
Faez Ahmed
Department of Mechanical Engineering,
Massachusetts Institute of Technology,

Cambridge, MA 02139
e-mail: faez@mit.edu

Yaxin Cui
Department of Mechanical Engineering,

Northwestern University,
Evanston, IL 60208-3111

e-mail: yaxincui2023@u.northwestern.edu

Yan Fu
Insight and Analytics Ford Motor Company,

Dearborn, MI 48124
e-mail: yfu4@ford.com

Wei Chen1
Department of Mechanical Engineering,

Northwestern University,
Evanston, IL 60208-3111

e-mail: weichen@northwestern.edu

Product Competition Prediction
in Engineering Design Using
Graph Neural Networks
Understanding relationships between different products in a market system and predicting
how changes in design impact their market position can be instrumental for companies to
create better products. We propose a graph neural network-based method for modeling
relationships between products, where nodes in a network represent products and edges
represent their relationships. Our modeling enables a systematic way to predict the rela-
tionship links between unseen products for future years. When applied to a Chinese car
market case study, our method based on an inductive graph neural network approach,
GraphSAGE, yields double the link prediction performance compared to an existing
network modeling method—exponential random graph model-based method for predicting
the car co-consideration relationships. Our work also overcomes scalability and multiple
data type-related limitations of the traditional network modeling methods by modeling a
larger number of attributes, mixed categorical and numerical attributes, and unseen prod-
ucts. While a vanilla GraphSAGE requires a partial network to make predictions, we
augment it with an “adjacency prediction model” to circumvent the limitation of needing
neighborhood information. Finally, we demonstrate how insights obtained from a permuta-
tion-based interpretability analysis can help a manufacturer understand how design attri-
butes impact the predictions of product relationships. Overall, this work provides a
systematic data-driven method to predict the relationships between products in a
complex network such as the car market. [DOI: 10.1115/1.4054299]

Keywords: artificial intelligence, machine learning, graph neural networks, design
automation, design for market systems

1 Introduction
Complex engineering systems contain multiple stakeholders and

individual entities, which exhibit complex interactions and inter-
connections. Modeling and predicting relationships between these
entities is key to studying them. An example of a complex engineer-
ing system is the car market, where there are many interactions
between stakeholders. The success of a new car depends not only
on its engineering performance but also on its competitiveness rel-
ative to similar cars and factors such as perceived market position.
Customers from different geographies may prefer different types of
vehicles. A design intervention in the car market, either by introduc-
ing changes in existing cars or launching a new car design, may
encourage customers to change their driving behavior. When
these changes happen, a manufacturer needs to understand which
products their car models will compete in the new situation and
what they can do to improve their market position. It is also impor-
tant to consider the complex relationship among customers, such as
the social network between customers and the complex relation-
ships among products, such as the competitive relationship
between products.
Network analysis is a crucial method for statistical analysis of

complex systems in many scientific, social, and engineering
domains [1–6]. Descriptive network analysis methods have been
frequently applied in the engineering design field to study the engi-
neering system [7]. More topological metrics from networks were
tested by Haley et al. [8], who showed that they are applicable to
describe complex engineering systems. Furthermore, a few
studies have begun exploring the capability of statistical network
models in modeling complex customer–product relationships [9,–
12]. The underlying assumption in using the network-based

approach is that customers and products can be viewed as compo-
nents of a complex socio-technical system. Such a system can be
analyzed using social network theories and computational
techniques.
Researchers have employed exponential random graph models

(ERGMs) as a statistical inference framework to interpret
complex customer–product relations. ERGMs have been employed
in the literature to study customers’ consideration behaviors [13,–
15]. These studies illustrated the benefits of using the network-
based preference model for predicting the outcome of design deci-
sions. However, ERGMs have a few limitations. First, they are
typically appropriate for small to medium-sized networks with a
few attributes. For large datasets, the Markov chain Monte Carlo
(MCMC) approach to estimate ERGM parameters does not con-
verge [16]. This leads to an important limitation for product man-
ufacturers, who now want to make the most of massive datasets
but still want statistical models to help them understand what is
happening inside these models. In addition, previously published
research shows that future market forecasts based on ERGMs
are not sufficiently accurate at capturing the true network [17].
Poor forecasts can affect the manufacturer’s market position as
inaccurate predictions of the market competition can lead a manu-
facturer to wrongly estimate their future market position when they
introduce a new car or change a feature in an existing car. If man-
ufacturers rely on poor predictions to introduce design changes,
the result will also affect the customers, as the new choices
present in the market may lack what they desire. If car manufac-
turers have a method to predict competition for future years accu-
rately, they can also use these predictions to identify competitors
and incorporate them in designing their strategy for product place-
ment, marketing, or redesign of the car. Manufacturers can also
estimate how their market position may change when competitors
introduce changes in existing attributes. This paper presents such
an approach by modeling networks using neural networks,
which does not face the issues highlighted above.

1Corresponding author.
Manuscript received October 18, 2021; final manuscript received April 4, 2022;

published online May 9, 2022. Assoc. Editor: Mark M. Derriso.

ASME Open Journal of Engineering 2022, Vol. 1 / 011020-1
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023

mailto:faez@mit.edu
mailto:yaxincui2023@u.northwestern.edu
mailto:yfu4@ford.com
mailto:weichen@northwestern.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4054299&domain=pdf&date_stamp=2022-05-09


Graph neural networks (GNNs) have recently become popular
because they can model both discrete and continuous representa-
tions and have large expressive power [18]. Hence, they have a
wide range of applications in domains that can harness graph struc-
tures out of their data. By supporting interpretability, causality, and
inductive generalization, GNNs offer fundamental advantages over
more traditional unstructured machine learning (ML) methods.
Learning graph representations and performing reasoning and pre-
diction have achieved impressive progress in applications ranging
from drug discovery [19], image classification, natural language
processing, and social network analysis [20]. A few of the well-
known applications of GNNs are Uber Eats [21], which used
them to recommend food items and restaurants, and Alibaba,
which used them to model millions of nodes for product recommen-
dation [22]. Within engineering design, although GNN usage is less
common, researchers have recently used them for product tolerance
design [23], machining feature recognition [24], and understanding
mechanical device function [25]. These successes motivated us to
use them for studying product relationships.

1.1 Our Contributions. We use a GNN approach for predict-
ing product relationships due to the inherent complexity of predict-
ing whether two products are related to each other or not. In our
approach, the products are nodes, and product relationships (such
as product association and market competition) are links between
those nodes. Hence, predicting relationships between products is
posed as a graph link (or edge) prediction problem. Our approach
uses GraphSAGE [26], a type of GNN method, which allows the
modeling of design attributes. GraphSAGE represents a graph
(network) structure in lower-dimension vectors and employs local
neighborhoods to estimate these vectors for unseen nodes. These
vectors are then utilized as the input for a downstream classification
task. In this work, we also employ a permutation-based method to
examine the feature importance to assist design decisions. In
summary, the contributions of this study are as follows:

(1) Propose a GNN-based method for modeling a product rela-
tionship network and enabling a systematic way to predict
the relationship links between unseen products for future
years.

(2) Show that the link prediction performance of GNNs is better
than existing network modeling methods.

(3) Demonstrate the scalability of the GNN method by modeling
the effect of a large number of continuous and categorical
attributes on link prediction.

(4) Uncover the importance of attributes to help make design
decisions using permutation-based methods.

Below, we discuss the related work, our methodology, results,
and discussion. A previous version [27] of this paper was presented
at ASME IDETC 2021 conference.

2 Related Work
This paper applies GNNs to product relationship networks for

link prediction and uncovers the importance of engineering
design attributes using permutation-based analysis. This work
focuses on the product co-consideration relation as a demonstration,
but the method can be generalized to other product relationships,
such as product association relationships. Below, we discuss
related work on product co-consideration networks, GNNs, and
interpretable machine learning.

2.1 Product Co-consideration Networks. Co-consideration
of products describes the situation where customers consider multi-
ple products at the same time before making a purchase [28]. The
consideration behavior involves the comparison and evaluation of
product alternatives and is accordingly a critical step in the custom-
er’s decision-making process [29]. At the same time, product

co-consideration also implies a market competition relationship
between products. As a single product may be chosen by a customer
considering two or more products, those products can increase their
market share by understanding which alternatives are also being
considered and introducing changes in their products such that
the customers prefer them over their competitors. Therefore, suc-
cessfully modeling the product co-consideration relationship can
help companies understand the embedded market competition and
provide them with new opportunities to formulate design solutions
to meet customer needs.
Researchers have developed multiple methods and models of

customer consideration behaviors to understand the underlying pat-
terns of customer consideration behaviors. Some models of cus-
tomer consideration set composition are based on the marginal
benefits of considering an additional product [30,31]. Other pio-
neering works have built models for investigating the impact of
the consideration stage on the customer decision-making process
[32,33]. Many works use both online and offline customer activity
data to infer the product co-consideration behavior [34]. In recent
years, the network-based approach has emerged to understand the
product competition by describing the product co-consideration
relation based on customer cross-shopping data [16,17,28].
Depicted in a simple network graph, where nodes represent individ-
ual products and edges represent their co-consideration relation
based on aggregated customer preference, network-based analysis
views co-consideration relationships from the lens of network the-
ories, where the underlying social processes explain the links in
the observed network.
Several works that investigate the product co-consideration

network are based on survey data collected from customers who
purchased cars. Wang et al. [35] have applied the correspondence
analysis methods and network regression methods to investigate
the formation of car co-consideration relationships. Sha et al. [17]
have applied ERGMs in understanding the underlying customer
preference in car co-consideration networks. However, the previous
explorations are restricted to using the traditional network-based
statistical methods, which leads to a low computation efficiency,
a low prediction accuracy for the future market competition, the
inability to model many design attributes, and an inability to
model both categorical and continuous design attributes simulta-
neously. To overcome the limitations of the ERGMs, we have
developed a new method to investigate the underlying effect of cus-
tomers’ consideration behavior by using GNN methods. Applied to
the same dataset, a comparison of the ERGMs and this work is sum-
marized in Table 1. These comparisons will be further elaborated in
the Results section, where the specifics of the experiments are
provided.

2.2 Graph Neural Networks. Network data can be naturally
represented by a graph structure that consists of nodes and links.
Recently, research on analyzing graphs with ML has grown

Table 1 Comparison of this work with prior studies onmodeling
car relationship using ERGM models

Topic
Past work using ERGM

model This work using GNN model

Test nodes Only common cars
between training (2013
data) and test data (2014
data). Trained on 296 cars

All cars in the training set.
Trained on 388 cars. Tested
on 403 cars from 2014 and
422 cars from 2015

Unseen data Predictions restricted to
cars in the training data

Predictions possible for
entirely new cars too (107
unseen cars in 2014)

Attributes Six design attributes
restricted to numerical
values

29 design attributes,
including categorical
attributes

Interpretability Coefficient-based Permutation-analysis based

011020-2 / Vol. 1, 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



rapidly. The graph-based ML tasks in networks typically include
tasks such as node classification, link prediction, community detec-
tion, network similarity, anomaly detection, and attribute prediction
[36]. In this paper, we focus on the link prediction task by represent-
ing product relationships as links between nodes.
In a graph, each node is naturally defined by its features and the

neighborhood of connected nodes. The behavior of a node is often
directed not only by its features but also by its neighbors, which
makes it challenging to do feature engineering for graphs, that is,
manually defining all features that may be important in making pre-
dictions about nodes. In such cases, graph representation learning
methods are helpful, as they provide a way to automatically discover
the vector representation of nodes that captures their graph structure
and features fromrawdata.Theoutcome is anodeembedding that can
be viewed as learned features (or attributes) of a node. Ideally, similar
nodes (ones with similar neighbors, connectivity, and similar fea-
tures) should have similar node embeddings. Two nodes in a
co-consideration network can uniquely define each edge, so edge
embeddings can be calculated using the corresponding node embed-
dings.Usinganappropriatelydefinedloss function in theirMLmodel,
one can encourage all edges to have similar edge embeddings
compared to nonexistent (negative) edges. Therefore, learning the rep-
resentation of nodes in a graph, called node embedding, is an essential
part of downstream tasks such as classification and regression.
There exist two major classes of the embedding algorithms: trans-

ductive learning and inductive learning. Transductive learning esti-
mates the values of the remaining nodes and edges while knowing
the ground truth of some nodes and edges on the graph. It refers to
predicting connected unknown nodes and edges by using super-
vised learning with known nodes and edges. Node embedding
models, such as the ones using spectral decomposition [37,38] or
matrix factorization methods [39,40], are transductive. Inductive
learning trains a model on a graph and then makes predictions for
nodes and links on an entirely new graph. Although transductive
approaches do not efficiently generalize to unseen nodes in the
same graph (say for dynamically evolving graphs) and cannot
learn to generalize across different graphs, they are still the most
common method used in practice. Unlike most transductive graph
learning methods, GraphSAGE method, which was proposed in
2017 [26], is an efficient inductive method that leverages the
node attributes of neighboring nodes to generate representations
on previously unseen data. GraphSAGE aggregates feature from a
sample of the node’s local neighborhood. Hence, training a Graph-
SAGE model on an example graph can generate node embeddings
for previously unseen nodes too, as long as they have the same set
of attributes as the training data (that is, no new attributes are

introduced). GraphSAGE is advantageous for graphs with many
node attributes, which is often the case for product networks.

2.3 Interpretable Machine Learning. In addition to using
ML models for prediction, it is important for engineering applica-
tions to interpret what a model has learned so that these interpreta-
tions can throw some light on how different inputs affect the
outcome. Interpretable ML methods present an effective tool to
explain or present the model results in a way that is understandable
to humans [41,42].
Identifying feature importance is a type of interpretable ML

methods that can help with this goal. It indicates the statistical con-
tribution of each feature to the underlying model [43]. Among the
techniques to estimate the feature importance, model-agnostic
methods [44] have the advantage that they can work with any
ML model as they treat a model as a black-box and do not
inspect internal model parameters. As graph neural networks are a
type of black-box ML method, we focus on model-agnostic inter-
pretable methods to explain their modeling results.
We use the permutation feature importance measurement in our

work. This model-agnostic approach was introduced by Breiman
[45] for random forests and then further developed by Fisher et al.
[46]. The underlying idea behind this approach is to randomly
permute a single feature in the datasetwhile keeping all other features
intact. Then use a pretrainedmachine learningmodel tomake predic-
tions. If the feature is important, the predictions will get significantly
worst after permuting the feature. Hence, the importance of a feature
can be quantified by measuring how much the prediction metric
changes [47]. The permutation-based feature importance method
has been applied to bioinformatics [48], engineering [49], and polit-
ical science [50] to provide insights into ML models. Our study uses
permutation-based methods to examine which product attributes are
important for link prediction between cars.

3 Methodology
We establish a product co-consideration network to model

product competition behavior and use a GNN approach to predict
future product competition. The methodology of the training and
prediction process for the link existence is shown in Fig. 1.
Our methodology comprises five main components as follows:

(1) Representing products and their relationships as a graph
(Sec. 3.1): this step involves the data processing and transfor-
mation to construct a network with products as nodes and
their relationships as links.

Fig. 1 The methodology of predicting the link existence in a car competition network using a graph neural network model

ASME Open Journal of Engineering 2022, Vol. 1 / 011020-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



(2) Training the GNN to learn the graph structure (Sec. 3.2):
this step finds a low-dimensional embedding of nodes and
edges in the contracted graph.

(3) Training classification models to make predictions
(Sec. 3.5): this step takes the graph embeddings as input to
train a classification model on link existence.

(4) Creating an adjacency prediction model to augment the
GNN for unseen data (Secs. 3.6, 3.7, and 3.8): for validation,
the model is tested on the held-out network and unseen
network. A proposed adjacency prediction model is applied
in the unseen network prediction.

(5) Interpreting the importance of design attributes (Sec. 3.9):
based on the model, this step investigates the importance
of the features and provides useful insight for the engineering
design.

The detailed components of each step are described in detail.

3.1 Network Construction. We translate customer survey
data to a network, which simultaneously models products as
nodes and relationships between them as edges. Before purchasing
a product, customers often consider multiple products and select
one or more products among them. When the same customer simul-
taneously considers two products in their decision-making process,
we define this relationship as a co-consideration relationship.
Assuming the customer only buys one product in the end,
co-considered products are assumed to compete in this paper.
Note that there are many different methods to measure competition
between any two products, and the methods we describe next gen-
eralize to any measure of choice. Next, we discuss how a graph is
created for co-considered products.
We studied a unidimensional product network that can reveal

productmarket competitionbydescribingproducts’co-consideration
relationships. Each product corresponds to a unique node. Each node
is associated with attributes such as price, fuel consumption, and
engine power. The product co-consideration network is constructed
using data from customers’ consideration sets. The presence of a
co-consideration binary link between two nodes (products) is deter-
mined by the number of customers who consider them together:

Ei,j =
1, ni,j ≥ c
0, otherwise

{
(1)

where Ei,j refers to the edge connected by node i and node j. ni,j is the
number of customerswhohave considered products i and j together. c
or the cutoff is a domain-dependent threshold, which defines the
strength of the relationship considered in the analysis. In other
words, we define an undirected link between node i and node j, if at

least c customers consider both products i and j together. Based on
Eq. (1), the network adjacency matrix is symmetric and binary.

3.2 Inductive Representation Learning on Networks. Many
GNNmodels can learn functions trained on a graph and generate the
embeddings for a node, which sample and aggregate feature and
topological information from a node’s neighborhood. However,
engineering applications require methods that can make predictions
about completely new nodes too. This need inspired us to employ
GraphSAGE—a representation learning technique for dynamic
graphs, which learns aggregator functions that can calculate new
node embedding based on the features and neighborhood of a node.
As illustrated in Fig. 2, GraphSAGE learns node embeddings for

attributed graphs (where nodes have features or attributes) through
aggregating neighboring node attributes. The aggregation parame-
ters are learned by the ML model by encouraging node pairs
co-occurring in short random walks to have similar representations.
The detailed algorithm of GraphSAGE from Ref. [26] is shown in

Algorithm 1.

Algorithm 1 GraphSAGE embedding generation (i.e., forward
propagation) algorithm from Ref. [26]

Input : Graph G(V, E); input features {xv,∀v ∈ V}; depth K; weight
matrices Wk, ∀k ∈ {1, ...,K}; nonlinearity σ; differentiable
aggregator functions aggregatek, ∀k ∈ {1, ...,K}; neighbor-
hood function N : v → 2V

Output: Vector representations zv for all v ∈ V
1 h0v ← xv,∀v ∈ V;
2 for k = 1...K do
3 for v ∈ V do
4 hkN(v) ← aggregatek({hk−1

u , ∀u ∈ N(v)});
5 hkv ← σ Wk · concat(hk−1

v ,hkN(v))
( )

6 end
7 hkv ← hkv/‖hkv‖2,∀v ∈ V
8 end
9 zv ← hKv , ∀v ∈ V

In GraphSAGE, it is assumed that every node can be defined by
its neighbors, which means that the embedding for a node can be
calculated by some combination of the embedding vectors of its
neighbors. At the beginning of the training, every node’s embed-
ding is set equal to its feature vectors. The algorithm follows two
main steps—aggregate and update (Steps 4 and 5 in Algorithm 1).
The aggregate step uses any differentiable function to aggregate the
embedding of neighbors to find the embedding of the target node. A

Fig. 2 Illustration of sampling and aggregation in GraphSAGE method. A sample of neighboring nodes contributes to the
embedding of the central node.

011020-4 / Vol. 1, 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



typical example of the aggregate step can be a simple averaging of
neighbors. The update step uses a differentiable function to combine
the new aggregated representation for the target node with its previ-
ous representation. The K parameter tells the algorithms how many
neighborhoods or hops to use to compute the representation for the
target node. The aggregation can occur for first neighbors (K= 1) or
from neighbors that are further away (K≥ 1). However, if too many
neighbors at different depths are used that may dilute the effect of a
local neighborhood. On the other hand, if only the first neighbors
are considered, the method will be equivalent to using a simple
neural network. Interested readers are encouraged to read [26] for
details of the algorithm.

3.3 Node Embeddings. To train a GraphSAGE model, the
inputs are the product attributes (i.e., node features) and the
network structure (i.e., adjacency matrix) of the product
co-consideration network. Then for each node, the GNN models
can encode nodes into lower-dimensional space in the node embed-
ding stage. For example, as illustrated in Fig. 1, nodes i and j can be
represented by vectors i and j, which carry the information of node
i’s and j’s features and local neighborhoods, respectively.

3.4 Edge Embeddings. Using a GNN-trained embedding for
nodes, one can also learn the representation for all possible links
(edges) in the network. Learning link representations is done by
aggregating every possible pair of node embeddings. We use the
dot product of vectors i and j to find the edge embeddings. Note
that other symmetric operations such as averaging can also aggre-
gate node embeddings to give an edge embedding. Our experiments
found that the dot product gave slightly better results than the aver-
aging operator (same F-1 score and 0.07 higher area under curve
(AUC) score), which led us to select the dot product as the aggre-
gation method in this paper. Once we learn the edge embeddings,
they can be used as an input to any ML model, which can be
trained to predict whether an edge exists or not, which is discussed
next.

3.5 Classification Model for Link Prediction. The link pre-
diction problem can be posed as a binary classification problem,
where the goal is to predict whether a link candidate exists in the
network (Class 1 or a positive edge) or does not exist (Class 0 or
a negative edge). During the GNN model training, we can also
train a downstream classification model to predict link existence,
given the edge embedding as an input.
For each pair of nodes, the classification model takes the edge

embeddings as input and whether the link exists or not as labels.
Any classification model (such as logistic regression, k-nearest
neighbors, and naive Bayes classifiers) can be integrated with the
GNN model to predict the link existence. We used a multilayer per-
ceptron (MLP) model for this work. Note that the GNN model and
the MLP-based classification model are trained simultaneously for
the supervised learning task in the training process. To avoid imbal-
anced training of the classification model for networks with very
few edges, we balance the two classes by subsampling the negative
edges (an edge that does not exist in the training data).

3.6 Validation Networks. After the training was completed,
we tested the model’s performance in predicting links for an
unseen network. The model can be tested on two different types
of networks. In one case, the initial network was divided into two
parts by randomly sampling edges. The GNN model was tested to
predict links for the held-out links. In the second case, we trained
the model on one network and tested it on another completely
unseen network. However, this presents new challenges, which
are discussed next.

3.7 Adjacency Prediction Model. While GNN-based link
prediction methods are typically used to find missing links from a

graph, they cannot be directly applied to a completely unknown
network. However, in engineering design applications, when
design interventions (changing existing product attributes or
launching new products) occur, it is desired to train a model in
the current year and make predictions about the following year,
which may have new products and evolved versions of previous
products. Applications may require that predictions for product
links are made where training and testing networks belong to differ-
ent domains, periods, or locations. Making such predictions pre-
sents a circularity problem, as a typical GNN, including a vanilla
GraphSAGE, needs at least a partial adjacency matrix as an input
to predict the complete adjacency matrix.
We overcame this issue by developing a method to predict an

approximate adjacency matrix using a separate ML model, which
is referred to as the adjacency prediction model in Fig. 1. The pre-
dicted adjacency is used to identify a few neighbors of each node,
used in the GNN as a partial adjacency matrix. There are several
ways of predicting the adjacency matrix, given the node attributes.
A naïve way would be to find all the nodes in the new graph, which
also appeared in the training dataset, and copy their adjacency infor-
mation. However, such a model performs poorly, as all the new
nodes have no neighbors; therefore, the GNN cannot make accurate
predictions about them.
Instead, we used a similarity-based k-nearest neighbor method in

the adjacency prediction model. The similarities among product
nodes are measured by the cosine distance of all car features. By
using the similarities for each node with other nodes, the top K
most similar nodes from the graph are selected as neighbors. This
gives us the approximate adjacency matrix, where each node is con-
nected to its k-nearest neighbors. The benefit of this approach is that
all nodes in the co-consideration network are connected to some
other nodes. While the choice of K is subject to the modeler, we
seek an appropriate number to keep the network’s density compara-
ble with a typical co-consideration product network in the training
network.
Note that other ML methods can also be used to output an

approximate adjacency matrix. For instance, one can train a classi-
fication model with the average car attributes as input and a binary
output corresponding to link existence. Our preliminary analysis
showed that classification models (e.g., logistic regression) did
not perform as well as the nearest-neighbor approach. This may
be attributed to classification models not finding sufficient neigh-
bors for all nodes. Our method overcame this limitation by assign-
ing the same number of neighbors to all nodes, yielding good
empirical results.

3.8 Metrics for Link Prediction. With the trained GNN
model and classification model, we predicted the co-consideration
network in the subsequent years based on the new node features
and the approximate adjacency prediction model. The link predic-
tion can be regarded as a binary classification model, which predicts
the probability of the target link’s existence to be Yes or No. To
evaluate the performance of the classification model, we analyzed
the confusion matrix (which describes the performance of a classi-
fier) and the receiver operating characteristic (ROC) curve, which
plots the true positive rate (TPR) and false positive rate (FPR). A
confusion matrix consists of four values: true positives (TP) refer
to the cases in which the model predicted “yes” and they are actu-
ally “yes,” true negatives (TN) refer to the cases in which the model
predicted “no” and they are actually “no,” false positives (FP) refer
to the cases in which model predicted “yes” but they are actually
“no,” and false negatives (FN) refer to the cases in which the
model predicted “no” but they are actually “yes.” We can further
calculate other metrics such as precision, recall, and F1 score
based on the confusion matrix. Precision is the ratio of true positives
and total predicted positives (true positives and false positives).
Recall is the ratio of true positives and total actual positives (true
positive and false negatives). F-1 score, which is a widely used

ASME Open Journal of Engineering 2022, Vol. 1 / 011020-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



metric for classification models, is the harmonic mean of precision
and recall.
In our paper, to compare different models, we also used the AUC

metric, which measures the area underneath the ROC curve, and
provides an aggregated measure of the performance across all pos-
sible classification thresholds. The AUC ranges in value from 0 to 1.
A higher AUC value indicates a better classification model. As a
secondary metric, we also calculate the F-1 score, which also
ranges from 0 to 1, and a higher F1 score indicates a better classi-
fication model.

3.9 Permutation-Based Feature Importance. Besides fore-
casting future market competition in the engineering design
domain, it is important to understand the dominant features in
product competition. Therefore, we investigated the importance of
different design attributes in the GNN method using “Permutation
feature importance” [51].
We used the method outlined in Ref. [51] to measure the impor-

tance of a feature by calculating how much a model’s prediction
error increases on average when a particular feature is permuted ran-
domly. A feature was considered “important” if shuffling its values
significantly increased the model error. This implied that the model
relied on this feature to make accurate predictions, as measured by
less prediction error. A feature was considered “unimportant” if
shuffling its values left the model error unchanged. This implied
that the model ignored the feature for the prediction and was not
dependent on it to make good predictions. The outline of the permu-
tation importance algorithm is described in section 8.1 in Ref. [51].
Interested readers are encouraged to refer to the related work for
details of the algorithm.
Some other methods to calculate feature importance suggest

removing features, retraining the model, and then comparing the
model error. In contrast, permutation feature importance does not
require retraining the model. Since the retraining of an ML model
can take a long time, only permuting a feature can save time and
inform us of the importance of features for that particular model.
This technique is independent of what ML model is used and gen-
erally, several different permutations are used to estimate the metric.
One also needs to define what metric (such as the AUC value for a
classification model) they are using to calculate the change in per-
formance. This metric does not reflect the intrinsic predictive
value of a feature by itself. Instead, it shows how important the
feature is for a particular model.
It is noteworthy that the permutation methods on feature impor-

tance can be applied to either training data or test data. Applying it
to training data will help understand how much the model relies on
each feature for making predictions (training data). Applying it to
test data will help understand how much the feature contributes to
the performance of the trained ML model on unseen test data.
Our analysis uses it for the training data as the feature importance
found using test data can change if the model is tested on different
test sets.

4 Results and Discussion
In this section, we demonstrate the use of the GNN approach to

study the Chinese car market. We used car survey data provided by
the Ford Motor Company as a test example. We show that by train-
ing a GraphSAGE model, we can predict the future market compe-
tition even though cars in the future may have new attributes such as
increased engine size or new products may be introduced. We also
show how statistical methods can be employed to calculate the
importance of each attribute for the relationship prediction task.
This information can be reported back to designers to make strategic
design changes.

4.1 Data Description. Our dataset contains customer survey
data from 2012 to 2016 in the China market. In the survey, more

than 40,000 respondents each year specified which cars they pur-
chased and which cars they considered before making their final
car purchase decision. Each customer indicated at least one and
up to three cars which they considered. More concretely, in both
year 2013 and year 2014, around 18% of respondents only consid-
ered one car, around 57% of respondents considered two cars, and
around 25% of respondents considered three cars. The survey did
not allow customers to report more than three cars that they consid-
ered. When two cars are co-considered, they are assumed to have a
co-consideration relationship—predicting which is one of the goals
of our proposed methods. In this study, we assume that a pair of cars
co-considered by a respondent have an equal strength of relation-
ship irrespective of the number of other cars that this respondent
also considered with them. It is possible that when the respondents
considered only two cars, it reflects a stronger co-consideration rela-
tion between those two cars than when respondents considered three
cars. However, we use this assumption for our work due to a lack of
data and quantitative evidence supporting different strengths of
relationships between cars. We also aggregated the customers
who considered a different number of cars to create the network.
This aggregation may hide differences between different sets of cus-
tomers (say those considering two cars versus those considering
three cars), studying which is outside the scope of this work. In
future work, we will explore this topic by training separate
models for networks created by each set of people and identifying
the differences between the network structures. The dataset
resulting from the survey also contains attributes for each car
(e.g., price, power, brand origin, and fuel consumption) and many
attributes for each customer (e.g., gender, age).

4.2 Link Prediction for Car Co-Consideration Network. In
this part, we used our method to build a model that predicts
co-consideration links in the car dataset. We treat this problem as
a supervised link prediction problem on a homogeneous network
(nodes of only one type) with nodes representing cars and links cor-
responding to a car–car co-consideration relationship. Each node is
also associated with attributes, listed in Table 6.

4.2.1 Network Construction. To study car co-consideration,
we started by creating a car co-consideration network based on cus-
tomers’ survey responses in the 2013 survey data. The network con-
sists of 388 unique car models represented as network nodes. The
link between a pair of nodes (denoting cars) is allocated based on
the car co-consideration by at least M customers. Unless otherwise
specified, we useM= 1 for the experiments and later also show how
the model performs for different values of M.

4.2.2 The Input Car Attributes. As demonstrated in the Meth-
odology section, the car attributes and co-consideration network
adjacency matrix serve as the input of the GNN and classification
models, and the link existences are labels to judge the training per-
formance. Our experiment studied manually chosen 29 car attri-
butes. The list of attributes contains all the practical engineering
attributes (e.g., fuel consumption, engine size) and car types (e.g.,
body type, market segmentation) available in the survey dataset.
The attributes are listed in Table 6. Note that the attributes are
both continuous and categorical. The categorical variables are trans-
formed via a one-hot encoder which converts categorical variables
into vectors (after one-hot encoding, 29 features lead to 210 fea-
tures), and the continuous variables are normalized to vary
between 0 and 1.

4.2.3 Experimental Settings. In the training stage, we built a
model using the Stellar Graph library [52] with the following archi-
tecture. First, we built a two-layer GraphSAGE model (K= 2 in
Algorithm 1) that trained on a network with node attributes and
the binary adjacency matrix of the network (corresponding to
co-consideration links) as inputs. The intermediate output of the
model is node embeddings for all the cars in the training data.
The node embeddings were then transformed to link embeddings

011020-6 / Vol. 1, 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



by using a dot product for every pair of nodes.2 The resultant link
embedding was used to input a classification model comprising a
dense neural network layer. For every candidate link, the classifica-
tion layer outputs a probability, which measures whether a link
exists or not. The entire model was trained end-to-end by minimiz-
ing the binary cross-entropy between predicted link probabilities
and true link labels. The binary cross-entropy loss function was
selected, as it encourages positive links to get high probabilities
and negative links to receive low probabilities. The loss function
is commonly used to measure the performance of a classification
model whose output is a probability value between 0 and 1,
which corresponds to link existence/nonexistence in our case. The
model was trained on mini batches of positive and negative links
from the training data, and the stochastic gradient descent (SGD)
method was used to update the model parameters.
GraphSAGE algorithm requires setting up a few parameters,

which are described next. We set the size of each minibatch
(which measures the number of links shown to the model in each
minibatch during training) to 20 and the number of epochs for train-
ing the model to 100. These values were empirically derived from
experience and by observing how quickly the loss function con-
verged for different settings. We set the number of 1-hop and
2-hop neighbor samples for GraphSAGE to be 5 and 5, respectively.
These values determine how many neighbors are used to estimate
the embedding of a node in Step 4 of Algorithm 1.
For the aggregator functions inside the GraphSAGE method, we

selected hidden layer sizes of 5 for both the GraphSAGE layers and
a bias term. To reduce overfitting, we used a dropout rate of 0.3. We
stacked the GraphSAGE and classification layers for end-to-end
supervised learning to minimize the binary cross-entropy. During
prediction, we used the five nearest neighbors in the adjacency pre-
diction model. Note that most of the above parameters were chosen
based on an initial analysis of a validation set. Different choices of
these parameters may be required for different problems. Our code
is made public on Github3 along with an anonymized dataset for
other researchers to replicate our results.

4.2.4 Predicting Missing Links in the Same Year. In this part,
we test our method for predicting held-out links from a network
of cars from the 2013 data. We split the network into two parts to
train the model by sampling a subset of links—the training graph
and the test graph. Both the graphs contain the same nodes and
do not contain any isolated nodes. For the training graph, an
equal number of positive and negative edges were sampled to
ensure that the model is trained on a balanced dataset. The test
graph was used for evaluating the model’s performance on
held-out data.
A confusion matrix first measures the prediction performance

along with the training performance in Table 2. The right-hand
part of Table 2 shows the confusion matrix of 2013 test prediction
on held-out links. It includes four different combinations of pre-
dicted and actual classes. The 609 in the top-left cell is the true neg-
ative (the model predicted negative, and it was true), and the 502 in

the top right is the false positive (the model predicted positive, and it
was false). The associated percentages indicate that for all pairs of
nodes without link existence (actual class= 0), 54.82% are pre-
dicted correctly, whereas 45.18% are not. Meanwhile, the 75 in
the bottom left is the false negative (model predicted negative and
it was false), and 1036 in the bottom right is the true negative
(the model predicted negative and it was true), which suggests
that for all pairs of nodes with link existence (actual class= 1),
93.25% are predicted correctly while 6.75% are not. We further cal-
culate other evaluation metrics to quantify classification perfor-
mance. The F1 score, which measures the test accuracy in an
unbalanced class, was 0.74 for the predicted missing links (the
range of the F1 score was [0, 1]), while the AUC was 0.84 for
both training set and held-out test set. The higher the AUC, the
better the model is—it tells how capable the model is when distin-
guishing between classes. We note that overfitting is avoided
because the AUCs for both the training and test sets are comparable.
While the results in Table 2 are promising, they are of less practical
usage. This is because a car manufacturer may care less about pre-
dicting relationships between cars in the year of survey completion
and more about future predictions, enabling them to make strategic
design decisions.

4.2.5 Predicting Entire Network for the Following Year. Once
the trained model is converged, the learned parameters for the GNN
model and the classification model can predict the co-consideration
network in the future years. As a test dataset, the car
co-consideration network in 2014 is predicted. First, the 2014 car
model set, which has an intersection with the 2013 car set and
has newly emerged cars, acts as the input of the prediction
process without any link information. Then, an approximate adja-
cency matrix based on the similarities of nodes is generated
through the adjacency prediction model. Next, the node features
and approximate prediction model are fed into the GNN model, fol-
lowed by the classification model. The link existence of each pair of
nodes is forecasted with a certain probability threshold.
The performance of GNNs in predicting future networks is one of

the most important results in this paper, which is highlighted in
Table 3. We show the confusion matrix for the predicted 2014
co-consideration network in Table 3. Furthermore, we scoped out
the AUC–ROC curve (in Fig. 3). The overall AUC for this curve
is 0.80. To test the repeatability of our results, we conducted ten
runs and found all runs to give results between 0.80 and 0.81.
Later, we also discuss how the results generalize to networks
created using different cutoff values and the number of neighbors.

4.2.6 Predicting Entire Network for the Year After Next. So
far, we have predicted the 2014 co-consideration network based
on the training data in 2013. However, as 2014 succeeded in
2013, the market structure did not change dramatically. Among
389 cars in 2013 and 403 cars in 2014, there are 296 cars in
common. Therefore, to further assess the prediction capability for
the model, we predict the 2015 co-consideration network using
the trained model (2013 training data) with the car attributes and
similarity-based adjacency matrix.
The predicted results are recorded and evaluated in Table 3 and

Fig. 3, where the F1 score is 0.65 and AUC is 0.80. Compared to

Table 2 Confusion matrix in predicting 2013 with 29 features

2013 training prediction 2013 test prediction on held-out links

0 1 0 1

Actual class
0 5390 (TNR 53.90%) 4610 (FPR 46.10%) 609 (TNR 54.82%) 502 (FPR 45.18%)
1 592 (FNR 5.92%) 9408 (TPR 94.08%) 75 (FNR 6.75%) 1036 (TPR 93.25%)

Note: Average F1-score for 2013 is 0.74. AUC for 2013 train is 0.84 and test is 0.84. TNR and TPR are shown in brackets.

2Other symmetric transformations can also be used such as the average or element-
wise product of the node embeddings.

3https://github.com/Yaxin-Cui/Graph-Neural-Network

ASME Open Journal of Engineering 2022, Vol. 1 / 011020-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023

https://github.com/Yaxin-Cui/Graph-Neural-Network
https://github.com/Yaxin-Cui/Graph-Neural-Network
https://github.com/Yaxin-Cui/Graph-Neural-Network
https://github.com/Yaxin-Cui/Graph-Neural-Network
https://github.com/Yaxin-Cui/Graph-Neural-Network


the prediction results in 2014, the prediction in 2015 maintains an
equivalent performance, indicating model robustness.

4.2.7 Comparison With Existing Statistical Network Models.
In this section, we compare the GNN method with an existing sta-
tistical network modeling method—ERGM. In order to make a fair
comparison with the literature, we used the same set of input attri-
butes (only six attributes in [16]) and compared the AUC of each
model. Besides, as previous studies used a subset of cars and did
not predict newly emerged car models, we also took the intersection
of 2013 and 2014 cars (296 cars in total) for our analysis.
When only six car features were utilized in the training and pre-

diction model, we found that the prediction results for 2014 data for
GNN are significantly better than that of ERGM, as shown in
Table 4. In the confusion matrix, we observed that in ERGM, the
true positive rate (the ratio of true positive to all actual positive)
is 79.81% and the true negative rate (TNR) (the ratio of true

negative to all actual negative) is 40.51%. Both the values are
lower than those predicted by GNN. Furthermore, the F1 score of
the ERGM is merely 0.31, which is almost half the 0.60 F1 score
of the GNN model. The AUC for ERGM prediction is 0.68,
which is also less than the corresponding value of 0.78 for the
GNN model. All of the evidence suggested that the prediction
model of GNN performs better than the traditional statistical
network models. It is also important to note that, unlike ERGM,
GNN can model a large number of attributes (29 attributes) and
unseen data. These benefits prove its effectiveness in modeling net-
works in comparison to other statistical methods.
Then we summarized all the AUCs to compare in Table 5. Notice

that the ERGM with 29 attributes does not associate with an AUC
value because the model does not converge with many attributes.
Meanwhile, we did not run the six attributes prediction for the
2015 data on the GNN because the common car set for 2013 and
2014 is no longer suitable for the 2015 car market. It is apparent
from the comparison that the GNN models perform better than
the ERGM model with a higher AUC and F1 score, and GNN
models can accommodate larger networks with more design attri-
butes and introduction of unseen nodes in the study of product
relationships.

4.3 Interpretability of Attributes. We applied the permuta-
tion method to inspect the feature importance to find the decrease
in a model score when a single feature value is randomly shuffled.
We ran 50 permutations for each feature in the training data and cal-
culated the drop in performance. These repeats in the process with
multiple shuffles were done to ensure accuracy. The results are
shown in Table 6. We found that the make of the car, the body
type, and the segment are the most critical attributes for the GNN
to predict ties.
Table 6 shows that 14 of the 29 attributes have no positive effect

on the model prediction. Note that negative values are returned
when a random permutation of a feature’s values results in a
better performance metric than before a permutation is applied.
This means the model does not rely on features that have negative
values when predicting links for the training data. We observe that
most continuous values, such as engine size, price, fuel consump-
tion, and power, are not important. This behavior may either
reflect a trend in the data captured by the GNN model or may be

Fig. 3 AUC–ROC curve to predict 2014 co-consideration
network with six attributes and 29 attributes

Table 4 Confusion matrix in predicting 2014 with six features and 296 cars for using the GNN method and the ERGM method

2014 prediction class GNN 2014 prediction class ERGM

0 1 0 1

Actual class
0 20336 (TNR 54.95%) 16675 (FPR 45.05%) 14993 (TNR 40.51%) 22018 (FPR 59.49%)
1 867 (FNR 13.04%) 5782 (TPR 86.96%) 1384 (FNR 20.82%) 5265 (TPR 79.18%)

AUC 0.78 0.68
F1 score 0.60 0.31

Note: F1 score is 0.60 for the GNN model and 0.31 for the ERGM model, and the AUC is 0.78 for the GNN model and 0.68 for the ERGM model.

Table 3 Confusion matrix in predicting 2014 and 2015 with 29 features

2014 test prediction on unseen network 2015 test prediction on unseen network

0 1 0 1

Actual class
0 42633 (TNR 61.73%) 26435 (FPR 38.27%) 45735 (TNR 61.28%) 28893 (FPR 38.72%)
1 1811 (FNR 15.17%) 10124 (TPR 84.83%) 2195 (FNR 16.43%) 11167 (TPR 83.57%)

AUC 0.80 0.80
F1 score 0.65 0.65

Note: F1-score for 2014 is 0.65 and 0.65 for 2015. AUC for 2014 is 0.80 and 0.80 for 2015.

011020-8 / Vol. 1, 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



caused by a methodology limitation of the applicability of
permutation-based methods for mixed (continuous and discrete)
data. Understanding the cause of this trend is an exciting direction
of research, which can be explored in future work on interpretability
analysis.

4.4 Effect of Network Density and Neighbors. In the analy-
sis so far, we created a binary network by assuming that a relation-
ship exists between two cars if at least one person considers them
together. However, there is no strong motivation to use this specific
cutoff, and different applications may quantify relationships using
different methods. For example, a car manufacturer may also
decide to use a higher cutoff value to create a different binary
network with fewer links. To test the generalizability of our
method for different networks, we train our models for networks
with different cutoff values, as shown in Table 7. The table

reports the AUC value for link predicting for unseen 2014 networks
when the model is trained on networks derived from 2013 data. The
results show that our method consistently achieves high AUC
values, even when trained on different networks.
To further establish the generalizability of the approach, we test

how choices of the number of neighbors in the adjacency prediction
model affect the final classification performance. We use a different
number of neighbors (denoted by N) to create an input adjacency
matrix for the test data. The AUC results in Table 7 show that the
choice of the number of neighbors does not significantly impact
the prediction performance of our models. The model accurately
predicts the relationships consistently for different networks and
different parameter choices. However, we would caution that
while these generalizability tests look promising for the Chinese
car market data, the results may not necessarily translate to other
domains with different network structures and attributes.
Finally, one may question, why not use the adjacency prediction

model directly to predict links instead of using it as an input to the
GNN? As the adjacency prediction model does not consider the
neighbor’s effect and the graph connectivity, it is often inaccurate.
For instance, the AUC of our adjacency prediction model is 0.52,
which, when input to the GNN model, leads the GNN to have an
AUC value of 0.80 (Table 3). However, improvements in the accu-
racy of the adjacency prediction model will also lead to improve-
ments in the GNN performance. To test the maximum
improvement in prediction performance that the adjacency predic-
tion model can provide, we tested the predictions by using the
true adjacency matrix as an input (equivalent to a perfect input
matrix provided by the most accurate adjacency prediction model

Table 6 Car attributes type and feature importance

Table 5 Comparing train AUC and test AUC in different years,
different models, and different sets of attributes

Number of
attributes

Train AUC
(2013)

Test AUC
(2014)

Test AUC
(2015)

Test AUC
(ERGM)

29 attributes 0.84 0.80 0.80 NA
Six attributes 0.81 0.78 NA 0.68

Note: AUC in link prediction. The goal is to predict the entire network (all
existing and nonexisting edges) in a 0/1 classification task.

ASME Open Journal of Engineering 2022, Vol. 1 / 011020-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



with AUC equal to 1). Using this matrix as input, the AUC for pre-
dicting 2014 by the GNN increased from 0.80 (Table 3) to 0.83. In
contrast, to test the case when the least informative adjacency
matrix is input to the GNN, we input an adjacency matrix where
all nodes are connected to all other nodes (input matrix with
AUC equal to 0.5). In that case, the GNN’s AUC drops to 0.72.
As one can note, improvements in the input adjacency matrix,
equivalent to more accurate identification of neighbors, also lead
to improvements in the GNN performance.

5 Discussion
A car is an expensive commodity, and customers usually con-

sider multiple options before deciding which car to buy. This deci-
sion may be influenced by many factors, such as the customer’s
budget, driving needs, required and necessary features, the popular-
ity of nearby car models, brand, experience, and the influence of
cars owned or recommended by family and friends. From a manu-
facturer’s perspective, it is crucial to understand the market compe-
tition and develop strategies to improve their market share. The
proposed model can support designers in the following aspect:
First and foremost, the prediction capability of the GNN model

facilitates the forecast of future market competition when a new
car is introduced or the attributes of an existing car change. Design-
ers can use the model to anticipate the outcomes of a design change
or a design release. For example, when a new car is released, the
model can predict whether it will be competitive in the car market
and what other cars will be potential competitors of the new car
model (considered concurrently) by predicting the co-consideration
link existence. Therefore, designers or manufacturers can use this
information to develop their design strategies. For example, design-
ers would like to improve the performance of a current model given
a fixed amount of budget (either upgrade the power level or add
more user-friendly features). They can forecast the derived market
competition given the design changes and choose the strategy that
maximizes its competitiveness. Meanwhile, as the model can
predict the potential competitors of the changed/new car model, it
would be beneficial to set marketing plans accordingly to highlight
the car models among the competitors.
To evaluate the overall performance of the prediction, F1 and

AUC scores are adopted, where F1 serves as a comparison indicator
between precision (catch the true positive—the existence of link)
and recall (indication of not missing true positive) at a certain
threshold and AUC scores measure the average prediction perfor-
mance with different thresholds. It is striking that the F1 score in
the GNN model (0.60) is almost double of the ERGM model
(0.31), which substantially increases the prediction capability. In
addition, among different metrics, we are specifically interested in
the true positive rate (also referred to as sensitivity or recall),
which measures the proportion of existing co-consideration links
that are correctly identified. The correct identification of link exis-
tence can prepare a design team with potential competitors and
adjust design and marketing strategy. It is noticeable that the true

positive rate for the prediction is over 80% for all the results
shown, which shows that there is a considerably high probability
that an actual link exists that will test positive. This indicates that
the prediction model can well capture competition in the future.
Second, the feature importance results shed light on understand-

ing the critical features in the co-consideration network formation.
The results of the feature importance in Table 6 show that some fea-
tures, such as make, body type, import, lane assistance, third row,
park assistance, and AWD, have a higher impact on the product
co-consideration network, whereas other features, such as turbo
and navigation, are not critical factors in making predictions.
Knowing these factors and introducing interventions to change
them for future product iterations can enable a car manufacturer
to affect the competition relationships, leading to a larger market
share. However, we should warn that it is imprudent to make defin-
itive conclusions from regression models without real-world valida-
tion. Models should first be validated by an expert’s opinion of the
plausibility of model results. There may be a discrepancy between
what customers reported in the survey and how they behave, which
is essential to consider while interpreting the results. One method to
validate the model’s predictions is to show the customers the fore-
casts and collect their feedback on how well it aligns with them.
Nevertheless, our analysis sheds light on critical factors that cus-
tomers may be considering while making their purchase decisions.
This study also has potential limitations. As a data-driven method

based on deep learning, the model can only discover market compe-
tition patterns in general circumstances, which is based on the
assumption that the underlying customer preference keeps
unchanged. When a tremendous change occurs (such as the global
pandemic in 2020) and customer preference changes sharply, the
model will not learn such external influences. Besides, the perfor-
mance of such deep learning models in general also relies on
many parameters set based on the modeler’s experience and exper-
iments. It is possible that the model becomes overly sensitive for
some settings of these parameters or performs poorly. Therefore,
to leverage the proposed model, it would be essential to be
mindful that the premise is that the underlying network does not
change dramatically and find the optimal set of parameters.

6 Conclusions
This paper presents a systematic method to study and predict the

relationship between products by using the inductive graph neural
network models. With a focus on product co-consideration relation
as the aggregated result of customer preference from survey data,
we exhibit the efficiency of GNNs in modeling and prediction rela-
tionships. The method also enables designers to forecast the market
changes under design intervention and figure out the critical fea-
tures in the market competition.
This work has three main contributions. First, we show that

inductive graph neural network models, which can embed each
node of a graph into a real vector, can capture node feature and
graph structure information simultaneously to enable ML applica-
tions on complex networks. They also enable us to model categor-
ical, ordinal, and numerical attributes simultaneously. Second, we
show that GNN models have better link prediction performance
than ERGMs, both for held-out links from the same year and pre-
dicting the entire network structure for future years. Third, we over-
come a limitation of GNNs when applied to predicting an unseen
network by proposing a new graph adjacency prediction model to
enable link prediction between unseen products for future years.
Meanwhile, we show the scalability of the GNN method by
modeling the effect of a large number of continuous and categorical
attributes on link prediction. In addition, we show how permutation-
based methods can find the importance of attributes to help design
decisions.
While the GNN method provides many advantages over existing

network models, there are a few limitations and practical challenges
that need more work: First, this study is limited by the nature of

Table 7 Test AUC for 2014 for training networks of different
densities

Cutoff (M) # of links N= 2 N= 5 N= 10 N= 20

1 11111 0.81 0.81 0.81 0.81
5 2546 0.87 0.88 0.86 0.84
10 1293 0.88 0.87 0.86 0.85
15 833 0.84 0.87 0.85 0.85
20 561 0.84 0.86 0.86 0.85

Note: GNNs perform well for different binary networks derived by using
different cutoff values. We also observe that the effect of the choice of the
number of neighbors does not have a large impact on the prediction
performance.

011020-10 / Vol. 1, 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023



survey data. The survey data only samples a small portion of the
actual car market, which leads to a sparse network and an unbal-
anced dataset with most links classified as 0. We randomly selected
a subset of samples from the original dataset to match the samples
coming from both classes in the training process to overcome the
issue. Another limitation lies in the possibility of multicollinearity
in features when calculating their importance. Suppose two features
are correlated, and we permute only one of these features. In this
case, the information about the permuted feature is still available
to the model through its correlated counterpart, leading to inaccu-
rate assessments by a permutation-based method relying on one-
at-a-time permutations. The problem of correlations among features
is common in many interpretable ML problems, and our work is no
exception. Future work will investigate methods to overcome these
issues.
The findings of this study have several important implications for

future practice. In future work, we aim to predict the product rela-
tionship strength and extend the current work on more complex
network structures to investigate the relationship between custom-
ers and products. The current GNN work will be extended to mod-
eling multidimensional customer–product complex relations in the
future.

Acknowledgment
We are thankful to the d’Arbeloff career development chair for

supporting Faez Ahmed’s work. The authors are also grateful to
the support from the National Science Foundation (Grant Nos.
CMMI-2005661 and CMMI-2005665), the Intersection Science
Fellowship and the Ford-Northwestern Alliance Project.

Conflict of Interest
This article does not include research in which human partici-

pants were involved. Informed consent not applicable.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

References
[1] Simon, H. A., 1977, The Organization of Complex Systems, Vol. 54, Springer, pp.

245–261.
[2] Wasserman, S., and Faust, K., 1994, Social Network Analysis: Methods and

Applications (Structural Analysis in the Social Sciences), Cambridge University
Press.

[3] Holling, C. S., 2001, “Understanding the Complexity of Economic, Ecological,
and Social Systems,” Ecosystems, 4(5), pp. 390–405.

[4] Newman, M. E., 2003, “The Structure and Function of Complex Networks,”
SIAM Rev., 45(2), pp. 167–256.

[5] Braha, D., Suh, N., Eppinger, S., Caramanis, M., and Frey, D., 2006, Unifying
Themes in Complex Systems, Springer, Berlin/Heidelberg, pp. 227–274.

[6] Hoyle, C., Chen, W., Wang, N., and Koppelman, F. S., 2010, “Integrated
Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer
Preferences in Engineering Design,” ASME J. Mech. Des., 132(12), p. 121010.

[7] Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2007, “A Network Approach to
Define Modularity of Components in Complex Products,” ASME J. Mech. Des.,
129(11), pp. 1118–1129.

[8] Haley, B. M., Dong, A., and Tumer, I. Y., 2016, “A Comparison of
Network-Based Metrics of Behavioral Degradation in Complex Engineered
Systems,” ASME J. Mech. Des., 138(12), p. 121405.

[9] Wang, M., Chen, W., Fu, Y., and Yang, Y., 2015, “Analyzing and Predicting
Heterogeneous Customer Preferences in China’s Auto Market Using Choice
Modeling and Network Analysis,” SAE Int. J. Mater. Manuf., 8(3), pp. 668–677.

[10] Fu, J. S., Sha, Z., Huang, Y., Wang, M., Fu, Y., and Chen, W., 2017, “Modeling
Customer Choice Preferences in Engineering Design Using Bipartite Network
Analysis,” Proceedings of the ASME 2017 International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, Cleveland, OH, Aug. 6–9.

[11] Sha, Z., Huang, Y., Fu, S., Wang, M., Fu, Y., Contractor, N., and Chen, W., 2018,
“A Network-Based Approach to Modeling and Predicting Product
Co-Consideration Relations,” Complexity, 2018, pp. 1–14.

[12] Ghosh, D., Olewnik, A., Lewis, K., Kim, J., and Lakshmanan, A., 2017,
“Cyber-Empathic Design: A Data-Driven Framework for Product Design,”
ASME J. Mech. Des., 139(9), p. 091401.

[13] Sha, Z., Saeger, V., Wang, M., Fu, Y., and Chen, W., 2017, “Analyzing Customer
Preference to Product Optional Features in Supporting Product Configuration,”
SAE Int. J. Mater. Manuf., 10(3), pp. 320–332.

[14] Wang, M., Chen, W., Huang, Y., Contractor, N. S., and Fu, Y., 2016, “Modeling
Customer Preferences Using Multidimensional Network Analysis in Engineering
Design,” Des. Sci., 2, pp. 1–28.

[15] Wang, M., Sha, Z., Huang, Y., Contractor, N., Fu, Y., and Chen, W., 2016,
“Forecasting Technological Impacts on Customers’ Co-consideration
Behaviors: A Data-Driven Network Analysis Approach,” ASME 2016
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Paper No. V02AT03A040.

[16] Cui, Y., Ahmed, F., Sha, Z., Wang, L., Fu, Y., and Chen, W., 2020, “AWeighted
Network Modeling Approach for Analyzing Product Competition,” International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Vol. 84003, American Society of Mechanical
Engineers, Paper No. V11AT11A036.

[17] Sha, Z., Huang, Y., Fu, J. S., Wang, M., Fu, Y., Contractor, N., and Chen, W.,
2018, “A Network-Based Approach to Modeling and Predicting Product
Coconsideration Relations,” Complexity, 2018, pp. 1–14.

[18] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun,
M., 2020, “Graph Neural Networks: A Review of Methods and Applications,” AI
Open, 1, pp. 57–81.

[19] Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M.,
MacNair, C. R., French, S., Carfrae, L. A., and Bloom-Ackermann, Z., 2020, “A
Deep Learning Approach to Antibiotic Discovery,” Cell, 180(4), pp. 688–702.

[20] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y., 2020, “A
Comprehensive Survey on Graph Neural Networks,” IEEE Trans. Neural Netw.
Learn. Syst., 32(1), pp. 4–24.

[21] Jain, A., Liu, I., Sarda, A., and Molino, P., 2019, “Food Discovery With Uber
Eats: Using Graph Learning to Power Recommendations.” . Accessed March 1,
2021.

[22] Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., and Lee, D. L., 2018,
“Billion-Scale Commodity Embedding for E-Commerce Recommendation in
Alibaba,” Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, London, UK, pp. 839–848.

[23] Li, K., Gao, Y., Zheng, H., and Tan, J., 2021, “A Data-Driven Methodology to
Improve Tolerance Allocation Using Product Usage Data,” ASME J. Mech.
Des., 143(7), p. 071101.

[24] Cao, W., Robinson, T., Hua, Y., Boussuge, F., Colligan, A. R., and Pan, W.,
2020, “Graph Representation of 3D CAD Models for Machining Feature
Recognition With Deep Learning,” ASME 2020 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Virtual Conference, Aug. 17–19.

[25] Wang, J., Chiu, K., and Fuge, M., 2020, “Learning to Abstract and Compose
Mechanical Device Function and Behavior,” ASME 2020 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Virtual Conference, Aug. 17 –19.

[26] Hamilton, W. L., Ying, R., and Leskovec, J., 2017, “Inductive Representation
Learning on Large Graphs”. arXiv preprint.

[27] Ahmed, F., Cui, Y., Fu, Y., and Chen, W., 2021, “A Graph Neural Network
Approach for Product Relationship Prediction,” ASME International Design
Engineering Technical Conferences, Virtual Conference, Aug. 17–20.

[28] Wang, M., Sha, Z., Huang, Y., Contractor, N., Fu, Y., and Chen, W., 2018,
“Predicting Product Co-consideration and Market Competitions for Technology-
Driven Product Design: A Network-Based Approach,” Des. Sci., 4, p. e9.

[29] Shocker, A. D., Ben-Akiva, M., Boccara, B., and Nedungadi, P., 1991,
“Consideration Set Influences on Consumer Decision-Making and Choice:
Issues, Models, and Suggestions,” Mark. Lett., 2(3), pp. 181–197.

[30] Hauser, J. R., and Wernerfelt, B., 1990, “An Evaluation Cost Model of
Consideration Sets,” J. Consumer Res., 16(4), pp. 393–408.

[31] Roberts, J. H., and Lattin, J. M., 1991, “Development and Testing of a Model of
Consideration Set Composition,” J. Mark. Res., 28(4), pp. 429–440.

[32] Gaskin, S., Evgeniou, T., Bailiff, D., and Hauser, J., 2007, “Two-Stage Models:
Identifying Non-Compensatory Heuristics for the Consideration Set Then
Adaptive Polyhedral Methods Within the Consideration Set,” Proceedings of
the Sawtooth Software Conference, Santa Rosa, CA, Oct. 17–19, Vol. 13,
Citeseer, pp. 67–83.

[33] Dieckmann, A., Dippold, K., and Dietrich, H., 2009, “Compensatory Versus
Noncompensatory Models for Predicting Consumer Preferences,” Judg. Deci.
Making, 4(3), pp. 200–213.

[34] Damangir, S., Du, R. Y., and Hu, Y., 2018, “Uncovering Patterns of Product
Co-consideration: A Case Study of Online Vehicle Price Quote Request Data,”
J. Interact. Mark., 42, pp. 1–17.

[35] Wang, M., Huang, Y., Contractor, N., Fu, Y., and Chen, W., 2016, “A Network
Approach for Understanding and Analyzing Product Co-consideration Relations
in Engineering Design,” DS 84: Proceedings of the DESIGN 2016 14th
International Design Conference, Cavtat, Dubrovnik, Croatia, May 16–19, pp.
1965–1976.

[36] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M.,
2018, “Graph Neural Networks: A Review of Methods and Applications.”
arXiv preprint.

ASME Open Journal of Engineering 2022, Vol. 1 / 011020-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023

http://dx.doi.org/10.1007/s10021-001-0101-5
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1115/1.4002972
http://dx.doi.org/10.1115/1.2771182
http://dx.doi.org/10.1115/1.4034402
https://dx.doi.org/10.4271/2015-01-0468
https://doi.org/10.1155/2018/2753638
http://dx.doi.org/10.1115/1.4036780
http://dx.doi.org/10.4271/2017-01-0243
http://dx.doi.org/10.1017/dsj.2016.11
http://dx.doi.org/10.1155/2018/2753638
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1016/j.cell.2020.01.021
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1115/1.4050400
http://dx.doi.org/10.1115/1.4050400
https://arxiv.org/abs/1706.02216
http://dx.doi.org/10.1017/dsj.2018.4
http://dx.doi.org/10.1007/BF02404071
http://dx.doi.org/10.1086/209225
http://dx.doi.org/10.1177/002224379102800405
http://dx.doi.org/10.1016/j.intmar.2017.11.002
https://arxiv.org/abs/1812.08434


[37] Kipf, T. N., and Welling, M., 2016, “Semi-supervised Classification With Graph
Convolutional Networks.” arXiv preprint.

[38] Atwood, J., and Towsley, D., 2015, “Diffusion-Convolutional Neural Networks.”
arXiv preprint.

[39] Cao, S., Lu, W., and Xu, Q., 2016, “Deep Neural Networks for Learning Graph
Representations,” Proceedings of the AAAI Conference on Artificial Intelligence,
Phoenix, AZ, Feb. 12–17.

[40] Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J., 2018, “Network
Embedding As Matrix Factorization: Unifying Deepwalk, Line, Pte, and
Node2vec,” Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, Marina Del Rey, CA, Feb. 5–9, pp. 459–467.

[41] Doshi-Velez, F., and Kim, B., 2017, “Towards a Rigorous Science of
Interpretable Machine Learning.” arXiv preprint, arXiv:1702.08608.

[42] Molnar, C., 2022, “A Guide for Making Black Box Models Explainable,”
Interpretable Machine Learning, 2nd ed.

[43] Du, M., Liu, N., and Hu, X., 2019, “Techniques for Interpretable Machine
Learning,” Commun. ACM, 63(1), pp. 68–77.

[44] Ribeiro, M. T., Singh, S., and Guestrin, C., 2016, ““Why Should I Trust You?”
Explaining the Predictions of Any Classifier,” Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, Aug. 13–17, pp. 1135–1144.

[45] Breiman, L., 2001, “Random Forests,” Mach. Learn., 45(1), pp. 5–32.
[46] Fisher, A., Rudin, C., and Dominici, F., 2019, “All Models Are Wrong, But Many

Are Useful: Learning a Variable’s Importance by Studying an Entire Class of
Prediction Models Simultaneously,” J. Mach. Learn. Res., 20(177), pp. 1–81.

[47] Altmann, A., Tolos i, L., Sander, O., and Lengauer, T., 2010, “Permutation
Importance: A Corrected Feature Importance Measure,” Bioinformatics, 26(10),
pp. 1340–1347.

[48] Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A.,
Ostrovskiy, A., Cantor, C., Vijg, J., and Zhavoronkov, A., 2016, “Deep
Biomarkers of Human Aging: Application of Deep Neural Networks to
Biomarker Development,” Aging (Albany NY), 8(5), p. 1021.

[49] Matin, S., Farahzadi, L., Makaremi, S., Chelgani, S. C., and Sattari, G., 2018,
“Variable Selection and Prediction of Uniaxial Compressive Strength and
Modulus of Elasticity by Random Forest,” Appl. Soft Comput., 70, pp. 980–987.

[50] Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., Carmona-Moreno, C., De
Roo, A., Gonzalez-Sanchez, D., and Bidoglio, G., 2018, “An Innovative
Approach to the Assessment of Hydro-Political Risk: A Spatially Explicit, Data
Driven Indicator of Hydro-Political Issues,” Global Environ. Change, 52,
pp. 286–313.

[51] Molnar, C., 2022, Interpretable Machine Learning, 2nd ed..
[52] Data61, C., 2018, Stellargraph Machine Learning Library. .

011020-12 / Vol. 1, 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/openengineering/article-pdf/doi/10.1115/1.4054299/6879086/aoje_1_011020.pdf by N

orthw
estern U

niversity user on 14 M
ay 2023

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1511.02136
https://dx.doi.org/10.1145/3359786
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1093/bioinformatics/btq134
http://dx.doi.org/10.18632/aging.100968
http://dx.doi.org/10.1016/j.asoc.2017.06.030
http://dx.doi.org/10.1016/j.gloenvcha.2018.07.001
https://christophm.github.io/interpretable-ml-book

	1  Introduction
	1.1  Our Contributions

	2  Related Work
	2.1  Product Co-consideration Networks
	2.2  Graph Neural Networks
	2.3  Interpretable Machine Learning

	3  Methodology
	3.1  Network Construction
	3.2  Inductive Representation Learning on Networks
	3.3  Node Embeddings
	3.4  Edge Embeddings
	3.5  Classification Model for Link Prediction
	3.6  Validation Networks
	3.7  Adjacency Prediction Model
	3.8  Metrics for Link Prediction
	3.9  Permutation-Based Feature Importance

	4  Results and Discussion
	4.1  Data Description
	4.2  Link Prediction for Car Co-Consideration Network
	4.2.1  Network Construction
	4.2.2  The Input Car Attributes
	4.2.3  Experimental Settings
	4.2.4  Predicting Missing Links in the Same Year
	4.2.5  Predicting Entire Network for the Following Year
	4.2.6  Predicting Entire Network for the Year After Next
	4.2.7  Comparison With Existing Statistical Network Models

	4.3  Interpretability of Attributes
	4.4  Effect of Network Density and Neighbors

	5  Discussion
	6  Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

