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The emergence of SARS-CoV-2 highlights aneed for evidence-based
strategies to monitor bat viruses. We performed a systematic review of

coronavirus sampling (testing for RNA positivity) in bats globally. We
identified 110 studies published between 2005 and 2020 that collectively
reported positivity from 89,752 bat samples. We compiled 2,274 records

of infection prevalence at the finest methodological, spatiotemporal and
phylogenetic level of detail possible from public records into an open,
static database named datacov, together with metadata on sampling and
diagnostic methods. We found substantial heterogeneity in viral prevalence
across studies, reflecting spatiotemporal variation in viral dynamics and
methodological differences. Meta-analysis identified sample type and
sampling design as the best predictors of prevalence, with virus detection

maximized in rectal and faecal samples and by repeat sampling of the same
site. Fewer than one in five studies collected and reported longitudinal data,
and euthanasia did notimprove virus detection. We show that bat sampling
before the SARS-CoV-2 pandemic was concentrated in China, with research
gapsin South Asia, the Americas and sub-Saharan Africa, and in subfamilies
of phyllostomid bats. We propose that surveillance strategies should
address these gaps to improve global health security and enable the origins

of zoonotic coronaviruses to be identified.

Since the emergence of severe acute respiratory syndrome-associated
coronavirus (SARS-CoV) in 2002, coronaviruses (Coronaviridae:
Orthocoronavirinae) have been recognized as potential pandemic
threats. The group comprises four genera containing an estimated hun-
dreds, or thousands, of viruses'. The delta- and gammacoronaviruses
are primarily bird pathogens, although they also infect some mammals;
notably, porcine deltacoronavirus was reported to infect humans in
2021 (ref.2). Thealpha-and betacoronaviruses contain all other known
human-infective coronaviruses. Betacoronaviruses include SARS-CoV,
Middle East respiratory syndrome-related coronavirus (MERS-CoV)

and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
all of which have caused morbidity and mortality in humans®. While
alpha-and betacoronaviruses caninfect many different hosts, substan-
tial diversity of coronaviruses occurs in bats, which are probably the
ancestral hosts of these coronavirus genera*’. Owing to this, coronavi-
ruses, along with other clades of zoonotic viruses including filoviruses,
lyssaviruses and henipaviruses, continue to be extensively monitored
in wild bats®.

Research into the natural origins of SARS-CoV-2 and continu-
ing interest in coronavirus ecology and evolution have highlighted
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Fig.1| PRISMA reporting for systematic review and meta-analysis.

the value of wild bat surveillance. However, field sampling is often
carried out opportunistically in response to concerns about spillo-
ver, and capacity for systematic sampling is financially or logistically
constrained’. For example, comparative analyses of bat filovirus and
henipavirus positivity have shown that only asmall fraction of studies
report longitudinal data, limiting inference into temporal dynamics
of infection in bats®. Single sampling events can bias prevalence esti-
matesinbiologically meaningful ways, for example if sampling is more
convenientin one season over another,and may lead to non-randomly
missing data. Unlike single sampling studies, spatiotemporal designs
canidentify seasonal and environmental drivers of viral prevalence and
sheddingintensity, but they are logistically challenging and often have
either spatial or temporal replication but not both®.

Ifthe ultimate goalis to explain and predict pathogen spillover—a
dynamicprocess thatis driven by geographical and temporal variation
in infection prevalence and shedding from reservoir hosts®?, there is
a critical need to resolve the relative importance of spatiotemporal,
taxonomic and methodological factors (for example, tissues sampled,
use of euthanasia, diagnostic method) that may impact virus positivity.
Unfortunately, alack of standardized and aggregated data from dispa-
rate studies limits our ability to quantify whether and how these many
different factors shape global assessments of coronavirusinfectionin
bats and downstream spillover risk.

To provide baseline data to inform future surveillance efforts,
we compiled a standardized global database of infection prevalence
estimates using published pre-pandemic coronavirus testing datafrom
wild bat samples and included metadata on bat and viral taxonomy,
study methodology, bat demography, bat seasonality and ecological
context. We used our database to test several standing hypotheses,
including that (1) longitudinal sampling results in higher virus detec-
tion rates®’, (2) seasonality affects virus shedding and detection rates™'®

and (3) viral detection varies in different sample types". More broadly,
we evaluated the global state of coronavirus surveillance in bat hosts
before SARS-CoV-2-motivated research efforts.

Results

Dataset description

We first identified global biases in the distribution and intensity of
pre-pandemic bat coronavirus surveillance. From publicly available
literature published between 2005 and 2020, we recovered 89,752
tests for coronaviruses in bats from110 studies'>"* (Fig. 1and Supple-
mentary Table 1). Within the pooled-coronavirus genera (alpha- and
betacoronavirus) infection prevalence dataset, which comprised data
from107 studies, approximately 95% of studies used PCR targeting the
RNA-dependent RNA polymerase (RARp) geneto detect viruses; other
gene targets included subunits of the coronavirus spike protein, the
nucleocapsid gene or the envelope protein. Of the 106/107 studies
detecting coronaviruses by PCR, approximately 56% used single-round
PCR, as opposed to nested PCR or multiple PCR assays in parallel to
target different genesin the same RNA sample. More than half of these
studies (53.8%) designed their primers using protocols from four
studies" . Of the pooled-coronavirus genera infection prevalence
records, 35% was derived from studies that had euthanized bats. Sup-
plementary Table 2 lists the sample types analysed and the associated
percentages of positive and zero-infection prevalence. Faecal samples
andrectal swabs were the most common samples used to detect coro-
navirus RNA. Sex and/or reproductive status of bats was only described
in13 of 110 studies in our full database, limiting downstream analyses of
sex biasesin coronavirusesinfection or possible impacts of reproduc-
tive stress on viral susceptibility and shedding®.

Spatial biasin coronavirus surveillance

Before the COVID-19 pandemic, we identified studies reporting sam-
pling of wild bats for coronavirus infection in 52 countries on 6 con-
tinents. However, the distribution and frequency of viral surveillance
was uneven (Fig. 2). Individual countries had 1to 32 bat coronavirus
studies (Fig.2a), with the number of total samples tested ranging from
41026,051 (Fig.2b). Whereas sampling occurred inall North American
countries, Central and South America had sparse surveillance. Sam-
pling in sub-Saharan Africa and in Central and South Asia has been
inconsistent, with most surveillance carried outin Chinaand in some
other regions of Southeast Asia. A generalized linear model (GLM)
of binary sampling effort (y*=13.02, P=0.01, R*= 0.04) confirmed
that countries in Asia and Europe were marginally more likely to have
data on bat coronaviruses than those in the Americas and in Oceania
(Supplementary Table 3). We found substantial geographic biases
for the relative intensity of sampling, specifically the number of stud-
ies (y*=17.92, P=0.001, R*= 0.06) and the number of tested samples
(x*=20671, P<0.001, R?=0.12). Post-hoc comparisons using GLMs
revealed that there were more bat coronavirus studies per country in
Asiathanin Africa or Europe (Supplementary Table 4). Similarly, the
greatest contrast in total number of tested bat samples was between
Asia and Europe (risk ratio = 4.64), and between the Americas and
Europe (risk ratio = 2.11; Supplementary Table 5).

Taxonomic biases in surveillance

More than1in 4 bat species (343 species of the 1,287 included in the
most recent bat phylogeny'?) were sampled in pre-COVID-19 pandemic
coronavirus surveillance. Bats have been sampled evenly across the
phylogeny (Fig. 3a). Of the 19 bat families included in this phylogeny,
15 had at least 1 member species sampled in our dataset. Unsampled
bat families included the Furipteridae, Natalidae, Myzopodidae and
Thyropteridae.Indeed, we only identified intermediate phylogenetic
signal in binary sampling effort (D = 0.86) that departed from both
phylogenetic randomness (P < 0.001) and Brownian motion models

of evolution (P < 0.001). Similarly, phylogenetic factorization'*,

Nature Microbiology


http://www.nature.com/naturemicrobiology

Analysis

https://doi.org/10.1038/s41564-023-01375-1

X 4\}
ll

4 &‘ K‘ “
B TGy \\?35,
Y

stucies NN

10 20 30

Fig. 2| Geographic distribution of bat coronavirus sampling effort. Geographic
distribution is defined by the number of studies per country (a) and the number

of samples tested per country (b). Sampled countries varied in having 1to 32 bat
coronavirus studies (a), with the number of total samples tested ranging from 4
t026,051(b). A disproportionate number of bat coronavirus studies and testable
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samples were conducted and assayed in China, probably reflecting interest in

the subgenus Sarbecovirus and the risk of future SARS-like virus emergence.

Many areas were severely understudied, particularly relative to ecological and
evolutionary risk factors for emergence™. In particular, sampling in Central and
South America, sub-Saharan Africaand Central and South Asia was notably limited.

a graph-partitioning algorithm based on the bat phylogeny, did not
identify any bat clades that differed considerably in their fraction of
sampled species. In contrast, we observed stronger taxonomic biasesin
samplingintensity. The number of studies per sampled species ranged
from1to 23 (Miniopterus schreibersii and Rhinolophus ferrumequinum),
whereas the number of total samples tested ranged from 1to 16,499
(Rhinolophus sinicus). The number of studies per sampled species
showed low phylogenetic signal (1 = 0.02) that departed from Brownian
motion models of evolution (P < 0.001) but not phylogeneticrandom-
ness (P=0.56). Phylogenetic factorization did, however, more flex-
ibly identify 3 bat clades with greater mean numbers of studies than
the paraphyletic remainder (Fig. 3b): a subclade of the genus Myotis
(including both European and Asian species), a subclade of the tribe
Pipistrellini (including the genera Pipistrellus and Nyctalus) and a sub-
clade of the family Rhinolophidae (Supplementary Table 8); notably, all
highly sampled clades consisted exclusively of Old World bat species.

For the total number of tested samples per species, we instead
observed more intermediate phylogenetic signal (A =0.27) that
departed from both Brownian motion models of evolution (P < 0.001)
and phylogenetic randomness (P < 0.001). Accordingly, phylogenetic
factorization identified a total of 39 clades with differential intensities
of sampling effort, 15 of which had relatively more tested samples and
24 had relatively fewer tested samples (Fig. 3¢). The top clades with
comparatively fewer total samplesincluded alarge portion of the sub-
order Yangochiroptera; the above-mentioned subclade of the tribe Pip-
istrellini; members of the phyllostomid subfamilies Stenodermatinae,
Glossophaginae and Phyllostominae; and the sister families
Rhinolophidae and Hipposideridae; these results suggest a greater
number of publications on some of these bat taxa but fewer tested
samples. However, smaller subclades of the Hipposideridae and Rhi-
nolophidae families were some of the most heavily sampled, suggest-
ing key biases in sampling effort within these taxa that have been the
subject of much coronavirus research (Supplementary Table 9). Finally,
members of several genera within the Pteropodinae subfamily were
undersampled (that is, Pteropus, Eidolon and Acerodon), while others
displayed greater sampling effort (that is, the subfamily Rousettinae).

Heterogeneity in coronavirus infection prevalence
Using a phylogenetic meta-analysis model that accounted for sampling
variance, bat phylogeny, additional species effects, and within- and

between-study variation'””**, we observed high heterogeneity among
coronavirus infection prevalence estimates (> = 84.2%, Q, g54 = 8,620.69,
P <0.0001). This heterogeneity was mainly due to within-study (43.65%)
and between-study effects (31.53%), with smaller contributions from
bat phylogeny (9.02%) and additional species effects (0.001%). When
repeating this intercept-only model for alphacoronavirus- and
betacoronavirus-specific datasets, prevalence showed similar pat-
terns of heterogeneity (alphacoronavirus: * = 79.10%, Q, ss; = 4,973.72,
P<0.0001; betacoronavirus: /* = 74.10%, Q, 4,5 = 3,871.49, P< 0.0001),
mainly due to within-study (alphacoronavirus: 35.50%; betacoro-
navirus: 30.21%) and between-study effects (alphacoronavirus:
36.94%; betacoronavirus: 29.88%) and secondarily by phylogeny
(alphacoronavirus: 6.66%; betacoronavirus: 14.02%) or other
species-level effects (alphacoronavirus: 0.001%; betacoronavirus: 0%).

Methodological and biological predictors of prevalence

When considering the suite of methodological and biological pre-
dictors in our phylogenetic meta-analysis models, fixed effects
explained approximately 20% of the variance in infection prevalence
(pooled-coronavirus generaR? = 0.19; alphacoronavirus-only R? = 0.21;
betacoronavirus-only R? = 0.19). Sample type, sampling method and
study format were the strongest predictors of coronavirus prevalence
(Table 1). Within our pooled-coronavirus dataset, lung or respiratory
samples (untransformed S =-0.09; 95% confidence interval (Cl):
-0.14t0 -0.04, P=0.001), oropharyngeal samples (untransformed
L =-0.08;95% Cl. -0.14 to —0.03, P = 0.004), pooled swabs/samples
(untransformed 8 =-0.07;95% Cl:—0.12t0-0.03, P= 0.003) and pooled
tissue (untransformed =-0.13; 95% Cl: —0.22 t0 -0.04, P= 0.006) all
had lower prevalence than faecal/rectal or intestinal samples, with
weaker associations observed for only alphacoronaviruses and only
betacoronaviruses (Fig. 4). Across all three datasets, repeat sampling
was associated with a 0.70-1.6% increase in coronavirus prevalence
(pooled coronavirus: untransformed g = 0.15; 95% Cl: 0.05-0.25,
P=0.003; alphacoronavirus: untransformed 8 = 0.14; 95% CI: 0.03—
0.26,P=0.03; betacoronavirus: untransformed = 0.13; 95% CI: 0.03-
0.23, P=0.009) as compared to one-time (single) sampling (Fig. 4).
Similarly, longitudinal study design predicted asmallincrease (-0.23—
0.33%) in positive viral detection in the pooled coronavirus (untrans-
formed = 0.06;95% CI:0.01-0.11, P= 0.01) and alphacoronavirus-only
(untransformed = 0.07; 95% CI: 0.02-0.12, P=0.008) datasets, as
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Fig. 3| Evolutionary distribution of bat coronavirus sampling effort.
Sampling effort is defined as whether a bat species has been sampled (a), the
number of studies (b) and the number of samples tested (c). Clades identified
by phylogenetic factorization with greater or lesser sampling effort compared
with a paraphyletic remainder are shown in red and blue, respectively, alongside
clade numbers per analysis. Phylogenetic factorization did notidentify any
taxonomic patterns in binary sampling effort across the bat phylogeny (a), but
dididentify anumber of bat clades within sampled bat species that have been
particularly well-sampled for coronaviruses, both in terms of number of studies
(b; Supplementary Table 8) and number of samples (c; Supplementary Table 9,
only the first 24 phylogenetic factors are displayed). For analyses of total
studies and tested samples, segment length corresponds to the relative degree
of sampling effort.

opposed to cross-sectional sampling. Other model variablesincluding
sampling season, bat family, PCR type and gene target showed weak
orno association with coronavirus positivity across all datasets. Nota-
bly, use of euthanasia was not associated with greater ability to detect
coronavirus RNA (pooled coronavirus: untransformed = -0.01; 95% CI:
-0.07t00.05, P=0.86; alphacoronavirus: untransformed = -0.01; 95%
Cl:-0.08t00.05, P=0.73; betacoronavirus: untransformed = 0.004;
95% Cl: -0.05t0 0.06, P=0.89).

Discussion
Since the onset of the COVID-19 pandemic, increased attention has
been paid to bats as potential reservoir hosts of coronaviruses, pre-
sumably including viruses with zoonotic potential'”"*!, While other
studies have reported data on the geographical and taxonomic dis-
tribution of reported bat hosts*'*?, we generated a standardized, Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA)-compliant open and static database of coronavirus surveil-
lance in bats, which provides disaggregated data (including negative
results). Indoing so, our study takes animportant step towards build-
ing anopen database of wildlife disease surveillance with relevance to
pandemic prediction and preparedness'”.

Our databaseisasnapshot of bat coronavirusresearch before the
COVID-19 pandemicandincludes 110 studies, 2,274 records of infection

prevalence and atotal of 89,752 bat samples. Our geographic and taxo-
nomic analyses reveal that most bat sampling has taken place in China,
with gapsinsurveillancein South Asia, the Americas, sub-Saharanand
East Africa. Additionally, very few such studies were carried out inthe
United States and Canada.

Progress towards addressing gaps in surveillance has been made
since the onset of the pandemic; for example, recent bat surveillance
in Latin Americaand Madagascar has been reported™***%, Although
phylogenetic coverage of bat species is a strength of the dataset, we
identified taxonomic patternsin the intensity of sampling efforts. Our
analyses confirm previous findings, such as a greater number of surveil-
lance studies inthe Rhinolophidae and adisproportionate number of
studies in China’. However, we also characterized finer-scale varia-
tioninsampling effort relevant to prioritizing future surveillance. For
example, although many studies have been conducted onrhinolophid
bats, the Rhinolophidae and Hipposideridae families also had low sam-
ple sizes for coronavirus diagnostics, suggesting low power to detect
viruses onaper-species basis. Further, subclades of the Hipposideridae
and Rhinolophidae as well as the Rousettinae subfamily of pteropid
bats were some of the most heavily sampled taxa versus considerable
undersampling within subfamilies of phyllostomid bats in particular.
Strengthening surveillance efforts in undersampled regions and spe-
cificbattaxaisimportant; for example, greater sampling of rhinolophid
and hipposiderid species that fall outside identified well-sampled
subclades is likely to uncover novel coronaviruses (Supplemen-
tary Table 9). Sampling the understudied Neotropical subfamilies
Stenodermatinae and Glossophaginae might also have potential to
uncover novel betacoronaviruses, as predicted by recent models''.

After controlling for bat phylogeny, sampling variance, and both
study- and observation-level heterogeneity, we found that sample
type, repeat sampling and longitudinal study design were the most
important predictors of coronavirus prevalence. We did not find con-
sistent support for seasonality in coronavirus prevalence"'’, whereas
we did find support for longitudinal sampling enabling coronavirus
detection®’ and for successful coronavirus detection varying by sam-
ple type. Specifically, lung or respiratory samples, urinary samples,
oropharyngeal samples, pooled swabs and pooled tissue were asso-
ciated with lower prevalence across all studies, with weaker effects
generally observed in alphacoronavirus- and betacoronavirus-only
datasets. In contrast, repeat sampling and longitudinal study designs,
as well as intestinal and faecal and rectal samples, were consistently
associated with viral detection. This might reflect gastrointestinal
tropism of coronaviruses in bats".

To optimize coronavirus detection, combining the above set of
sampling approaches'’, particularly using faecal samples or rectal
swabs, should enhance detection of coronaviruses from wild bats.
Moreover, longitudinal study designs will be crucial to pinpoint how
coronaviruses are transmitted among wild bat hosts"****! and iden-
tify the intrinsic and extrinsic drivers of virus shedding'**'**, Eutha-
nasia did not affect the likelihood of virus detection, which means
that coronavirus surveillance can be accomplished with minimally
invasive (for example, rectal swab) and readily accessible samples
(for example, museum-derived, such as whole specimens or indi-
vidual organs) rather than requiring terminal sampling'*. Avoiding
euthanasiareduces negative impacts of virus surveillance studies on
bat population dynamics and enables longitudinal, mark-recapture
designs. However, we note that selective terminal sampling can still
provide otherimportant benefits for virus surveillance, including the
ability to post hoc confirm the species identity of voucher specimens,
study tissue tropism and receptor usage of coronaviruses and pro-
vide lasting evidence of specific bat-virus associations in scientific
collections™****,

Our systematic review identified multiple challenges in syn-
thesizing viral surveillance data from wildlife studies. Although
study-level effects can be accounted for in part with random effects
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Table 1| Meta-analysis of coronavirus prevalence across studies

Alphacoronavirus or betacoronavirus Alphacoronavirus only Betacoronavirus only

Q d.f. P Q d.f. P Q d.f. P
Sampling method 16.066 2 0.0003 9.347 2 0.0093 17.818 2 0.0001
Study format 6.302 1 0.0121 7.058 1 0.0079 2.252 1 0.1334
PCR type 1.368 1 0.2422 0.4157 1 0.5191 2.993 1 0.0837
Sample type 38.005 8 <0.0001 17.612 8 0.0243 30.033 8 0.0002
Euthanasia use 0.0332 1 0.8555 0.1166 1 0.7328 0.0186 1 0.8915
Bat family 11.5996 12 0.4783 10.8095 12 0.5453 14.9070 12 0.2466
Sampling season 8.3251 4 0.0804 9.9849 4 0.0407 6.9559 4 0.1382
Gene target 2.2751 2 0.3206 0.5962 2 0.7422 2.9593 2 0.2277

Analysis of variance (ANOVA) table from the phylogenetic meta-analysis model fit using REML to all data and each data subset (alphacoronavirus only or betacoronavirus only). For each
variable, we provide Cochran’s Q, the associated degrees of freedom and the two-sided P value.
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Fig.4|Methodological and biological predictors of coronavirus prevalence
in wild bats. Phylogenetic meta-analysis model coefficients and 95% confidence
intervals, estimated using REML for each of our three datasets. Colours indicate
the nine variables included in each model (binary covariates for sampling
season). Estimate confidence intervals are shaded by whether they cross zero
(the vertical dashed line), with increased transparency denoting non-significant
effects. The intercept contains the following reference levels: single sampling

(sampling method); cross-sectional study (study format); single PCR (PCR type);
faecal, rectal or anal sample (sample type); euthanasia not used (euthanasia
use); Craseonycteridae (bat family); not fall, not winter, not spring and not
summer (sampling season); and RNA-dependent RNA polymerase (RdRp) only
(gene target). Sample sizes are 1,854 prevalence estimates for all coronaviruses,
1,553 prevalence estimates for only alphacoronaviruses and 1,428 prevalence
estimates for only betacoronaviruses.

in meta-analysis, we note that at least some of our non-significant
results could be due to variability in study format, sampling design
and reporting. To reduce this limitation in the future, we encourage
researchersto report dataat the finest resolution possible (for exam-
ple, fully stratified by location, timepoint, bat species, virus species
or strain, and sample type). Developing and adopting data standards
forreporting these types of data—and real-time channels to aggregate
them with standardized metadata—could substantially improve our

ability toaddressresearch questions regarding transmission dynamics,
batimmunology, viral evolution and spillover risk.

Methods

Systematic review

To identify studies quantifying the proportion of wild bats positive
foralpha-or betacoronaviruses using PCR or serological methods, we
followed the PRISMA protocol (Fig. 1)'*°. We systematically searched
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Web of Science, PubMed and Global Health (a database comprising
publications from the Public Health and Tropical Medicine database
and CAB Abstracts). PubMed searches used the following string: (bat*
OR Chiroptera*) AND (coronavirus* OR CoV*). Web of Science and
Global Health (comprising CAB Abstracts and Public Health and Tropi-
cal Medicine database) searches used the following string: (bat* OR
Chiroptera*) AND (coronavirus* OR CoV*) AND (wild*). Searches were
performed on 24 September 2020 and included studies published in
or after1984.

We screened a total of 1,016 abstracts for studies that included
sampling of wild bats for coronaviruses. Publications were excluded if
they did not assess coronavirus prevalence in bats or were published
inlanguages other than English (this led to the exclusion of only asin-
gle dissertation, writtenin Portuguese). Intotal, we identified a total
of 159 candidate articles that we screened for these data. Of these,
110 studies tested bats for coronaviruses, reported reusable data
and wereincludedinour final, publicly available dataset. Geographic
and taxonomic analyses, which did not rely on population-level
prevalence estimates, were performed on a 108-study subset of the
public dataset which excludes records with genus- or family-level
versus species-level bat data and includes data that could not be
used to calculate prevalence (for example, number of samples cor-
responds to geographic region rather than bat species). Infection
prevalence analyses were performed on a 107-study subset of the
public dataset. Each of these two datasets were then divided into
three more: pooled-coronavirus genera (alphacoronaviruses and
betacoronaviruses), alphacoronavirus genus-only and betacoro-
navirus genus-only (Supplementary Table 1). The datasets used for
geographicand taxonomic analyses, which included datathat could
not be used to calculate prevalence (for example, number of samples
corresponds to geographic region rather than bat species) had 37
(pooled-coronavirus genera), 21 (alphacoronavirus genus-only) and
9 (betacoronavirus genus-only) more rows than the corresponding
infection prevalence datasets.

Our aimwas to provide acomprehensive record of bat coronavi-
rus surveillance up to the beginning of the COVID-19 pandemic, and
our sample necessarily omits more recent publications that have
reanalysed samples, motivated by investigations into the evolution-
aryorigins of SARS-CoV-2 and other L2 lineage sarbecoviruses. Italso
omits the final dataset compiled by the USAID PREDICT dataset and
released at the end of 2020. Standardized PREDICT format is a sub-
stantively different kind of data compared with all other studies we
analysed; these data have been extensively analysed elsewhere'. Addi-
tionally, only 16 of the 110 studies in our database reported financial
support fromthe PREDICT programme, suggesting that a substantial
breadth of data collection existsintheliterature beyond any one col-
laborative project.

Data collection

Our initial dataset consists of a total of 110 studies and 2,274 records.
Each record provides an infection prevalence estimate at the finest
spatiotemporal, methodological and phylogenetic scale reported.
More precisely, each unique record includes a distinct combination
of coronavirus genus; bat genus, family and/or species; sample type;
detection method (that is, PCR or serology); gene/protein target;
date/sampling season and geographic location (sampling country,
state, and specific site and/or geographic coordinates, if available).
Sampling season was determined by month of sampling according to
National Oceanic and Atmospheric Administration meteorological
definitions; inthe Northern Hemisphere, sample seasons equated to
fall (September-November), winter (December-February), spring
(March-May) and summer (June-August), while in the Southern
Hemisphere these groupings were inverted (for example, December-
February was classified as summer)™*®. Detection estimates derived at
finer phylogenetic scales (for example, virus strain) were aggregated

to genus. Prevalence estimates that combined two or more sample
subtypes (for example, lung and smallintestine) and that could not be
further separated were recorded as pooled. As observed previously
for bat filoviruses and henipaviruses, some studies pooled corona-
virus detection estimates for more than one bat species®. Rows with
these pooled prevalence estimates were excluded from subsequent
statistical analyses. Study formats were classified as longitudinal and
cross-sectional: prevalence estimates derived from repeated sam-
pling at one location were marked as longitudinal, while those derived
from one location on a specific date were listed as cross-sectional.
Thus, most studies (92.7%) yielded more than one detection estimate
record: for example, a longitudinal study that provides individual
coronavirus detection estimates from two types of samplesinagiven
bat species onsix separate dates spanning several years would result
inatleast12recordsin the dataset.

Inadditionto these spatialand temporal components, werecorded
dataondetectionmethodology (for example, single or nested/multiple
PCR for RNA detection or lateral flow immunoasssay for antigen detec-
tion), additional virus taxonomy (for example, subgenus, strain), PCR
primers (and their gene targets) and whether the authors included
information on the sex of the sampled bats or the use of euthanasia. We
note that infection prevalence estimates are based on the number of
samples tested for coronaviruses rather than the number of individual
bats, as studies often tested multiple samples per individual specimen
(forexample, saliva, faeces, blood, tissue).

Geographic and taxonomic analyses of sampling effort
Withthese data, we assessed geographic and taxonomic patternsin bat
samplingeffort. For the former, we fitted a GLM, withwhether a country
had been sampled for bat coronaviruses as a binomial response and
region as the predictor in R. For sampled countries (n = 52), we fitted
equivalent GLMs that modelled the number of unique studies and the
total samples per country as a Poisson-distributed response. For each
GLM, we assessed fit using McFadden’s R? and the ‘performance’ pack-
age'”. Wealso adjusted for the inflated false-discovery rate in post-hoc
comparisons using ‘emmeans’*®, Here and below, all statistical tests
aretwo-tailed.

For taxonomic patterns, we derived equivalent response vari-
ables across bat species, using a recent phylogeny as a taxonomic
backbone®. We note that despite being a recent synthesis, the number
of bat species included this phylogeny (n=1,287) remains an under-
estimate of known bat diversity (over 1,460 species); as such, corre-
sponding taxonomic analyses necessarily exclude approximately 12%
of extant bat species. Additionally, only four species in our dataset
were absent from this phylogeny (Pipistrellus taiwanesis, Pipistrellus
montanus, Myotis rufoniger, Rhinolophus cornutus) and were excluded
from phylogenetic analyses. We also reclassified speciesin the genus
Miniopterus from the Vespertilionidae to be the sole members of the
family Miniopteridae'. For all bat species in our phylogeny, we derived
abinary response for whether aspecies had been sampled for corona-
viruses. For those sampled species (n = 343), we derived the number
of unique studies and the total samples. Using the ‘caper’ package'®,
we first estimated phylogenetic signal in sampling effort (that s, the
propensity for related bat species to be sampled in a similar intensity).
Forbinary sampling effort, we calculated D, where a value of 1indicates
aphylogenetically random trait distributionand O indicates phyloge-
netic clustering under a Brownian motion model of evolution™. For
sampled species, we estimated Pagel’s Afor the log,,-transformed num-
ber of studies and samples™. Next, we applied a graph-partitioning
algorithm, phylogenetic factorization, to more flexibly identify
any bat clades across taxonomic levels that differ in sampling
effort. With a standardized taxonomy from our bat phylogeny®,
we used the ‘phylofactor’ package to partition binary sampling effort,
number of studies and number of samples in a series of iterative
GLMs for each edge in the tree'®'*, Asin our geographic analyses, we
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modelled these variables with binomial and Poisson distributions.
We then determined the number of significant clades using Holm’s
sequentially rejective test with a 5% family-wise error rate™*.

Phylogenetic meta-analysis of infection prevalence

Wefirst used the ‘metafor’ package to calculate Freeman-Tukey double
arcsine-transformed proportions of coronavirus infection-positive
bats and their corresponding sampling variances'*'**°, We then built
two hierarchical meta-analysis models for three infection prevalence
datasets: the global dataset, an alphacoronavirus-specific dataset and
abetacoronavirus-specific dataset (see Supplementary Table 1for the
sample size per model). Each model was fitted using restricted maxi-
muma likelihood (REML) and included bat species and phylogeny (using
the previous bat tree) asrandom effects alongside an observation-level
random effect nested withinastudy-level effect”. The first model (that
is, model 1) for each dataset only included an intercept and was used
to estimate /2, which quantifies the contribution of true heterogeneity
(rather than noise) to varianceininfection prevalence. Wereport both
the overall # per dataset as well as the proportional *for eachrandom
effect,and we used Cochran’s Qto test whether such heterogeneity was
greater than that expected by sampling error alone. The second model
(thatis, model 2) for each dataset included the following moderators:
sampling method (repeat vs single), study format (longitudinal vs
cross-sectional sampling), PCR type (nested/multiple vs single), sample
analysed, whether terminal sampling was performed, bat family, sam-
pling season and gene target. We calculated variance inflation factors
for all moderators in the linear model; the moderators displayed no
substantial collinearity™. To facilitate estimating model coefficients,
weremoved levels for any moderators withn < 3. For eachiteration of
model 2, we assessed moderator significance using the Q test (that
is, a Wald-like test of all coefficients per moderator) and estimated
a pseudo-R? as the proportional reduction in the summed variance
components compared against those from anintercept-only model™’.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The primary dataset is available on GitHub (www.github.com/virale-
mergence/datacov; https://doi.org/10.5281/zenodo0.6644163) and
comprises data extracted from papers obtained during a systematic
search of PubMed (https://pubmed.ncbi.nlm.nih.gov), Web of Science
(https://www.webofscience.com) and Global Health (https://www.
cabdirect.org/globalhealth).Source data are provided with this paper.

Code availability

Datawere analysed in R Studio (v2021.9.2 ‘Ghost Orchid’). The unpro-
cessed data and scripts to generate the primary dataset (and all other
derived datasets) and to replicate all analyses and visualizations are
available at www.github.com/viralemergence/batgap; https://doi.
org/10.5281/zenodo.6644081.
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Reproducibility Unprocessed data and scripts to generate the primary dataset and to reproduce all analyses and visualizations are provided at
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