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THE BIGGER PICTURE Documenting all interactions between viruses and mammals is not feasible; viruses
are too small, the world is too big, and viruses and mammals are too diverse. As a consequence, we think we
only know about 1% or 2% of the interactions between mammals and viruses. This is a critical gap in our
knowledge because it can lead us to missing reservoirs of possible zoonotic viruses. In this article, we
develop a process to leverage the information we have about interactions between hosts and viruses to
do three things: First, we predict missing interactions in this network and give them a score based on
how likely the model guesses they are. Second, we map these predicted interactions in space to provide
guidance about where to go and what to look for to collect data that would maximize our knowledge of
host-virus interactions. Finally, based on the predicted interactions, we use information about the genome
of viruses to identify possible zoonotic viruses.

oe 3 oe Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

Predicting host-virus interactions is fundamentally a network science problem. We develop a method
for bipartite network prediction that combines a recommender system (linear filtering) with an imputation
algorithm based on low-rank graph embedding. We test this method by applying it to a global database
of mammal-virus interactions and thus show that it makes biologically plausible predictions that are
robust to data biases. We find that the mammalian virome is under-characterized anywhere in the
world. We suggest that future virus discovery efforts could prioritize the Amazon Basin (for its unique
coevolutionary assemblages) and sub-Saharan Africa (for its poorly characterized zoonotic reservoirs).
Graph embedding of the imputed network improves predictions of human infection from viral genome
features, providing a shortlist of priorities for laboratory studies and surveillance. Overall, our
study indicates that the global structure of the mammal-virus network contains a large amount of infor-
mation that is recoverable, and this provides new insights into fundamental biology and disease
emergence.
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INTRODUCTION

Despite growing interest in viral ecology, data remain limited
because most of the global virome remains undocumented.
Computational methods that can infer undiscovered associa-
tions in a partially observed host-virus network can fill in some
of these gaps.' At least 20%-40% of host-parasite associations
are estimated to be unrecorded in locally collected, highly com-
plete datasets;” a much higher proportion is likely unrecorded in
the high-sparsity datasets cataloging the global virome. An even
greater proportion of host-virus interactions may be biologically
plausible (i.e., a virus might have the capacity to infect a host) but
still unrealized for lack of ecological opportunities. These are
often the links with the greatest relevance to actionable science;
at least 10,000 mammalian viruses likely have the unrealized ca-
pacity to infect human hosts,® while an even greater number
could be shared thousands of times between mammals as
they track shifting habitats in a changing climate.”

Here, we propose a novel method for predicting unknown links
in partially sampled networks and apply it to the largest database
of host-virus associations currently available. The method is
based on a combination of linear filtering, which uses high-level
network information to generate an initial guess as to the proba-
bility of an interaction, and singular value decomposition, which
uses the structure of a low-rank approximation (which has a bet-
ter signal-to-noise ratio®) of the entire network to impute interac-
tions that were presumed negatives. In combination, this method
uses existing knowledge on the entire network but can also be
tuned in such a way that its adjacency matrix is approximated
at a rank that maximizes the amount of information used for
imputation. Importantly, this method relies entirely on network
structure and does not consider (or require) external information
specific to the hosts and viruses involved (Table 1). We used this
method to predict host-virus associations that are either unde-
tected (they happen in nature but are not observed or docu-
mented) or are biologically plausible but possibly unrealized in
the real world (they can happen in nature but are restricted by
the spatial distribution of the species, which can be modified
by climate change). Finally, we applied graph embedding to
the observed and imputed networks and used these as predic-
tive features to augment a previously published model that pre-
dicts which viruses can infect humans based on summaries of
viral genome composition,® testing whether knowledge about
the global dynamics of cross-species transmission is informative
for the narrowly defined problem of predicting human disease
emergence.

RESULTS AND DISCUSSION

Predicting the host-virus network

The combined linear filtering and singular value decomposition
(LF-SVD) model relies on four hyper-parameters describing the
relative importance of network structure and matrix rank used
for approximation (SVD). The network structure parameters we
use are the in-degree (proportional number of viruses infecting
a host), out-degree (proportional number of hosts infected by a
virus), and connectance (proportion of pairs of species that
have an interaction); these were picked because they capture
a lot of relevant information on network structure and have
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been established to be enough to start identifying possible
missing interactions.” After tuning of the hyper-parameters, the
best model (which used initial values emphasizing network con-
nectance and performed SVD at rank 12) achieved an area under
the receiver operating characteristic curve (ROC-AUC) of 0.84
(Table S1; Figure S1). Although analyses of ecological networks
usually gravitate toward using degree-based (over connectance-
based) models, this choice of best model is perhaps unsurpris-
ing. Assuming that the overwhelming majority of interactions
are unsampled, known degree is mostly a proxy for sampling
effort—an assumption that is supported by previous work sug-
gesting that observed per-host viral richness (equivalent
to degree in a bipartite network) is largely the result of virus
discovery effort.® The hyper-parameter tuning strategy and the
one-by-one LF-SVD imputation step help circumvent this bias;
in less under-sampled networks, or in networks where under-
sampling has less statistical structure, it would not be surprising
to see degree-based models outperforming connectance-
based ones.

We applied four tests of whether model performance was
undermined by biases in the partially observed network, a com-
mon problem in predicting host-pathogen interactions.

First, we tested the effect of passive sampling bias with a
regression of host species’ viral diversity against citation counts,
a commonly used proxy for scientific research effort. We found
that, consistently, citations had a weaker effect predicting viral
richness after imputation (Table S2), suggesting a direct de-
biasing effect.

Second, we tested the influence of impact bias, a specific form
of active sampling bias driven by relevance to human health. As a
simple test of impact bias, we examined the top 10 hosts that
shared viruses with humans before and after imputation. In the
observed network, domesticated and lab animals dominated
this list; although proximity to humans might lead livestock to
share many pathogens, this result is generally presumed to be
the effect of impact bias. After imputation, many of these species
were replaced with a handful of great apes and rodents (Fig-
ure S2). The former reflects well-supported biological rules
(closely related species share more viruses '), while the latter
might reflect a mix of true rodent “hyper-reservoir” potential '’
and, more likely, residual sampling bias from the well-character-
ized viromes of mouse and rat models.

Third, we examined whether sampling bias might be creating
an undesirable “rich-get-richer” effect, where novel interactions
are disproportionately predicted for species that are already
oversampled. If training data were unbiased, then this could be
a useful property; for example, a model might correctly assign
more interactions to some viruses because it “learns” that they
have a higher intrinsic host plasticity. However, host-virus net-
works are heavily shaped by sampling history, creating
geographic and taxonomic biases that could produce false
inferences.®"’

To examine the effects of geographic sampling bias, we map-
ped the number of total known host-virus interactions based on
mammal host ranges and compared this with the same map of
newly predicted interactions (Figure 1). In previous studies, pre-
dictive models have often reproduced a pattern of dispropor-
tionate sampling in European wildlife.'® ' Our model suffered
from a similar limitation and predicted notably fewer interactions
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Figure 1. Mammal biodiversity and sampling bias shape the geography of predicted interactions

(A) The total number of interactions recorded does not track the global distribution of mammalian richness with an overwhelming density of interactions in Europe.
(B) Known zoonotic hosts are concentrated in the Amazon, an area with comparatively fewer known host-virus interactions; the distribution of known zoonotic
hosts closely tracks the global richness of mammals.

(C and D) Post imputation, the model predicts strong increases in the number of interactions (C) in the Amazon and Central Europe but an increase in the number
of zoonotic hosts primarily concentrated in Africa (D). As a result, we expect the Amazon to be a hotspot of novel interactions and Africa to be a hotspot of novel

zoonotic hosts (i.e., the increase is greater than expected, given the known quantities in these places).

in South America and Africa. However, the imputation process
did significantly reduce geographic bias, and the imputed inter-
actions tracked global gradients in mammal biodiversity much
better than the original network. We also repeated this analysis
just for mammalian hosts of zoonotic diseases and found that
the original network was heavily biased toward neotropical rain-
forests but predicted that zoonotic hosts were primarily concen-
trated in sub-Saharan Africa. This would be a notable departure
from previous work, which has again reproduced patterns in ex-
isting data and predicted that undiscovered zoonoses are largely
concentrated in the neotropics.'®'*

To examine the effects of taxonomic sampling bias, we esti-
mated the number of “missing” viruses (i.e., the gap between
observed and estimated viral richness per host species'®) by
counting each host’s predicted novel interactions. Missing
viruses displayed only a moderate phylogenetic signal (Pagel’s
A = 0.35), suggesting that they are distributed fairly equally
across the mammalian tree of life—a finding that matches other
recently published observations.’”® An additional taxonomic
analysis identified four clades—cetaceans, a subclade of mostly
insectivorous bats, and two subclades of New World rodents—
with fewer missing viruses than other mammals (Figure S3;
Table S3), suggesting that the model is responsive to the fact
that these taxa may be more deeply sampled than the average
mammal. In the last two decades especially, bats and rodents
have been prioritized by virus surveillance programs because
they account for the majority of mammal species diversity and
because of hypotheses about their role as disproportionate “hy-
per-reservoirs” of zoonotic diseases (e.g., Han et al.'® and Luis
et al.’®). A growing number of analyses suggest that these clades
may not actually harbor more viruses or more zoonoses; rather,

the appearance that they do is an impact of this disproportionate
sampling effort.2>""® Our model assigns fewer unknown inter-
actions to these species, suggesting that it has the ability to
overcome taxonomic sampling bias without directly using any
data on host taxonomy or phylogeny.

Emergent properties of the imputed host-virus network
Compared with the 5,494 interactions recorded in our original
mammal-virus dataset, our model predicted a total of 75,901
new interactions (Figure 2). With a total of 81,395 interactions,
the imputed network has a connectance of 0.09, which is well
within the range of connectances for antagonistic bipartite net-
works.'® The best-scoring model has a false discovery rate of
9.3%, meaning that it is potentially over-predicting about 7,060
interactions. The same model has a false omission rate of
23%, which would suggest a number of undiscovered interac-
tions of the order of 10° for this dataset. This being said, these
numbers should be interpreted within the context of data con-
straints; the initial dataset is biased toward extreme sparsity,
and for this reason it is likely that the imputed network is less
severely incomplete than the false omission rate would suggest.
We next examined the post-imputation network for meaningful
biological signals. The “evolutionary distance effect” is often the
best-supported signal in host-virus networks: closely related
hosts share viruses (through coevolution) and microbiologically
relevant traits (through identity by descent), which facilitates
cross-species transmission, leading to a correlation between
evolutionary distance and virome similarity.” We tested this
property in the pre- and post-imputation networks by examining
viral sharing pairwise among all hosts and between humans and
other mammals. We found a strong and consistent phylogenetic
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distance effect in viral sharing (whether two hosts share any vi-
ruses at all) and the total number of viruses shared pairwise
among mammals and specifically with humans (Figure S4);
although imputation reduced the signal of these effects, all but
one (binary viral sharing with humans) remained significant
even after imputation (Tables 2 and 3). These results suggest
that the interactions predicted by our model have a high biolog-
ical plausibility, and that, even without incorporating any host or
viral traits into our analyses, the latent factors that structure the
network are identified and successfully recapitulated by
the model.

Finally, we evaluated the effect of imputation on the spatial dis-
tribution of viral biodiversity. Our models predicted that the total
number of host-virus interactions generally tracked mammal biodi-
versity, with a previously unknown hotspot of potential zoonotic

Table 1. Comparison with existing approaches

Sampling
Network Taxonomy Phylogeny Traits effort

This study yes
Stock etal.”  yes
Evans et al.”® host, virus host,

virus
Farrell etal.’> yes host
Pandit et al.”"  yes virus yes
Stock et al.** * yes virus host host yes
Wardeh et al.”® yes virus host host, yes

virus

Our study is one of the only feature-agnostic approaches that has so far
been applied to predicting mammal-virus interactions and results in
equally biologically plausible findings compared with other approaches.
These previous approaches usually require extensive information on
host and virus features, which often requires an estimate of sampling
effort to be added as a confounder. By adding the SVD step after the
LF, we improve on the Stock et al.” approach, which is equally feature
agnostic but focuses on the network rather than its embedding; this
method performed poorly when applied to prediction of bat hosts of be-
tacoronaviruses in a multi-model context,”* emphasizing the importance
of considering network embeddings even lacking additional predictors.
Some of the methods (marked with asterisks) listed have only been
applied to non-virus systems but are classified with the host-analog
and virus-analog organism.
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Figure 2. The global virome pre and post
imputation

Network layouts reflect the first two dimensions of a
t-SNE embedding on four dimensions, where the
positions of nodes were initially picked based on a
PCA analysis. Hosts are shown as circles and vi-
ruses as downward-pointing triangles, and the
relative size of each point scales linearly with degree
(using the same scale for both figures; i.e., two no-
des with the same degree will have the same size on
the left and right).

disease hosts in sub-Saharan Africa (Figure 1). To further explore
these patterns, we used the local contribution to the beta-diversity
approach,® which measures the extent to which the community at
a single location differs from the expectation based on the entire
range considered. When applied to interactions,*® it reveals areas
where, although the network might not be structurally different, itis
composed of interactions that do not usually occur together. In
biological terms, this means that novel host jumps are possible
through different host-virus pairs being in contact. Comparing
the uniqueness of the viral community composition based on
host spatial distribution before and after imputation reveals an un-
documented hotspot of unique host-virus associations in the
Amazon (Figure 3). This finding tracks with other recent work on
the biogeography of bat coronaviruses,?”*® which has suggested
that betacoronaviruses followed divergent trajectories of cospeci-
ation with their hosts after some bat families became isolated inthe
New World. Our predictions suggest that this might be a broader
pattern that shaped the biogeography of mammal viruses, and
although the Amazon may not harbor disproportionate viral rich-
ness, it might be home to more unusual (and currently unknown)
branches of viral evolution.

Predicting viruses with zoonotic potential

We finally explored whether network-wide prediction offered
useful insights into zoonotic potential, the ability of a virus to
infect humans (a subset of links with one focal node in the
network). Surprisingly, we found that the imputation method
did not predict known human-associated viruses any better
than random (AUC = 0.51; Table 4). This finding does reassur-
ingly imply that zoonotic viruses are not contributing a particu-
larly strong structural bias to the predictions but indicates that
the model performs poorly when predictions are restricted to
one fairly atypical node of over 1,000. Indeed, while the ability
of the model to predict the viruses associated with a given
host generally increased as hosts are linked to more viruses, per-
formance was poor for hosts linked to unusually high numbers of
viruses relative to the rest of the dataset (of which humans were
the most extreme; Figure 4). A similar but less extreme pattern
was observed among viruses linked to above-average numbers
of hosts. Thus, although our best model focusing exclusively on
connectance performed well in general, models incorporating in-
or out-degree or specialized to a particular node may be needed
for better-sampled nodes.
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Table 2. Phylogenetic signal in virus sharing pre and post
imputation

Table 3. Phylogenetic signal in number of viruses shared pre and
post imputation

Data
Sharing  source B SE p Value R? (adj.)
Pairwise pre imputation 2.23e-2 8.44e-05 *** 9.8%
(all hosts)
Pairwise post imputation 3.50 e-03 1.30e—4 *** 0.07%
(all hosts)
With H.  pre imputation 3.32e—-2 1.07e-2 ** 2.4%
sapiens
With H.  postimputation 1.46e—2 2.30e—2 0.524 —0.09%
sapiens

Data

Sharing source B SE p Value R? (adj.)
Pairwise pre —2.04e-02 4.97e-05 ™ 8.5%
(all hosts) imputation

Pairwise  post —6.12e-03 7.20e—06 *** 3.0%
(all hosts) imputation

With H. pre 6.53e—-03 4.50e-04 *** 2.2%
sapiens  imputation

With H. post 476e-0.3 1.08e-04 ** 3.8%
sapiens  imputation

Statistics are given for a GLM fit with a binomial distribution for the
outcome variable (whether any viruses at all are shared between two
hosts). ***p < 0.001.

We next investigated whether the imputed host-virus network
could be applied in specialized models aimed at identifying
human-infecting viruses. Viral host breadth is a widely used pre-
dictor of zoonotic ability but is generally unavailable for poorly
studied viruses.®'**° To test whether the structural information
on host range from our imputed network can be made accessible
for prediction, we revisited a recently developed model that
applies boosted regression tree models to predict zoonotic po-
tential based on the genome composition of animal viruses.®
We extracted the position of viruses in the pre- and post-imputa-
tion networks by removing humans (as well as viruses linked only
to humans in the observed data) and applying random dot prod-
uct graph embedding, which generated a total of 12 latent fea-
tures that describe each virus’s relationship to other viruses
and animal hosts in the network. We then added these features
to the genome composition-based model and compared perfor-
mance on the same set of viruses. Models incorporating the
embeddings performed significantly better than a genome
composition-only model despite the fact that humans were
removed from the network. Using embeddings derived from the
post-imputation network consistently produced better predic-
tions (mean test set AUC = 0.875, SD = 0.04; Figure 5). Averaging
predictions across the top 10% of repeated training iterations®°
further improved performance (AUC = 0.898). Moreover, of the
top 20 viruses predicted by the algorithm, 11 already have sero-
logical or otherwise circumstantial evidence of human infection
(Table 5), as do many of the other highly ranked viruses (Figure 6).

Overall, these findings suggest that network inference and
network embedding can work in tandem to capture latent infor-
mation about viral ecology and evolution, leading to better
predictions about which viruses might someday infect humans.
However, more work is needed to establish the exact operating
conditions under which such an approach can be useful; in
particular, the number of animal hosts that need to have been
found before reliable inferences on zoonotic risk can be made
for novel viruses (cf. Figure 4) is difficult to assess without
detailed data on the order in which hosts are linked to viruses
(expected to be nonrandom given sampling biases).

Conclusions
In this study, we use a novel feature-agnostic imputation method
to infer properties of the host-virus network that are often

Statistics are given for a GLM fit with a Poisson distribution for the
outcome variable. **p < 0.001.

clouded by sampling bias or data deficiency. Our findings sup-
port the general assumption that only a small percentage of
the mammalian virome has been characterized, even in well-
sampled regions like Europe. However, our models also suggest
some new aspects of global viral biogeography; in particular, we
find that future virus discovery efforts in the Amazon may reveal a
hidden hotspot of unique coevolutionary systems, while future
sampling in sub-Saharan Africa might be most likely to identify
new reservoirs of zoonotic disease. Applying the model to zoo-
notic risk ranking of wildlife viruses, we find that ecological net-
works contain a substantial amount of information that can be
recovered through graph embedding and machine learning.
Our shortlist of predicted high-risk viruses could be a starting
point not just for laboratory characterization but for real-world
surveillance, especially for pathogens where we found some ev-
idence that emergence in human populations may already be un-
derway. Future work can expand these findings by adding more
microbiological, immunological, and ecological mechanisms,’
eventually iterating a living model of the global virome.

Our study provides a strong proof of concept that the structure
of the observed host-virus network contains meaningful informa-
tion about the rules of cross-species transmission. The imputa-
tion process recovers more of this information, even without
use of mechanistic predictors like host phylogeny, retaining bio-
logically relevant signals while reducing key biases in current
observational data. Thus, future efforts to predict viral emer-
gence may be able to leverage use of recommender systems
as a data inflation step to make better predictions. However,
these approaches (and notably their validation) remain limited
by how poorly characterized the host range of most viruses is;
the majority of viruses are either undiscovered or known from a
single host. As the global virome becomes better sampled, these
approaches will be increasingly reliable not just for biological
inference but for actionable efforts to prevent zoonotic
emergence.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Timothée Poisot (timothee.poisot@
umontreal.ca).

Materials availability

Does not apply.

Patterns 4, 100738, June 9, 2023 5



mailto:timothee.poisot@umontreal.ca
mailto:timothee.poisot@umontreal.ca

doi.org/10.1016/j.patter.2023.100738

Please cite this article in press as: Poisot et al., Network embedding unveils the hidden interactions in the mammalian virome, Patterns (2023), https://

¢? CellPress

OPEN ACCESS

A
Network uniqueness pre-imputation
0.5

0.0

0.2
0.0
-0.2

0° 60°

Patterns

Network uniqueness post-imputation

1.0
0.5

0.0

1.0
0.5

0.0

Figure 3. Network imputation reveals a hotspot of unique host-virus associations in the Amazon

(A and B) The compositional uniqueness of host-virus interactions remains about similarly distributed in the pre-imputation (A) and post-imputation (B) networks.
(C) Nevertheless, the largest hotspot in gain of interaction uniqueness is in the Amazon.

(D) It appears that the predicted hotspots of uniqueness gain closely follow the originality of the host compositions, suggesting that more unigue mammal as-
semblages have more original host-virus networks. Hotspots are given as the difference in uniqueness post and pre imputation, both rescaled between 0 and 1.

Data and code availability

The code to reproduce these analyses is accessible online under the MIT li-
cense (https:/github.com/viralemergence/trefle®®); the code for zoonotic virus
imputations is similarly available online under the GPL license (https://github.
com/viralemergence/haystack*?).

Model design and implementation

Host-virus association data

We used a recently published dataset called CLOVER,*" which is the largest
open dataset describing the mammal-virus network currently available and
combines data from four sources that each cover overlapping but distinct por-
tions: the Host-Pathogen Phylogeny Project (HP3) dataset,'® the Enhanced In-
fectious Diseases Database (EID2),*” the Global Mammal Parasite Database
version 2.0 (GMPD2),*® and an unnamed dataset recently published by
Shaw et al.** By reconciling these datasets and their underlying taxonomy,
the CLOVER dataset achieves a 30% reduction in matrix sparsity over the
next most detailed dataset.

The CLOVER dataset describes 5,494 interactions between 829 viruses and
1,081 mammalian hosts. The majority of these interactions have been re-
corded in wild animals using a combination of detection methods (usually
serology, PCR, or virus isolation). A small portion of records assimilated
from NCBI’s GenBank into these other datasets may also record experimental
infections, which provides insight into biological compatibility but not neces-
sarily opportunity for infection in nature. Each of the component datasets
and the CLOVER dataset are presence only (i.e., they only report an edgelist
of known interactions and do not include true negatives).

Imputation model description

The imputation model uses two steps to chain LF (which can recommend
potentially false-negative interactions’) to recommendation based on SVD
(which adequately captures the low-rank structure of ecological association
networks*®). This imputation model is hereafter termed LF-SVD. The LF step
relies on four hyper-parameters expressed as an array of weights « =
la1, ap, a3, a4]T, which are, respectively, the relative importance of the original
(i.e., observed) value of the interaction, in- and out-degree, and connectance

Table 4. The top 10 predicted (novel) zoonotic links in the post-imputation network

Virus Family Evidence Prior risk assignment
Canine mastadenovirus A Adenoviridae 275.6808 medium
Simian mastadenovirus A Adenoviridae 242.8597 -
Panine gammaherpesvirus 1 Herpesviridae 201.9715 -
Phocid alphaherpesvirus 1 Herpesviridae 191.4652 high
Carnivore protoparvovirus 1 Parvoviridae 191.2557 high
Torque teno virus 14 Annelloviridae 187.3940 high
Torque teno virus 4 Annelloviridae 187.3940 medium
Panine betaherpesvirus 2 Herpesviridae 187.3940 high
Torque teno virus 23 Annelloviridae 187.3940 high
Torque teno virus 2 Annelloviridae 182.4210 medium

Evidence of interaction generated by the imputation model is contrasted against prior predictions by Mollentze et al.,® who implemented a model that
successfully predicts zoonotic potential from viral genome composition bias. Revised estimates of this model applied to the imputed network are pre-

sented in Table 5.
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for every interaction (i, j), we first set its value
according to the LF model and perform the trun-
cated SVD step as outlined above. We then up-
date Kso that K = R,-,-. The SVD step is repeated
20 times (after preliminary assays revealed that
the absolute change after 10 iterations was
consistently smaller than 10~2), and the final value
after 20 iterations is the score for the imputed
interaction. Note that, because of the nature of
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(the constraint Y~ « = 1 is always enforced). LF creates a potential matrix A
from an observed matrix Y of size (n,m) by assigning every interaction be-
tween species /i and j an initial score given by the dot product of weights and
properties of Y,

1 1 1
Aj = Kj,ﬁ;ykj,EZWh%ZY -

This corresponds to a weighted average of averages, wherein V (i,j),0 <
Aj < 1. We compared three parameterizations of the a: connectance only
([0,0,0,1]"), degree only ([0,1,1,0]"), and hybrid ([0,1,1,1]7). While techni-
cally there is an infinite number of possible configurations for the LF weight
vector, the computational cost of a grid search is prohibitive, and these param-
eterizations have the added benefit of corresponding to phenomenological as-
sumptions about what drives network structure that have been well laid out in
the literature.'® In this application, we set ay = 0, as the initial value of the
interaction is ignored, reducing the number of hyper-parameters to tune
from four to three.

We updated the initial values produced by LF using (truncated) SVD imputa-
tion. Like principal-component analysis (PCA), SVD is an embedding of a start-
ing matrix into latent subspaces; compared with PCA, SVD is a more general
solution that also well handles numerical instability because of very small en-
tries,*® whichis a likely scenario because some interaction probabilities are ex-
pected to be small. Because all entries of Aand Y are in R, we can decompose
either of these matrices as UEV", where Uand V are unitary matrices known as
the left and right subspaces, and X is a diagonal matrix containing the singular
values of the decomposed matrix. To impute the interaction (i,j), we create a
matrix K = Y, wherein Kj; = A; (according to the LF model). To decompose
this matrix at low-rank r, we set the values of = larger than k to 0 and calculate
the approximate version of K as

K=uUzV]

20

of 0), and brought this value back to the unit inter-
val by taking its logistic. This yields a pseudo-
probability for the interaction, which is then
thresholded (during hyper-parameter tuning) and
used for imputation. The tuning and imputation of the LF-SVD model
were performed in the software Julia 1.6*” using the EcologicalNet-
works .1 package.*®

Hyper-parameter tuning, thresholding, and evidence scoring

To tune the hyper-parameters (LF weight vector, SVD rank), we picked a cali-
bration set of 800 positives and 800 assumed negative interactions and
imputed them using each possible model (using ranks from 1-20, giving n =
60). This makes the strong assumption that the 800 negative interactions we
picked in the calibration set were indeed true negatives; although the model
ended up recommending many interactions, ecological networks are known
for their sparsity, and we judged this assumption acceptable based on an over-
all examination of model performance.

Outside the field of host-virus network prediction, our approach allows us to
establish a data-driven baseline for the seeding of SVD as a recommender.
This is an important development because we show a flexible method to ac-
count for different aspects of network structure; although, in this instance,
the best possible tuning used connectance as an initial values, networks
with different degrees of undersampling may be best predicted by initializing
the recommender step with values derived from, e.g., their degree distribution.

For each set of 1,600 predictions returned by the models, we derived confu-
sion tables at thresholds ranging from the lowest to the highest score using
1,000 steps; recall that the thresholding is performed on the transformed score
on the unit interval so that the step size is constant (=10~ 2). From this confu-
sion table, we calculated the ROC-AUC, true/false positive/negative rates,
positive/negative predictive values, false discovery/omission rates, critical
success index, accuracy, and informedness (also known as Youden’s J).
The model with the highest ROC-AUC was picked as the best model and
used for the rest of this study.

The exact cutoff to use to transform the continuous output of LF-SVD into a
binary classifier (i.e., the interaction is recommended or not) was determined
by picking the threshold value maximizing Youden's J statistic. Each interac-
tion is presented as an evidence score, which is obtained by dividing the
values post-imputation (LF-SVD) by the values pre-imputation (LF), minus

25
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Figure 5. Network embeddings improved the ability to identify viruses that can infect humans

(A) An existing model of human infection risk using virus genomic features is improved when network embeddings are added as virus traits; models that use
embeddings from the imputed network perform better than those using the observed network. Violin and boxplots show the ROC-AUC for test set predictions
across 1,000 replicate 70%:15%:15% train:calibrate:test splits (n = 612). p-values from pairwise Kruskal-Wallis rank-sum tests are shown for all comparisons.
Diamonds indicate the performance of a bagged model that averages predictions from the 100 best-performing models based on test set AUC iteratively re-
calculated while excluding the virus being predicted. Mean AUC: genome composition model = 0.723; genome composition + observed network = 0.830;

genome composition + imputed network = 0.875.

(B) Predictive feature importance in the combined (genome composition + imputed network) model; network embeddings are consistently the top predictive
features compared with biologically informative measures of genome composition.

one. An evidence of 0 means that the imputation did not change the value, and
increasingly positive values meant that the change because of imputation was
stronger. This interaction evidence was used to rank interactions when
required for the analyses.

Comparison to existing approaches

The LF-SVD method is fairly unique as a feature-agnostic method to predict
bipartite ecological networks. Previous studies that have developed predictive
models of the mammal-virus network have generally included a mix of host
and viral traits as predictors (Table S1), generally using a machine learning
classifier such as boosted regression trees. Our method uses a network theo-
retic approach at the global scale rather than assigning node-level features to
include in a standalone machine learning model and is entirely agnostic to host
and virus traits. Our approach is most comparable with a handful of ap-
proaches that use network dissimilarity to structure recommendations, some-
times alongside host phylogeny'? and other traits.?> A growing number of
comparable studies also leverage network features like network motifs® or
other topological metrics® at the node level and add these to a base machine
learning approach that is network agnostic. Particularly in comparison with a
previous standalone iteration of the LF-only approach,” which validates poorly
compared with ecological models,?* our approach is surprisingly comparable
with these more intensive algorithms; as we discuss, our predictions have a
high degree of biological plausibility and handle most kinds of sampling bias
well, including some like impact bias and rich-gets-richer effects that are
particularly visible in previously published work.'?2%

Analysis of the imputed network

Additional data sources

For phylogenetic analyses, we used a recently published mammalian super-
tree published by Upham et al.*® that has been taxonomically harmonized to
the CLOVER dataset for ease of analysis. For geographic analyses, we used
the International Union for Conservation of Nature (IUCN) Red List
(iucnredlist.org) species distribution maps for mammals, downloaded on
June 6, 2019. For citation counts, we extracted total virus-related publications
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for each species (by searching for host species binomial plus all known syno-
nyms and “virus” or “viral”) from the PubMed database using the R package
rentrez.”’
Testing effects of biased data collection

Observed host-pathogen association networks compiled from published re-
cords are influenced by a passive sampling bias resulting from differential
research across host and pathogen species. In comparative analyses of viral
richness per host species, the number of publications per host species is often
included as a covariate in an attempt to control for variable sampling effort
across hosts.”" This estimate of sampling bias is consistently positively related
to viral richness and typically is the strongest predictor, explaining more vari-
ation than other biological covariates.'®'%°>>* To explore whether network
imputation via LF-SVD is extrapolating sampling biases across host species,
we conducted a set of phylogenetic regressions of the relationship between
viral richness and the number of publications per host species (in total and
limited to those including keywords about viruses). Models were fit using the
formulation of phylogenetic least-squares regression provided via the pgls
function (Pagel’s A estimated via maximum likelihood) in the R package ca-
per . °>°® By comparing models of observed viral richness with estimates after
imputation with LF-SVD, we investigate the slope of the relationship and the
explained variance in viral richness to assess how strongly passive sampling
biases are retained in the LF-SVD imputed network.

In addition to passive sampling bias, host-virus association data are
frequently shaped by active or impact bias, where surveillance is targeted
based on relevance to human health or economics. This is easily detected in
records of virus sharing with humans. In principle, the species with the highest
similarity to the human virome should be species that are closely related to hu-
mans (primates) or frequently live alongside humans (domesticated animals or
synanthropic wildlife, particularly rodents that can live in human settlements),
but domesticated animals and laboratory model systems will also score
disproportionately in this metric because of sampling effort. As a new test of
model bias, we propose that imputation should reduce the signal of the latter
group in viral sharing with Homo sapiens, leaving mostly the former. To test the
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Table 5. The top 20 predicted (novel) zoonotic viruses in the extended model

Virus Virus family (-viridae)  Animal hosts (number of species) Probability  Prior risk
Lagos bat lyssavirus® Rhabdo Chiroptera (10), Carnivora (3), Rodentia (1) 0.856 very high
Tacaribe mammarenavirus® Arena Chiroptera (9), Rodentia (1) 0.793 high
Rio Bravo virus® Flavi Chiroptera (19) 0.779 medium
Dera Ghazi Khan orthonairovirus®  Nairo Rodentia (4), Artiodactyla (2) 0.755 medium
Wad Medani virus Reo Artiodactyla (6), Rodentia (4) 0.750 medium
Enterovirus E° Picorna Artiodactyla (1), Primates (1) 0.745 low
Phocine morbillivirus Paramyxo Carnivora (22) 0.741 high
Bimiti orthobunyavirus® Peribunya Chiroptera (5), Rodentia (4), Perissodactyla (1) 0.734 high
Bujaru phlebovirus®® Phenui P. guyannensis (Rodentia) 0.733 very high
Ectromelia virus® Pox Rodentia (3), Carnivora (1) 0.701 high
Murine respirovirus’ Paramyxo Rodentia (9), Artiodactyla (1), Carnivora (1), Primates (1)  0.683 medium
Akabane orthobunyavirus® Peribunya Artiodactyla (31), Perissodactyla (4), Proboscidea (1) 0.682 high
Reston ebolavirus”°" Filo Chiroptera (9), Artiodactyla (1), Primates (1) 0.680 high
Saboya virus' Flavi Rodentia (4), Chiroptera (1) 0.679 high
Simian orthorubulavirus®*° Paramyxo M. fascicularis (primates) 0.678 high
Chobar Gorge virus™? Reo Artiodactyla (2), Chiroptera (2), Perissodactyla (1) 0.673 medium
Issyk-Kul virus' Nairo Chiroptera (13) 0.672 -
Patois orthobunyavirus®*° Peribunya Rodentia (6), Artiodactyla (2), Didelphimorphia (2), 0.667 high
Carnivora (1), Lagomorpha (1)
Bovine fever ephemerovirus Rhabdo Artiodactyla (30), Proboscidea (1) 0.660 medium
Minatitlan orthobunyavirus Peribunya Primates (1), Rodentia (1) 0.654 -

All are classified as “very high” risk by the combined model, which uses viral genome compositions and imputed network embeddings. Prior risk as-

signments from Mollentze et al.® are also given where possible.
2Serological evidence recorded from four human samples.*”

PIndicates that a virus has serological evidence of human infection in CLOVER, which was not included as a positive in the genomic model but was
considered evidence of association in the mammal-virus network; however, note that H. sapiens and its associations were dropped before generating

embeddings.

CIndicates that a virus is accepted as a human virus by Woolhouse and Brierley.*
9Indicates that a virus has recorded evidence of human infection in the Centers for Disease Control and Prevention (CDC) ArboCat, although original

source literature is not traceable.

°A strain was isolated in 2012 from an outbreak of erythromelalgia-associated poxvirus in rural China in 1987;>° most databases do not record this virus

as zoonotic.
Tentative serological evidence recorded.*
9Serological evidence recorded.*

hSerological evidence first recorded from cases associated with occupational exposure.®®
'Serological evidence recorded for Potsikum virus,®” now a member of Saboya virus.

Tentative evidence of viral isolation is recorded.*®

effect of active sampling bias, we examined the top 10 hosts based on similar-
ity to H. sapiens pre and post imputation. Before imputation, the top 10 list
(based on Jaccard similarity of host and human viral community) includes
six livestock or companion animals (Bos taurus, Equus caballus, Sus scrofa,
Ovis aries, Capra hircus, and Canis lupus familiaris), three primates (Pan trog-
lodytes, Macaca mulatta, and Macaca fascicularis), and one synanthropic and
commonly studied laboratory animal (Mus musculus). After imputation, four of
the domesticated or primate species remained (C. lupus familiaris, E. caballus,
S. scrofa, and P. troglodytes). The updated list includes two more primates
(Gorilla beringei and Gorilla gorilla) and four more mice or rats (Hylaeamys
megacephalus, Peromyscus maniculatus, Proechimys guyannensis, and Zy-
godontomys brevicauda). This mostly reflects changes in the network connec-
tivity; all but one of these are in the top 10 species to gain links (with
Z. brevicauda replaced by Rattus rattus).

Phylogeographic signals of missing interactions

The distribution of missing viruses (each host species’ total number of pre-
dicted but unknown host-virus links) across space and across the evolutionary
tree, are interlinked patterns that are of significant interest to viral ecologists.'®
These patterns inform scientists’ understanding of where undiscovered zoo-

notic threats might emerge and can be used to target sampling to locations
and taxa with the most undiscovered viruses. However, these predictions
are also difficult to disentangle from sampling bias, which can create spurious
patterns that are undermined on closer analysis.'®

To assess phylogenetic patterns in the number of missing viruses, we used
the previously specified supertree.*® To match virus data against the phylog-
eny, we averaged missing virus counts for 30 species (n = 14 tips in the super-
tree). We used the caper R package to first broadly estimate phylogenetic
signal as Pagel’s 1.°” We next applied a graph-partitioning algorithm, phyloge-
netic factorization, to more flexibly identify mammal clades that differ in
missing virus counts. We used the phylofactor R package to partition
counts of missing viruses in a series of generalized linear models with a nega-
tive binomial distribution.®® We determined the number of significant clades
using Holm’s sequentially rejective test with a 5% family-wise error rate.

We identified a weak to moderate overall phylogenetic signal in the number
of missing viruses (A = 0.35), although this estimate was distinct from phyloge-
netically independent models and Brownian motion models of evolution (both
p < 0.01). Phylogenetic factorization, in turn, identified only four small clades
with significantly different counts of missing viruses, all of which had fewer
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Figure 6. Ranking viruses by their predicted probability of human infection accurately predicts known infections

Viruses are arranged by the mean prediction produced by a bagged version of the model trained on genome composition features and an embedding repre-
senting the imputed network (panel A; black line). Error bars show the region containing 95% of the predictions used for bagging. Dashed lines highlight the cutoff
that maximizes informedness (Youden’s J) when converting mean predicted probabilities to binary predictions. Panel B shows the most reliable detection method
providing evidence of human infection for each virus in the CLOVER database. For the purposes of model training, viruses linked to humans through serological
detection only or where the detection method was unspecified were labeled negative; the model nevertheless identifies the majority of these as human infecting.

missing viruses than the remaining mammal phylogeny (Table S3). These
clades included cetaceans (x = 18, n = 30) and a subclade of primarily insec-
tivorous Yangochiroptera (x = 43, n = 109) as well as two subclades of the New
World rodent subfamily Sigmodontinae (x =11, n=11; X = 16, n = 15). Overall,
these results indicate that, except for some coldspots likely driven by over-
sampling (or, in the case of cetaceans, a peripheral role in the host-virus
network), missing viruses are distributed fairly equally across the mammalian
tree of life—a finding that matches other recently published work.'®

To assess geographic patterns in the number of missing viruses, we eval-
uated the number of known and missing viruses at the level of each host spe-
cies and joined these to each host’s IUCN range map. We mapped the total
number of hosts with recorded interactions, the total number of known and
predicted missing interactions, and the normalized difference between
missing interactions and host diversity. Known interactions are recorded
disproportionately in Europe and Asia and, to a lesser degree, North Amer-
ica, a pattern that reveals strong sampling bias in viral inventories (Figure 1).
This pattern is substantially reduced in the missing interactions, which glob-
ally track the true distribution of mammal diversity fairly well (better, in some
places, than the hosts with viral interactions recorded in CLOVER). However,
the normalized difference map still revealed a bias toward interactions pre-
dicted in North America and Eurasia, with coldspots in South America and
Africa (Figure 1).
Coevolutionary signal in viral sharing
To test for the signal of evolutionary history in the viral sharing network, we
analyzed two outcome variables (viral sharing as a binary state and as the total
number of viruses shared) for two data structures (the entire pairwise host-host
viral sharing matrix, or each hosts’ sharing with H. sapiens; i.e., its role in zoo-
notic disease) in the pre- and post-imputation network. We analyzed these
variables as a function of phylogenetic distance using generalized linear
models (GLMs), with virus sharing coded as a binomial outcome (logit link)
and the count data modeled using a Poisson distribution. GLMs were fit using
the stats package in R, and adjusted R-squared values were derived using
the rsg package. Model coefficients and significance are given in Tables 2

10 Patterns 4, 100738, June 9, 2023

and 3. Response curves were finally plotted using the automated smoothing
in the ggplot package with the same specifications.

We found that virus sharing, as a binary outcome, decoupled substantially
from phylogeny after imputation. In large part, this can be explained by the
fact that, with a 16-fold increase in connectance, binary sharing should
become substantially less informative after imputation. (This also makes bio-
logical sense; for example, nearly all mammal species should share the capac-
ity to be infected with true generalist viruses like rabies and influenza A.) In
particular, the phylogenetic signal of virus sharing with humans became insig-
nificant (p = 0.52) after imputation, the only insignificant relationship among
those we tested. While the count data also recovered a reduction in effect
size after imputation, we found that this reduction was much smaller and
that the phylogenetic signal of sharing with H. sapiens was slightly more
explanatory in the post-imputation network.

Community uniqueness analysis

We performed a measure of community compositional uniqueness using the
local contribution to the beta-diversity approach” and specifically its exten-
sion to interaction data.”® LCBD identifies locations (here, pixels) in which
the community composition contributes more to the overall dissimilarity. For
this section, we will note X the sites-by-items matrix, often referred to as a
“community data matrix,” in which locations are rows, and items (host, vi-
ruses, interactions) are columns. The total beta-diversity is measured as B =
Var(X), after rows and columns with a marginal sum of 0 have been removed.
The X matrix is then transformed by centering and squaring the values so that
S =[S = [(Xj — )7,)2]. The sum of squares in X is then simply given by
SSiota = E,st,-j. From there, measuring the LCBD (i.e., the actual contribu-
tion of each location to B) is done by summing the matrix X row wise and
dividing by the total sum of squares:

S
LCBD; = L
c Izsstotal




doi.org/10.1016/j.patter.2023.100738

Please cite this article in press as: Poisot et al., Network embedding unveils the hidden interactions in the mammalian virome, Patterns (2023), https://

Patterns

Within every location, this value indicates the degree of uniqueness of this
location (sampling unit) compared with all other sampling units in the data.
LCBD values are typically, but not necessarily, measured after X has been
transformed using Chord’s or Hellinger’s distance. This, however, assumes
that sampling is close to complete, which is an unreasonable assumption in
our observed dataset; because applying a Hellinger transformation post but
not pre imputation would prevent a comparison of the results, we work on
the raw matrices.

Prediction of zoonotic potential

We next tested whether the expanded host-range information available in the
imputed network could improve zoonotic risk prediction in cases where infor-
mation on individual viruses is limited. We expanded a recently developed
model that combines summary statistics of viral genome composition and
compositional similarity to human genes to predict zoonotic risk.®

We extracted pseudo-traits from the host-virus network using latent vari-
ables by extracting the left latent subspace of a random dot product graph
decomposition.®® We used the same number of dimensions (12) as for the
low-rank approximation based on the imputation method; as LF-SVD func-
tions as a dimensionality reduction technique (the ranks that are not consid-
ered for the imputation are essentially lost), the most conservative approach
was to decide against re-adding dimensions for the zoonotic potential anal-
ysis. The feature matrix for viruses is given by

? = U12 V 212

where U and X are the truncated left-subspace and singular values matrices of
the decomposition of the network, respectively. This method was selected
because the latent traits extracted this way can reproduce the original network
within an arbitrary precision threshold and have been shown to capture the
evolutionary signal on network structure.®® To avoid leaking data on observed
human infection into subsequent model training and evaluation steps, these
network embeddings were generated while excluding humans. We also
removed all viruses that had so far only been linked to humans because, after
removal of humans from the network, these viruses were uniquely identifiable
as some of the only included viruses with no links in the network (another po-
tential data leak; a small number of viruses with no known mammalian hosts
were similarly unlinked, but these were rare enough that a model that predicted
all unlinked viruses as human-infecting would have had reasonably high
performance).

Full genomes were available for 612 of the 681 remaining viruses. We used
the reference sequence for each virus whenever available or the longest
complete genome otherwise. These genomes were used to calculate the
relevant genome composition measures described in Mollentze et al.® These
were combined with the embeddings to train a series of gradient boosted
classification and regression tree models to distinguish between viruses
known to infect humans and other viruses. Viruses were randomly split into
three datasets, using 70% for training, 15% for model calibration, and the re-
maining 15% for evaluating model performance.® This training/calibration/
test procedure was repeated 1,000 times to assess variability in performance
arising from current limited knowledge of the human-infecting virome. We
compared models trained on either the original viral genome composition de-
scriptors from Mollentze et al.® or a combination of viral genome composition
and embeddings derived from either the observed network or from the
imputed network. Finally, the best model by ROC-AUC (the model using viral
genome features and embedding features describing the imputed network)
was used to predict the probability of human infection for all 612 viruses.
For this purpose, predictions were averaged across the best-performing
10% of models in which each virus occurred in the test data, a process
akin to bagging.®° Model performance was re-evaluated while excluding
the virus being predicted to avoid selecting models based on their perfor-
mance on the virus being predicted.

Feature importance was measured using their Shapley values, which mea-
sure the contribution of individual features to the final probability predicted for
each virus.®® We calculated the overall importance of each feature as the mean
of absolute Shapley values across all viruses. When combined with features
describing virus genomes, features derived from the t-SNE embedding of
the SVD-imputed network tended to dominate (Figure 5). However, there
was poor correspondence between embedding rank and relative feature
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importance (Spearman correlation = 0.315), highlighting the importance of
including as much information about the network as possible.
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