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Abstract

Gaining a deep insight into the factors that influence product competition is essential for a company to maintain its competitiveness
in the market. While many studies have been conducted on competition analysis of various products, existing work often has
oversight of market heterogeneity. This makes the analysis of product competition less accurate, which could significantly influence
many downstream product design decisions. To address this issue, this paper presents a network mining approach to support product
competition analysis for engineering design. The approach investigates product competition (represented by co-consideration
relations) networks at three different levels, including macro (competition within the entire market), meso (competitions happening
between a small group of products), and micro (competitiveness of individual products) levels. In this approach, we first develop
a network motif-based representation of individual products’ competitiveness. Then we use the Exponential Random Graph Model
(ERGM) to study how the inclusion of such competitiveness measurement would influence products’ co-consideration relations
and improve the model’s goodness-of-fit. This network mining approach is demonstrated in a case study on the household vacuum
cleaner market, where heterogeneous customer preferences are pervasive. A multi-level network analysis of product competition
provides a new way to quantify the competitiveness of a product in a heterogeneous market. It also helps quantify the importance
of different competitive roles (e.g., competition within a brand or across brands) in forming co-consideration relations in the market.
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1. Introduction

The competitiveness of a company is the result of a combination of external and internal factors. External factors
include 1) the inherent characteristics of a product market, such as its size associated with the volume of customer
demand and market differentiation determined by diverse customer preferences; 2) its competitive environment
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shaped by all market participants and stakeholders. Internal factors involve a company’s organizational forms, product
strategies, and the speed of its response to changing technologies and market opportunities. For example, when a new
technique is introduced, a competitive company can often rapidly master it to launch new products or upgrade existing
products'. To maintain a competitive position in the market in the long run, competition analysis is important for a
firm to gain a thorough understanding of both the external and internal factors that influence its competitiveness. One
external competition analysis example is to investigate the competitive environment of a market, such as studying
customer preferences? of its representative products and typical competition patterns (e.g., how products compete
between brands). An internal competition analysis example is for a company to generate a better understanding of the
market positions of its own products, such as the market share of the most popular product or the one that always
competes against other brands.

In recent decades, competition analysis of product markets has received significant attention. In particular,
researchers in the market science domain have contributed rich findings and analysis approaches'. For example,
Karuna determined the competition of a product market in three dimensions: product substitutability, market size, and
entry costs. Based on this determination, he demonstrated that companies offer stronger managerial incentives when
industry competition is more intense*. In another instance, Bustamante and Donangelo explored the interrelation
between the competitive environment in which firms operate and their exposure to systematic risk®. More recently,
researchers from engineering design communities utilized product market competition analysis to better understand
the needs in engineering design. Wang et al. focused on product design for uncertain market systems®. They proposed
an agent-based approach to help firms make competitive product design and pricing decisions to face possible
reactions from market players in the short and long runs. Yip et al. investigated the possibility of using a subset of
competing products or composite products to replace a large set of competing products. They found that optimal
product design decision is independent of any information about competitors when customer preferences are
homogeneous, but this is not valid when customer preferences are heterogeneous’. Wang and Chen et al. proposed
using customer preference data to build competition networks. Then, various network-based competition analyses
(e.g., the evolution of product competitions) were generated, which were demonstrated using the vehicle market as
case studies® 17,

The studies mentioned above primarily focused on homogeneous market analysis or a market with heterogeneous
customer preferences studied by statistical models such as random-coefficients logit models’. In market science and
economics, a perfectly heterogeneous market denotes that each small segment of demand is satisfied by just one
unique segment of supply'!. In this study, the product market is generated by customer preference data®. As shown in
Fig. 1, the market is constructed by M unique products, all of which are stated by N customers through a survey study
(each customer stated his/her considered products and the final purchased product). Herein, in this study, we define
the heterogeneity of a product market as the extent to which the preferences of customers vary across the different
products in the market, and we propose to use the ratio 3, to measure it, as illustrated in Equation (1),

=1 (1)

A larger ratio indicates that customers’ preferences are more scattered, resulting in a more heterogeneous market.
For example, the 2013 new car buyer survey data employed by the referred study® contains around M = 400 unique
vehicle models preferred by about N = 50,000 new car buyers, yielding a ratio of 0.008. In this study, we utilize the
US household vacuum cleaner market data collected from our previous survey study'2. This dataset includes 945
customers and 612 unique vacuum cleaner models; thereby, the ratio is 0.65. As a result, the household vacuum
cleaner market is much more heterogeneous than the vehicle market case because, for each customer in the vacuum

cleaner market, there are more product options per customer.
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Fig. 1. Illustration of product market.
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Even though recent efforts have enriched product market competition analysis through customer preference
modeling and an in-depth understanding of the impacts of the market environment on a company’s operation, a
fundamental research gap remains in learning the competition relationships in a highly heterogeneous market. One
major challenge here is the characterization and quantification of different types of competition (inter-brand and intra-
brand competitions) due to market heterogeneity. To address this challenge, this study developed a multi-level network
mining approach to studying product competitions from macro (competition within the entire market), meso
(competitions happening between a small group of products), and micro (competitiveness of individual products)
network levels. This approach integrates network motifs into ERGM to represent micro-level product competitiveness
and measure the influence of product competitiveness on the customers’ consideration and choice decisions. We
demonstrate the utility of the approach with a case study on the household vacuum cleaner market.

2. Knowledge Background

This study employs two network analysis techniques based on network motif theory and the exponential random
graph model (ERGM). The technical background and the associated technical details are introduced below.

2.1. Network Motif

Network motifs'? are underlying non-random subgraphs within complex networks. They can be classified as
directed or undirected and can also be categorized by the number of nodes they consist of. The most common statistic
to assess the significance of a network motif in a complex network is motif Z-score. Given a graph G and an n-size
motif G', the frequency of G’ in G is the number of times that G' appeared in G, which is denoted by F;(G"). Then,
considering an ensemble of random graphs corresponding to the null model of G be w(G), R(G) is a set that includes
K randomized networks, all of which are from w(G). Accordingly, the Z-score is defined as

n — Fe(6')-rr(6")
24(6") = AL, @)
Another common metric for the evaluation of significant network motifs is the P-value. It indicates the probability
of FR(G") > F;(G"), where Fz(G') is the frequency of G’ in random network R. P-value can be calculated by

Po(G") = £ T 8(Fr(G") > F4(G")), (3)

where K represents the total number of considered random networks, and j is the index of each random network. &
equals 1 when Fr(G") > F;(G"), and 0 otherwise. In general, one motif pattern is significant if the P-value is smaller
than a typical threshold, commonly 0.01 or 0.05.

2.2. Exponential random graph models

ERGM is a family of statistical inference models for network data analysis'4. The basic assumption of these models
is that an observed network y is one specific realization from a set of possible random networks Y, and its probability
model follows the distribution in Equation (4).

exp (67-9(»))

Pr(Y =y) = o YEY 4)
where g(y) is a vector of the model statistics defining various network structures that can incorporate either nodal
attributes or edge attributes, @ is a vector of model coefficients associated with g(y), and k(6) is a normalizing
constant to make sure Equation (4) generates a probability value in [0, 1].

3. Methodology

An overview of the proposed multi-level network mining approach is presented in Fig. 2. From top to bottom, in
Layer One, we collect customer preference data, including the product alternatives they consider (i.e., choice sets)
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and the final choices (assuming each customer chooses only one product from his/her choice set). In Layer Two, our
objective is to investigate the overall characteristics of the competition within a product market by analyzing two-
stage competition networks at the macro level. Referring to existing studies®'2, we first build two macro-level
unidimensional networks, a co-consideration network, and a choice network, to model competition relationships using
the customer preference data. The nodes in both networks represent the unique product models considered by
customers. In the co-consideration network, the links are undirected and represent co-consideration relations between
two products. In the choice network, the links are directed, denoting two products being co-considered, but the
direction points to the one that was purchased. Once the networks are constructed, various network metrics, such as
average node degree, global cluster coefficient, and network density, are adopted for network analysis to draw insights
into the market competition'”.

Consideration

Layer One: Customer
Preference Data

/" Purchase

Co-consideration
network modeling

Layer Two: Macro-Level Two-

Stage Competition Networks . @
()
Parametric
k Significant sub-networks mining estimation
Parametric @ @
Layer Three: Meso-Level estimation @ IO N O @ 3
Significant Competition .____ - ¢ ® @ @
Relationships @
:C i .- it i —> : Choice
7 (same brand) (different brand) (same brand)
Individual product competitiveness Identification
Layer Four: Micro-Level
Product competitiveness --.___ @® @ ® ® ® ® Q)

Fig. 2. The proposed multi-level network mining approach for product market competition analysis.

In Layer Three, we aim to identify the significant meso-level competition patterns. In this study, we differentiate
the competition between two products across brands and those within a brand. This is a fair assumption because, from
the business perspective, these two types of competition can provide different directions for a company. For instance,
fierce cross-brand competition serves as a reminder for businesses to create products that set themselves apart from
their rivals, whereas intense competition within a brand indicates that businesses must modify their product lines to
prevent serious cannibalization!®. Therefore, we label the links in both networks into two types based on whether or
not two connected products belong to the same brand. As shown in Fig. 2, a dashed link represents two products from
different brands, and a solid link represents the same brand. Next, a network motif mining tool, FANMOD'"?, is
employed to enumerate the significant competition motifs in both networks. The benefits of identifying these
significant competition motifs are: 1) the local pattern of competition relationships of each brand can be discovered
by analyzing the topologies of the motifs, and 2) the insights into the competitiveness of each product can be assessed
by analyzing the roles a product played in the significant network motifs.

In Layer Four, we introduce the concept of node role'®'°, which is described as the role that a node plays in a
network motif structure, e.g., the center of a star network structure. After obtaining node roles, we describe the
competitiveness of each product based on the number of times it is involved in a role. Then the competitiveness,
treated as one product attribute, is used in ERGM modeling of the macro-level competition networks. A more detailed
discussion based on a case study is given in Section 4.
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4. Case Study

In this section, we use the US household vacuum cleaner market as a case study to demonstrate our proposed multi-
level data mining approach.

4.1. Data source

The dataset used in this study is drawn from our prior survey study'? conducted in 2021 by Cint — a company
providing digital survey solutions. The dataset includes 945 customers’ responses to 612 unique household vacuum
cleaner models. The dataset covers a wide range of customer-specific and vacuum cleaner-specific attributes, such as
customer demographics, technical features of vacuum cleaners, customer social relationships, and so on. The
respondents were required to list their considered vacuum cleaners and the ones they ultimately bought.

4.2. Macro-level network analysis

Following the methodology presented in Section 3, we first construct the unidimensional co-consideration and
choice networks based on the survey data of the 945 customers. Given the limited data source, whenever a customer
co-considers two vacuum cleaners, a link will be formed between these two models, and the link weight indicates the
number of times that the two products are co-considered. The co-consideration network includes 612 nodes and 2058
undirected links. The choice network includes 612 nodes and 1187 directed links.

In this study, we focus on the top-ten dominant brands in the market. These brands are identified by ranking the
frequencies that the respondents considered and purchased the products. In other words, in the original competition
networks, we only keep the links that connect the products of the top-ten brands. The visualizations of the downscaled
co-consideration and choice networks are shown in Fig. 3. As a result, the heterogeneity of this top-ten market
decreases from 0.65 to 0.45. However, this value is still much higher than the 2013 new car buyer survey data (0.008),
and the market is considered highly heterogeneous.

Next, we analyze the vacuum cleaner market competition in both consideration and choice stages by network
metrics, and the results are summarized in Table 1. The network density measures competition intensity. The average
unweighted degree reveals the average number of products a product competes against, and the average weighted
degree shows the average number of competition relations a product involves. Taking the co-consideration network
as an example, a vacuum cleaner competes against 6.5 other vacuum cleaners on average and is co-considered 6.85
times on average. The average local cluster coefficient measures how likely two competing products both compete
with the same product on average. For instance, in the co-consideration network, the average probability that two
competing vacuum cleaners compete with one common vacuum cleaner is 0.433, which is higher than that of the
choice network, 0.068. This denotes that the clustering of competitions is more likely to occur at the consideration
stage than at the choice stage. In short, these measurements provide us with an overview of the competitive
environment at the market level, including the overall competition intensity, the clustering level of competition, as
well as the average competition intensity at the product level.

Table 1. Network metrics to quantify the properties of macro-level competition networks

. Average unweighted (d), weighted Average local cluster
Network density () (d") degree coefficient ()
Co-consideration network 0.017 6.52, 6.85 0.433
Choice network 0.006 4.14,4.20 0.068

4.3. Meso-level significant competition network motif identification and interpretation

As illustrated in Section 3, we first label the edges in the competition networks into two types: type-I edge indicates
that two vacuum cleaners share the same brand, and type-I1I edge refers to the different brand types. Given the essential
role of triad census in networks science®®, we concentrate on size-3 sub-networks. Then, the network motif mining
tool, FANMOD, is adopted to identify the most significant size-3 motifs of competition. As shown in Fig. 4, each
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motif represents distinct competition relationships between brands (inter-brand) and within a brand (intra-brand), and
they are named by their edge types and topological characteristics.
# of nodes: 386 # of nodes: 376

# of links: 1259 # of links: 779
37 isolated nodes 36 isolated nodes

Bissell

Dyson

Shark

Hoover

Dirt Devil
Eureka

Irabot
Black+Decker
Samsung
Bosch

EfNEEEROEER

(a) Co-consideration Network (b) Choice Network

Fig. 3. Competition networks of top-ten household vacuum cleaner brands. The legend is ranked based on the popularity of each brand in the
consideration stage, and the size of nodes is proportional to the node degree. For example, product 369, Dyson Ball Multi-floor 2, shows the
largest node size in both networks. Its unweighted degree and weighted degree in the co-consideration network are 38 and 47, indicating that it is
co-considered with 38 models for a total of 47 times. Its unweighted degree, weighted degree (sum of weighted in- and out-degree), and weighted
in-degree in the choice network are 31, 33, and 19, respectively, indicating that it competed with 31 models 33 times and purchased 19 times.

These competition motifs, which are discovered to be significant, allow us to perform two types of analyses. The
first is micro-level node role identification, which is presented in Section 4.4. The second is meso-level brand
competition quantification, and an example is presented in Fig. 5. The numbers of various competition motifs in which
each brand participates are listed in Fig. 5. These analysis results provide insights into competitive trends across brands
at both the consideration and choice stages. It is found that in the consideration stage, the inter-brand triadic closure
competition is the dominant local competition in this vacuum cleaner market. Dyson is the most competitive brand,
as evidenced by its more frequent participation in all three of these competition motifs than other brands. In the choice
stage, except for Dyson and iRobot, which are more frequently involved in the intra-brand transitive triad competition,
the inter-brand transitive triad competition is the most frequently-occurring competition for most brands. Another
insight we can derive from Fig. 5 is the competition types that one particular brand participated in at two stages. For
example, Dyson is more often considered alongside other brands during the consideration stage, whereas in the choice
stage, the competition more frequently happens within the Dyson family.

.R2

Inter-brand triadic Intra-brand triadic Compound triadic Intra-brand transitive Compound cycle Inter-brand transitive

closure competition closure competition closure competition triad competition competition triad competition
Tipe-ledge ~  ----- Type-11 edge —> Type-I edge ----» Type-Il edge Unique node role
(a) Significant size-3 competition motifs and (b) Significant size-3 competition motifs and
corresponding node roles in co-consideration network corresponding node roles in choice network

Fig. 4 significant size-3 competition motifs and corresponding node roles in two-stage competition networks.
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g. 5 Number of times that each brand involves in each type of competition motif. (a) is ranked by inter-brand triadic closure competition; (b) is
ranked by inter-brand transitive triad competition.

4.4. Micro-level product competitiveness

We define different types of node roles in the co-consideration network and choice network, respectively, based
on the position where a node locates in the motifs, highlighted by dot circles in Fig. 4. For the motifs in the co-
consideration network, there are four node roles, each of which represents a distinct competitive position. For example,
role R1 delineates the competition when one product competes with two products from the other two different brands,
whereas R2 represents the competition among products with the same brand. In the choice network, the topology
becomes more complex because of the existence of link direction. So, there is a total of nine distinct node roles,
depending on the position of each node in the motifs, as shown in Fig. 4 (b).

After generating node roles, we define the competitiveness of each vacuum cleaner model as

Rj

Ci]-=r;—i,iEM,jE[1,9], (5)
where n 7 indicates the number of times that product i is involved in the role R;, and d; is the network degree of

product i to normalize n Taklng Hoover Powerdrive as an example, it is involved in R1 four times, R2 zero times,
R3 three times, and R4 two times in the co-consideration network. Its network degree is 14; therefore, its
competitiveness vector is [0.29, 0, 0.21, 0.14]. This indicates that in three-way competitions, it more frequently
competes with products from distinct brands rather than within the Hoover product family.

4.5. The impact of product competitiveness on the competition network formation

To study the impact of micro-level product competitiveness on the macro-level competition formations, we employ
ERGM to study the estimates of node attributes. The considered attributes are categorized into four types. The first
type is the network configuration. Given that ERGM with complex network configurations (e.g., star-type
interdependence and triangle-type interdependence®) suffers from a model degeneracy issue?, i.e., failing to generate
statistically significant representations of the observed networks in Fig. 3, only edges, equivalent to the intercepts of
the regular regression model, are considered. The second type is the baseline effect of vacuum cleaner attributes such
as suction power and price’. The third type is the homophily effect (i.e., matching and difference) of vacuum cleaner
attributes, such as price difference between co-considered vacuum cleaners®. The fourth type is the value of the
competitiveness vector obtained in Section 4.4. In Equation (4), all these four types of attributes are regarded as the
model statistics in modeling. Then, the Markov Chain Monte Carlo (MCMC) algorithm is adopted to estimate the
corresponding coefficient vector @ to maximize the likelihood of observed network structures aggregately. Finally,
insights into the importance of each attribute are generated by assessing the p-values as well as the sign and magnitude
of the estimated coefficients?. In this study, we compare the estimation results between those with and without product
competitiveness features and evaluate the model’s goodness-of-fit by the spectral goodness-of-fit (SGOF) metric?, as
shown in Equation (6).
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SGOF = 1 — Eg?obs,fitted ©6)
E SDobs,null
where ESD, rittea and E S Dops nun represent the average Euclidean spectral distance under the fitted model and null
model, respectively. SGOF measures the improvement of using a fitted model to describe the observed macro-level
network over the null model, and an SGOF of 1 indicates a perfect description?’. We present the estimation results of
the co-consideration network only in Table 2 as an example.

Table 2. ERGM-based estimation results of the co-consideration network

ERGM (without competitiveness ERGM (with competitiveness
Input variables representation) representation)
Estimate coefficient Std. Error Estimate coefficient Std. Error
Network configurations
Edges/Intercept -3.62 *** 0.20 S5.77F** 0.21
Baseline effects of vacuum cleaner attributes
Vacuum type* (handheld) -0.39 *** 0.22 -0.51%** 0.11
Vacuum type (robotic) 0.03 0.10 0.06 0.11
Vacuum type (stick) -0.4] *** 0.08 -0.44%** 0.08
Vacuum type (upright) -0.42 *** 0.08 -0.27%** 0.08
Suitable for pet hair (binary) -0.2] *** 0.06 -0.14% 0.06
HEPA filter (binary) -0.15 ** 0.05 -0.10 0.05
Price (continues) 1.2] #** 0.17 0.76%** 0.18
Suction power (continues) 0.58 *** 0.09 0.25%* 0.09
Warranty (continues) -0.29 ** 0.10 -0.24* 0.11
Homophily effects of attribute matching and difference
Vacuum type matching 0.84 *** 0.06 0.89%** 0.07
Suitable for pet hair matching 0.12 0.07 0.10 0.07
HEPA filter matching 0.02 0.06 0.05 0.06
Price difference =241 xx* 0.24 -2.40%** 0.25
Suction difference -0.18 0.12 -0.09 0.12
Warranty difference -0.50 *** 0.14 -0.53%** 0.14
Vacuum cleaner competitiveness (continuous)
R1 - - 2.21%%* 0.10
R2 - - 1.78%%* 0.12
R3 - - 1.38%*** 0.09
R4 - - 1.13%** 0.11
Model performance
Bayesian Information Criterion (BIC) 12430 11248
Mean SGOF (5", 95™ quantiles) 0.11 (0.06, 0.16) 0.77 (0.71, 0.82)

**%: p-value < 1e-04, **: p-value < 0.001, *: p-value < 0.01
*: the baseline of vacuum type is the canister

All the continuous variables are normalized by max-min normalization

The estimated coefficients in the two ERGMs have identical signs and similar magnitudes. For example, the
estimated coefficient of the suction power is 0.58. The positive sign and its level of statistical significance indicate
that the vacuum cleaners, both with higher suction power, are about 1.8 (i.e., %) times more likely to be co-
considered together than those with low suction power. In the group of homophily effects, for example, the negative
sign of price difference indicates that the vacuum cleaners with similar prices are more likely to compete against each
other. Another example is the baseline effect of price. Its positive sign indicates that the vacuum cleaners with higher
prices are 3.4 (i.e., e1?1) times more likely to be co-considered than those with low prices, suggesting that vacuum
cleaner customers are not price-sensitive and won’t forego comparing a vacuum cleaner with another one because of
its price.
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In the second model, where we include the competitiveness measurement, we found additional interesting results.
First, the signs of the four types of competitiveness R1 — R4 are all positive and statistically significant. This implies
that competitive products (i.e., being more frequently involved in the roles of R1, R2, R3, and R4) are always more
likely to be co-considered. Additionally, the larger magnitude of the R1 coefficient shows that the role of R1
contributes more to the formation of the co-consideration links than the other three node roles. This may imply that if
a producer of vacuum cleaners wants to consolidate its competitive position in the market, it would be better to get
involved in inter-brand triadic closure competition more frequently.

As to the model performance, the lower BIC value and the higher SGOF value demonstrate that ERGM with
competitiveness measurements reproduces the observed competition networks better than the one without
competitiveness measurements. Note that such improved goodness-of-fit value may imply overfitting, so the model
would be less capable of predicting new networks with unseen data. It also leads to a question of whether the second
model is prone to produce a causality dilemma, i.e., using the attributes produced by the original macro-level networks
to estimate the same networks. However, we believe this dilemma does not affect the interpretation of the relative
importance of each competitiveness attribute. As a result, in this study, the proposed estimation model serves as a
supplementary model of ERGM without considering complex network configurations to aid in understanding the
competitive roles that a product plays in the market. In our future work, more efforts will be spent to address the
causality dilemma issue to make the model with adequate predictive power.

5. Conclusion

This paper proposes a multi-level network mining approach to support competition analysis of heterogeneous
product markets. This approach starts with transferring customer preference data into two-stage (consideration and
choice) competition networks, followed by a macro-level competition study using descriptive network analysis. Then,
the meso-level critical competition motifs (or subgraphs) are identified and explored. Next, we develop a network
motif-based representation of micro-level products’ competitiveness. Finally, the impact of those identified product
competitiveness features on the formation of competition networks is studied using ERGM. We demonstrated the
approach with a case study on the household vacuum cleaner and obtained insights into the market competition for
the top-ten brands. However, due to the potential causality dilemma issue, the ERGM model with competitiveness
features included is suggested to be used for interpretation only at this stage. More studies are required to validate its
utility in link prediction, which is the focus of our future work.
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