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Abstract

In this paper we study the uniqueness and the increasing stability in the inverse source problem for
electromagnetic waves in homogeneous and inhomogeneous media from boundary data at multiple wave
numbers. For the unique determination of sources, we consider inhomogeneous media and use tangential
components of the electric field and magnetic field at the boundary of the reference domain. The proof
relies on the Fourier transform with respect to the wave numbers and the unique continuation theorems. To
study the increasing stability in the source identification, we consider homogeneous media and measure the
absorbing data or the tangential component of the electric field at the boundary of the reference domain
as additional data. By using the Fourier transform with respect to the wave numbers, explicit bounds for
analytic continuation, Huygens’ principle and bounds for initial boundary value problems, increasing (with
larger wave numbers intervals) stability estimate is obtained.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The main theme of this paper is to investigate the inverse source problem for the Maxwell
equations when the source is supported inside a bounded domain 2. We consider the scattering
solution of the Maxwell equations due to the existence of the source. We measure suitable tan-
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gential components of the electric field and the magnetic field on d€2 or a part of 2 to retrieve
the information of the source. Inverse source problems have enormous applications in practice.
For example, detection of submarines and of anomalies in various industrial objects like material
defects [14], [18] can be regarded as recovery of acoustic sources from boundary measurements
of the pressure. Other applications include antenna synthesis [5], biomedical imaging (magne-
toencephalography and ultrasound tomography) [4], fluorescent microscopy, and geophysics, in
particular, to locating sources of earthquakes.

Inverse source problems are linearisations of inverse problems of determining coefficients of
partial differential equations. From the boundary data for one single linear differential equation
or system (that is, single wave number), it is not possible to find the source uniquely [20, Ch.4].
This non-uniqueness phenomenon also appears in the Maxwell equations due to the existence of
non-radiating sources [1], [3]. However, if we use the data collected for various wave numbers
in (0, K), the uniqueness can be restored, at least for divergence-free sources. For applications,
the important issue is the stability of the source recovery. It is widely known that most of inverse
problems for elliptic equations are ill-posed having a feature of logarithmic type stability esti-
mates, which results in a robust recovery of only few parameters describing the source and yields
very low resolution numerically. In this work, we will show that for the Maxwell equations the
stability of identifying divergence-free sources using absorbing boundary data on the whole 92
with wave numbers in (0, K) increases (getting nearly Lipschitz) when K is getting large.

To describe main results, we will use mostly standard notations. Let || - ||y denote the H !
Sobolev norm of a scalar or a vector-valued functions, €2 be a bounded domain in R3 with con-
nected R3 \ Q and the boundary 32 € C2. C denotes a generic constant depending only on
Q, €0, o whose value may vary from line to line. Consider the time-harmonic Maxwell equa-
tions in an inhomogeneous medium:

curlE —iouH =J, in R,
(1.1)

curl H+iweE=J. in R,
where E, H are electric and magnetic fields, @ > 0 is the wave number, € and p are 3 x 3 real

positive-definite matrices with time independent entries which are positive constants outside €2,
i.e., for some €y > 0, g >0

e(x)=eols and px)=polz, xeR3\Q, (1.2)

and Je, J, are the (real vector valued) electric and magnetic current densities that is assumed to
be supported in €2

supp Je, suppJ, € Q. (1.3)

We are interested in the scattering solution for (1.1). In this case, E, H are required to satisfy the
Silver-Miiller radiation condition:

lllim 1xX|(/I0H X 0 — \JéoE)(x) =0, (1.4)

where 0 = x/|x|. One can show that for any J., J, € H(div, 2) satisfying (1.3) there exists
a unique (E, H) € H[oc(curl,]R3) X Hlac(curl,R3) satisfying (1.1) and (1.4), where for any
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open set D C R3 we define H (div, D) = {fue [L2(D)]? : divu € L2(D)}, H(curl, D) ={u €
[L2(D)]? : curlu € [L2(D)1?}, and u € Hpe(curl, R3?) if u € H(curl, ©) for any bounded open
set O of R3. The corresponding graph norm of H (curl, D) is defined by

5 2 1/2
i cean ) = (112 2y + leurlul? s 1) (1.5)

and Hy(curl, D) is the completion of [C(‘)’O(D)]3 with respect to the norm (1.5).
The first main result is uniqueness from the minimal data

E(,w)xv, H(,w) xv on I'CaR, for K, <w <K, (1.6)
where 0 < K, < K.

Theorem 1.1. Let J,,, Jc € H(curl, Q) satisfy (1.3). We further assume that €, ju € C*(Q) and
there exists a scalar function M(x) € C*() such that

ex)=r(x)ulx), xeQ. (1.7)
Moreover, let J¢, J,, be divergence-free, i.e.,
divJ. =0, divJ, =0 in R>. (1.8)
Then Je, Jy in (1.1), (1.3), (1.8) are uniquely determined by (1.6).

Observe that this result implies that E(, w) x v on 92 with K, < @ < K under the conditions
of Theorem 1.1 uniquely determines Je, J,, on 2. Indeed, due to the uniqueness for the exterior
boundary value problem for the Maxwell system E(, @) x v on 92 uniquely determine (E, H)
on R3\ Q and hence the data (1.6) which implies uniqueness of J, Ju

The second main result of this paper is an improving stability of recovery of divergence-free
sources Je, J;, from the absorbing boundary data (also called Leontovich condition)

E(,w) xv—a(-)H;(-,w) on 02, for 0 <w < K, (1.9)
or the tangential component of the electric field
E(,w)xvon dR, for0<w< K,
where v is the unit outer normal of 02 and H; = H — (H - v)v is the tangential projection of H
on 0$2. Here we assume that o (x) € L*°(02) and a(x) > ¢ > 0 on 992. The case of o = 1 corre-
sponds to the Silver-Miiller boundary condition [7]. In the next result we consider homogeneous

media.

Theorem 1.2. Let € = € and v = po. Assume that 1 < K, sources Jy,, Je € H2(Q) satisfy (1.3),
(1.8), and

1T lF) () + 1,117, () < M} (1.10)
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or
1TelZ) () + 11155 () < M3 (1.11)
for some My, M1 > Q. Then there exists C, depending on diam 2, €q, (o, such that

2

M
1€ 170y () + 1,70y () < € | &5 + ——— |- (1.12)
1+ K3&)
or
2 2 2 ]M22
||Je||(o)(9)+||Ju||(0)(Q)SC 81+ﬁ , (1.13)
1+ K3&]

forall (E,H) e [HI(SZ)]6 solving (1.1), (1.4) where

K
85=/||E<,w>xv — aHy (, )%, (0Q)dw, & = |Ingl,
0

and

K
512:/||E(,a)) < V|8, @Qdw, £ =|Ingy].
0

Observe that the stability bound (1.12) or (1.13) contain a Lipschitz stable part Ca(z) or Ca%
and a conditional logarithmic stable part. This logarithmic part is natural and necessary since we
deal with elliptic systems. However with growing K logarithmic part is decreasing and the stable
bound is dominated by the Lipschitz part. Before going further, we would like to point out that
the divergence-free condition (1.8) in Theorem 1.1 and 1.2 is not for the technical reason. It is
necessary for the uniqueness of our inverse problem. To see this, let ¢, 7 € C'(R?) be supported
in Qand E = Y—w‘p, H= —%, then (E, H) satisfies (1.1) withe =pu =1and J. = Vo, J, =
V. Such examples provide with non uniqueness to the determination of the source Vg, Vi
from E(, w), H(, w) given outside £2.

The determination of a source using multiple frequencies has received a lot of attention in
recent years. For the Helmholtz equation, uniqueness and numerical results were obtained in
[14]. First increasing stability results were presented in [5] for some particular cases. These
results were proved by direct spatial Fourier analysis methods. In [9], using a different method
involving a temporal Fourier transform, sharp bounds of the analytic continuation to higher wave
numbers, and exact observability bounds for associated hyperbolic equations, increasing stability
bounds were derived for the three dimensional Helmholtz equation. Later in [15] the methods
and results of [9] are extended to the more complicated case of the two dimensional Helmholtz
equation. We would like to point out that in the works mentioned above one uses the complete
Cauchy data on 92 instead of Dirichlet-like data, which is much more realistic. For instance,
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the common measuring acoustical devise (microphone) registers only pressure, while in seismic
one typically collects displacements. Those data only register the Dirichlet boundary value on
0L2. It should be mentioned that in [24] a spherical 2 was considered and there was a result on
increasing stability from only Dirichlet data on 0<2, but the used norm of the data was not the
standard norm. It involved the operator of solution of the exterior Dirichlet problem. In the recent
preprint [6], some results similar to [24] are obtained for the elastic and electromagnetic waves.

The idea in the proof of our increasing stability result in Theorem 1.2 is motivated by the re-
cent paper by Entekhabi and the first author [16], where increasing stability bounds are obtained
for the acoustic and elastic waves using the most natural Sobolev norms of the Dirichlet type data
on an arbitrary domain 2. As in [9] and [16], in this work we use the Fourier transform in time
to reduce our inverse source problem to identification of the initial data in the time-dependent
Maxwell equations by data on the lateral boundary. We derive our increasing stability estimate
by using sharp bounds of analytic continuation of the data from (0, K) onto (0, +00) given in
[9] and then subsequently utilized in [15], [24], [6]. A new idea introduced in [16] is to make
use of the Huygens’s principle and known Sakamoto type energy bounds for the corresponding
hyperbolic initial boundary value problem (backward in time). These techniques enable them
to avoid a need in the complete Cauchy data on 9€2 and in a direct use of the exact boundary
controllability results. For time-dependent Maxwell equations in homogeneous media, the Huy-
gens’ principle is valid. On the other hand, in our problem, in addition to Sakamoto type energy
bounds, we also need the regularity estimate for the Maxwell equations with absorbing boundary
condition or the tangential component of the electric field on the lateral boundary [10], [13].

The rest of this paper is organized as follows. In Section 2, we will prove the uniqueness
theorem, Theorem 1.1. We prove the increasing stability in Section 3 and 4. In Section 3, we use
the methods of [9], [16], in particular bounds of the analytic continuation of the needed norms
of the boundary data from (0, K) onto a sector of the complex plane w = w; + iw>, and use
them and sharp bounds in [9] of the harmonic measure of (0, K) in this sector to derive explicit
bounds of the analytic continuation of this norms from (0, K) onto the real axis. In Section 4, we
use the Fourier transform in time to transform the source problem of the time-harmonic Maxwell
equations to the time-dependent homogeneous Maxwell equations with initial conditions. The
derivation of increasing stability relies on the quantitative analytic continuation established in
Section 3, the Huygens’ principle for the Maxwell equations in homogeneous media, and the
regularity estimates using boundary conditions.

2. Proof of uniqueness

We first show solvability of the direct scattering problem and analyticity of its solution with
respect to the wave number w.

Theorem 2.1. Assume that (1.2), (1.3) are satisfied and J, J, € H(div, Q). Then there is a
unique solution (E(, ®), H(, ®)) € [Hjoc(curl, R3)]? to the scattering problem (1.1), (1.4). This
solution has an (complex) analytic with respect to w = Rw + iJSw continuation onto a neigh-
bourhood of the quarter plane {0 < Rw, 0 < Jw} which for 0 < Sw satisfies the equation (1.1)
and exponentially decays for large |x|:

|E(x, )| + |H(x, )| < Ce € ¥ (2.14)
with some constant C depending only on E, H, w.
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We first prove a unique result from boundary data.

Lemma 2.2. Assume that € and j are C'(R3) positive-definite matrix-valued functions. Let Q
be a domain in R3. If  # 0, curl E —iowpH = curl H +iwe E =0o0n Qand Exv=Hxv=0
onT COQ, then E=H =0 on .

Before proving this lemma we remind that, as widely known, the Maxwell equations are
invariant under a change of coordinates. To be precise, let the coordinate transform x — x” and
J = (Jy) with Jy = 8x,’( /9x; be the associated Jacobian matrix. Then in the new coordinates x’,
we have

curl’ H = —iwe'E’,
cull'E' =iowp H',
where

JeJT = JuJT
detJ ’ detJ °

E=UN""E, H=0U")"H, =
We now prove Lemma 2.2.

Proof. First we observe that by elliptic regularity (E, H) € C 1 (fZ). Let P € I'. We claim that
E(P) = H(P) = 0. Not losing a generality we assume that P is the origin and I" near P is
the graph of the function x3 = y (x1, x2) and moreover 91y (0) = 9>y (0) = 0. Let the change of
coordinates x — x’ be defined by x| = x1, x} = x2, xj = x3 — y (x1, x2) near 0. Then we have

1 0 0
J = 0 1 0 and detJ =1.
—d1y —dy 1

In the new coordinates the unit outer normal v/ = (0,0, —1), E' x v/ = H' x v/ =0 implies
E)/=E,=0, H=H;=0 on {xj=0}.

In particular 3, H{(0) = 3 H,(0) =0, i.e., 3] H,(0) — 8, H{ (0) = 0. Next from the third compo-
nent in the equation curl’ H' = iwe’' E’, we see that

—iwess(0)E5(0) = 0] Hy(0) — 93 H{(0) =0
and thus E%(0) = 0. Transforming back to the original coordinates immediately gives E(0) =0
Likewise, we can show that H(0) = 0. In other words, we can prove that E = H =0 on I". We

now apply the unique continuation result obtained in [25] to conclude that E= H =0in Q. O

We also need the well-posedness and the regularity of the boundary value problem related to
the Maxwell equations
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curl E* —iopH* =J; in B,
cul H* +iweE*=J} in B, (2.15)
E*xv=0 on 0B,

where B is a ball and the source J* = (J;j, JH e [L2(B)1°.

Lemma 2.3. There exists a discrete set

T={~~~ 7w727w71’a)17w2"”}

of nonzero real values, where —o0 < --- <w_j) <w_1 <w) <wy <---— 00, such that for any
w ¢ T U{0} there is a unique solution (E*(w; J*), H*(w; J*)) to (2.15) and (E*(w; ), H*(w;))
is a continuous linear operator from [L*>(B)1° into H(curl, B)?> which is analytic in € C \
(T U{0}). Let {wk(B)},‘zi_oo and {wk(B’)},fi_oo denote the discrete sets described above corre-
sponding to balls B and B'. Then if B C B, then wy(B') < wy(B) if k > 0 and wi(B’) > wi(B)
ifk <O.

Proof. We first study the eigenvalue problem
curlu —iwopv=0 1in B,
curlv+iweu =0 in B, (2.16)
uxv=0 on 0B.

We can see that the eigenvalue problem (2.16) is equivalent to the eigenvalue problem for u

curl(,uflcurlu)za)zeu in B,
2.17)
uxv=0 on 0B.

For, it is clear that if w # 0 is an eigenvalue of (2.16), then w? is an eigenvalue of (2.17). Con-
versely, if w? is an eigenvalue of (2.17) with eigenfunction u, then setting v = ™ 'curlu/iw
gives curlu — iwpv = 0 and curlv 4 iweu = 0.

The eigenvalue problem (2.17) was completely analyzed in [21]. Recall from [21, Theo-
rem 4.34, page 193] that there exists an infinite number of positive eigenvalues a),% with cor-
responding eigenfunction uy € Vp ¢ to (2.17), where

Vo.e = {u € Ho(curl, B) : (eu, ¥) 25y = 0for all € Ho(curl, B), curlyy =0in B}.

The eigenvalues {a),% > (0} have finite multiplicities and tend to infinity as k — co. Moreover,
{ur}z2, form a complete orthonormal system of (Vo¢, (-, -)u.e), where the inner product

W, Vpe= / w teurlu - curl vdx + / €u - vdx.
B B

Consequently, we have the formula
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1 (€uk, ur)2(p)
A= ——— = (€ug,up);2 =
1+ w? EO T e i) e

Note that A > A > --- — 0. It is not difficult to prove the following variational characterization
of A, that is,

(El/l, M)LZ(B)

A= max min L k=1,2,---. (2.18)
UV, dimU=k ueld u0 (U, 1)y e
An easy consequence of (2.18) is that if B C B’, then
A (B) < Ar(B’) foreach k, (2.19)
_ 1 "N — 1 2 2cn/ : n
where Ay (B) = Tl ®)’ M (B') = 2B and wj (B), wj (B’) are eigenvalues of (2.17) corre

sponding to B and B’, respectively. We actually want to show that the strict monotonicity holds,
i.e., for each k

’(B) <A (B') if BC B, (2.20)
which is equivalent to
wi(B) > wi(B') if BCB'.

We adopt the argument from [27, Theorem 2.3]. We will prove (2.20) by contradiction. Assume
that Ax(B) = Ar(B’). Since every Ax(B’) has finite multiplicity and Ax(B’) — 0, there exists
An(B") < Ag(B’) for some n. We now partition B’ into n balls satisfying

B=BiCB,C---CB,=PB.
Then (2.19) implies
M (B) = Ak (By) < Ak(Ba) < - -+ < Ak(By) = A (B').

Denote u,; the eigenfunction corresponding to Ay (B;) with [ug jlle=1,j=1,2,---,n.To
abuse the notation, we also use uy, ; to denote the zero extension of uy ; originally defined on B;
to B'. Still, we have ||lug ||, = 1 with integral evaluated over B’.

Now we would like to show that {uy ; }’}z | are linearly independent. Assume that 27:1 ajug,
=0 in B/, but a, # 0, then uy, =0 in B’ \ B,_;. By the unique continuation property in
Lemma 2.2, we have that u; , =0 in B’, which is a contradiction. Other coefficients are treated
similarly. Considering the subspace spanned by {uy, j};?zl in the variational characterization of
An(B’) in (2.18), we obtain that Ax(B") < A,(B"), which is a contradiction.

To show the unique solvability of (2.15) for w ¢ T U {0}, we consider the operator L : D(L) —
X :=[L*(B)]® x [L*(B)]? given by

L= 0 —ip~curl
“ \ie leurl 0 ’
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where D(L) = Hy(curl, B) x H(curl, B). It is not hard to check that L is self-adjoint in X with
respect to the inner product

<<Z;> , <z;>> = /(Mul v + €up - v2)dx,
B

the range of L, Ran(L), is closed (see [23, Corollary 8.10]). Also, X admits the orthogonal
decomposition

X =Ker(L) ® Ran(L).

Let P be the orthogonal projection of X onto Ran(L).

Let (J3,J5) € [L2(B)P x [LA(B)), ie., F := (—ip~'J}, —ie”'J¥) € X, then to solve

(2.15), we consider
(L —w)W =F,
where W € D(L). If ¢ T U {0}, then L — w is invertible. Hence the solution W is given by
W=(L-w 'PF—w ' - P)F,
for
(L—o)W=(L-w)(L-w) 'PF—(L-—w)o '(I-P)F=(—-P)F+PF=F.
Moreover, we can see that the solution W is analyticinw € C \ (7 U{0}). O
Remark 2.4. When € = €g/3 and ¢« = 13, we denote the corresponding spectrum of L by 7.
We now prove Theorem 2.1.
Proof. Let 0 < iw and 0 < Jw. We first establish the uniqueness. In other words, we want to
prove thatif (E, H) sati§ﬁes (1.1)with Je = J, =0and (1.4), then E=H =0in R3. Let Qo be

an open set containing €2 with closure contained in a ball B. By the Gauss divergence theorem
and the Maxwell equations (1.1), we have that

/v x E - ﬁdS:/(curlE~FI - E~curlI:I)dx=/(ia)/LH~I-_I—ic?)E~eE)dx
B

dB B

and hence

m/vxEJhwz—%w/wH-H+Efme§Q (2.21)
oB B

On the other hand, by (2.21), we can see that
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Ts(a)/v X E-curlEdS):‘Ts(wfv x E-(—i&H)dS)

B 3B (2.22)

=|w|2;”s(—i/v x E-HdS)= —|w|2m/ vx E-HdS>0.
OB dB
In view of (2.22), using [11, Theorem 4.17], we obtain that £ =0 in R3 \ B. Similarly, we can
prove that H =0 in R3\ B. Combine this and Lemma 2.2 concludes that £ = H =0 in R3.
We will prove the existence by the Lax-Phillips method. Let w € {0 < fw, 0 < Jw} and Qo
be an open set containing 2. In view of the strict monotonicity of eigenvalues with respect to the

domain proved in Lemma 2.3, one can choose a ball B, Qg C B, so that w ¢ T U Ty. Let ¢ be a
cut-off C>°(R3) function ¢ with ¢ =1 on Q and ¢ = 0 outside of $2y. We look for a solution

(#)= (%) ((3)- (%)) )

* . Jx . .
to system (1.1), where (f]*) (-, J*) with J* = <J‘i> being a solution to the boundary value

€
problem

curl E* —iopH* =J; in B,
cul H* +iweE*=J} in B, (2.24)
E*xv=0 on 9B,

and J* € [H(div, B)]2 with supp J* C B will be determined later. Moreover, (i) is the solu-
tion to

curl ® —iwueW=JF in R’ 225)
curl U + iweg® = J* in R’

satisfying the radiation condition
I l‘im lx|(eo® x o + /1o W) (x) =0, | llim x| (VoW x 0 — /eg®)(x) =0.  (2.26)
X|—> 00 X|[— 00

It is well known (see [8], p. 78, Theorem 2) that

D(x, w) = f XD = YD) (10077 () + curl I (1))dy,
Azlx — y| "

(2.27)

\P(x,w):/w(—iweol*()})+cur1J:(y))dy, K = w/€oM0.
4 |x — y| “
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Since ¢ =1 in 2, we have
J;: =J, and J'=J. in Q.

In R3\ Q, we have

curl E — iopH = curl (® — ¢(® — E¥)) — iwpo(V — ¢ (W — H*))
=curl® — ¢curl (® — E*) — Vo x (® — E*) —iwpug(V — ¢ (¥ — H))
— J5 =V x (® — E*) — pleurl (® — E) — iwpo(¥ — H)]
— =V x (& — E)

and similarly
curl H +iweE =J — V¢ x (V— H).

We introduce the operator

w«_ (Vo x(®—E)
A" = (—w x (W —H*) )
Hence < H) is a scattering solution of (1.1) iff

J=J"+AJ* (2.28)
Note that supp AJ* C Qo \ Q.
To prove the existence for (2.28), we first show that I + A is Fredholm from [ H (div, B)]? into

itself. It follows from [2] that ®(J*), W(J*), E*(J*), H*(J*) are continuous linear operators
from [H (div, B)]? into [H'(B)]°. Moreover, by direct calculations,

div(Vp x E*) = =V¢ - curl E* = —V¢ - (iopoH* + J))),
div(Vgp x ) =—-V¢ - -curl® =—-V¢ - (ougV + J;;),

due to (2.24), since u = i outside 2 and V¢ = 0 on 2. Hence

div(Vep x (® — E*))=V¢ - (ioug(H* — W)).
Similarly,

div(Vep x (W — H*)) =—-V¢ - (iweg(E* — D)).
Summing up, A is a continuous linear operator from [H (div, B)]2 into [H 1(div, B)]z, where
H'(div, B) = {u € [H'(B)]? : divu € H'(B)} with the natural norm. Since H!(B) is compactly

embedded into L?(B), A is compact from [H (div, B)]? into itself.
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Now to establish the existence, it suffices to prove the injectivity of I + A. Let 0 = J* 4+ AJ*.
Since J = 0, by the uniqueness which was shown at the beginning of the proof, we have E =

H =0 on B thus from (2.23)
d d E*
(v)=¢(()-(%))

Since ¢ =0 on B\ ¢ we have ® =0 on d B. Now from (2.24), (2.25) we yield

curl (® — E*) —iwopu (¥ — H)=0 in B,
curl (W — H*) +iwe(® — E*) =0 in B,
(®—E*)xv=0 on 0B.

By the choice of B a solution to this boundary value problem is unique, we get & — E* =
¥ — H*=0o0n B and hence ® =¥ =0, so AJ* =0 and from (2.28) we conclude that J* = 0.

Summing up, the Fredholm operator / 4+ A(w) is injective, and hence has the inverse. Since
A(w) is analytic with respect to w, so is the inverse and therefore J*. In view of the explicit
representation formulas for @, W in (2.25) (see for example [8, (47)]) and the analyticity of
(E*, H*) in w proved in Lemma 2.3, the analyticity of (E(, w), H(, ®)) follows. The exponential
decay (2.14) follows from (2.23), (2.27). O

Now we prove Theorem 1.1.

Proof. Due to the linearity it suffices to show that E xv=H xv=0onT, K, < w < K implies
that J. = J, = 0. Let (e, i) be a solution to the dynamical initial boundary value problem:

or(ee) —curlh =0, 0;(uh) +curle=0 in R3 x 0, 00), (2.29)
e=—2me e, h=—v27pu7'J, on R3 x {0} (2.30)

Thanks to (1.8) and (2.29), in addition to (2.30), we have the following compatibility conditions
div(ee) =0, div(uh) =0 in R? x (0, 00). (2.31)

As known, see for example [17], there is a unique solution (e, k) € L°°((0, T); [H (curl, R3)]6)
of this problem for any 7 > 0 and moreover by using the standard energy estimates, i.e. scalarly
multiplying (2.29) by (e, k) exp(—yot) and integrating by parts over R3 x (0, 7) we have

lle(, )iy (R?) + 1 (2, Il o) (R?) < Coexp(yon), (2.32)

where positive yp and Cp might depend on €, i, J. Then the following Fourier-Laplace trans-
forms are well defined

1 T 1 r
E.(x,w)= —/e(t,x) exp(iowt)dt, Hy(x,w) = —/e(t,x) exp(iowt)dt (2.33)
V2 ; V2 ;
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withw=w; +iy, o <y.
Approximating Je, J,, by smooth functions and integrating by parts, we have

0= /(8,(6e) —curlh)(¢, ) exp(iwt)dt
0

oo oo

=—ee(0,-) — ia)/ ee(t,-)exp(iwt)dt — curl / h(t,-)exp(iowt)dt
0 0

and

0= /(8t (nh) +curle) (¢, -) exp(iwt)dt
0

oo o0

=—uh(0, ) — ia)/ uh(t,-)exp(iot)dt + curl /e(t, exp(iwt)dt.
0 0

Hence (E,, Hy) solves (1.1) with w = w1 + iy, Yo < y. In addition, (E,, Hy) exponentially
decays for large |x|. Indeed, due to the finite speed of the propagation in the hyperbolic problems
we have e(t, x) =0 for x € R3 \ B(R) if t <OR — Ry for some 6 =0(e, u) > 0, where Ry > 0
satisfies Q C B(Rg) and R > Ro. Hereafter, B(R) denotes the ball of radius R centered at 0.
Hence from (2.33), for any § > 0

|E|*dx
B(R+4)\B(R)

2
+00

< / / e(t,x)exp(ioit — (y — 8)t)exp(—dt)dt| dx
B(R+4)\B(R) PR—Ry

+o0 +00
< / / le(t, x)|2exp(—2(y —8))dt / exp(—268t)dt | dx
B(R+4)\B(R) WR—Ry 6R—Ry
+00
=C(Co, 8, Ro) exp(—250 R) / lle(t. ) 1) R"\B(R)) exp(—2yot) exp(—2(y — yo — 8)t)dt
6R—Ry
+00
<C(Cy, 8, Rp) exp(—280R) / exp(—2(y —yo — d)t)dt
6R—Ry

<C(Cy, y, yo, Ro) exp(—286 R),
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where we have used (2.32) and chosen § = % The same bound holds for H,, and we yield

(|E«* + |H.[Pdx < C(Co, v, y0, Ro) exp(—280R). (2.34)

B(R+4)\B(R)

By Theorem 2.1 the vector function (E(, ®), H(, ®)) solving (1.1), (1.4) has a complex an-
alytic extension from (0, co) into a neighbourhood in the first quarter plane {0 < iw, 0 < Jw},
by the uniqueness of the analytic continuation this extension satisfies (1.1), (1.4) and decays
exponentially as |x| — oo when 0 < Jw, in particular, we have for E, H the bound (2.34). To
show that E = E,, H = Hy, welet E° = E, — E, H' = H, — H. Since (E, H), (E4, H,) solve
the Maxwell system (1.1) we see that curl E® — iwuH® =0, curl H? + iwe E = 0 in R3. Let
the cut off C!(R3)-function ¢ =1 on B(R), ¢ =0 on R3\ B(R + 1), 0 < ¢ < 1. Using the
homogeneous Maxwell equations for (E°, H"), we obtain

curl (0E®) — ioupH® = Vo x E°, curl (0H®) + iwepE® = Vo x H®. (2.35)
By (2.35), integrating by parts, and using ¢ =0 on d B(R + 4) imply
0= / (curl (WE®) - (9H®) — (0E?) - curl (9 H®))dx
B(R+4)

= / (io(pnH® - (9H) — (9E?) - (i0pe E))dx
B(R+4)

+ f (Vo x E%) - (0% — (9E°) - (Vo x H®))dx.

B(R+4)\B(R)
Therefore, taking the real part of the above relation yields
Sw / (pz(eEO CEV+ /LHO . I-_Io)dx
B(R+4)

5 / (Vg x E% - (0H% — (9E°) - (Vo x A%)dx

B(R+4)\B(R)

and hence from (2.34) and the exponential decay of E, H we derive

/ (EO. B+ H®. A%dx < C(Co, v, yo, Ro)exp(—50R).

B(R)
Letting R — +00 we conclude that E® = H% =0 on R? and so
E(,0)=E"(,0), H(,0)=H"(,0) (2.36)
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when w =wj +iy,0 <wy,and yy < y.

By Lemma 2.2, E(,w) = H(,w) =0 on R3 \ ©, when K, < ® < K, and due to uniqueness
of the analytic continuation with respect to w in {0 < fiw, 0 < Jw}, it follows from (2.36) that
E*(,w)=H*(,w) =00n 9 forw =w; +iy, 0 < wy, Yo < y. Now by the uniqueness in the
Fourier-Laplace transform (2.33), we finally conclude that e = =0 on 92 x (0, 00). In view
of the structure assumption (1.7), by the uniqueness of the Cauchy problem for the dynamical
Maxwell system (2.29), (2.31), we conclude that e = h = 0 in Q x {Tp} for some (large) Tp [12].
Since e = h =0 1in 92 x (0, Tp), by uniqueness in the hyperbolic (backward) initial boundary
value problem with the initial data at t = Ty, we have e = h =0 in 2 x (0, Tp). Hence e =h =0
on © x {0} and from (2.30) it follows that J. = J,, = 0. The proof is complete. O

3. Quantitative analytic continuation

We will start preparations for a proof of Theorem 1.2. Since € = €, u = €g, (1.1) becomes

curlE —iwpuoH =J, in R3,
{ a (3.37)

curl H +iwegE =J, in R,

with the radiation condition (1.4) provided w > 0. As in (2.27), these equations and the radiation
condition are equivalent to the integral representation

ﬂxm=]@@9@lﬂ%mmkwnwma@mm
Az[x —y|

(3.38)

Huﬂ»=/9ﬂfﬁlﬂ%4mwmw+wmuwMy
amlx — y|

where k¥ = w,/€pLp. Moreover, as follows from the standard representation of radiating solutions
of the Helmholtz equations, (3.38) is equivalent to the Helmholtz equations

AE +i%E = —iopoJe —curlJ,, AH +k*H =iwegJ, —curl Jo in R3 (3.39)

and the Sommerfeld radiation condition.
In particular, we have

[ explixlx —y)) .
E(x,w) xv(x)= ﬁ(la)ﬂo.fe(})) +curl J, (y)) x v(x)dy, x €0, (3.40)
X —
2 y
and
_ [ explix|x —y])
Ex,0)xv(x) —ax)H;(x,w)= | ———G(x,y,w)dy, xe€0%, (3.41)
4r|x — y|
where
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Gx,y, w) =(iopuoJe(y) +curl J, (y)) x v(x)
—a){(—iwegJu (y) +curl Je () — [(—iweoJ (y) + curl Je () - v(x) v (x)}.
Observe that the formulae on the right sides of (3.40) and (3.41) can be defined even when w < 0.
Therefore, for w < 0, we define E(x, w) x v(x) and E(x, w) x v(x) — a(x)H; (x, ®) in terms of

formulae (3.40) and (3.41), respectively.
Now it follows from (3.41) that

/ IE x v(,0) — aH ()1} (0do = Io(k) + / IE x v(, ) — aHe (. )15, (0)do,

—00 k<|w|
(3.42)
where Iy(k) is defined as
exp(ix|x — y|)
Io(k) = — G, y,w)dy
4 |x —y|
032 \Q
/ XPCiklr =D oy —wydy | dE ) do. (3.43)
4 |x — yl
As above, we write
o0
/ IE x v(, )}, (3R)dw = I (k) + / IE x v(, )}, (3R)dw, (3.44)
—00 k<|w|

where

k
NK) :2// (|(E X 1) (x, )| + |Vaa(E x v)(x,a))|2) AT () dw.

0 0Q

We observe that VE is viewed as the vector with 9 components (3; Ex) and Vi E is the tan-
gential projection of the gradient (the 9 dimensional vector formed of tangential projections of
gradients of 3 components of E). We have

[(E x v)(x,0)|* = (E x v)(x,0) - (E x 1)(x,0) = (E x v)(x,0) - (E x v)(x, —0),
due to (3.40). Remind that we assume that J,, and J. are real-valued. Similarly,
IVaq(E x v)(x,0)]> = Vaq(E x v)(x, ©) - Vag(E x v)(x, —0),

and hence, again using (3.40), the integrand in /; (k) can be extended to an entire analytic function
of w. Hence
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k
I (k) = 2/ / ((E X V)(x,w) - (E xv)(x, —w)
0 0
+ Vio(E x v)(x, ®) - Vaa(E x v)(x, —w))dT (x)dw. (3.45)

Since (due to (3.40), (3.41), (3.43), (3.45)) the integrands are entire analytic functions of w =

w1 + iwy, we can analytically extend (k) and I (k) from k > 0 to k € C and, moreover, the

integrals in (3.43), (3.45) with respect to w can be taken over any path joining points 0 and

k = ki + iky of the complex plane. Thus Ip(k) and I (k) are entire analytic functions of k € C.
Due to the definitions of the norms of the boundary data

Ih(K)
2

1(K)
and &)= 12 . (3.46)

2=
The truncation level k in (3.42) and (3.44) is important to keep balance between the known data
and the unknown information when k € [K, 00).
We will need the following elementary estimate for Ip(k).
Lemma 3.1. Let supp Je, supp J,. C €2, then for k = ki +ik;
[To() < C(1+ kPYUTe NG () + 1,115 () exp(2d /eoraolka ). (3.47)

where d =sup |x — y| over x,y € Q.

Proof. Using the parametrization w = ks, s € (0, 1) in the line integral and the elementary in-
equality |exp(i /eorow|x — y|)| < exp( /€oiolka|d) it is easy to derive from (3.43), (3.41) that

o (k)|

1
sc/|k|</</{|k|s<|fe<y>|+|Jﬂ(y>|)
0

Q Q
2
exp( /€ ko|d
+ Jeurl J. ()] + [curl J,Ay)|}%dy) dF(x))ds

<Clk| / (/{|k|2(|15<y)|2 + 17 DI + Jeurl Jo (»)* + |cur1JM(y>|2}dy>

12 'Q

Ix —yI?

y ( / exp(2./@molkald) dy) o),

where the Cauchy inequality is used for the integrals with respect to y. Since

1
——dy <C,
/ Ix — yI?
Q

126



V. Isakov and J.-N. Wang Journal of Differential Equations 283 (2021) 110-135

we yield

|lo(k)| < C|k| / (2T + 171D + VI + IV () 2y | exp2y/€ortolkald)

and complete the proof of (3.47). O

Lemma 3.2. Let supp Je, supp J,, C 2, then for k = ki +ik;

L) < C+ kP () + 11,115 () exp(24/eoptolkald), (3.48)
where d = sup |x — y| over x,y € Q.
Proof. We C! extend the vector field v from Q2 onto some neighbourhood V of 32 and denote

this extension again as v. Using the parametrization w = ks, 0 < s < 1, in the integral (3.45) we
have

111 (k)|

=2|k|//(|(E X v)(x, W) |[(E x v)(x, —0)|
0 99
+Vi(E x v)(x, 0)||Vyo(E x v)(x, —)|) dT'(x)ds (3.49)

SZIkI//ﬂE X V)(x, ®)|[[(E X v)(x, —w)|
0 IR
+|V(E x v)(x, w)||V(E x v)(x, —w)|) dT"(x)ds

when k =k + ik».
From (3.40), by the Cauchy inequality, it follows that

[(E x v)(x,0)]” < Cexp(2/éoolk2d) f| |2dy /(le e > + 1V P () dy.
Using

! lx =yl ’ | |
y— Y= ——|x —
0x; Y dy; Y

and integrating by parts with respect to y imply
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E / w(iwuoje(y) +curl J,(y)) x v(x)dy

dx; |x =yl
Q

] — 0
_ / expUiely =3 9 o de(y) + curl Tu(3)) x v(x)dy
lx—yl 3y,

exp(i - 0
+ / FROM D G e (1) + curl 1 (1) x 5 v()dy.
=l "

Hence, from (3.40) and using the Cauchy inequality for the integrals with respect to y, we derive
that

IV(E x v)(x, w)|* < Cexp(2/eomolkald)
1
/m‘” /((1 F KDYl + 1Tl + VI 4 IV I + (V2T + V2 P)dy
Q Q

< Cexp2y/eopolkald) (k1> + D (e lI5y () + 1115 (),
and combining with (3.49) complete the proof of (3.48). O

The following steps are needed to link the unknown values of Iy(k) for k € [K, 00) to the

known values &g, €1 in (3.46). Let S be the sector {k : —% <argk < %} and w (k) be the harmonic

measure of the interval [0, K] in S\ [0, K]. Observe that |kz| < k1 (and hence |k| < 2k;) when
k € S, so from (3.47) we have

|Io(k) exp(—=2(d + 1) /€oftok)|
<CU+ KD ey () + 1,117 (2)) exp(2/eomodkr) exp(—2(d + 1)/€opok:)
<C((1 4 k})M7 exp(—2/eoioki) < CM}

with generic constants C. Due to (3.46),
[1Io(k) exp(—2(d + 1) /eopok)| < 28% when k € [0, K],
so as in [22, page 55, Theorem 2] and [20, page 67], we conclude that when K < k < +o00
|I(k) exp(=2(d + 1) /éomok)| < Csg® M. (3.50)

Using (3.48) instead of (3.47) and carrying out the same computations as above, we can obtain
that for K <k < 400

|1, (k) exp(—2(d + 1) /éomok)| < &M M3. (3.51)
We need the following lower bound of the harmonic measure (k) given in [9], Lemma 2.2.
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Lemma 3.3. [f0 < k < 27K, then

IA

(k).

| =

On the other hand, if 2% K <k, then

ey )\
;<<?> —1) < (k). (3.52)

4. Time-dependent Maxwell and wave equations

Let e be a solution to the initial value problem of the wave equation:

ewoafe —Ae=0 in R®x 0, 00),

NG) Ner (4.53)
e(x,0) = _E—O”Jé, de(x,0) = EO;Z) curlJ, on R3x {0},

and / be a solution to the initial value problem

€oi0d’h —Ah=0 in R> x (0, 00),

V2 Ner (4.54)
R, 0) =Yg, 9h(x,0) = Y curlJe on R3 x {0},
Mo

€010

Observe that if divJ =0, then dive =0 for all # > 0.
As shown in [9], (3.39) implies that

1 i 1 i
E(x,w):—/e(x,t)ex (iwt)dt, H(x,w) = — / h(x,t)exp(iwt)dt.
V2w ; P N2 , P
Setting e(x,t) = h(x,t) =0 for t <0, we can write
| 400 | +00
E(x,w)=— / e(x,t)exp(iowt)dt, H(x,w) = —— / h(x,t)exp(iwt)dt. (4.55)
V2 P V2 P

—0oQ —0oQ

To proceed, we need to estimate the remainders in (3.42), (3.44). We first prove the next result,
which is similar to [9, Lemma 4.1] and [16, Lemma 2.3].

Lemma 4.1. Let (E, H) be the electric and magnetic fields satisfying (3.37), (1.4) with
supp Je, supp J,, C Q. Then if Je, Jy, € HY(Q) satisfy (1.10), we have
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IE > v(, @) = aHz ()17, (02)dw < Ck (1 lf) (@) + 1,17y () < Ck > M.

k<|w|
(4.56)
On the other hand, if Je, J,, € H?(Q) and (1.11) holds, then
IE x v(, 0)lIty, (02)dew < Ck (1|17 () + 1115 () < Ck*M3.  (4.57)
k<|w|
Proof. We first prove (4.56). By Plancherel’s formula, we have that
IE x v(,®) — aHy (, )7, (9Q)dw
k<|w|
<k / @*|| E x v(, 0) — a He (, ) [, (0Q)dew
k<|w|
<k [ @1E x (. 0) - atte( o)l @Ddo 458)
R
=k—? f 19re(, 1) x v — 3 (ath (, 1))l (0)d1
R
<Ck™2 f (e )17, (O + 13k (. )17, (B)dr.
R
Combining the Huygens’ principle
e(,t)=h(,t)=0 on Q, when ,/equod <t, (4.59)

and the following estimate

lelify, (02 x (0. /eomad)) + 14117, (02 x (0. /eomod)) < CIellfy () + 1,117, (2)).

which follows from the generalization [19] of Sakamoto energy estimates [26] to the transmission
problems (see also [16, (2.31)]), (4.56) is an easy consequence of (4.58).
To prove (4.57), it follows from the similar argument that

f IE x v( )IF},(0)dew < Ck™? / (1dre . D15, BKR) + 19, Ve (. )1, ()t
k<|w| R

By the Huygens’s principle and the above generalization of Sakamoto energy estimates applied
to dje, we have

19; VellFo, (982 x (0, v/eomod)) < C I3 () + 17 1) (2))
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(see [9, (4.20)]). (4.57) follows easily. The proof is complete. O
Now we consider the initial value problem for the time-dependent Maxwell equations

pnodh* +curle* =0 in R3 x (0, 00),

codre® —curlh*=0 in R>x (0, 00),

(4.60)
V) 2
h*(,0) = M—OHJ,L, ¢*(,0) = —?ﬂje on R?x {0}.

Since div Je = 0 = div J,,, by the uniqueness of the initial value problem, we have dive*(,¢) =
0=divh*(,t). So from (4.60) we obtain

eoppd’e” = pocurl d;h* = —curlcurle* = Ae*
and similarly
€opod>h* = Ah*,

Also it is easy to see that ¢*, h* satisfy the same initial conditions (4.53), (4.54). Using the
uniqueness in the initial value problem for the wave equations we derive that

e=¢e* h=h"* (4.61)
From (4.61), Maxwell system (4.60), and (4.59) we have

nooth +curle=0 in Qx(0,7),
€pdse —curlh =0 in Qx(0,7),
h(,T)=0, e(,T)=0 on
where T = ,/€pod. For this backward initial value problem, using the estimates of Proposition

1.11in [10] (for e x v — ah) or Corollary 1.4 in [13] (for e x v), we can obtain the following key
energy bounds.

Lemma 4.2. Let (e, h) be a solution to (4.60) with J., J,, € [L*(Q2)]* and supp Je, supp J,, C .
Then

1170y () + 11170, () < Clle x v — ath |17, (92 x (0, T)) (4.62)
and
el () + 11170, () < Clle x v, (32 x (0, T)). (4.63)

Now we are ready to prove the increasing stability results (1.12), (1.13) of Theorem (1.2).
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Proof. We will first prove (1.12) by modifying the argument in [9] and [16]. We may assume
that &g < % otherwise, (1.12) obviously holds. In (3.42) and (3.46), we choose

1
k=8K3&),8=Qn(d+1)J/eomo) 3 when 2367°K <&,
k=K when & <23i573K.

Now if 218 3K < &, then 21 K < k, and (3.50), (3.52) imply that
2 2 k4 -1
[To(k)| < CM7 exp(2(d + 1) /eopok) exp _;((?) -1)72&
2 2 K 2
< CM7 exp2(d + 1) /eopok) exp —;(;) &
2 1
=CM?exp (Z(d + 1) /eomok — —553K§55>
T
1
= CMiexp (—Z(d +1), /—eouoak.%e(;) )

Using the inequality exp(—y) < 2y~2 when y > 0, we have that

2
Mi (4.64)
. .

K3g

o (k)| =

Next if & < 2163K, then k = K and by (3.46)

< (4.65)

K3E

1
[o(k)| = |Io(K)| = 2¢, 23 =

S dno

since &) < 2%6_31(.
Therefore, from (4.62) and the Plancherel’s formula we can estimate

171130 () + 11,0110 ()

<Clle x v — ah-||fy) (82 x (0, y/éo20d)) < Clle x v — ahe | (B2 x R)

2
Ml

2
3

o0
:0/ IE x v(, @) — aHx (, ) |13, (0Q2)dw < Cej + ;
K3&;

—0o0
when we consider the cases 2% 873K < &0, & < 2%8_31( and use (3.42), (4.56) with our choice
of k in the both cases and the inequalities (4.64), (4.65). Since we assumed that 1 < K, g9 < %

(1.12) follows.
A proof of (1.13) can be obtained by a slight change in the previous argument. We may assume

that e < %, otherwise, (1.13) is obvious. In (3.44) and (3.46), we choose
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1 3
k=8K3E7 6= Q2n(d+1)/eom) 3 when 2i67K <&,

k=K when & <2is73K.

Now if 216 3K < &1, then 21 K < k, and (3.51), (3.52) imply that
2 2 k4 -1
[11 (k)] < CM5 exp(2(d + 1)/€110k) exp _;((f) —-1D728
2 1
< CMjexp (2(d + 1) /eopok — —55—3K%55>
4

1
= CMZexp (—Z(d +1). /—ewoaﬁgﬁ) ,

hence as above

CM;3
1Ll < ——- (4.66)
K3&}

If & <23673K, then k = K and by (3.46)

C

(k)] = 11 (K)| =27, :
3E

=<

reo , 4.67)

N

K

since £ < 2% 873K . Therefore, from (4.63) and the Plancherel’s formula we can estimate

16170y () + 11170, (R) < Clie x vII (32 x (0, /Eopeod))

oo
2 2 CM12
<C [ IExv( )}, 09de < Cef + ——,
. K3i€

= Wi

when we consider the cases 2%8_31( <&,& < 2%8_31( and use (3.44), (4.57) with our choice
of k in the both cases and the inequalities (4.66), (4.67). Since we assumed that 1 < K, &1 < %,
(1.13) follows. 0O

5. Conclusion and discussion

In this work, we study the inverse source problem for electromagnetic waves using the mea-
surements involving tangential components of electric and magnetic fields at many frequencies.
For the uniqueness, we consider a rather general setting in which the media are anisotropic and
inhomogeneous. We measure the tangential components of electric and magnetic fields on a part
of boundary for frequency w € (0, K). Under the structure assumption on the electric permittiv-
ity € and permeability p (1.7), the uniqueness is established for divergence-free sources. Since
we use the Fourier transform in time to reduce our inverse source problem to identification of
the initial data in the time-dependent Maxwell equations by data on the lateral boundary, the
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structure assumption (1.7) is needed to guarantee the uniqueness of the lateral Cauchy problem
for time-dependent Maxwell equations. We want to point out that for the time harmonic Maxwell
equations with general anisotropic media (without any structure assumption), the unique contin-
uation property holds (see Lemma 2.2). Proving the uniqueness of the lateral Cauchy problem for
the time-dependent Maxwell equations with general anisotropic media remains an open problem.

Our second result is the increasing stability of identifying sources using the L? norm of the
absorbing boundary data E(, w) X v — o H;(, ) and the H ! horm of the tangential of the elec-
tric field E(, w) x v for w € (0, K). It is tempting to prove the increasing stability using the
L? norm of E(,w) x v for w € (0, K). However, since such boundary condition does not sat-
isfy the Kreiss-Sakamoto condition, this task will be quite challenging. Finally, in the proofs
of Theorem 1.1 and 1.2, it is crucial to assume that sources are the divergence-free. Due to the
pedagogical example given in the introduction, it seems necessary to impose this restriction on
sources. Therefore, to what extent one can determine a nondivergence-free source by boundary
data at many frequencies is an interesting question.
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