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Abstract

In this paper we study the uniqueness and the increasing stability in the inverse source problem for 
electromagnetic waves in homogeneous and inhomogeneous media from boundary data at multiple wave 
numbers. For the unique determination of sources, we consider inhomogeneous media and use tangential 
components of the electric field and magnetic field at the boundary of the reference domain. The proof 
relies on the Fourier transform with respect to the wave numbers and the unique continuation theorems. To 
study the increasing stability in the source identification, we consider homogeneous media and measure the 
absorbing data or the tangential component of the electric field at the boundary of the reference domain 
as additional data. By using the Fourier transform with respect to the wave numbers, explicit bounds for 
analytic continuation, Huygens’ principle and bounds for initial boundary value problems, increasing (with 
larger wave numbers intervals) stability estimate is obtained.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The main theme of this paper is to investigate the inverse source problem for the Maxwell 
equations when the source is supported inside a bounded domain �. We consider the scattering 
solution of the Maxwell equations due to the existence of the source. We measure suitable tan-
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gential components of the electric field and the magnetic field on ∂� or a part of � to retrieve 
the information of the source. Inverse source problems have enormous applications in practice. 
For example, detection of submarines and of anomalies in various industrial objects like material 
defects [14], [18] can be regarded as recovery of acoustic sources from boundary measurements 
of the pressure. Other applications include antenna synthesis [5], biomedical imaging (magne-
toencephalography and ultrasound tomography) [4], fluorescent microscopy, and geophysics, in 
particular, to locating sources of earthquakes.

Inverse source problems are linearisations of inverse problems of determining coefficients of 
partial differential equations. From the boundary data for one single linear differential equation 
or system (that is, single wave number), it is not possible to find the source uniquely [20, Ch.4]. 
This non-uniqueness phenomenon also appears in the Maxwell equations due to the existence of 
non-radiating sources [1], [3]. However, if we use the data collected for various wave numbers 
in (0, K), the uniqueness can be restored, at least for divergence-free sources. For applications, 
the important issue is the stability of the source recovery. It is widely known that most of inverse 
problems for elliptic equations are ill-posed having a feature of logarithmic type stability esti-
mates, which results in a robust recovery of only few parameters describing the source and yields 
very low resolution numerically. In this work, we will show that for the Maxwell equations the 
stability of identifying divergence-free sources using absorbing boundary data on the whole ∂�

with wave numbers in (0, K) increases (getting nearly Lipschitz) when K is getting large.
To describe main results, we will use mostly standard notations. Let ‖ · ‖(l) denote the Hl

Sobolev norm of a scalar or a vector-valued functions, � be a bounded domain in R3 with con-
nected R3 \ �̄ and the boundary ∂� ∈ C2. C denotes a generic constant depending only on 
�, ε0, μ0 whose value may vary from line to line. Consider the time-harmonic Maxwell equa-
tions in an inhomogeneous medium:

{
curlE − iωμH = Jμ in R3,

curlH + iωεE = Jε in R3,
(1.1)

where E, H are electric and magnetic fields, ω > 0 is the wave number, ε and μ are 3 × 3 real 
positive-definite matrices with time independent entries which are positive constants outside �, 
i.e., for some ε0 > 0, μ0 > 0

ε(x) = ε0I3 and μ(x) = μ0I3, x ∈R3 \ �̄, (1.2)

and Jε, Jμ are the (real vector valued) electric and magnetic current densities that is assumed to 
be supported in �

suppJε, suppJμ ⊆ �. (1.3)

We are interested in the scattering solution for (1.1). In this case, E, H are required to satisfy the 
Silver-Müller radiation condition:

lim|x|→∞ |x|(√μ0H × σ − √
ε0E)(x) = 0, (1.4)

where σ = x/|x|. One can show that for any Jε, Jμ ∈ H(div, �) satisfying (1.3) there exists 
a unique (E, H) ∈ Hloc(curl , R3) × Hloc(curl , R3) satisfying (1.1) and (1.4), where for any 
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open set D ⊆ R3 we define H(div, D) = {u ∈ [L2(D)]3 : divu ∈ L2(D)}, H(curl , D) = {u ∈
[L2(D)]3 : curlu ∈ [L2(D)]3}, and u ∈ Hloc(curl , R3) if u ∈ H(curl , O) for any bounded open 
set O of R3. The corresponding graph norm of H(curl, D) is defined by

‖u‖H(curl ,D) =
(
‖u‖2

[L2(D)]3 + ‖curlu‖2
[L2(D)]3

)1/2
(1.5)

and H0(curl , D) is the completion of [C∞
0 (D)]3 with respect to the norm (1.5).

The first main result is uniqueness from the minimal data

E( ,ω) × ν, H( ,ω) × ν on � ⊂ ∂�, for K∗ < ω < K, (1.6)

where 0 ≤ K∗ < K .

Theorem 1.1. Let Jμ, Jε ∈ H(curl , �) satisfy (1.3). We further assume that ε, μ ∈ C2(�̄) and 
there exists a scalar function λ(x) ∈ C2(�̄) such that

ε(x) = λ(x)μ(x), x ∈ �. (1.7)

Moreover, let Jε, Jμ be divergence-free, i.e.,

divJε = 0, divJμ = 0 in R3. (1.8)

Then Jε, Jμ in (1.1), (1.3), (1.8) are uniquely determined by (1.6).

Observe that this result implies that E( , ω) × ν on ∂� with K∗ < ω < K under the conditions 
of Theorem 1.1 uniquely determines Jε, Jμ on �. Indeed, due to the uniqueness for the exterior 
boundary value problem for the Maxwell system E( , ω) × ν on ∂� uniquely determine (E, H)

on R3 \ � and hence the data (1.6) which implies uniqueness of Jε, Jμ.
The second main result of this paper is an improving stability of recovery of divergence-free 

sources Jε, Jμ from the absorbing boundary data (also called Leontovich condition)

E(·,ω) × ν − α(·)Hτ (·,ω) on ∂�, for 0 < ω < K, (1.9)

or the tangential component of the electric field

E( ,ω) × ν on ∂�, for 0 < ω < K,

where ν is the unit outer normal of ∂� and Hτ = H − (H · ν)ν is the tangential projection of H
on ∂�. Here we assume that α(x) ∈ L∞(∂�) and α(x) ≥ c > 0 on ∂�. The case of α ≡ 1 corre-
sponds to the Silver-Müller boundary condition [7]. In the next result we consider homogeneous 
media.

Theorem 1.2. Let ε = ε0 and μ = μ0. Assume that 1 < K , sources Jμ, Jε ∈ H 2(�) satisfy (1.3), 
(1.8), and

‖Jε‖2 (�) + ‖Jμ‖2 (�) ≤ M2 (1.10)
(1) (1) 1
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or

‖Jε‖2
(2)(�) + ‖Jμ‖2

(2)(�) ≤ M2
2 (1.11)

for some M0, M1 > 0. Then there exists C, depending on diam�, ε0, μ0, such that

‖Jε‖2
(0)(�) + ‖Jμ‖2

(0)(�) ≤ C

⎛
⎝ε2

0 + M2
1

1 + K
4
3 E

2
3

0

⎞
⎠ , (1.12)

or

‖Jε‖2
(0)(�) + ‖Jμ‖2

(0)(�) ≤ C

⎛
⎝ε2

1 + M2
2

1 + K
4
3 E

2
3

1

⎞
⎠ , (1.13)

for all (E, H) ∈ [H 1(�)]6 solving (1.1), (1.4) where

ε2
0 =

K∫
0

‖E(,ω) × ν − αHτ (,ω)‖2
(0)(∂�)dω, E0 = | ln ε0|,

and

ε2
1 =

K∫
0

‖E(,ω) × ν‖2
(1)(∂�)dω, E1 = | ln ε1|.

Observe that the stability bound (1.12) or (1.13) contain a Lipschitz stable part Cε2
0 or Cε2

1
and a conditional logarithmic stable part. This logarithmic part is natural and necessary since we 
deal with elliptic systems. However with growing K logarithmic part is decreasing and the stable 
bound is dominated by the Lipschitz part. Before going further, we would like to point out that 
the divergence-free condition (1.8) in Theorem 1.1 and 1.2 is not for the technical reason. It is 
necessary for the uniqueness of our inverse problem. To see this, let ϕ, ψ ∈ C1(R3) be supported 
in � and E = ∇ϕ

iω
, H = −∇ψ

iω
, then (E, H) satisfies (1.1) with ε = μ = 1 and Jε = ∇ϕ, Jμ =

∇ψ . Such examples provide with non uniqueness to the determination of the source ∇ϕ, ∇ψ

from E(, ω), H(, ω) given outside �.
The determination of a source using multiple frequencies has received a lot of attention in 

recent years. For the Helmholtz equation, uniqueness and numerical results were obtained in 
[14]. First increasing stability results were presented in [5] for some particular cases. These 
results were proved by direct spatial Fourier analysis methods. In [9], using a different method 
involving a temporal Fourier transform, sharp bounds of the analytic continuation to higher wave 
numbers, and exact observability bounds for associated hyperbolic equations, increasing stability 
bounds were derived for the three dimensional Helmholtz equation. Later in [15] the methods 
and results of [9] are extended to the more complicated case of the two dimensional Helmholtz 
equation. We would like to point out that in the works mentioned above one uses the complete 
Cauchy data on ∂� instead of Dirichlet-like data, which is much more realistic. For instance, 
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the common measuring acoustical devise (microphone) registers only pressure, while in seismic 
one typically collects displacements. Those data only register the Dirichlet boundary value on 
∂�. It should be mentioned that in [24] a spherical � was considered and there was a result on 
increasing stability from only Dirichlet data on ∂�, but the used norm of the data was not the 
standard norm. It involved the operator of solution of the exterior Dirichlet problem. In the recent 
preprint [6], some results similar to [24] are obtained for the elastic and electromagnetic waves.

The idea in the proof of our increasing stability result in Theorem 1.2 is motivated by the re-
cent paper by Entekhabi and the first author [16], where increasing stability bounds are obtained 
for the acoustic and elastic waves using the most natural Sobolev norms of the Dirichlet type data 
on an arbitrary domain �. As in [9] and [16], in this work we use the Fourier transform in time 
to reduce our inverse source problem to identification of the initial data in the time-dependent 
Maxwell equations by data on the lateral boundary. We derive our increasing stability estimate 
by using sharp bounds of analytic continuation of the data from (0, K) onto (0, +∞) given in 
[9] and then subsequently utilized in [15], [24], [6]. A new idea introduced in [16] is to make 
use of the Huygens’s principle and known Sakamoto type energy bounds for the corresponding 
hyperbolic initial boundary value problem (backward in time). These techniques enable them 
to avoid a need in the complete Cauchy data on ∂� and in a direct use of the exact boundary 
controllability results. For time-dependent Maxwell equations in homogeneous media, the Huy-
gens’ principle is valid. On the other hand, in our problem, in addition to Sakamoto type energy 
bounds, we also need the regularity estimate for the Maxwell equations with absorbing boundary 
condition or the tangential component of the electric field on the lateral boundary [10], [13].

The rest of this paper is organized as follows. In Section 2, we will prove the uniqueness 
theorem, Theorem 1.1. We prove the increasing stability in Section 3 and 4. In Section 3, we use 
the methods of [9], [16], in particular bounds of the analytic continuation of the needed norms 
of the boundary data from (0, K) onto a sector of the complex plane ω = ω1 + iω2, and use 
them and sharp bounds in [9] of the harmonic measure of (0, K) in this sector to derive explicit 
bounds of the analytic continuation of this norms from (0, K) onto the real axis. In Section 4, we 
use the Fourier transform in time to transform the source problem of the time-harmonic Maxwell 
equations to the time-dependent homogeneous Maxwell equations with initial conditions. The 
derivation of increasing stability relies on the quantitative analytic continuation established in 
Section 3, the Huygens’ principle for the Maxwell equations in homogeneous media, and the 
regularity estimates using boundary conditions.

2. Proof of uniqueness

We first show solvability of the direct scattering problem and analyticity of its solution with 
respect to the wave number ω.

Theorem 2.1. Assume that (1.2), (1.3) are satisfied and Jε, Jμ ∈ H(div, �). Then there is a 
unique solution (E( , ω), H( , ω)) ∈ [Hloc(curl , R3)]2 to the scattering problem (1.1), (1.4). This 
solution has an (complex) analytic with respect to ω = �ω + i�ω continuation onto a neigh-
bourhood of the quarter plane {0 < �ω, 0 ≤ �ω} which for 0 < �ω satisfies the equation (1.1)
and exponentially decays for large |x|:

|E(x,ω)| + |H(x,ω)| ≤ Ce−C−1|x| (2.14)

with some constant C depending only on E, H, ω.
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We first prove a unique result from boundary data.

Lemma 2.2. Assume that ε and μ are C1(R3) positive-definite matrix-valued functions. Let �̃
be a domain in R3. If ω �= 0, curlE − iωμH = curlH + iωεE = 0 on �̃, and E ×ν = H ×ν = 0
on � ⊂ ∂�̃, then E = H = 0 on �̃.

Before proving this lemma we remind that, as widely known, the Maxwell equations are 
invariant under a change of coordinates. To be precise, let the coordinate transform x → x′ and 
J = (Jkl) with Jkl = ∂x′

k/∂xl be the associated Jacobian matrix. Then in the new coordinates x′, 
we have

{
curl ′H ′ = −iωε′E′,

curl ′E′ = iωμ′H ′,

where

E′ = (J T )−1E, H ′ = (J T )−1H, ε′ = JεJ T

detJ
, μ′ = JμJT

detJ
.

We now prove Lemma 2.2.

Proof. First we observe that by elliptic regularity (E, H) ∈ C1(�̃). Let P ∈ �. We claim that 
E(P ) = H(P ) = 0. Not losing a generality we assume that P is the origin and � near P is 
the graph of the function x3 = γ (x1, x2) and moreover ∂1γ (0) = ∂2γ (0) = 0. Let the change of 
coordinates x → x′ be defined by x′

1 = x1, x′
2 = x2, x′

3 = x3 − γ (x1, x2) near 0. Then we have

J =
⎛
⎝ 1 0 0

0 1 0
−∂1γ −∂2γ 1

⎞
⎠ and detJ = 1.

In the new coordinates the unit outer normal ν′ = (0, 0, −1), E′ × ν′ = H ′ × ν′ = 0 implies

E′
1 = E′

2 = 0, H ′
1 = H ′

2 = 0 on {x′
3 = 0}.

In particular ∂ ′
2H

′
1(0) = ∂ ′

1H
′
2(0) = 0, i.e., ∂ ′

1H
′
2(0) − ∂ ′

2H
′
1(0) = 0. Next from the third compo-

nent in the equation curl′H ′ = iωε′E′, we see that

−iωε′
33(0)E′

3(0) = ∂ ′
1H

′
2(0) − ∂ ′

2H
′
1(0) = 0

and thus E′
3(0) = 0. Transforming back to the original coordinates immediately gives E(0) = 0. 

Likewise, we can show that H(0) = 0. In other words, we can prove that E = H = 0 on �. We 
now apply the unique continuation result obtained in [25] to conclude that E = H = 0 in �̃. �

We also need the well-posedness and the regularity of the boundary value problem related to 
the Maxwell equations
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⎧⎪⎪⎨
⎪⎪⎩

curlE∗ − iωμH ∗ = J ∗
μ in B,

curlH ∗ + iωεE∗ = J ∗
ε in B,

E∗ × ν = 0 on ∂B,

(2.15)

where B is a ball and the source J ∗ = (J ∗
μ, J ∗

ε ) ∈ [L2(B)]6.

Lemma 2.3. There exists a discrete set

T = {· · · ,ω−2,ω−1,ω1,ω2, · · · }

of nonzero real values, where −∞ ← ·· · ≤ ω−2 ≤ ω−1 ≤ ω1 ≤ ω2 ≤ · · · → ∞, such that for any 
ω /∈ T ∪ {0} there is a unique solution (E∗(ω; J ∗), H ∗(ω; J ∗)) to (2.15) and (E∗(ω; ), H ∗(ω; ))
is a continuous linear operator from [L2(B)]6 into H(curl, B)2 which is analytic in ω ∈ C \
(T ∪ {0}). Let {ωk(B)}∞k=−∞ and {ωk(B

′)}∞k=−∞ denote the discrete sets described above corre-
sponding to balls B and B ′. Then if B ⊂ B ′, then ωk(B

′) < ωk(B) if k > 0 and ωk(B
′) > ωk(B)

if k < 0.

Proof. We first study the eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩

curlu − iωμv = 0 in B,

curlv + iωεu = 0 in B,

u × ν = 0 on ∂B.

(2.16)

We can see that the eigenvalue problem (2.16) is equivalent to the eigenvalue problem for u

{
curl(μ−1curlu) = ω2εu in B,

u × ν = 0 on ∂B.
(2.17)

For, it is clear that if ω �= 0 is an eigenvalue of (2.16), then ω2 is an eigenvalue of (2.17). Con-
versely, if ω2 is an eigenvalue of (2.17) with eigenfunction u, then setting v = μ−1curlu/iω

gives curlu − iωμv = 0 and curlv + iωεu = 0.
The eigenvalue problem (2.17) was completely analyzed in [21]. Recall from [21, Theo-

rem 4.34, page 193] that there exists an infinite number of positive eigenvalues ω2
k with cor-

responding eigenfunction uk ∈ V0,ε to (2.17), where

V0,ε = {u ∈ H0(curl ,B) : (εu,ψ)L2(B) = 0 for all ψ ∈ H0(curl ,B), curlψ = 0 in B}.

The eigenvalues {ω2
k > 0} have finite multiplicities and tend to infinity as k → ∞. Moreover, 

{uk}∞k=1 form a complete orthonormal system of (V0,ε, (·, ·)μ,ε), where the inner product

(u, v)μ,ε =
∫
B

μ−1curlu · curl v̄dx +
∫
B

εu · v̄dx.

Consequently, we have the formula
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λk := 1

1 + ω2
k

= (εuk,uk)L2(B) = (εuk,uk)L2(B)

(uk, uk)μ,ε

.

Note that λ1 ≥ λ2 ≥ · · · → 0. It is not difficult to prove the following variational characterization 
of λk , that is,

λk = max
U⊂V0,ε ,dimU=k

min
u∈U ,u �=0

(εu,u)L2(B)

(u,u)μ,ε

, k = 1,2, · · · . (2.18)

An easy consequence of (2.18) is that if B ⊂ B ′, then

λk(B) ≤ λk(B
′) for each k, (2.19)

where λk(B) = 1
1+ω2

k (B)
, λk(B

′) = 1
1+ω2

k (B
′) and ω2

k(B), ω2
k(B

′) are eigenvalues of (2.17) corre-

sponding to B and B ′, respectively. We actually want to show that the strict monotonicity holds, 
i.e., for each k

λk(B) < λk(B
′) if B ⊂ B ′, (2.20)

which is equivalent to

ω2
k(B) > ω2

k(B
′) if B ⊂ B ′.

We adopt the argument from [27, Theorem 2.3]. We will prove (2.20) by contradiction. Assume 
that λk(B) = λk(B

′). Since every λk(B
′) has finite multiplicity and λk(B

′) → 0, there exists 
λn(B

′) < λk(B
′) for some n. We now partition B ′ into n balls satisfying

B = B1 ⊂ B2 ⊂ · · · ⊂ Bn = B ′.

Then (2.19) implies

λk(B) = λk(B1) ≤ λk(B2) ≤ · · · ≤ λk(Bn) = λk(B
′).

Denote uk,j the eigenfunction corresponding to λk(Bj ) with ‖uk,j‖μ,ε = 1, j = 1, 2, · · · , n. To 
abuse the notation, we also use uk,j to denote the zero extension of uk,j originally defined on Bj

to B ′. Still, we have ‖uk,j‖μ,ε = 1 with integral evaluated over B ′.
Now we would like to show that {uk,j }nj=1 are linearly independent. Assume that 

∑n
j=1 ajuk,j

= 0 in B ′, but an �= 0, then uk,n = 0 in B ′ \ Bn−1. By the unique continuation property in 
Lemma 2.2, we have that uk,n ≡ 0 in B ′, which is a contradiction. Other coefficients are treated 
similarly. Considering the subspace spanned by {uk,j }nj=1 in the variational characterization of 
λn(B

′) in (2.18), we obtain that λk(B
′) ≤ λn(B

′), which is a contradiction.
To show the unique solvability of (2.15) for ω /∈ T ∪{0}, we consider the operator L :D(L) →

X := [L2(B)]3 × [L2(B)]3 given by

L =
(

0 −iμ−1curl
iε−1curl 0

)
,
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where D(L) = H0(curl , B) × H(curl , B). It is not hard to check that L is self-adjoint in X with 
respect to the inner product

〈(
u1
u2

)
,

(
v1
v2

)〉
=

∫
B

(μu1 · v1 + εu2 · v2)dx,

the range of L, Ran(L), is closed (see [23, Corollary 8.10]). Also, X admits the orthogonal 
decomposition

X = Ker(L) ⊕ Ran(L).

Let P be the orthogonal projection of X onto Ran(L).
Let (J ∗

μ, J ∗
ε ) ∈ [L2(B)]3 × [L2(B)]3, i.e., F := (−iμ−1J ∗

μ, −iε−1J ∗
μ) ∈ X, then to solve 

(2.15), we consider

(L − ω)W = F,

where W ∈D(L). If ω /∈ T ∪ {0}, then L − ω is invertible. Hence the solution W is given by

W = (L − ω)−1PF − ω−1(I − P)F,

for

(L − ω)W = (L − ω)(L − ω)−1PF − (L − ω)ω−1(I − P)F = (I − P)F + PF = F.

Moreover, we can see that the solution W is analytic in ω ∈C \ (T ∪ {0}). �
Remark 2.4. When ε = ε0I3 and μ = μ0I3, we denote the corresponding spectrum of L by T0.

We now prove Theorem 2.1.

Proof. Let 0 < �ω and 0 ≤ �ω. We first establish the uniqueness. In other words, we want to 
prove that if (E, H) satisfies (1.1) with Jε ≡ Jμ ≡ 0 and (1.4), then E = H = 0 in R3. Let �0 be 
an open set containing �̄ with closure contained in a ball B . By the Gauss divergence theorem 
and the Maxwell equations (1.1), we have that

∫
∂B

ν × E · H̄dS =
∫
B

(curlE · H̄ − E · curlH̄ )dx =
∫
B

(iωμH · H̄ − iω̄E · εĒ)dx

and hence

�
∫
∂B

ν × E · H̄ dS = −�ω

∫
B

(μH · H̄ + E · εĒ)dx ≤ 0. (2.21)

On the other hand, by (2.21), we can see that
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�(ω

∫
∂B

ν × E · curlĒ dS) = �(ω

∫
∂B

ν × E · (−iω̄H̄ ) dS)

=|ω|2�(−i

∫
∂B

ν × E · H̄ dS) = −|ω|2�
∫
∂B

ν × E · H̄ dS ≥ 0.

(2.22)

In view of (2.22), using [11, Theorem 4.17], we obtain that E = 0 in R3 \ B . Similarly, we can 
prove that H = 0 in R3 \ B . Combine this and Lemma 2.2 concludes that E = H = 0 in R3.

We will prove the existence by the Lax-Phillips method. Let ω ∈ {0 < �ω, 0 ≤ �ω} and �0
be an open set containing �̄. In view of the strict monotonicity of eigenvalues with respect to the 
domain proved in Lemma 2.3, one can choose a ball B, �̄0 ⊂ B , so that ω /∈ T ∪ T0. Let φ be a 
cut-off C∞(R3) function φ with φ = 1 on � and φ = 0 outside of �0. We look for a solution

(
E

H

)
=

(
�

�

)
− φ

((
�

�

)
−

(
E∗
H ∗

))
(2.23)

to system (1.1), where 
(

E∗
H ∗

)
(·, J ∗) with J ∗ =

(
J ∗

μ

J ∗
ε

)
being a solution to the boundary value 

problem

⎧⎪⎪⎨
⎪⎪⎩

curlE∗ − iωμH ∗ = J ∗
μ in B,

curlH ∗ + iωεE∗ = J ∗
ε in B,

E∗ × ν = 0 on ∂B,

(2.24)

and J ∗ ∈ [H(div, B)]2 with suppJ ∗ ⊂ B will be determined later. Moreover, 
(

�

�

)
is the solu-

tion to

{
curl� − iωμ0� = J ∗

μ in R3,

curl� + iωε0� = J ∗
ε in R3

(2.25)

satisfying the radiation condition

lim|x|→∞ |x|(√ε0� × σ + √
μ0�)(x) = 0, lim|x|→∞|x|(√μ0� × σ − √

ε0�)(x) = 0. (2.26)

It is well known (see [8], p. 78, Theorem 2) that

�(x,ω) =
∫
�

exp(iκ|x − y|)
4π |x − y| (iωμ0J

∗
ε (y) + curlJ ∗

μ(y))dy,

�(x,ω) =
∫

exp(iκ|x − y|)
4π |x − y| (−iωε0J

∗
μ(y) + curlJ ∗

ε (y))dy, κ = ω
√

ε0μ0.

(2.27)
�
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Since φ = 1 in �, we have

J ∗
μ = Jμ and J ∗

ε = Jε in �.

In R3 \ �̄, we have

curlE − iωμH = curl(� − φ(� − E∗)) − iωμ0(� − φ(� − H ∗))

= curl� − φcurl(� − E∗) − ∇φ × (� − E∗) − iωμ0(� − φ(� − H ∗))

= J ∗
μ − ∇φ × (� − E∗) − φ[curl(� − E∗) − iωμ0(� − H ∗)]

= J ∗
μ − ∇φ × (� − E∗)

and similarly

curlH + iωεE = J ∗
ε − ∇φ × (� − H ∗).

We introduce the operator

A(ω)J ∗ =
(−∇φ × (� − E∗)

−∇φ × (� − H ∗)

)
.

Hence 
(

E

H

)
is a scattering solution of (1.1) iff

J = J ∗ + AJ ∗. (2.28)

Note that suppAJ ∗ ⊂ �0 \ �̄.
To prove the existence for (2.28), we first show that I +A is Fredholm from [H(div, B)]2 into 

itself. It follows from [2] that �(J ∗), �(J ∗), E∗(J ∗), H ∗(J ∗) are continuous linear operators 
from [H(div , B)]2 into [H 1(B)]6. Moreover, by direct calculations,

div(∇φ × E∗) = −∇φ · curlE∗ = −∇φ · (iωμ0H
∗ + J ∗

μ),

div(∇φ × �) = −∇φ · curl� = −∇φ · (iωμ0� + J ∗
μ),

due to (2.24), since μ = μ0 outside � and ∇φ = 0 on �. Hence

div(∇φ × (� − E∗)) = ∇φ · (iωμ0(H
∗ − �)).

Similarly,

div(∇φ × (� − H ∗)) = −∇φ · (iωε0(E
∗ − �)).

Summing up, A is a continuous linear operator from [H(div, B)]2 into [H 1(div , B)]2, where 
H 1(div , B) = {u ∈ [H 1(B)]3 : divu ∈ H 1(B)} with the natural norm. Since H 1(B) is compactly 
embedded into L2(B), A is compact from [H(div, B)]2 into itself.
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Now to establish the existence, it suffices to prove the injectivity of I +A. Let 0 = J ∗ +AJ ∗. 
Since J = 0, by the uniqueness which was shown at the beginning of the proof, we have E =
H = 0 on B thus from (2.23)

(
�

�

)
= φ

((
�

�

)
−

(
E∗
H ∗

))
.

Since φ = 0 on B \ �0 we have � = 0 on ∂B . Now from (2.24), (2.25) we yield

⎧⎪⎪⎨
⎪⎪⎩

curl(� − E∗) − iωμ(� − H ∗) = 0 in B,

curl(� − H ∗) + iωε(� − E∗) = 0 in B,

(� − E∗) × ν = 0 on ∂B.

By the choice of B a solution to this boundary value problem is unique, we get � − E∗ =
� − H ∗ = 0 on B and hence � = � = 0, so AJ ∗ = 0 and from (2.28) we conclude that J ∗ = 0.

Summing up, the Fredholm operator I + A(ω) is injective, and hence has the inverse. Since 
A(ω) is analytic with respect to ω, so is the inverse and therefore J ∗. In view of the explicit 
representation formulas for �, � in (2.25) (see for example [8, (47)]) and the analyticity of 
(E∗, H ∗) in ω proved in Lemma 2.3, the analyticity of (E(, ω), H(, ω)) follows. The exponential 
decay (2.14) follows from (2.23), (2.27). �

Now we prove Theorem 1.1.

Proof. Due to the linearity it suffices to show that E×ν = H ×ν = 0 on �, K∗ < ω < K implies 
that Jε = Jμ = 0. Let (e, h) be a solution to the dynamical initial boundary value problem:

∂t (εe) − curlh = 0, ∂t (μh) + curle = 0 in R3 × (0,∞), (2.29)

e = −√
2πε−1Jε, h = −√

2πμ−1Jμ on R3 × {0}. (2.30)

Thanks to (1.8) and (2.29), in addition to (2.30), we have the following compatibility conditions

div(εe) = 0, div(μh) = 0 in R3 × (0,∞). (2.31)

As known, see for example [17], there is a unique solution (e, h) ∈ L∞((0, T ); [H(curl , R3)]6)

of this problem for any T > 0 and moreover by using the standard energy estimates, i.e. scalarly 
multiplying (2.29) by (e, h) exp(−γ0t) and integrating by parts over R3 × (0, t) we have

‖e(t, ·)‖(0)(R
3) + ‖h(t, ·)‖(0)(R

3) ≤ C0 exp(γ0t), (2.32)

where positive γ0 and C0 might depend on ε, μ, J . Then the following Fourier-Laplace trans-
forms are well defined

E∗(x,ω) = 1√
2π

∞∫
0

e(t, x) exp(iωt)dt, H∗(x,ω) = 1√
2π

∞∫
0

e(t, x) exp(iωt)dt (2.33)
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with ω = ω1 + iγ , γ0 < γ .
Approximating Jε , Jμ by smooth functions and integrating by parts, we have

0 =
∞∫

0

(∂t (εe) − curlh)(t, ·) exp(iωt)dt

= −εe(0, ·) − iω

∞∫
0

εe(t, ·) exp(iωt)dt − curl

∞∫
0

h(t, ·) exp(iωt)dt

and

0 =
∞∫

0

(∂t (μh) + curle)(t, ·) exp(iωt)dt

= −μh(0, ·) − iω

∞∫
0

μh(t, ·) exp(iωt)dt + curl

∞∫
0

e(t, ·) exp(iωt)dt.

Hence (E∗, H∗) solves (1.1) with ω = ω1 + iγ , γ0 < γ . In addition, (E∗, H∗) exponentially 
decays for large |x|. Indeed, due to the finite speed of the propagation in the hyperbolic problems 
we have e(t, x) = 0 for x ∈ R3 \ B(R) if t < θR − R0 for some θ = θ(ε, μ) > 0, where R0 > 0
satisfies �̄ ⊂ B(R0) and R > R0. Hereafter, B(R) denotes the ball of radius R centered at 0. 
Hence from (2.33), for any δ > 0

∫
B(R+4)\B(R)

|E∗|2dx

≤
∫

B(R+4)\B(R)

∣∣∣∣∣∣∣
+∞∫

θR−R0

e(t, x) exp(iω1t − (γ − δ)t) exp(−δt)dt

∣∣∣∣∣∣∣
2

dx

≤
∫

B(R+4)\B(R)

⎛
⎜⎝

+∞∫
θR−R0

|e(t, x)|2 exp(−2(γ − δ)t)dt

+∞∫
θR−R0

exp(−2δt)dt

⎞
⎟⎠dx

≤C(C0, δ,R0) exp(−2δθR)

+∞∫
θR−R0

‖e(t, ·)‖2
(0)(R

n\B(R)) exp(−2γ0t) exp(−2(γ − γ0 − δ)t)dt

≤C(C0, δ,R0) exp(−2δθR)

+∞∫
θR−R0

exp(−2(γ − γ0 − δ)t)dt

≤C(C0, γ, γ0,R0) exp(−2δθR),
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where we have used (2.32) and chosen δ = γ−γ0
2 . The same bound holds for H∗, and we yield

∫
B(R+4)\B(R)

(|E∗|2 + |H∗|2)dx ≤ C(C0, γ, γ0,R0) exp(−2δθR). (2.34)

By Theorem 2.1 the vector function (E( , ω), H( , ω)) solving (1.1), (1.4) has a complex an-
alytic extension from (0, ∞) into a neighbourhood in the first quarter plane {0 < �ω, 0 ≤ �ω}, 
by the uniqueness of the analytic continuation this extension satisfies (1.1), (1.4) and decays 
exponentially as |x| → ∞ when 0 < �ω, in particular, we have for E, H the bound (2.34). To 
show that E = E∗, H = H∗, we let E0 = E∗ − E, H 0 = H∗ − H . Since (E, H), (E∗, H∗) solve 
the Maxwell system (1.1) we see that curlE0 − iωμH 0 = 0, curlH 0 + iωεE0 = 0 in R3. Let 
the cut off C1(R3)-function ϕ = 1 on B(R), ϕ = 0 on R3 \ B(R + 1), 0 ≤ ϕ ≤ 1. Using the 
homogeneous Maxwell equations for (E0, H 0), we obtain

curl(ϕE0) − iωμϕH 0 = ∇ϕ × E0, curl(ϕH 0) + iωεϕE0 = ∇ϕ × H 0. (2.35)

By (2.35), integrating by parts, and using ϕ = 0 on ∂B(R + 4) imply

0 =
∫

B(R+4)

(curl(ϕE0) · (ϕH̄ 0) − (ϕE0) · curl(ϕH̄ 0))dx

=
∫

B(R+4)

(iω(ϕμH 0) · (ϕH̄ 0) − (ϕE0) · (iω̄ϕεĒ0))dx

+
∫

B(R+4)\B(R)

((∇ϕ × E0) · (ϕH̄ 0) − (ϕE0) · (∇ϕ × H̄ 0))dx.

Therefore, taking the real part of the above relation yields

�ω

∫
B(R+4)

ϕ2(εE0 · Ē0 + μH 0 · H̄ 0)dx

= �
∫

B(R+4)\B(R)

((∇ϕ × E0) · (ϕH̄ 0) − (ϕE0) · (∇ϕ × H̄ 0))dx

and hence from (2.34) and the exponential decay of E, H we derive

∫
B(R)

(E0 · Ē0 + H 0 · H̄ 0)dx ≤ C(C0, γ, γ0,R0)exp(−δθR).

Letting R → +∞ we conclude that E0 = H 0 = 0 on R3 and so

E( ,ω) = E∗( ,ω), H( ,ω) = H ∗( ,ω) (2.36)
123



V. Isakov and J.-N. Wang Journal of Differential Equations 283 (2021) 110–135
when ω = ω1 + iγ , 0 < ω1, and γ0 < γ .
By Lemma 2.2, E( , ω) = H( , ω) = 0 on R3 \ �, when K∗ < ω < K , and due to uniqueness 

of the analytic continuation with respect to ω in {0 < �ω, 0 ≤ �ω}, it follows from (2.36) that 
E∗( , ω) = H ∗( , ω) = 0 on ∂� for ω = ω1 + iγ , 0 < ω1, γ0 < γ . Now by the uniqueness in the 
Fourier-Laplace transform (2.33), we finally conclude that e = h = 0 on ∂� × (0, ∞). In view 
of the structure assumption (1.7), by the uniqueness of the Cauchy problem for the dynamical 
Maxwell system (2.29), (2.31), we conclude that e = h = 0 in � ×{T0} for some (large) T0 [12]. 
Since e = h = 0 in ∂� × (0, T0), by uniqueness in the hyperbolic (backward) initial boundary 
value problem with the initial data at t = T0, we have e = h = 0 in � × (0, T0). Hence e = h = 0
on � × {0} and from (2.30) it follows that Jε = Jμ = 0. The proof is complete. �
3. Quantitative analytic continuation

We will start preparations for a proof of Theorem 1.2. Since ε = ε0, μ = ε0, (1.1) becomes

{
curlE − iωμ0H = Jμ in R3,

curlH + iωε0E = Jε in R3,
(3.37)

with the radiation condition (1.4) provided ω > 0. As in (2.27), these equations and the radiation 
condition are equivalent to the integral representation

E(x,ω) =
∫
�

exp(iκ|x − y|)
4π |x − y| (iωμ0Jε(y) + curlJμ(y))dy,

H(x,ω) =
∫
�

exp(iκ|x − y|)
4π |x − y| (−iωε0Jμ(y) + curlJε(y))dy,

(3.38)

where κ = ω
√

ε0μ0. Moreover, as follows from the standard representation of radiating solutions 
of the Helmholtz equations, (3.38) is equivalent to the Helmholtz equations

�E + κ2E = −iωμ0Jε − curlJμ, �H + κ2H = iωε0Jμ − curlJε in R3 (3.39)

and the Sommerfeld radiation condition.
In particular, we have

E(x,ω) × ν(x) =
∫
�

exp(iκ|x − y|)
4π |x − y| (iωμ0Jε(y) + curlJμ(y)) × ν(x)dy, x ∈ ∂�, (3.40)

and

E(x,ω) × ν(x) − α(x)Hτ (x,ω) =
∫
�

exp(iκ|x − y|)
4π |x − y| G(x,y,ω)dy, x ∈ ∂�, (3.41)

where
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G(x,y,ω) =(iωμ0Jε(y) + curlJμ(y)) × ν(x)

− α(x){(−iωε0Jμ(y) + curlJε(y)) − [(−iωε0Jμ(y) + curlJε(y)) · ν(x)]ν(x)}.

Observe that the formulae on the right sides of (3.40) and (3.41) can be defined even when ω < 0. 
Therefore, for ω < 0, we define E(x, ω) × ν(x) and E(x, ω) × ν(x) − α(x)Hτ (x, ω) in terms of 
formulae (3.40) and (3.41), respectively.

Now it follows from (3.41) that

∞∫
−∞

‖E × ν(,ω) − αHτ (,ω)‖2
(0)(∂�)dω = I0(k) +

∫
k<|ω|

‖E × ν(,ω) − αHτ (,ω)‖2
(0)(∂�)dω,

(3.42)
where I0(k) is defined as

I0(k) = 2

k∫
0

∫
∂�

⎛
⎝∫

�

exp(iκ|x − y|)
4π |x − y| G(x,y,ω)dy

⎞
⎠

·
⎛
⎝∫

�

exp(−iκ|x − y|)
4π |x − y| G(x,y,−ω)dy

⎞
⎠d�(x)dω. (3.43)

As above, we write

∞∫
−∞

‖E × ν(,ω)‖2
(1)(∂�)dω = I1(k) +

∫
k<|ω|

‖E × ν(,ω)‖2
(1)(∂�)dω, (3.44)

where

I1(k) = 2

k∫
0

∫
∂�

(
|(E × ν)(x,ω)|2 + |∇∂�(E × ν)(x,ω)|2

)
d�(x)dω.

We observe that ∇E is viewed as the vector with 9 components (∂jEk) and ∇∂�E is the tan-
gential projection of the gradient (the 9 dimensional vector formed of tangential projections of 
gradients of 3 components of E). We have

|(E × ν)(x,ω)|2 = (E × ν)(x,ω) · (E × ν)(x,ω) = (E × ν)(x,ω) · (E × ν)(x,−ω),

due to (3.40). Remind that we assume that Jμ and Jε are real-valued. Similarly,

|∇∂�(E × ν)(x,ω)|2 = ∇∂�(E × ν)(x,ω) · ∇∂�(E × ν)(x,−ω),

and hence, again using (3.40), the integrand in I1(k) can be extended to an entire analytic function 
of ω. Hence
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I1(k) = 2

k∫
0

∫
∂�

(
(E × ν)(x,ω) · (E × ν)(x,−ω)

+ ∇∂�(E × ν)(x,ω) · ∇∂�(E × ν)(x,−ω)
)
d�(x)dω. (3.45)

Since (due to (3.40), (3.41), (3.43), (3.45)) the integrands are entire analytic functions of ω =
ω1 + iω2, we can analytically extend I0(k) and I1(k) from k > 0 to k ∈ C and, moreover, the 
integrals in (3.43), (3.45) with respect to ω can be taken over any path joining points 0 and 
k = k1 + ik2 of the complex plane. Thus I0(k) and I1(k) are entire analytic functions of k ∈ C.

Due to the definitions of the norms of the boundary data

ε2
0 = I0(K)

2
and ε2

1 = I1(K)

2
. (3.46)

The truncation level k in (3.42) and (3.44) is important to keep balance between the known data 
and the unknown information when k ∈ [K, ∞).

We will need the following elementary estimate for I0(k).

Lemma 3.1. Let suppJε, suppJμ ⊂ �, then for k = k1 + ik2

|I0(k)| ≤ C(1 + |k|3)(‖Jε‖2
(1)(�) + ‖Jμ‖2

(1)(�)) exp(2d
√

ε0μ0|k2|), (3.47)

where d = sup |x − y| over x, y ∈ �.

Proof. Using the parametrization ω = ks, s ∈ (0, 1) in the line integral and the elementary in-
equality | exp(i

√
ε0μ0ω|x − y|)| ≤ exp(

√
ε0μ0|k2|d) it is easy to derive from (3.43), (3.41) that

|I0(k)|

≤C

1∫
0

|k|
( ∫

∂�

(∫
�

{|k|s(|Jε(y)| + |Jμ(y)|)

+ |curlJε(y)| + |curlJμ(y)|}exp(
√

ε0μ0|k2|d)

|x − y| dy

)2

d�(x)

)
ds

≤C|k|
∫
∂�

(∫
�

{|k|2(|Jε(y)|2 + |Jμ(y)|2) + |curlJε(y)|2 + |curlJμ(y)|2}dy

)

×
(∫

�

exp(2
√

ε0μ0|k2|d)

|x − y|2 dy

)
d�(x),

where the Cauchy inequality is used for the integrals with respect to y. Since

∫
1

|x − y|2 dy ≤ C,
�
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we yield

|I0(k)| ≤ C|k|
⎛
⎝∫

�

{|k|2(|Jε(y)|2 + |Jμ(y)|2) + |∇Jε(y)|2 + |∇Jμ(y)|2}dy

⎞
⎠ exp(2

√
ε0μ0|k2|d)

and complete the proof of (3.47). �
Lemma 3.2. Let suppJε, suppJμ ⊂ �, then for k = k1 + ik2

|I1(k)| ≤ C(1 + |k|3)(‖Jε‖2
(2)(�) + ‖Jμ‖2

(2)(�)) exp(2
√

ε0μ0|k2|d), (3.48)

where d = sup |x − y| over x, y ∈ �.

Proof. We C1 extend the vector field ν from ∂� onto some neighbourhood V of ∂� and denote 
this extension again as ν. Using the parametrization ω = ks, 0 ≤ s ≤ 1, in the integral (3.45) we 
have

|I1(k)|

=2|k|
1∫

0

∫
∂�

(|(E × ν)(x,ω)||(E × ν)(x,−ω)|

+|∇∂�(E × ν)(x,ω)||∇∂�(E × ν)(x,−ω)|) d�(x)ds

≤2|k|
1∫

0

∫
∂�

(|E × ν)(x,ω)||(E × ν)(x,−ω)|

+|∇(E × ν)(x,ω)||∇(E × ν)(x,−ω)|) d�(x)ds

(3.49)

when k = k1 + ik2.
From (3.40), by the Cauchy inequality, it follows that

|(E × ν)(x,ω)|2 ≤ C exp(2
√

ε0μ0|k2|d)

⎛
⎝∫

�

1

|x − y|2 dy

⎞
⎠∫

�

(|ω|2|Jε |2 + |∇Jμ|2)(y)dy.

Using

∂

∂xj

|x − y| = − ∂

∂yj

|x − y|

and integrating by parts with respect to y imply
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∂

∂xj

∫
�

exp(iκ|x − y|)
|x − y| (iωμ0Jε(y) + curlJμ(y)) × ν(x)dy

=
∫
�

exp(iκ|x − y|)
|x − y|

∂

∂yj

(iωμ0Jε(y) + curlJμ(y)) × ν(x)dy

+
∫
�

exp(iκ|x − y|)
|x − y| (iωμ0Jε(y) + curlJμ(y)) × ∂

∂xj

ν(x)dy.

Hence, from (3.40) and using the Cauchy inequality for the integrals with respect to y, we derive 
that

|∇(E × ν)(x,ω)|2 ≤ C exp(2
√

ε0μ0|k2|d)⎛
⎝∫

�

1

|x − y|2 dy

⎞
⎠∫

�

((1 + |k|2)(|Jε |2 + |Jμ|2 + |∇Jε |2 + |∇Jμ|2) + (|∇2Jε |2 + |∇2Jμ|2)dy

≤ C exp(2
√

ε0μ0|k2|d)(|k|2 + 1)(‖Jε‖2
(2)(�) + ‖Jμ‖2

(2)(�)),

and combining with (3.49) complete the proof of (3.48). �
The following steps are needed to link the unknown values of I0(k) for k ∈ [K, ∞) to the 

known values ε0, ε1 in (3.46). Let S be the sector {k : −π
4 < argk < π

4 } and μ(k) be the harmonic 
measure of the interval [0, K] in S \ [0, K]. Observe that |k2| ≤ k1 (and hence |k| ≤ 2k1) when 
k ∈ S, so from (3.47) we have

|I0(k) exp(−2(d + 1)
√

ε0μ0k)|
≤C(1 + k3

1)(‖Jε‖2
(1)(�) + ‖Jμ‖2

(1)(�)) exp(2
√

ε0μ0dk1) exp(−2(d + 1)
√

ε0μ0k1)

≤C((1 + k3
1)M2

1 exp(−2
√

ε0μ0k1) ≤ CM2
1

with generic constants C. Due to (3.46),

|I0(k) exp(−2(d + 1)
√

ε0μ0k)| ≤ 2ε2
0 when k ∈ [0,K],

so as in [22, page 55, Theorem 2] and [20, page 67], we conclude that when K < k < +∞

|I0(k) exp(−2(d + 1)
√

ε0μ0k)| ≤ Cε
2μ(k)
0 M2

1 . (3.50)

Using (3.48) instead of (3.47) and carrying out the same computations as above, we can obtain 
that for K < k < +∞

|I1(k) exp(−2(d + 1)
√

ε0μ0k)| ≤ Cε
2μ(k)
1 M2

2 . (3.51)

We need the following lower bound of the harmonic measure μ(k) given in [9], Lemma 2.2.
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Lemma 3.3. If 0 < k < 2
1
4 K , then

1

2
≤ μ(k).

On the other hand, if 2
1
4 K < k, then

1

π

((
k

K

)4

− 1

)− 1
2

≤ μ(k). (3.52)

4. Time-dependent Maxwell and wave equations

Let e be a solution to the initial value problem of the wave equation:

⎧⎪⎨
⎪⎩

ε0μ0∂
2
t e − �e = 0 in R3 × (0,∞),

e(x,0) = −
√

2π

ε0
Jε, ∂t e(x,0) =

√
2π

ε0μ0
curlJμ on R3 × {0},

(4.53)

and h be a solution to the initial value problem

⎧⎪⎨
⎪⎩

ε0μ0∂
2
t h − �h = 0 in R3 × (0,∞),

h(x,0) =
√

2π

μ0
Jμ, ∂th(x,0) =

√
2π

ε0μ0
curlJε on R3 × {0}.

(4.54)

Observe that if divJ = 0, then div e = 0 for all t > 0.
As shown in [9], (3.39) implies that

E(x,ω) = 1√
2π

+∞∫
0

e(x, t) exp(iωt)dt, H(x,ω) = 1√
2π

+∞∫
0

h(x, t) exp(iωt)dt.

Setting e(x, t) = h(x, t) = 0 for t < 0, we can write

E(x,ω) = 1√
2π

+∞∫
−∞

e(x, t) exp(iωt)dt, H(x,ω) = 1√
2π

+∞∫
−∞

h(x, t) exp(iωt)dt. (4.55)

To proceed, we need to estimate the remainders in (3.42), (3.44). We first prove the next result, 
which is similar to [9, Lemma 4.1] and [16, Lemma 2.3].

Lemma 4.1. Let (E, H) be the electric and magnetic fields satisfying (3.37), (1.4) with 
suppJε, suppJμ ⊂ �. Then if Jε, Jμ ∈ H 1(�) satisfy (1.10), we have
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∫
k<|ω|

‖E × ν(,ω) − αHτ (,ω)‖2
(0)(∂�)dω ≤ Ck−2(‖Jε‖2

(1)(�) + ‖Jμ‖2
(1)(�)) ≤ Ck−2M2

1 .

(4.56)
On the other hand, if Jε, Jμ ∈ H 2(�) and (1.11) holds, then

∫
k<|ω|

‖E × ν(,ω)‖2
(1)(∂�)dω ≤ Ck−2(‖Jε‖2

(2)(�) + ‖Jμ‖2
(2)(�)) ≤ Ck−2M2

2 . (4.57)

Proof. We first prove (4.56). By Plancherel’s formula, we have that

∫
k<|ω|

‖E × ν(,ω) − αHτ (,ω)‖2
(0)(∂�)dω

≤k−2
∫

k<|ω|
ω2‖E × ν(,ω) − αHτ (,ω)‖2

(0)(∂�)dω

≤k−2
∫
R

ω2‖E × ν(,ω) − αHτ (,ω)‖2
(0)(∂�)dω

=k−2
∫
R

‖∂t e(, t) × ν − ∂t (αhτ (, t))‖2
(0)(∂�)dt

≤Ck−2
∫
R

(‖∂t e(, t)‖2
(0)(∂�) + ‖∂th(, t)‖2

(0)(∂�))dt.

(4.58)

Combining the Huygens’ principle

e(, t) = h(, t) = 0 on �, when
√

ε0μ0d < t, (4.59)

and the following estimate

‖e‖2
(1)(∂� × (0,

√
ε0μ0d)) + ‖h‖2

(1)(∂� × (0,
√

ε0μ0d)) ≤ C(‖Jε‖2
(1)(�) + ‖Jμ‖2

(1)(�)),

which follows from the generalization [19] of Sakamoto energy estimates [26] to the transmission 
problems (see also [16, (2.31)]), (4.56) is an easy consequence of (4.58).

To prove (4.57), it follows from the similar argument that

∫
k<|ω|

‖E × ν(,ω)‖2
(1)(∂�)dω ≤ Ck−2

∫
R

(‖∂t e(, t)‖2
(0)(∂�) + ‖∂t∇e(, t)‖2

(0)(∂�))dt.

By the Huygens’s principle and the above generalization of Sakamoto energy estimates applied 
to ∂j e, we have

‖∂t∇e‖2 (∂� × (0,
√

ε0μ0d)) ≤ C(‖Jε‖2 (�) + ‖Jμ‖2 (�))
(0) (2) (2)
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(see [9, (4.20)]). (4.57) follows easily. The proof is complete. �
Now we consider the initial value problem for the time-dependent Maxwell equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ0∂th
∗ + curle∗ = 0 in R3 × (0,∞),

ε0∂t e
∗ − curlh∗ = 0 in R3 × (0,∞),

h∗(,0) =
√

2π

μ0
Jμ, e∗(,0) = −

√
2π

ε0
Jε on R3 × {0}.

(4.60)

Since divJε = 0 = divJμ, by the uniqueness of the initial value problem, we have dive∗(, t) =
0 = divh∗(, t). So from (4.60) we obtain

ε0μ0∂
2
t e∗ = μ0curl∂th

∗ = −curlcurle∗ = �e∗

and similarly

ε0μ0∂
2
t h∗ = �h∗.

Also it is easy to see that e∗, h∗ satisfy the same initial conditions (4.53), (4.54). Using the 
uniqueness in the initial value problem for the wave equations we derive that

e = e∗, h = h∗. (4.61)

From (4.61), Maxwell system (4.60), and (4.59) we have

⎧⎪⎪⎨
⎪⎪⎩

μ0∂th + curle = 0 in � × (0, T ),

ε0∂t e − curlh = 0 in � × (0, T ),

h(, T ) = 0, e(, T ) = 0 on �,

where T = √
ε0μ0d . For this backward initial value problem, using the estimates of Proposition 

1.1 in [10] (for e × ν −αhτ ) or Corollary 1.4 in [13] (for e × ν), we can obtain the following key 
energy bounds.

Lemma 4.2. Let (e, h) be a solution to (4.60) with Jε, Jμ ∈ [L2(�)]3 and suppJε, suppJμ ⊂ �. 
Then

‖Jε‖2
(0)(�) + ‖Jμ‖2

(0)(�) ≤ C‖e × ν − αhτ‖2
(0)(∂� × (0, T )) (4.62)

and

‖Jε‖2
(0)(�) + ‖Jμ‖2

(0)(�) ≤ C‖e × ν‖2
(1)(∂� × (0, T )). (4.63)

Now we are ready to prove the increasing stability results (1.12), (1.13) of Theorem (1.2).
131



V. Isakov and J.-N. Wang Journal of Differential Equations 283 (2021) 110–135
Proof. We will first prove (1.12) by modifying the argument in [9] and [16]. We may assume 
that ε0 < 1

2 , otherwise, (1.12) obviously holds. In (3.42) and (3.46), we choose

⎧⎨
⎩k = δK

2
3 E

1
3

0 , δ = (2π(d + 1)
√

ε0μ0)
− 1

3 when 2
3
4 δ−3K < E0,

k = K when E0 ≤ 2
3
4 δ−3K.

Now if 2
3
4 δ−3K < E0, then 2

1
4 K < k, and (3.50), (3.52) imply that

|I0(k)| ≤ CM2
1 exp(2(d + 1)

√
ε0μ0k) exp

(
− 2

π
((

k

K
)4 − 1)−

1
2 E0

)

≤ CM2
1 exp(2(d + 1)

√
ε0μ0k) exp

(
− 2

π
(
K

k
)2E0

)

= CM2
1 exp

(
2(d + 1)

√
ε0μ0k − 2

π
δδ−3K

2
3 E

1
3

0

)

= CM2
1 exp

(
−2(d + 1)

√
ε0μ0δK

2
3 E

1
3

0

)
.

Using the inequality exp(−y) ≤ 2y−2 when y > 0, we have that

|I0(k)| ≤ CM2
1

K
4
3 E

2
3

0

. (4.64)

Next if E0 ≤ 2
3
4 δ−3K , then k = K and by (3.46)

|I0(k)| = |I0(K)| = 2ε2
0,

1

K2 ≤ C

K
4
3 E

2
3

0

, (4.65)

since E0 ≤ 2
3
4 δ−3K .

Therefore, from (4.62) and the Plancherel’s formula we can estimate

‖Jε‖2
(0)(�) + ‖Jμ‖2

(0)(�)

≤C‖e × ν − αhτ‖2
(0)(∂� × (0,

√
ε0μ0d)) ≤ C‖e × ν − αhτ‖2

(0)(∂� ×R)

=C

∞∫
−∞

‖E × ν(,ω) − αHτ (,ω)‖2
(0)(∂�)dω ≤ Cε2

0 + CM2
1

K
4
3 E

2
3

0

,

when we consider the cases 2
3
4 δ−3K ≤ E0, E0 ≤ 2

3
4 δ−3K and use (3.42), (4.56) with our choice 

of k in the both cases and the inequalities (4.64), (4.65). Since we assumed that 1 < K, ε0 < 1
2 , 

(1.12) follows.
A proof of (1.13) can be obtained by a slight change in the previous argument. We may assume 

that ε1 < 1 , otherwise, (1.13) is obvious. In (3.44) and (3.46), we choose
2
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⎧⎨
⎩k = δK

2
3 E

1
3

1 , δ = (2π(d + 1)
√

ε0μ0)
− 1

3 when 2
3
4 δ−3K < E1,

k = K when E1 ≤ 2
3
4 δ−3K.

Now if 2
3
4 δ−3K < E1, then 2

1
4 K < k, and (3.51), (3.52) imply that

|I1(k)| ≤ CM2
2 exp(2(d + 1)

√
ε1μ0k) exp

(
− 2

π
((

k

K
)4 − 1)−

1
2 E1

)

≤ CM2
2 exp

(
2(d + 1)

√
ε0μ0k − 2

π
δδ−3K

2
3 E

1
3

1

)

= CM2
2 exp

(
−2(d + 1)

√
ε0μ0δK

2
3 E

1
3

1

)
,

hence as above

|I1(k)| ≤ CM2
2

K
4
3 E

2
3

1

. (4.66)

If E1 ≤ 2
3
4 δ−3K , then k = K and by (3.46)

|I1(k)| = |I1(K)| = 2ε2
1,

1

K2 ≤ C

K
4
3 E

2
3

1

, (4.67)

since E1 ≤ 2
3
4 δ−3K . Therefore, from (4.63) and the Plancherel’s formula we can estimate

‖Jε‖2
(0)(�) + ‖Jμ‖2

(0)(�) ≤ C‖e × ν‖2
(1)(∂� × (0,

√
ε0μ0d))

≤ C

∞∫
−∞

‖E × ν(,ω)‖2
(1)(∂�)dω ≤ Cε2

1 + CM2
1

K
4
3 E

2
3

1

,

when we consider the cases 2
3
4 δ−3K ≤ E1, E1 ≤ 2

3
4 δ−3K and use (3.44), (4.57) with our choice 

of k in the both cases and the inequalities (4.66), (4.67). Since we assumed that 1 < K, ε1 < 1
2 , 

(1.13) follows. �
5. Conclusion and discussion

In this work, we study the inverse source problem for electromagnetic waves using the mea-
surements involving tangential components of electric and magnetic fields at many frequencies. 
For the uniqueness, we consider a rather general setting in which the media are anisotropic and 
inhomogeneous. We measure the tangential components of electric and magnetic fields on a part 
of boundary for frequency ω ∈ (0, K). Under the structure assumption on the electric permittiv-
ity ε and permeability μ (1.7), the uniqueness is established for divergence-free sources. Since 
we use the Fourier transform in time to reduce our inverse source problem to identification of 
the initial data in the time-dependent Maxwell equations by data on the lateral boundary, the 
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structure assumption (1.7) is needed to guarantee the uniqueness of the lateral Cauchy problem 
for time-dependent Maxwell equations. We want to point out that for the time harmonic Maxwell 
equations with general anisotropic media (without any structure assumption), the unique contin-
uation property holds (see Lemma 2.2). Proving the uniqueness of the lateral Cauchy problem for 
the time-dependent Maxwell equations with general anisotropic media remains an open problem.

Our second result is the increasing stability of identifying sources using the L2 norm of the 
absorbing boundary data E( , ω) × ν − αHτ ( , ω) and the H 1 norm of the tangential of the elec-
tric field E( , ω) × ν for ω ∈ (0, K). It is tempting to prove the increasing stability using the 
L2 norm of E( , ω) × ν for ω ∈ (0, K). However, since such boundary condition does not sat-
isfy the Kreiss-Sakamoto condition, this task will be quite challenging. Finally, in the proofs 
of Theorem 1.1 and 1.2, it is crucial to assume that sources are the divergence-free. Due to the 
pedagogical example given in the introduction, it seems necessary to impose this restriction on 
sources. Therefore, to what extent one can determine a nondivergence-free source by boundary 
data at many frequencies is an interesting question.
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