
demanding, and more prone to underlying data biases.

An immense body of research on machine learning application 
to life sciences is focused on genomics (which has very specific 
challenges: see a recent discussion by Whalen et al., 2021); this sub-
field has generated recommendations that do not necessarily match 
the current best-practices for SDMs, and therefore hint at the im-
portance of domain-specific guidelines. Chicco and Jurman  (2020) 
suggest using Matthews correlation coefficient (MCC) over F1, as a 
protection against over-inflation of predicted results; Delgado and 
Tibau (2019) advocate against the use of Cohen's �, again in favour 
of MCC, as the relative nature of � means that a worse classifier can 
be picked over a better one; similarly, Boughorbel et al. (2017) rec-
ommend MCC over other measures of performance for imbalanced 

data, as it has more desirable statistical properties. More recently, 
Chicco et al.  (2021) temper the apparent supremacy of the MCC, 
by suggesting that it should be replaced by Youden's informedness 
(also known as J, bookmaker's accuracy and the true-skill statistic) 
when the imbalance in the dataset may not be representative of the 
actual imbalance. In a way, the measures themselves need not be a 
strong focus for network prediction, as they are routinely used in 
other field; the discipline-specific question we seek to address is: 
‘which metric should be employed when predicting networks, and 
how to optimize it?’

Species interaction networks are often undersampled 
(Jordano,  2016a, 2016b), and this undersampling is structured 
taxonomically (Beauchesne et al.,  2016), structurally (de Aguiar 
et al.,  2019) and spatially (Poisot, Bergeron, et al.,  2021; Wood 
et al.,  2015). As a consequence, networks suffer from data de-
ficiencies both within and between datasets. This implies that 
the comparison of classifiers across space, when undersam-
pling varies locally (see e.g. McLeod et al.,  2021), is non-trivial. 
Furthermore, the baseline value of classifiers performance mea-
sures under various conditions of skill, bias and prevalence has 
to be identified to allow researchers to evaluate whether their 
interaction prediction model is indeed learning. Taken together, 
these considerations highlight three specific issues for ecological 
networks. First, what values of performance measures are indica-
tive of a classifier with no skill? This is particularly important as it 
can evaluate whether low prevalence can lull us into a false sense 
of predictive accuracy. Second, independently of the question of 
model evaluation, is low prevalence an issue for training or testing, 
and can we remedy it? Finally, because the low amount of data on 
interaction makes a lot of imbalance correction methods (see e.g. 
Branco et al., 2015) hard to apply, which measures of model per-
formance can be optimized by sacrificing least amount of positive 
interaction data?

A preliminary question is to examine the baseline performance 
of these measures, that is, the values they would take on hypothet-
ical networks based on a classifier that has no-skill. It may sound 
counter-intuitive to care so deeply about how good a classifier with 
no-skill is, as by definition, is has no skill. The necessity of this ex-
ercise has its roots in the paradox of accuracy: when the desired 
class (‘two species interact’) is rare, a model that gets less ecolog-
ically performant by only predicting the opposite class (‘these two 
species do not interact’) sees its accuracy increase; because most 
of the guesses have ‘these two species do not interact’ as a correct 
answer, a model that never predicts interactions would be right an 
overwhelming majority of the time; it would also be utterly useless. 
Herein lies the core challenge of predicting species interactions: 
the extreme imbalance between classes makes the training of pre-
dictive models difficult, and their validation even more so as we do 
not reliably know which negatives are true. The connectance (the 
proportion of realized interactions, usually the number of interac-
tions divided by the number of species pairs) of empirical networks 
is usually well under 20%, with larger networks having a lower 
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connectance (MacDonald et al., 2020), and therefore, being increas-
ingly difficult to predict.

1  |  A PRIMER ON BINARY CL A SSIFIER 
E VALUATION

Binary classifiers, which it to say, machine learning algorithms whose 
answer is a binary value, are usually assessed by measuring proper-
ties of their confusion matrix, that is, the contingency table reporting 
true/false positive/negative hits. A confusion matrix is laid out as

In this matrix, tp is the number of times the model predicts an in-
teraction that exists in the network (true positive); fp is the number 
of times the model predicts an interaction that does not exist in the 
network (false positive); fn is the number of times the model fails to 
predict an interaction that actually exists in the network (false nega-
tives); and tn is the number of times the model correctly predicts that 
an interaction does not exist (true negatives). From these values, we 
can derive a number of measures of model performance (see Strydom 
et al., 2021 for a review of their interpretation in the context of net-
works). At a coarse scale, a classifier is accurate when the trace of the 
matrix divided by the sum of the matrix is close to 1, with other mea-
sures informing us on how the predictions fail.

A lot of binary classifiers are built by using a regressor (whose 
task is to guess the value of the interaction and can therefore re-
turn a value considered to be a pseudo-probability); in this case, the 
optimal value below which predictions are assumed to be negative 
(i.e. the interaction does not exist) can be determined by picking a 
threshold maximizing some value on the ROC or the PR curve. The 
area under these curves (ROC-AUC and PR-AUC henceforth) give 
ideas on the overall goodness of the classifier, and the ideal thresh-
old is the point on these curves that minimizes the trade-off rep-
resented in these curves. Saito and Rehmsmeier (2015) established 
that the ROC-AUC is biased towards over-estimating performance 
for imbalanced data; on the contrary, the PR-AUC is able to identify 
classifiers that are less able to detect positive interactions correctly, 
with the additional advantage of having a baseline value equal to 
prevalence. Therefore, it is important to assess whether these two 
measures return different results when applied to ecological net-
work prediction. The ROC curve is defined by the false positive rate 
on the x axis and the true positive rate on the y axis, and the PR curve 
is defined by the true positive rate on the x axis and the positive 
predictive value on the y axis.

There is an immense diversity of measures to evaluate the per-
formance of classification tasks (Ferri et al.,  2009). Here, we will 
focus on five of them with high relevance for imbalanced learning 
(He & Ma,  2013). The choice of metrics with relevance to class-
imbalanced problems is fundamental because, as Japkowicz (2013) 

unambiguously concluded, ‘relatively robust procedures used for 
unskewed data can break down miserably when the data is skewed’. 
Following Japkowicz  (2013), we focus on two ranking metrics (the 
areas under the receiver operating characteristic and precision re-
call curves) and three threshold metrics (�, informedness and MCC: 
we will briefly discuss F1 but show early on that it has undesirable 
properties).

The � measure (Landis & Koch, 1977) establishes the extent to 
which two observers (the network and the prediction) agree and is 
measured as

Informedness (Youden,  1950) (also known as bookmaker in-
formedness or the true skill statistic) is TPR + TNR − 1, where 
TPR = tp∕(tp + fn) and TNR = tn∕(tn + fp). Informedness can be used 
to find the optimal cut-point in thresholding analyses (Schisterman 
et al.,  2005); indeed, the maximal informedness corresponds to the 
point on the ROC curve that is closest to the perfect classifier point. 
The formula for informedness is

The MCC is defined as

Finally, F1 is the harmonic mean of precision (the chance that in-
teraction was correctly detected as such) and sensitivity (the ability to 
correctly classify interactions), and it is defined as

One noteworthy fact is that F1 and MCC have ties to the PR curve 
(being close to the expected PR-AUC) and that informedness has ties 
to the ROC curve (whereby the threshold maximizing informedness is 
also the point of maximal inflection on the ROC curve). One important 
difference between ROC and PR is that the later does not prominently 
account for the size of the true negative compartments; in short, it 
is more sensitive to the correct positive predictions. In a context of 
strong imbalance, PR-AUC is therefore a more stringent test of model 
performance.

2  |  BA SELINE VALUES FOR THE 
THRESHOLD METRIC S

In this section, we will assume a network with connectance equal 
to a scalar �, that is, having �S2 interactions (where S is the species 
richness) and (1 − �)S2 non-interactions. Therefore, the vector de-
scribing the true state of the network (assumed to be an unweighted, 
directed network) is a column vector oT =

[
�, (1 − �)

]
 (we can safely 

⎛
⎜⎜⎝

tp fp

fn tn

⎞
⎟⎟⎠
.

2
tp × tn − fn × fp

(tp + fp) × (fp + tn) + (tn + fp) × (tn + fn)
.

tp

tp + fn
+

tn

tn + fp
− 1.

tp × tn − fn × fp√
(tp + fp) × (tp + fn) × (tn + fp) × (tn + fn)

.

2
tp

2 × tp + fp + fn
.
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drop the S2 terms, as we will work on the confusion matrix, which 
ends up expressing relative values). We will apply skill and bias to 
this matrix and measure how a selection of performance metrics re-
spond to changes in these values, in order to assess their suitability 
for model evaluation.

2.1  |  Confusion matrix with skill and bias

In order to write the values of the confusion matrix for a hypothetical 
classifier, we need to define two characteristics: its skill and its bias. 
Skill, here, refers to the propensity of the classifier to get the correct 
answer (i.e. to assign interactions where they are, and to not assign 
them where they are not). A no-skill classifier guesses at random: that 
is, it will guess interactions with a probability �. The predictions of a 
no-skill classifier can be expressed as a row vector pT =

[
�, (1 − �)

]
. 

The confusion matrix M for a no-skill classifier is given by the element-
wise (Hadamard, outer) product of these vectors o ⊙ p, that is,

In order to regulate the skill of this classifier, we can define a skill 
matrix S with diagonal elements equal to s, and off-diagonal elements 
equal to (1 − s), which allows to regulate how many predictions are 
wrong, under the assumption that the bias is the same (i.e. the clas-
sifier is as likely to make a false positive or a false negative). The skill-
adjusted confusion matrix is M ⊙ S, that is,

When s = 0, Tr(M) = 0 (the classifier is always wrong); when 
s = 0.5 , the classifier is no-skill and guesses at random; and when s = 1, 
the classifier is perfect.

The second element we can adjust in this hypothetical classifier 
is its bias, specifically its tendency to over-predict interactions. Like 
above, we can do so by defining a bias matrix B, where interactions 
are over-predicted with probability b and express the final classifier 
confusion matrix as M ⊙ S ⊙ B, that is,

The final expression for the confusion matrix in which we can reg-
ulate the skill and the bias is

In all further simulations, the confusion matrix C is transformed 
so that it sums to unity, that is the entries are the proportions of 
guesses.

2.2  |  What are the baseline values of performance 
measures?

In this section, we will change the values of b, s and � and report 
how the main measures discussed in the introduction (MCC, F1, � 
and informedness) respond. Before we do so, it is important to ex-
plain why we will not focus on accuracy too much. Accuracy is the 
number of correct predictions (Tr(C)) divided by the sum of the con-
fusion matrix. For a no-skill, no-bias classifier, accuracy is equal to 
�2 + (1−�)2; for � = 0.05, this is ≈ 0.90; and for � = 0.01, this is equal 
to ≈ 0.98. In other words, the values of accuracy are high enough 
to be uninformative (for � small, 𝜌2 ≪ (1−𝜌)2). More concerning is 
the fact that introducing bias changes the response of accuracy in 
unexpected ways. Assuming a no-skill classifier, the numerator of 
accuracy becomes b�2 + (1 − b)(1−�)2, which increases when b is 
low, which specifically means that at equal skill, a classifier that un-
derpredicts interactions will have higher accuracy than an unbiased 
classifier (because the value of accuracy is dominated by the size of 
tn, which will increase). These issues are absent from balanced ac-
curacy but should nevertheless lead us to not report accuracy as the 
primary measure of network prediction success; moving forward, we 
will focus on other measures.

In order to examine how MCC, F1, � and informedness change 
with respect to the imbalance, skill and bias, we performed a grid ex-
ploration of the values of logit(s) and logit(b) linearly from − 10 to 10; 
logit(x) = − 10 means that x is essentially 0, and logit(x) = 10 means 
it is essentially 1—this choice was motivated by the fact that most 
responses are nonlinear with regards to bias and skill. The values or 
� were taken linearly in ]0,0.5], which is within the range of connec-
tance for species interaction networks. Note that at this point, there 
is no network model to speak of; the confusion matrix we discuss 
can be obtained for any classification task. Based on the previous 
discussion, the desirable properties for a measure of classifier suc-
cess should be: an increase with classifier skill, especially at low bias; 
a hump-shaped response to bias, especially at high skill and ideally 
centred around logit(b) = 0; and an increase with prevalence up until 
equiprevalence is reached.

In Figure 1, we show that none of the four measures satisfy all 
the considerations at once: F1 increases with skill and increases mo-
notonously with bias; this is because F1 does not account for true 
negatives, and the increase in positive detection masks the over-
prediction of interactions. Informedness varies with skill, reaching 0 
for a no-skill classifier, but is entirely unsensitive to bias. Both MCC 
and � have the same behaviour, whereby they increase with skill. � 
peaks at increasing values of bias for increasing skill; that is, it is likely 
to lead to the selection of a classifier that over-predicts interactions. 
By contract, MCC peaks at the same value, regardless of skill, but 
this value is not logit(b) = 0: unless at very high classifier skill, MCC 

M =

⎛
⎜⎜⎝

�2 �(1−�)

(1−�)� (1−�)2

⎞
⎟⎟⎠
.

⎛
⎜⎜⎝

𝜌2 𝜌(1−𝜌)

(1−𝜌)𝜌 (1−𝜌)2

⎞
⎟⎟⎠
⊙

⎛
⎜⎜⎝

s (1−s)

(1−s) s

⎞
⎟⎟⎠
.

⎛
⎜⎜⎝

𝜌2 𝜌(1−𝜌)

(1−𝜌)𝜌 (1−𝜌)2

⎞
⎟⎟⎠
⊙

⎛
⎜⎜⎝

s (1−s)

(1−s) s

⎞
⎟⎟⎠
⊙

⎛
⎜⎜⎝

b b

(1−b) (1−b)

⎞
⎟⎟⎠
.

C =

⎛
⎜⎜⎝

s×b×�2 (1−s)×b×�(1−�)

(1−s)×(1−b)×(1−�)� s×(1−b)×(1−�)2

⎞
⎟⎟⎠
.
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risks leading to a model that over-predicts interactions. In Figure 2, 
we show that all measures except F1 give a value of 0 for a no-skill 
classifier and are forced towards their correct maximal value when 
skill changes (i.e. a more connected networks will have higher values 
for a skilled classifier, and lower values for a classifier making mostly 
mistakes).

These two analyses point to the following recommendations: 
MCC is indeed more appropriate than �, as although sensitive to 
bias, it is sensitive in a consistent way. Informedness is appropriate 
at discriminating between different skills but confounded by bias. 
As both of these measures bring valuable information on the model 
behaviour, we will retain them for future analyses. F1 is increasing 
with bias and should not be prioritized to evaluate the performance 

of the model. The discussion of sensitivity to bias should come with 
a domain-specific caveat: although it is likely that interactions docu-
mented in ecological networks are correct, a lot of non-interactions 
are simply unobserved; as predictive models are used for data-
inflation (i.e. the prediction of new interactions), it is not necessarily 
a bad thing in practice to select models that predict more interac-
tions than the original dataset, because the original dataset misses 
some interactions. Furthermore, the weight of positive interactions 
could be adjusted if some information about the extent of under-
sampling exists (e.g. Branco et al.,  2015). In a recent large-scale 
imputation of interactions in the mammal-virus networks, Poisot, 
Ouellet, et al.  (2021), for example, estimated that 93% of interac-
tions are yet to be documented.

F I G U R E  1  Consequences of changing 
the classifier skills (s) and bias (s) for a 
connectance � = 0.15, on F1, informedness, 
MCC and �. Accuracy increases with skill 
but also increases when the bias tends 
towards estimating fewer interactions (this 
follows from the derivations in the text, 
not shown in the figure). Interestingly, 
� responds as expected to skill (being 
negative whenever s < 0.5) and peaks 
for values of b ≈ 0.5; nevertheless, the 
value of bias for which � is maximized 
in not b = 0.5 but instead increases with 
classifier skill. In other words, at equal 
skill, maximizing � would lead to select a 
more biased classifier.

F I G U R E  2  As in Figure 1, 
consequences of changing connectance 
for different levels of classifier skill, 
assuming no classifier bias. Informedness, 
� and MCC do increase with connectance 
but only when the classifier is not no-skill; 
by way of contrast, a more connected 
network will give a higher F1 value even 
with a no-skill classifier.

 2041210x, 2023, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14071, W
iley O

nline Library on [27/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



1338  |   Methods in Ecology and Evolu
on POISOT

3  |  NUMERIC AL E XPERIMENTS ON 
TR AINING STR ATEGY

In the following section, we will generate random bipartite networks 
and train four binary classifiers (as well as an ensemble model using 
the sum of ranged outputs from the component models) on 50% of 
the interaction data. In practice, testing usually uses 70% of the total 
data; for ecological networks, where interactions are sparse and the 
number of species is low: this may not be the best solution, as the 
testing set becomes constrained not by the proportion of interac-
tions, but by their number. Preliminary experiments using different 
splits revealed no qualitative change in the results. Networks are 
generated by picking a random infectiousness trait vi for 100 species 
(from a beta distribution B(� = 6, � = 8) distribution) and a resistance 
trait hj for 100 species (from B(� = 2, � = 8) distribution). There is an 
interaction between i  and j when vi − � ∕2 ≤ hj ≤ vi + � ∕2, where � 
is a constant regulating the connectance of the network (visual ex-
ploration of the parameters show that there is an almost 1:1 relation-
ship between � and connectance), and varies uniformly in 

[
0.05,0.35

]
 . 

This model gives fully interval networks that are close analogues to 
the bacteria–phage model of Weitz et al. (2005), with both a modu-
lar structure and a non-uniform degree distribution. This dataset is 
easy for almost any algorithm to learn: when trained with features [
vi , hj , abs

(
vi , hj

)]T to predict the interactions between i  and j, all four 
models presented below were able to reach almost perfect predic-
tions all the time (data not presented here)—this is in part because 
the rule (there is maximum value of the distance between traits for 
which there is an interaction) is fixed for all interactions and any 
method able to learn nonlinear relationships should infer it with-
out issues. In order to make the problem more difficult to solve, we 
use 

[
vi , hj

]
 as a feature vector (i.e. the traits on which the models are 

trained), and therefore, the models will have to uncover that the rule 
for interaction is abs

(
vi , hj

)
≤ �. The models therefore all have the 

following form, where ii,j is an interaction from species i  to species j:

The training sample is composed of a random pick of up to 50% 
of the 104 possible entries in the network, that is n = 5000. Out of 
these interactions, we pick a proportion � (the training set balance) to 
be positive, so that the training set has �n interactions, and (1 − �) n 
non-interactions. We vary � uniformly in ]0, 1[. This allows to evaluate 
how the measures of binary classification performance respond to ar-
tificially rebalanced dataset for a given network connectance. The rest 
of the dataset is used as a testing set, on which all further measures are 
calculated. Note that although the training set is balanced arbitrarily, 
the testing set is assembled so that it has the exact connectance of the 
entire network; this ensures that the model is evaluated under the class 

imbalance where the predictions will be made, which represents a more 
meaningful evaluation. Furthermore, to avoid artefacts due to different 
sizes of the training and testing set within a single network, the number 
of entries in both sets are equal. Note also that although the simulated 
networks are bipartite, the algorithms have no ‘knowledge’ of the net-
work structure and simply look at pairs of species; therefore, the ap-
proach outlined here would also work for unipartite networks.

The dataset used for numerical experiments is composed of a 
grid of 35 values of connectance (from 0.011 to 0.5) and 35 values 
of � (from 0.02 to 0.98); for each pair of values, 500 networks are 
generated and predicted. For each network, we train four machines: 
a trait-based k-NN (e.g. Desjardins-Proulx et al., 2017), a regression 
tree, a regression random forest and a boosted regression tree; the 
later three methods are turned into classifiers using thresholding, 
which oftentimes provides better results than classification when 
faced with class imbalance (Hong et al.,  2016). Following results 
from Pichler et al.  (2020), linear models have not been considered 
(in any way, the relationship in the simulated networks is nonlinear). 
The point of these numerical experiments is not to recommend the 
best model (this is likely problem-specific), but to highlight a series 
of recommendations that would work for supervised learning tasks. 
All models were taken from the MLJ.jl package (Blaom et al., 2020; 
Blaom & Vollmer, 2020) in Julia 1.7 (Bezanson et al., 2017). All ma-
chines use the default parameterization; this is an obvious deviation 
from best practices, as the hyperparameters of any machine require 
training before its application on a real dataset. As we use 612,500 
such datasets, this would require over 2 million unique instances of 
tweaking the hyperparameters, which is prohibitive from a comput-
ing time point of view. An important thing to keep in mind is that the 
problem we simulate has been designed to be simple to solve: we 
expect all machines with sensible default parameters to fare well—
the results presented in the later sections show that this assump-
tion is warranted, and we further checked that the models do not 
overfit by ensuring that there is never more than 5% of difference 
between the accuracy on the training and testing sets. All machines 
return a quantitative prediction, usually (but not necessarily) in 

[
0, 1

]
, 

which is proportional (but not necessarily linearly) to the probability 
of an interaction between i  and j. The ROC-AUC and PR-AUC (and 
therefore the thresholds) can be measured by integrating over the 
domain of the values return by each machine, but in order to make 
the average-based ensemble model more meaningful, all predictions 
are expressed in 

[
0, 1

]
.

In order to pick the best confusion matrix for a given trained 
machine, we performed a thresholding approach using 500 steps 
on predictions from the testing set and picking the threshold that 
maximized Youden's informedness. During the thresholding step, we 
measured the area under the receiver operating characteristic (ROC-
AUC) and precision-recall (PR-AUC) curves, as measures of overall 
performance over the range of returned values. We report the ROC-
AUC and PR-AUC, as well as a suite of other measures as introduced 
in the next section, for the best threshold. The ensemble model was 
generated by summing the predictions of all component models 
on the testing set (ranged in 

[
0, 1

]
) and then put through the same 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1,1

i1,2

⋮

im,n−1

im,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 h1

v1 h2

⋮ ⋮

vm hn−1

vm hn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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thresholding process. The complete code to run the simulations is 
available at https://doi.org/10.17605/​OSF.IO/JKEWD.

After the simulations were completed, we removed all runs (i.e. 
triples of model, �, and �) for which at least one of the following 
conditions was met: the accuracy was 0, the true positive or true 
negative rates were 0, the connectance was larger than 0.25. This 
removes both the obviously failed model runs, and the networks 
that are more densely connected compared to the connectance of 
empirical food webs (and are therefore less difficult to predict, being 
less imbalanced; preliminary analyses of data with a connectance 
larger than 0.3 revealed that all machines reached consistently high 
performance).

3.1  |  Effect of training set balance on performance

In Figure 3, we present the response of two thresholding measures 
(PR-AUC and ROC-AUC) and two ranking measures (Informedness 

and MCC) to a grid of 35 values of training set balance, and 35 val-
ues of connectance, for the four component models as well as the 
ensemble. ROC-AUC is always high, and does not vary with train-
ing set balance. On the other hand, PR-AUC shows very strong re-
sponses, increasing with training set balance. It is notable here that 
two classifiers that seemed to be performing well (Decision Tree and 
Random Forest) based on their MCC are not able to reach a high 
PR-AUC even at higher connectances. All models reached a higher 
performance on more connected networks, and using more bal-
anced training sets. In all cases, informedness was extremely high, 
which is an expected consequence of the fact that this is the value 
we optimized to determine the cutoff. MCC increased with training 
set balance, although this increase became less steep with increasing 
connectance. Three of the models (kNN, decision tree, and random 
forest) only increased their PR-AUC sharply when the training set 
was heavily imbalanced towards more interactions. Interestingly, 
the ensemble almost always outclassed its component models. For 
larger connectances (less difficult networks to predict, as they are 

F I G U R E  3  Response of MCC, Informedness, ROC-AUC, and PR-AUC to changes in the training set balance (on the x axis) for a series of 
increasing connectances (colour). All of these values approach 1 for a good model, but should be lower when the prediction is more difficult. 
Informedness is consistently high, and by contrast, MCC increases with additional training set balance. Across all models, training on a more 
connected network is easier. ROC-AUC is consistently high, and therefore not properly able to separate good from poor classifiers. On the 
other hand, PR-AUC responds to changes in the training set.
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more balanced), MCC and informedness stared decreasing when the 
training set bias got too close to one, suggesting that a training set 
balance of 0.5 may often be appropriate if these measures are the 
one to optimize.

Based on the results presented in Figure  3, it seems that in-
formedness and ROC-AUC are not necessarily able to discriminate 
between good and bad classifiers (although this result may be an 
artefact for informedness, as it has been optimized when threshold-
ing). On the other hand, MCC and PR-AUC show a strong response 
to training set balance, and may therefore, be more useful at model 
comparison.

3.2  |  Required amount of positives to get the best 
performance

The previous results revealed that the measure of classification per-
formance responds both to the bias in the training set and to the 
connectance of the network; from a practical point of view, assem-
bling a training set requires one to withhold positive information, 
which in ecological networks are very scarce (and typically more 
valuable than negatives, on which there is a doubt). For this reason, 
across all values of connectance, we measured the training set bal-
ance that maximized a series of performance measures. When this 
value is high, the training set needs to skew more positive in order to 
get a performant model; when this value is about 0.5, the training set 
needs to be artificially balanced to optimize the model performance. 
These results are presented in Figure 4.

The more ‘optimistic’ measures (ROC-AUC and informedness) 
required a biasing of the dataset from about 0.4 to 0.75 to be maxi-
mized, with the amount of bias required decreasing only slightly with 
the connectance of the original network. MCC and PR-AUC required 
values of training set balance from 0.75 to almost 1 to be optimized, 

which is in line with the results of the previous section, i.e. they are 
more stringent tests of model performance. These results suggest 
that learning from a dataset with very low connectance can be a dif-
ferent task than for more connected networks: it becomes increas-
ingly important to capture the mechanisms that make an interaction 
exist, and therefore having a slightly more biased training dataset 
might be beneficial. As connectance increases, the need for biased 
training sets is less prominent, as learning the rules for which inter-
actions do not exist starts gaining importance.

When trained at their optimal training set balance, connectance 
still had a significant impact on the performance of some machines 
(Figure 5). Notably, decision tree, and k-NN, as well as random for-
est to a lower extent, had low values of PR-AUC. In all cases, the 
boosted regression tree was reaching very good predictions (espe-
cially for connectances larger than 0.1), and the ensemble was al-
most always scoring perfectly. This suggests that all the models are 
biased in different ways, and that the averaging in the ensemble is 
able to correct these biases. We do not expect this last result to have 
any generality, and provide a discussion of a recent example in which 
the ensemble was performing worse than its components models.

4  |  DO BET TER CL A SSIFIC ATION 
ACCUR ACY RESULT IN MORE RE ALISTIC 
NET WORKS?

In this last section, we generate a network using the same model 
as before, with S1, S2 = 50, 80 species, a connectance of ≈ 0.16 
(� = 0.19 ), and a training set balance of 0.5, as Figure 4 suggests, this 
is the optimal training set balance for this range of connectance. The 
prediction made on the complete dataset is presented in Figure 6.

The trained models were then thresholded (again by optimizing 
informedness), and their predictions transformed back into networks 

F I G U R E  4  Value of the optimal training 
set balance for the different models and 
measures evaluated here, over a range of 
connectances. Informedness was reliably 
maximized for balanced training sets, and 
kept this behaviour across models. For 
other measures, larger connectances in 
the true network allowed lower biases 
in the training set. In a large number of 
cases, ‘over-correcting’ by having training 
sets with more than half instances 
representing interactions would maximize 
the values of the model performance 
measures.
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for analysis; specifically, we measured the connectance, nestedness 
(�; Bastolla et al.,  2009), modularity (Q; Barber,  2007), asymmetry 
(A; Delmas et al., 2018), and Jaccard network dissimilarity (Canard 
et al., 2014). This process was repeated 250 times, and the results 
are presented in Table 1. The k-NN model is an interesting instance 
here: it produces the network that looks the most like the original 
dataset, despite having the lowest PR-AUC, suggesting it hits high 
recall at the cost of low precision. The ensemble was able to reach a 
very high PR-AUC (and a very high ROC-AUC), which translated into 
more accurate reconstructions of the structure of the network (with 
the exception of modulairty, which is underestimated by 0.03 ). This 
result bears elaborating. Measures of model performance capture 

how much of the interactions and non-interactions are correctly 
identified. As long as these predictions are not perfect, some in-
teractions will be predicted at the ‘wrong’ position in the network; 
these measures cannot describe the structural effect of these mis-
takes. On the other hand, measures of network structure can have 
the same value with interactions that fall at drastically different po-
sitions; this is in part because a lot of these measures covary with 
connectance, and in part because as long as these values are not 
0 or their respective maximum, there is a large number of network 
configurations that can have the same value. That ROC-AUC is con-
sistently larger than PR-AUC may be a case of this measure masking 
models that are not, individually, strong predictors (Jeni et al., 2013). 

F I G U R E  5  When trained on their 
optimally biased training set, most models 
were able to maximize their performance; 
this is not true when measuring PR-
AUC for decision tree, k-NN, and to a 
lower extent RF. The ensemble had a 
consistently high performance despite 
incorporating low-performing models.

F I G U R E  6  Visualization of the raw (un-
thresholded) models predictions for one 
instance of a network prediction problem 
(shown in the ‘Dataset’ panel). Increasing 
the value of the � parameter would make 
the diagonal structure ‘broader’, leading 
to more interactions. A visual inspection 
of the results is important, as it highlights 
how some models can ‘miss’ parts of 
the network; by combining them in an 
ensemble, these gaps compensate one 
another, and lead (in this case) to a better 
prediction.
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In this specific example, the combination of individually ‘adequate’ 
models resulted in an extremely strong ensemble, suggesting that 
the correct prediction of interactions (as measured by MCC, Inf., 
ROC-AUC and PR-AUC) and network properties is indeed a feasible 
task under appropriately hyper-parameterized models.

5  |  GUIDELINES FOR THE A SSESSMENT 
OF NET WORK PREDIC TIVE MODEL S

We establish that due to the low prevalence of interactions, even poor 
classifiers applied to food web data will reach a high accuracy; this is 
because the measure is dominated by the accidentally correct predic-
tions of negatives. On simulated confusion matrices with ranges of im-
balance that are credible for ecological networks, MCC had the most 
desirable behaviour, and informedness is a linear measure of classifier 
skill. By performing simulations with four models and an ensemble, we 
show that informedness and ROC-AUC are consistently high on net-
work data, whereas MCC and PR-AUC are more accurate measures of 
the effective performance of the classifier. Finally, by measuring the 
structure of predicted networks, we highlight an interesting paradox: 
the models with the best performance measures are not necessarily 
the models with the closest reconstructed network structure. We dis-
cuss these results in the context of establishing guidelines for the pre-
diction of ecological interactions.

It is noteworthy that the ensemble model was systematically bet-
ter than the component models. We do not expect that ensembles 
will always be better than single models. Networks with different 
structures than the one we simulated here may respond in different 
ways, especially if the rules are fuzzier than the simple rule we used 
here. In a recent multi-model comparison involving supervised and 
unsupervised learning, Becker et al.  (2022) found that the ensem-
ble was not the best model, and was specifically underperforming 
compared to models using biological traits. This may be because the 
dataset of Becker et al. (2022) was known to be undersampled, and 
so the network alone contained less information than the combina-
tion of the network and species traits. There is no general conclusion 
to draw from either these results or ours, besides reinforcing the 
need to be pragmatic about which models should be included in the 
ensemble, and whether to use an ensemble at all. In a sense, the sur-
prising performance of the ensemble model should form the basis of 

the first broad recommendation: optimal training set balance and its 
interaction with connectance and the specific binary classifier used 
is, in a sense, a hyperparameter that should be assessed following 
the approach outlined in this manuscript. The distribution of results 
in Figure 4 and Figure 5 show that there are variations around the 
trend, and multiple models should probably be trained on their ‘opti-
mal’ training/testing set, as opposed to the same ones.

The results presented here highlight an interesting paradox: 
although the k-NN model was ultimately able to get a correct es-
timate of network structure (see Table  1; Figure  6), it ultimately 
remains a poor classifier, as evidenced by its low PR-AUC. This 
suggests that the goal of predicting interactions and predicting 
networks may not always be solvable in the same way—of course 
a perfect classifier of interactions would make a perfect network 
prediction; indeed, the best scoring predictor of interactions (the 
ensemble model) had the best prediction of network structure. The 
tasks of predicting networks structure and of predicting interac-
tions within networks are essentially two different ones. For some 
applications (e.g. comparison of network structure across gradi-
ents), one may care more about a robust estimate of the structure, 
at the cost at putting some interactions at the wrong place. For 
other applications (e.g. identifying pairs of interacting species), one 
may conversely care more about getting as many pairs right, even 
though the mistakes accumulate in the form of a slightly worse esti-
mate of network structure. How these two approaches can be rec-
onciled is something to evaluate on a case-by-case basis, especially 
since there is no guarantee that an ensemble model will always be 
the most precise one. Despite this apparent tension at the heart of 
the predictive exercise, we can use the results presented here to 
suggest a number of guidelines.

First, because we have more trust in reported interactions 
than in reported absences of interactions (which are overwhelm-
ingly pseudo-absences), we can draw on previous literature to 
recommend informedness as a measure to decide on a threshold 
for binary classification (Chicco et al., 2021); this being said, be-
cause informedness is insensitive to bias (although it is a linear 
measure of skill), the overall model performance is better eval-
uated through the use of MCC (Figures  4 and 5). Because F1 is 
monotonously sensitive to classifier bias (Figure  1) and network 
connectance (Figure 2), MCC should be prefered as a measure of 
model evaluation and comparison. When dealing with multiple 

TA B L E  1  Values of four performance metrics, and five network structure metrics, for 500 independent predictions similar to the ones 
presented in Figure 6. The values in bold indicate the best value for each column (including ties). Because the values have been rounded, 
values of 1.0 for the ROC-AUC column indicate an average ≥ 0.99.

Model MCC Inf. ROC-AUC PR-AUC Conn. � Q A Jaccard

Decision tree 0.59 0.94 0.97 0.04 0.17 0.64 0.37 0.42 0.1

BRT 0.46 0.91 0.97 0.36 0.2 0.78 0.29 0.41 0.19

Random Forest 0.72 0.98 0.99 0.1 0.16 0.61 0.38 0.42 0.06

k-NN 0.71 0.98 0.99 0.02 0.16 0.61 0.39 0.42 0.06

Ensemble 0.74 0.98 1.0 0.79 0.16 0.61 0.38 0.42 0.06

Data 0.16 0.56 0.41 0.42 0.0
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models, we therefore suggest to find the optimal threshold using 
informedness, and to pick the best model using MCC (assuming 
one does not want to use an ensemble model).

Second, accuracy alone should not be the main measure of 
model performance, but rather an expectation of how well the 
model should behave given the class balance in the set on which pre-
dictions are made; this is because, as derived earlier, the expected 
accuracy for a no-skill no-bias classifier is �2 + (1−�)2 (where � is the 
class balance), which will most often be large. This pitfall is notably 
illustrated in a recent food-web model (Caron et al., 2022) wherein 
the authors, using a training set of n = 104 with only 100 positive 
interactions (representing 0.1% of the total interactions), reached a 
good accuracy. Reporting a good accuracy is not informative, espe-
cially when accuracy is not (i) compared to the baseline expected 
value under the given class balance, and (ii) interpreted in the con-
text of a measure that is not sensitive to the chance prediction of 
many negatives (like MCC).

Third, because the PR-AUC responds more to network con-
nectance (Figure  5) and training set imbalance (Figure  4) than 
ROC-AUC, it should be used as a measure of model performance 
over the ROC-AUC. This is not to say that ROC-AUC should be dis-
carded (in fact, a low ROC-AUC is undoubtedly a sign of an issue 
with the model), but that its interpretation should be guided by the 
PR-AUC value. Specifically, a high ROC-AUC is not informative, 
as it can be associated to a low PR-AUC (see e.g. Random Forest 
in Table 1) This again echoes recommendations from other fields 
(Jeni et al., 2013; Saito & Rehmsmeier, 2015). We therefore expect 
to see high ROC-AUC values, and then to pick the model that max-
imizes the PR-AUC value. Taken together with the previous two 
guidelines, we strongly encourage to (i) ensure that accuracy and 
ROC-AUC are high (in the case of accuracy, higher than expected 
under no-skill no-bias situation), and (ii) to discuss the perfor-
mance of the model in terms of the most discriminant measures, 
i.e. PR-AUC and MCC.

Finally, network connectance (i.e. the empirical class imbalance) 
should inform the composition of the training and testing set, be-
cause it is an ecologically relevant value. In the approach outlined 
here, we treat the class imbalance of the training set as an hyper-
parameter, but test the model on a set that has the same class im-
balance as the actual dataset. This is an important distinction, as it 
ensure that the prediction environment matches the testing envi-
ronment (as we cannot manipulate the connectance of the empirical 
dataset on which the predictions will be made), and so the values 
measured on the testing set (or validation set if the data volume al-
lows one to exists) can be directly compared to the values for the ac-
tual prediction. A striking result from Figure 4 is that Informedness 
was almost always maximal at 50/50 balance (regardless of connec-
tance), whereas MCC required more positives to be maximized when 
connectance increases, matching the idea that it is a more stringent 
measure of performance. This has an important consequence in eco-
logical networks, for which the pool of positive cases (interactions) 
to draw from is typically small: the most parsimonious measure (i.e. 
the one requiring to discard the least amount of interactions to train 

the model) will give the best validation potential, and in this light 
is very likely informedness (maximizing informedness is, in fact, the 
generally accepted default for imbalanced classification regardless 
of the problem domain; Schisterman et al., 2005). This last result fur-
ther strengthens the assumption that the amount of bias is an hyper-
parameter that must be fine-tuned, as using the wrong bias can lead 
to models with lower performance; for this reason, it makes sense to 
not train all models on the same training/testing set, but rather to 
optimize the set composition for each of them.

One key element for real-life data that can make the prediction 
exercise more tractable is that some interactions can safely be as-
sumed to be impossible; indeed, a lot of networks can be reasonably 
well described using a stochastic block model (e.g. Xie et al., 2017). 
In ecological networks, this can be due to spatial constraints 
(Valdovinos,  2019), or to the long-standing knowledge that some 
links are ‘forbidden’ due to traits (Olesen et al., 2011) or abundances 
(Canard et al., 2014). The matching rules (Olito & Fox, 2015; Strona 
& Veech, 2017) can be incorporated in the model either by adding 
compatibility traits, or by only training the model on pairs of species 
that are not likely to be forbidden links. Knowledge of true negative 
interactions could be propagated in training/testing sets that have 
true negatives, and in this situation, it may be possible to use the 
more usual 70/30 split for training/testing folds as the need to pro-
tect against potential unbalance is lowered. Besides forbidden links, 
a real-life case that may arise is multi-interaction or multi-layer net-
works (Pilosof et al., 2017). These can be studied using the same gen-
eral approach outlined here, either by assuming that pairs of species 
can interact in more than one way (wherein one would train a model 
for each type of interaction, based on the relevant predictors), or by 
assuming that pairs of species can only have one type of interaction 
(wherein this becomes a multi-label classification problem).
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