
Journal of Geometry and Physics 169 (2021) 104337

Contents lists available at ScienceDirect

Journal of Geometry and Physics

www.elsevier.com/locate/geomphys

Functor of points and height functions for noncommutative 

Arakelov geometry

Alicia Lima a,b, Matilde Marcolli c,∗

a Perimeter Institute for Theoretical Physics, Waterloo, Canada
b Department of Mathematics, The University of Chicago, Chicago, IL, USA
c Mathematics Department, California Institute of Technology, Pasadena, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2021
Received in revised form 15 July 2021
Accepted 17 July 2021
Available online 22 July 2021

Keywords:
Noncommutative arithmetic spaces
Functor of points
Arakelov height
Arithmetic curves

We propose a notion of functor of points for noncommutative spaces, valued in categories 
of bimodules, and endowed with an action functional determined by a notion of hermitian 
structures and height functions, modeled on an interpretation of the classical functor of 
points as a physical sigma model. We discuss different choices of such height functions, 
based on different notions of volumes and traces, including one based on the Hattori-
Stallings rank. We show that the height function determines a dynamical time evolution 
on an algebra of observables associated to our functor of points. We focus in particular the 
case of noncommutative arithmetic curves, where the relevant algebras are sums of matrix 
algebras over division algebras over number fields, and we discuss a more general notion 
of noncommutative arithmetic spaces in higher dimensions, where our approach suggests 
an interpretation of the Jones index as a height function.

 2021 Elsevier B.V. All rights reserved.

1. Introduction

The use of noncommutative geometry methods in Arakelov geometry was originally introduced in [11,12], with a de-
scription of the special fiber at infinity of arithmetic surfaces in terms of a noncommutative space related to the geometry 
of Schottky uniformization of Riemann surfaces. A formalism for Arakelov geometry for noncommutative arithmetic curves 
and surfaces, based on arithmetic vector bundles and height functions, was later developed in [6,7]. This second approach is 
based on noncommutative projective algebraic geometry in the sense of Artin–Zhang [3], while the results of [11,12] used 
noncommutative differential geometry in the sense of Connes. In particular, the use of [3] limits the approach of [6,7] to the 
cases of arithmetic curves and surfaces. The question of whether there is a good way to connect these two approaches and 
include higher dimensional arithmetic noncommutative spaces is mentioned in [7]. One of the goals of the present paper 
is to establish a formalism that adapts the viewpoint of [6] and [7] to work in a setting compatible with noncommutative 
geometry in the sense of Connes and covering arithmetic noncommutative spaces of arbitrary dimension.

Our formalism to describe arithmetic noncommutative (or not necessarily commutative) spaces is based on the following 
main ideas:

• It is possible to have a good notion of functor of points for noncommutative spaces, provided the usual set-valued notion 
of S-points of an affine scheme X = Spec(R) given by X(S) = HomAlg(R, S) is replaced by a functor with values in 
categories, that replaces the set HomAlg(R, S) with the category of R-S bimodules.
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• The dual notion of functor of points as πX : Schop → Sets with πX (Y ) = HomSch(Y , X) can be envisioned as a σ -model 
with target X , where the points, given by maps φ ∈ HomSch(Y , X), are weighted by an action functional measuring their 
energy, in the form of a height function.

• Suitable height functions can be defined for bimodules, and they give rise to a dynamical system on a convolution 
algebra of bimodules with the tensor product operation, with a partition function that corresponds to a height zeta 
function.

• The Jones index of Hilbert C∗-bimodules of finite type can be seen as a possible height function for noncommutative 
spaces.

In recent years extensions of σ -models to noncommutative spaces have been studied in various contexts, sometime 
motivated by string theory (see for instance [25,43]), sometimes by extending results on the geometry of solitons to the 
noncommutative framework (see for instance [15]). As shown in [13,14], several interesting new phenomena occur in the 
noncommutative setting and even very simple cases, such as the example of a target space consisting of a two-point space 
can have highly nontrivial solutions.

Here we take a different viewpoint. We broadly regard σ -models as describing dynamics on a space of maps between 
two assigned geometries. Instead of the usual Riemannian viewpoint, however, we start from a different commutative set-
ting, consisting of the functor of points of algebraic geometry.

In order to make the functor of points “dynamical”, we need to assign a suitable “action functional” to points of an affine 
scheme. We argue that a good measure of the “energy” of points (seen as maps between affine schemes) is provided by 
the height function. The idea that height functions should be regarded as a physical action functional, with the height zeta 
function playing the role of the partition function of the system, was already suggested by Manin in [37].

We adapt this viewpoint to the noncommutative setting. It is well known that an analogous notion of functor of points 
for noncommutative rings is problematic, due to the scarcity of two-sided ideals, hence of non-trivial ring homomorphisms 
(points in the classical sense). It is also well known, however, that in noncommutative geometry morphisms of algebras are 
not the most natural choice of morphisms of noncommutative spaces, and bimodules are a much more natural choice, in 
view of phenomena such as Morita equivalence, which provides the appropriate notion of isomorphism for noncommutative 
spaces. Thus, we propose replacing the functor of points of affine schemes with a functor from the category of (noncom-
mutative) rings with morphisms given by bimodules, with values not in the category of sets, but in the 2-category of small 
categories. Under this noncommutative “functor of points” the “S-points” of a ring R form the category of R − S bimodules.

We then seek an appropriate replacement for the height function that makes this notion of points dynamical. We present 
two different proposals for a height function on bimodules. The first is based on extending to our setting a notion of height 
developed for noncommutative arithmetic curves in [6] and based on volumes associated to hermitian forms on bimodules. 
We show that this notion of height carries over to our setting but it has the drawback that it is not always compatible with 
the composition operation given by the tensor product of bimodules. The compatibility can be restored by restricting to a 
suitable subcategory of bimodules. The second form of height function that we consider is naturally compatible with tensor 
products of bimodules and is based on the Hattori–Stallings rank. We show that, when generalized from noncommutative 
arithmetic curves to higher dimensional noncommutative arithmetic spaces, this second notion gives rise to an interpretation 
of the Jones index as a height function.

The paper is organized in the following way. In §2 we review some known facts about height functions that serve as 
background motivation for what follows and justify our thinking of the height as an action functional. In §3 we introduce 
our proposal for a functor of points in noncommutative geometry that uses categories of bimodules instead of sets of ring 
homomorphisms. In §4 we focus on the case of finite-dimensional semisimple algebras, and correspondingly of noncom-
mutative arithmetic curves. We show that the height function used in [6] can be generalized to our setting, but is only 
compatible with tensor product of bimodules if we restrict it to a specific subcategory. We propose an alternative notion 
of height, based on the Hattori–Stallings rank, which is better behaved under tensor product of bimodules and we discuss 
the time evolutions generated by these height functions seen as energy functionals. In §5 we introduce a setting describing 
arithmetic noncommutative spaces in higher dimension and their functor of points, using hermitian bimodules of finite 
type. We consider as an example, arithmetic structures on noncommutative tori. We show that the two notions of height 
discussed in the case of finite dimensional algebras extend to this setting. The natural generalization of the height based on 
the Hattori–Stallings rank uses the Jones index of Hilbert C∗-bimodules.

2. Functor of points and height dynamics

Let X be an affine scheme over a field K. We will assume that K is number field. In fact, for our purposes we can just 
take K =Q. Points of the scheme X are defined through the functor of points, from the opposite category of schemes to sets

πX : Schop → Sets, πX (Y ) = HomSch(Y , X). (2.1)

The set πX (Y ) describes the Y -points of X . An equivalent way of formulating the functor of points is dually in terms of the 
corresponding algebras. Let R be a commutative K-algebra with X = Spec(R). We then consider

π∨
X : AlgK → Sets, π∨

X (S) = HomAlgK(R, S), (2.2)

2



A. Lima and M. Marcolli Journal of Geometry and Physics 169 (2021) 104337

where AlgK is the category of commutative algebras over K. The set π∨
X (S) is the set of S-points of X . This includes for 

example, the case of “geometric points” of X , that is X(Q̄) := π∨
X (Q̄), where geometric points is the usual terminology for 

points over an algebraically closed field. It is customary to simply use the notation X(S) for the set π∨
X (S) of S-points of 

the scheme X , for a K-algebra S and we will adopt this notation too.
More concretely, one can think of an affine scheme X over the field K as solutions to a set of polynomial equations 

f1(x1, . . . , xn) = 0, . . . , f N(x1, . . . , xn) = 0 for a given set of polynomials in K[x1, . . . , xn]. If we identify the scheme with the 
system of equations, then the set X(S) of S-points of X for a K-algebra S represents the set of solutions to these polynomial 
equations with xi ∈ S . (The set of n-tuples of elements of the algebra S that satisfy the system of polynomial equations.) 
This description of the scheme X is clearly equivalent to describing it through the ring R = K[x1, . . . , xn]/IX with the 
ideal IX = ( f1, . . . , f N). Any solution with xi ∈ S defines a morphism R → S , hence we recover the previous description 
of the functor of points. Thinking in terms of systems of equations, we then describe morphisms of affine schemes as 
polynomial transformations between the sets of solutions of two different systems of equations. In other words, if X and 
Y are affine schemes of finite type over K, with Y determined by equations g1(y1, . . . , yr) = 0, . . . , gL(y1, . . . , yr) = 0 and 
X by equations f1(x1, . . . , xn) = 0, . . . , f N(x1, . . . , xn) = 0, a morphism σ : Y → X can be described as a set of polynomials 
$1(y1, . . . , yr), . . . , $n(y1, . . . , yr) such that, if (s1, . . . , sr) with si ∈ S is a solution to the first system, a point in Y (S), then 
$1(s1, . . . , sr), . . . , $n(s1, . . . , sr) ∈ S give a solution to the second system, a point in X(S). Equivalently the substitution of 
variables (x1 = $1(y1, . . . , yr), . . . , xn = $n(y1, . . . , yr)) defines a morphism K[x1, . . . , xn] → K[y1, . . . , yr] that descends to 
the quotients R X = K[x1, . . . , xn]/IX → RY = K[y1, . . . , yr]/IY with IX = ( f1, . . . , f N) and IY = (g1, . . . , gL). We spelled 
out morphisms explicitly in this way, since this will be useful in the next subsection. The assumption that X and Y are of 
finite type over K is needed whenever this argument is applied.

A scheme is determined up to isomorphism by its functor of points. For a general introduction to the geometry of 
schemes we refer the reader to [36].

2.1. Height as an action functional

We consider here the functor of points as providing the kinematics, namely the space of maps to the target space given 
by the scheme X from a (variable) source space given by the scheme Y . In order to make this model dynamical, we need 
to specify an action functional with respect to which the maps σ ∈ HomSch(Y , X) are weighted.

We recall a few facts about the height function. We refer the reader to [5] for a detailed introduction. As above let 
K be a number field with d = [K : Q]. Let PK be the set of places of K, with PK = Par

K ∪ Pnar
K where Par

K is the set 
of archimedean places, consisting of r real embeddings K ↪→ R and k conjugate pairs of complex embeddings K ↪→ C
(not contained in R) with d = r + 2k, and Pnar

K is the set of non-archimedean places. For ν ∈ PK we write Kν for the 
corresponding local field (an extension of a p-adic field Qν at the non-archimedean places and a copy of R or C at the 
archimedean ones). Let dν = [Kν : Qν ] be the degree of the extension at the non-archimedean places, and equal to either 
1 or 2 at the archimedean cases that are either real or complex. We also write |x|ν for the corresponding absolute values 
normalized so as to satisfy the product formula 

∏
ν∈PK

|x|dν
ν = 1.

The height of an algebraic number α ∈ Q̄ is defined as

H(α) =
∏

ν∈PK

max{1, |α|ν}dν/d, (2.3)

and the logarithmic height as

h(α) = log H(α) =
∑

ν∈PK

dν

d
log+ |α|ν (2.4)

with log+ t = log max{1, t}. Here d and dν and the set of places PK are taken with respect to a choice of a finite extension 
K of Q that contains α, though the resulting value is independent of this choice. The height of an algebraic number satisfies 
h(α) = 0 iff α is a root of unity.

In a similar way, one can define the height of a polynomial. One defines for

f (x1, . . . , xn) =
∑

k1,...kn

αk1,...,kn xk1
1 · · · xkn

n ∈ K[x1, . . . , xn]

h( f ) =
∑

ν∈PK

dν

d
log | f |ν , where | f |ν = max

k1,...,kn
|αk1,...,kn |ν . (2.5)

In fact, it is customary to replace in the archimedean contribution to the height h( f ) in the above formula the term | f |ν
with the better behaved Mahler measure

M( f ) = exp



 1
(2π)n

∫

Tn

log | f (eiθ1 , . . . , eiθn )|dθ1 · · ·dθn



 . (2.6)
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Indeed, while at the non-archimedean places one has | f g|ν = | f |ν · |g|ν this multiplicativity does not hold at the 
archimedean places, while the Mahler measure satisfies M( f g) = M( f )M(g).

Given two affine schemes X and Y and a morphism σ ∈ HomSch(Y , X), we can then define a height of σ , by identifying 
as in the previous section the morphism σ with a collection of polynomials $1(y1, . . . , yr), . . . , $n(y1, . . . , yr) that transform 
by change of variables S-solutions of the polynomial equations defining Y to S-solutions of the polynomial equations 
defining X . We then define, for the vector $ = ($i)

n
i=1 in K[y1, . . . , yr] the quantity ‖$‖ν = maxi=1,...,n |$i |ν and we compute 

the height h(σ ) as in (2.5), (2.6) using this quantity (with M($i) instead of |$i |ν at the archimedean places).
The definition above provides us with a real valued action functional

h : HomSch(Y , X) → R, (2.7)

with h(σ ) given by the height of the morphism σ . This means that we are thinking of the height as measuring the “energy” 
of the points in X(S) for Y = Spec(S).

It is reasonable to think of the height as an energy functional. For example, the Mahler measure determines the free 
energy and the growth rate of BPS states in toric quiver gauge theories, [57]. Mahler measure of certain bivariate poly-
nomials arises as the free energy in the planar dimer model, [27], for Mahler measures and dimer models see also [52]. 
The Mahler measure is also related to instanton expansion, [53]. The height function can be viewed as a measure of arith-
metic complexity, hence minimizing an action functional based on height means selecting points of minimal arithmetic 
complexity.

2.2. The minimization problem

With our choice of energy functional (2.7) then looking for energy minimizers means minimizing the height function 
over systems of polynomials $ = ($i)

n
i=1 :Ar →An , subject to the constraints imposed by the source and target schemes Y

and X , namely that the polynomial map $ descends to a map of the quotients $ :K[x1, . . . , xn]/IX →K[y1, . . . , yr]/IY .
However, it is clear by looking at the archimedean contribution to the action functional given by the Mahler measure 

that if we want to obtain a non-trivial and interesting minimization problem for this energy functional, we need to be 
more restrictive in the choice of our class of maps. Indeed, it is better to work under the assumption that our schemes are 
defined over Z (or the ring of integers of a number field). Let us assume for this discussion that they are defined over Z. 
This means that we only need to consider polynomials with Z coefficients, both in the defining equations of our schemes 
and in the morphisms between them,

$ : Z[x1, . . . , xn]/IX → Z[y1, . . . , yr]/IY .

We are then seeking to minimize the height over such polynomials. That this is now an interesting minimization problem 
can be seen already in the case where both X = Y =A1 and a single polynomial map $ :A1 →A1. In this case the Mahler 
measure satisfies M($) ≥ 1 and it is known that equality holds whenever $(x) is a product of cyclotomic polynomials and 
the monomial x. So these realize the minima of the Mahler measure. More interesting is the question of what are the 
polynomials with the smallest value of the Mahler measure that is M($) > 1. This is known as the Lehmer problem, see 
[19,17,44]. Lehmer noted that the polynomial $(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 has M($) = 1.1762808 . . . and 
the question of whether this is an optimal lower bound is an open question. This shows that indeed there are interesting 
minimization questions associated to the action functional we are considering.

It is also worth pointing out the following aspect of this problem. Consider a scheme X and its set of rational points 
X(K). It is known that the distribution of rational points of bounded height is very not uniform: these points accumulate 
on subsets that are the range of certain morphisms. In this case then the question becomes the search for algebraic points 
of minimal height (for the appropriate version of the height function).

2.3. The case of correspondences

The above commutative case is discussed here only as motivation, hence we do not discuss in further detail this min-
imization problem. We do, however, discuss a variant of it, where morphisms σ : Y → X are replaced by more general 
correspondences, given by subschemes ) ⊂ Y × X . The case of a morphism σ : Y → X is recovered as the particular case 
where )σ ⊂ Y × X is the graph of the morphism )σ = {(y, σ (y)) ∈ Y × X | y ∈ Y }. Passing from morphisms given by maps 
of algebraic varieties or schemes to morphisms given by correspondences is a very natural step in algebraic geometry and 
it is crucial in the development of the theory of motives. For us, the reason why it is useful to extend the setting discussed 
above from maps to correspondences lies in the fact that morphisms given by correspondences are the commutative analog 
of morphisms given by bimodules in noncommutative geometry (see a discussion of this in Chapter 4 of [9]). Passing from 
morphisms of varieties to correspondences is very delicate, since one usually needs to consider correspondences up to some 
notion of equivalence relation. This is related to the fact that the composition of correspondences is given geometrically by 
an intersection product: for )1 ⊂ Z × Y and )2 ⊂ Y × X the composite )2 ◦ )1 ⊂ Z × X is obtained by pulling back both 
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correspondences to the triple product Z × Y × X via the respective projections, intersecting them, and pushing the result 
forward to Z × X ,

)2 ◦ )1 = πZ×X ∗(π
∗
Z×Y ()1) • π∗

Y ×X ()2)).

We do not discuss this in detail here, but some of the subtleties involve having to work with smooth projective varieties 
rather than affine schemes, having the freedom to move representative algebraic cycles describing the correspondences 
within an equivalence class that preserves intersection numbers, etc. All these technical aspects are worked out in the 
construction of categories of (pure) motives, where morphisms are described in this way. We will not deal directly with 
motives here, and we simply refer the reader to [2] for a detailed introduction.

For our purposes, it suffices to point out that the notion of height of a morphism σ : Y → X that we discussed above, 
based on measuring the height of a polynomial, can be generalized to a notion of height of a variety, which can then be 
applied to a correspondence ), seen as a subvariety of Y × X . We are making here a simplifying assumption and considering 
varieties instead of more general schemes. Notions of height function for motives are discussed in [26].

We will not be dealing directly with correspondences in the commutative case, but we mention this setting as a com-
parison, because our approach to the noncommutative case, which we will be discussing shortly, is based on the analog of 
correspondences for noncommutative spaces, which is given by bimodules.

3. Bimodules and a noncommutative functor of points

When we move from the commutative to the noncommutative world, the notion of functor of points as usually con-
structed in algebraic geometry is clearly inadequate. If R and S are noncommutative K-algebras, there are in general very 
few algebra homomorphisms φ : R → S , hence defining a functor of points using HomAlgK (R, S) gives very little informa-
tion. There are various ways in which noncommutative geometry has considered the problem of a good definition of points. 
A widely used approach consists of replacing the notion of points as algebra homomorphisms with the notion of points as 
extremal measures (delta measures supported on points in the classical commutative case). In noncommutative geometry, 
this involves the notion of states on the algebra of functions. In the case of a complex involutive unital algebra RC , a state 
is a linear functional ϕ : RC →C that is normalized ϕ(1) = 1 and satisfies a positivity condition ϕ(a∗a) ≥ 0 for all a ∈ RC . 
These two properties generalize to the noncommutative setting the notion of a measure. In contrast to the set of algebra 
homomorphisms, which tends to be too small in the noncommutative case, the set of extremal points of the convex set 
of states tends to be too large, but this problem is usually cured by introducing additional requirement, for example only 
considering special states that are equilibrium (KMS) states for a dynamical evolution of the noncommutative algebra. This 
approach was successfully used in applications of noncommutative geometry to number-theoretic settings, see for instance 
Chapters 3 and 4 of [9]. However, this is not the main viewpoint that we want to consider in this paper.

We want to highlight here the idea that the category of sets is not a good category in which to formulate a notion of 
points for noncommutative spaces. There are many instances in modern mathematics where it is clear that categories are 
a natural replacement for sets. Thus, we consider the possibility of a functor of points with values in the category of small 
categories.

3.1. Bimodules, 2-categories, and a functor of points

Again we fix a field K, which we take to be a number field. As a category of algebras over K we consider the following.

Definition 3.1. Let NAK denote the category with objects given by associative (not necessarily commutative) algebras R
over K and morphisms HomNAK (R, S) given by bimodules R E S . The composition of morphisms is given by the tensor 
product R E S ⊗S S F T =: R F ◦ ET .

The associativity of the tensor product of bimodules can be seen in the following way. Given E1, E2, E3, with Ei an 
Ri−1 − Ri module, the tensor product E = E1 ⊗R1 E2 ⊗R2 E3 is an R0 − R3 bimodule with a multilinear map µ : E1 × E2 ×
E3 → E from the underlying product of sets that is K-linear in each variable and satisfies a0µ(e1, e2, e3) = µ(a0e1, e2, e3), 
µ(e1, e2, e3)a3 = µ(e1, e2, e3a3), µ(e1a1, e2, e3) = µ(e1, a1e2, e3), µ(e1, e2a2, e3) = µ(e1, e2, a2e3), for all ai ∈ Ri and ei ∈ Ei . 
The map µ determines uniquely maps µ1 : (E1 ⊗R1 E2) × E3 → E and µ2 : E1 × (E2 ⊗R2 E3) → E and is in turn uniquely 
determined by each of them.

Remark 3.2. Since R − S bimodules form a category, the HomNAK (R, S) are categories, hence NAK is a category enriched 
over categories, that is, a strict 2-category.

We then propose the following definition of functor of points for noncommutative spaces. Let Cat denote the category 
of small categories. This is also a 2-category with objects that are small categories, morphisms that are functors, and 2-
morphisms that are natural transformations.
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The category RBS of R − S bimodules is not in itself a small category. Indeed, even for the simplest case with R = S =K, 
any set I gives rise to a bimodule KI , so the category is as large as the category of sets. In the following we need to work 
with small categories, so we will impose some restrictions on the categories of bimodules, that are natural in our context, 
as follows.

Remark 3.3. In the following, when we refer to “the category RBS of R − S bimodules”, we always mean a small category 
of finitely generated bimodules.

Lemma 3.4. For R an associative (noncommutative) algebra over K, let πR : NAK → Cat be the functor that assigns to an object S
in NAK the category RBS of R − S bimodules. A morphism S1 F S2 ∈ HomNAK (S1, S2) is mapped to the functor F : RBS1 → RBS2

that sends R E S1 -→ R E S1 ⊗S1 S1 F S2 . Then πR is a 2-functor.

Proof. Recall that in order for πR : NAK → Cat to be a 2-functor, it must be an assignment of 0-cells (objects), 1-cells, 
and 2-cells in NAK to those in Cat that strictly preserves identity 1-cells, identity 2-cells, vertical compositions of 2-cells, 
and horizontal compositions of 1-cells and of 2-cells [20].

• For 0-cells S in NAK , πR assigns the category RBS of R − S bimodules;
• For 1-cells S1 F S2 ∈ HomNAK (S1, S2), πR assigns the functor F : RBS1 → RBS2 that sends R E S1 -→ R E S1 ⊗S1 S1 F S2 ;
• For 2-cells f : S1 F S2 → S1 F ′

S2
in NAK , πR assigns the following natural transformation η : F → F ′ , defined for any 

R E S1 ∈ RBS1 , ei ∈ R E S1 and mi ∈ S1 F S2

ηR E S1

(∑

i

ei ⊗ mi
)
=

∑

i

ei ⊗ f (mi)

This is a natural transformation since for any bimodule homomorphism g : R E S1 → R E ′
S1

,

F ′(g) ◦ ηR E S1

(∑

i

ei ⊗ mi
)
= F ′(g)

(∑

i

ei ⊗ f (mi)
)

=
∑

i

g(ei) ⊗ f (mi)

= η
R E ′

S1

(∑

i

g(ei) ⊗ mi
)

= η
R E ′

S1
◦ F (g)

(∑

i

ei ⊗ mi
)

• πR preserves identity 1-cells since for any 0-cell S in NAK , πR takes its identity 1-cell S S S to the functor S : RBS →
RBS that sends R E S -→ R E S ⊗S S S S . Since R E S ⊗S S S S = R E S , the functor S : RBS → RBS is the identity functor of RBS ;

• πR preserves identity 2-cells since any identity bimodule homomorphism f : S1 F S2 → S1 F S2 is sent to the natural 
transformation η : F → F , defined for any R E S1 ∈ RBS1 , ei ∈ R E S1 and mi ∈ S1 F S2

ηR E S1

(∑

i

ei ⊗ mi
)
=

∑

i

ei ⊗ f (mi)

=
∑

i

ei ⊗ mi

which is precisely an identity natural transformation since it maps each object R E S1 of RBS1 to the identity morphism 
idF (R E S1 ) in RBS2 ;

• For any two composable bimodules S1 F S2 , S2 G S3 ,

πR(S1 F ◦ G S3) = πR(S1 F S2 ⊗S2 S2 G S3)

= − ⊗S1 S1 F S2 ⊗S2 S2 G S3

= (− ⊗S1 S1 F S2) ◦ (− ⊗S2 S2 G S3)

= πR(S1 F S2) ◦ πR(S2 G S3)

showing that πR preserves the horizontal compositions of 1-cells;
• For two vertically composable bimodule homomorphisms f : S1 F S2 → S1 G S2 and g : S1 G S2 → S1 H S2 in NAK , and 

R E S1 ∈ RBS1 , ei ∈ R E S1 and mi ∈ S1 F S2

6
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πR(g ◦ f )R E S1

(∑

i

ei ⊗ mi
)
=

∑

i

ei ⊗ (g ◦ f )(mi)

= πR(g)R E S1

(∑

i

ei ⊗ f (mi)
)

= (πR(g) ◦ πR( f ))R E S1

(∑

i

ei ⊗ mi
)

• Finally, for two horizontally composable bimodule homomorphisms f : S1 F S2 → S1 F ′
S2

and g : S2 G S3 → S2 G ′
S3

, and 
R E S1 ∈ RBS1 , ei ∈ R E S1 , mi ∈ S1 F S2 , ni ∈ S2 G S3 ,

πR( f ⊗ g)R E S1

(∑

i

ei ⊗ mi ⊗ ni
)
=

∑

i

ei ⊗ f (mi) ⊗ g(ni)

= πR( f )R E S1

(∑

i

ei ⊗ mi ⊗ g(ni)
)

= (πR( f ) ◦ πR(g))R E S1

(∑

i

ei ⊗ mi ⊗ ni
)

!

The previous result motivates the following definition.

Definition 3.5. Let Xnc
R denote the noncommutative space determined by the algebra R over K. We define the noncommu-

tative functor of points by setting Xnc
R (S) := RBS for any K-algebra S .

Thus, the S-points Xnc
R (S) of the noncommutative space Xnc

R form a 2-category rather than a set and consist of all R − S
bimodules.

Thus, we consider Xnc
R (S) = RBS to be our kinematic space for noncommutative sigma models, where the noncommuta-

tive space Xnc
R is the (fixed) target space of the sigma model and the noncommutative space determined by the algebra S

is the (variable) source space of the sigma model.
The next step is then to make these spaces dynamical by assigning an action functional that generalizes the height action 

functional we have been discussing in the previous section.

4. The case of finite dimensional algebras

Before discussing the general problem of how to obtain an action functional on our noncommutative “functor of points” 
Xnc

R (S) = RBS , we focus on the simpler case of finite dimensional algebras.
It is convenient to adopt the viewpoint of Arakelov geometry in a noncommutative setting, [6,7]. Consider a finite dimen-

sional semisimple algebras A over a number field K. In the case where A is a division algebra, the construction of a height 
function for free submodules of An was obtained in [31], generalizing the commutative construction of heights of subspaces 
of a vector space over a number field using volumes of Euclidean lattices (see [51]). If A is not a division algebra, then it 
has zero-divisors, and this prevents the usual construction of valuations. This case is analyzed in [6], where a different way 
of defining a height function hO(V ) of a free submodule of An is introduced, which for division algebras agrees up to a 
scale factor with the height defined in [31].

The general structure of finite dimensional algebras is analyzed in [16]. For our purposes, we consider the case of semi-
simple algebras, since these algebras can be viewed as sums of simple algebras, and this naturally generalizes to the number 
field case the much simpler complex case where one deals with sums of matrix algebras. Indeed, every simple algebra is 
isomorphic to a matrix algebra Mn(D) over some division algebra D over K.

We show here how to adapt in our setting this approach to associate an action functional defined on our Xnc
R (S) = RBS , 

in the case where both R and S are semisimple finite dimensional algebras over a number field K.

4.1. Noncommutative arithmetic curves

In arithmetic geometry, an arithmetic (affine) curve is Spec(OK), for a number field K with ring of integers OK . 
The curve is “compactified” by adding to Spec(OK) the “primes at infinity”, that is, the n embeddings σ : K ↪→ C for 
n = [K :Q] = deg(K) the degree of the number field. Heuristically, one thinks of an arithmetic curve Spec(OK) as having 
at each finite place ℘ in Spec(OK) a copy of the corresponding residue field Fq = OK/℘ . (At the archimedean places these 
should be replaced by a more mysterious object F1, which has many different mathematical incarnations, [33,38].)

In noncommutative algebraic geometry there is a similar notion of an arithmetic noncommutative curve, see [6], which 
we review briefly here.

7
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Definition 4.1. A full OK-lattice - in a semisimple finite dimensional algebra A over a number field K is a finitely gener-
ated torsion free OK-module with the property that K- = A as K-vector spaces.

Definition 4.2. Given a semisimple finite dimensional algebra A over a number field K, an OK-order OA in A is a subring 
of A such that OA is a full OK-lattice in A.

For a noncommutative ring B , one can define Spec(B) as in [6] as the set of prime ideals of B , defined as proper nonzero 
two-sided ideals ℘ in B such that aBb /⊂ ℘ for all a, b ∈ B !℘ .

A notion of arithmetic noncommutative curve is then provided by Spec(OA) where OA is an OK-order in A. The reason 
why it makes sense to consider this a noncommutative arithmetic curve lies in the fact that the prime ideals ℘ in Spec(OA)
are maximal two-sided ideas of OA and the quotients OA/℘ are simple algebras hence isomorphic to some matrix algebra 
Mk℘

(D℘) over some division algebra D℘ . Thus, this construction replaces the commutative objects Fq attached to the places 
℘ of Spec(OK) in a classical (commutative) arithmetic curve, with the noncommutative objects Mk℘

(D℘) attached to the 
places ℘ of the noncommutative curve Spec(OA).

While this point of view is very helpful, it is slightly different from the one we will be following here, since it is still 
based on taking two-sided ideals ℘ , related to a classical notion of points. We will however, keep this main idea in mind in 
framing our setting, while adapting it to our notion of points described in the previous section.

Before developing our setting, we recall a few more aspects of the theory of noncommutative arithmetic curves, as 
developed by Borek in [6], which will be useful in our setting as well, in particular some notions of height that we will be 
adapting to our setting in the next subsections.

For a semisimple finite dimensional algebra A over a number field K, we write AR := A ⊗Q R and A×
R := GL1(AR) for 

the group of units (multiplicatively invertible elements) in AR .

Remark 4.3. Note that here, as in [6], we are taking the tensor product over Q, not over K, hence the number field K is 
not assumed to have a real embedding, and even when there is a σ : K ↪→ R, the algebra AR considered here is not the 
same as the algebra Aσ = A ⊗K,σ R.

For a OK-order OA in A, we also write J (OA) for the set of full left-OA -ideals in A. These are left OA -modules that 
are full OK-lattices. For a full left- OA -ideal a in A there is an r ∈ OK such that ar ⊂ OA is a left-ideal in OA . The set of 
complete OA -ideals is Ĵ (OA) = J (OA) × A×

R . We write complete OA -ideals as ā = (a, a∞) ∈ J (OA) × A×
R , as in [6]. For 

a ∈ J (OA) one takes

N (a) = #(OA/ar)
#(OA/OA r)

. (4.1)

This is independent of the choice of an r ∈ OK for which ar is a left-ideal in OA . As shown in Theorem 1 of [6], the 
norm N (a) of (4.1) has an equivalent expression as product over the prime ideals ℘ in Spec(OA). The “absolute norm” 
N (ā) is given by the product of N (a) and a contribution of the archimedean component a∞ given by | N AR|R(a∞) | where 
N AR|R is the norm map from AR to R. (In general, given a finite dimensional algebra B over a field F an element x ∈ B
acts by left multiplication defining an F -endomorphism of B . The norm NB|F : B → F is the multiplicative map given by 
NB|F (x) = det(x), the determinant of the resulting F -linear transformation.)

One can also define a volume vol(ā) := vol(a∞ j(a)), where j : A → AR maps a to a Z-lattice j(a) in AR with R j(a) =
AR , and the volume of the lattice a∞ j(a) is the volume of its fundamental domain in the measure defined by the norm 
associated to the bilinear form AR × AR →R determined by the trace (x, y) -→ TrAR|R(xy). This is related to the absolute 
norm by vol(ā) = N (ā) vol(OA), see §4 of [6]. We will discuss more generally in §4.7 and §4.8 the assignment of a volume 
to a normed space and notions of volume we will be using in the construction of height functions.

The last notions that we need to recall from the Arakelov geometry of noncommutative curves of [6] is arithmetic vector 
bundles and the associated arithmetic degree map. Again, the notion of arithmetic vector bundle that we will be using is 
slightly different from the one used in [6] that we recall here, but it is closely related.

Definition 4.4. Let K be a number field and A a semisimple finite dimensional algebra over K, with OA an order in A. 
Let E be a left OA -module. Let σ be an archimedean place of K and let Kσ be either R or C, with the corresponding 
embedding σ : K ↪→ Kσ , and let Aσ = Kσ ⊗K A and Eσ = Aσ ⊗OA E . A hermitian structure h on E is a ∗-hermitian 
bilinear form h : Eσ × Eσ → Aσ such that TrAσ |Kσ ◦ h : Eσ × Eσ →Kσ , (x, y) -→ TrAσ |Kσ (h(x, y)) is positive definite.

Such hermitian metrics can be constructed in the following way, [6]. The verification of the following statement is 
immediate and we omit it.

Lemma 4.5. The choice of a collection of elements βi ∈ A×
σ , for i = 1, . . . , n determines a hermitian structure on the free module An

σ
by setting h(x, y) = ∑

i xiβiβ
∗
i y∗

i . By restriction, it determines a hermitian structure on a projective Aσ -module that is a summand of 
the free module An

σ .

8
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In more physical terms, we can regard ρi = βiβ
∗
i as a “density matrix” and TrAσ |Kσ ◦ h(x, y) = Tr(y∗xρ) as the state 

associated to this density matrix.

Definition 4.6. Let E be a finite projective left A-module. For σ an archimedean place of K, a hermitian structure h :
Eσ ×Eσ →Kσ is said to be “standard” if it is the restriction of a hermitian form as in Lemma 4.5 on An

σ , for an embedding 
j A : Eσ ↪→ An

σ realizing Eσ as a summand of a free module.

It is shown in [6] that all hermitian structures h : AR × AR → AR on a real semisimple finite dimensional algebra are 
of the standard form h : (x, y) -→ xββ∗ y∗ as above. The standard hermitian structures will be sufficient for our purposes, so 
we will limit some of the arguments to this case.

An arithmetic vector bundle over the noncommutative arithmetic curve Spec(OA) is defined in [6] as a pair (E, h), where 
E is a left OA -module that is also an OK-lattice, such that A ⊗OA E is a free A-module, and h is a hermitian structure 
h : ER × ER → AR on ER = AR ⊗OA E . Our notion of arithmetic vector bundle is discussed in Definition 4.7 below.

The Grothendieck group K0(Spec(OA)) of arithmetic vector bundles of [6] over the noncommutative arithmetic curve 
Spec(OA) is generated by isomorphism classes of (E, h), where isomorphism is given by isomorphisms of left OA -modules 
that preserve the hermitian structure, modulo the relations [(E, h)] = [(E ′, h′)] + [(E ′′, h′′)] for short exact sequences 0 →
E ′ → E → E ′′ → 0 of OA -modules such that the sequence 0 → E ′

R → ER → E ′′
R → 0 splits orthogonally, that is, with 

E ′′
R = (E ′

R)⊥ the orthogonal with respect to the hermitian structure.

Complete OA -ideals ā ∈ Ĵ (OA) determine hermitian line bundles L(ā) that generate the Grothendieck group 
K0(Spec(OA)). The degree map

degOA
(L(ā)) := − log N (ā)

extends uniquely to a degree map on K0(Spec(OA)).
Finally, we recall the notion of height used in the Arakelov geometry of noncommutative curves, [6]. Let hn denote 

the hermitian metric on An
R given by hn : ((x1, . . . , xN ), (y1, . . . , yN)) -→ ∑

i x∗
i yi . For a free A-submodule V of An the 

logarithmic height is defined as

hOA (V) = log HOA (V) := −degOA
(V ∩ On

A,hn).

By the relation of the norm to the volume, the height can be further identified with

HOA (V) = vol(V ∩ On
A)

vol(OA)rank(V)
, (4.2)

where the volume in An
R is defined by the norm associated to the quadratic form TrAR|R ◦ hn . This generalizes to the 

noncommutative setting the height of [51]. In the case of division algebras it agrees (up to scaling factor given by the 
degree [K : Q]) with the height of [30–32]. Here the hypotheses that an arithmetic vector bundle is a free A-module as 
well as an OK-lattice, assumed in [6] are used in defining the volume of V ∩ On

A and the rank of V . We will discuss how 
this definition of height adapts to our setting in the next subsections.

4.2. Free modules versus finite projective modules

The notion of arithmetic vector bundle over a noncommutative arithmetic curve, that we recalled above from [6], in-
cludes the requirement that the left OA -module E satisfies the property that A ⊗OA E is a free A-module.

It would seem more natural, if we want to regard E as a vector bundle, to relax this requirement and only require that 
A ⊗OA E is a finite projective A-module. As we see in the following, in our setting based on bimodules, this less restrictive 
condition will allow us to include some very natural families of bimodules that we certainly want to include in our counting 
of “points” over our noncommutative arithmetic spaces.

Thus, in our setting, we give the following slightly different definition of an arithmetic vector bundle.

Definition 4.7. Let A be a semisimple finite dimensional algebra over a number field K and let OA be an order in A. A left 
arithmetic (A, OA)-vector bundle (E, h) is a finitely generated left OA -module, together with the assignment h = (hσ ), for 
all archimedean places σ of K, of a hermitian structure h : Eσ × Eσ → Aσ .

Since A is a semisimple finite dimensional algebra, the finitely generated A-module A ⊗OK E is finite projective (see 
also Remark 4.10 below).

9
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4.3. Functor of points on finite dimensional algebras

We now adapt the notions developed in the Arakelov geometry of noncommutative arithmetic curves in [6] to our 
setting.

Let A be a semisimple finite dimensional algebra over a number field K. Let σ :K ↪→C be an embedding (either real or 
complex), that is, an archimedean place of K. We can associate to A and σ a real or complex algebra Aσ = A ⊗K,σ R for a 
real embedding and Aσ = A ⊗K,σ C for a complex embedding. Assuming A = ⊕i Mni (Di) where the simple summands are 
matrix algebras of rank ni over a division algebra Di over K, we can similarly decompose Aσ = ⊕i Mmi (C) in the complex 
case and Aσ = ⊕i Mri (R) ⊕ j Mr j (C) ⊕k Mrk (H) for the real case, where H is the division algebra of quaternions.

Definition 4.8. An arithmetic structure on a semisimple finite dimensional algebra A over a number field K is the choice 
of an OK-order OA in A. Given two such choices (A, OA) and (B, OB), we define the category of arithmetic hermitian 
bimodules (A,OA )H(B,OB ) with objects the pairs (E, h) where E is an OA − OB bimodule, such that A ⊗OA E and E ⊗OB B
are finite projective as A-module and B-module, respectively. Moreover, for any archimedean place σ of K the bimodule 
Eσ := Aσ ⊗OA E ⊗OB Bσ is endowed with a pair of hermitian structures h = (hA, hB) with hA : Eσ × Eσ → Aσ and hB :
Eσ × Eσ → Bσ with the following properties

• For all a ∈ Aσ , the identities hA(ax, y) = a hA(x, y) and hA(x, ay) = hA(x, y) a∗ hold for all (x, y) ∈ Eσ × Eσ .
• For all x ∈ Eσ the element hA(x, x) is a positive element in Aσ (that is, an element of the form β∗β for some β ∈ Aσ

and hA(x, x) = 0 iff x = 0.
• For all b ∈ Bσ , the identities hB(x, yb) = hB(x, y) b and hB(xb, y) = b∗ hB(x, y) hold for all (x, y) ∈ Eσ × Eσ .
• For all x ∈ Eσ the element hB(x, x) is a positive element in Bσ and hB(x, x) = 0 iff x = 0.

Morphisms φ : (E, hA, hB) → (E ′, h′
A, h′

B) are morphisms φ : E → E ′ of OA −OB bimodules such that the induced morphisms 
φσ : Eσ → E ′

σ satisfy h′
A(φσ (x), φσ (y)) = hA(x, y) and h′

B(φσ (x), φσ (y)) = hB(x, y).

Definition 4.9. Consider an arithmetic structure on a semisimple finite dimensional algebra A over a number field K as 
in Definition 4.8. A strong arithmetic hermitian bimodule (E, h) is an object of (A,OA )H(B,OB ) as in Definition 4.8 with the 
additional properties that E is also left-right OK-lattice, such that A ⊗OA E is a free A-module and E ⊗OB B is a free 
B-module.

Definition 4.9 more closely matches the notion of arithmetic vector bundles used in [6]. We prefer here to consider the 
more general class of bimodules of Definition 4.8.

Remark 4.10. The condition that A ⊗OA E and E ⊗OB B are finite projective modules in Definition 4.8 is automatically 
satisfied since A and B are semisimple algebras ([28], Theorem 2.8 and Corollary 3.7).

Given such a choice of a pair (A, OA), and another (B, OB), we define as in the previous section the noncommutative 
functor of points Xnc

(A,OA )(B, OB) (the (B, OB)-“points” of the noncommutative space defined by (A, OA)) to be the category 
of hermitian bimodules defined as above,

Xnc
(A,OA)(B,OB) := (A,OA)H(B,OB ).

We refer here to arithmetic vector bundles over Spec(OA) as left arithmetic vector bundles and we similarly define right 
arithmetic vector bundles (E, h) in the same way but with E a right OA -module.

4.4. Hermitian structures on bimodules

We discuss here some explicit construction of hermitian structures on bimodules between semisimple finite dimensional 
algebras, which will be useful later in the construction of the height function.

Lemma 4.11. As above, let (A, OA) and (B, OB) be pairs of semisimple finite dimensional algebras over a number field K and orders. 
Let (EA, hEA

A ) be a left arithmetic (A, OA)-vector bundle and let (EB , hEB
B ) be a right arithmetic (B, OB)-vector bundle, where the her-

mitian structures are standard as in Definition 4.6. Then E = EA ⊗K EB is an arithmetic hermitian bimodule with standard hermitian 
structures.

Proof. E = EA ⊗K EB is a hermitian bimodule if it satisfies all the conditions in Definition 4.8. Given that (EA, hA) and 
(EB , hB) are left and right arithmetic vector bundles, respectively, then E = EA ⊗K EB is an OA − OB bimodule. As noted in 
Remark 4.10, the condition that A ⊗OA E and E ⊗OB B are finite projective modules is automatically satisfied.
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For any archimedean place σ of K, one needs to show that the bimodule Eσ := Aσ ⊗OA E ⊗OB Bσ can be endowed with 
a pair of hermitian structures h = (hA, hB) with hA : Eσ × Eσ → Aσ and hB : Eσ × Eσ → Bσ satisfying all the conditions in 
Definition 4.8.

Consider the given hermitian structure hEA
A : EA,σ × EA,σ → Aσ . We are assuming it is standard in the sense of Defini-

tion 4.6, hence we have:

• an integer n = nA ∈N such that EA = Ane A for an idempotent e A ∈ Mn(A)

• elements βA,i ∈ A× , for i = 1, . . . , n such that hEA
A (x, y) = ∑

i xiβA,iβ
∗
A,i yi =: A〈x, y〉

• elements {ui} in EA such that x = ∑
i xiui and y = ∑

i yiui with xi = A〈x, ui〉 and yi = A〈y, ui〉 and with (e A)i j =
A〈ui, u j〉.

Consider EB as a vector space over K, and for each i = 1, . . . , n let {vi,$}$∈J be a choice of a basis for EB as K-vector space. 
Then the set {ui ⊗ vi,$} of elements of EA ⊗K EB has the property that ξ = ∑

i,$ xi,$ ui ⊗ vi,$ , for x ∈ EA ⊗K EB , with the 
xi,$ ∈ A.

One can then define hA on Eσ as follows. We write an element x ∈ Eσ as above, with the xi,$ ∈ Aσ and similarly for 
y = ∑

i,$ yi,$ ui ⊗ vi,$ . With a slight abuse of notation we will still denote by βA,i as above the diagonal matrix in Mr(A)

with r = # J with βA,i ∈ A× on the diagonal. We can then define

hA(x, y) :=
∑

i

xiβA,iβ
∗
A,i y∗

i =
∑

$

hEA
A (x$, y$),

where xiβA,iβ
∗
A,i y∗

i = ∑
$,$′∈J xi,$βA,i,$,$′β∗

A,i,$,$′ y∗
i,$′ and x$ := ∑

i xi,$ui ⊗ vi,$ , y$ := ∑
i yi,$ui ⊗ vi,$ . The resulting hA con-

structed in this way is manifestly also a standard hermitian structure.
The construction of the hermitian structure hB is similarly obtained, using hEB

B , the hermitian metrics coming from the 
arithmetic vector bundle EB . One defines hB : Eσ → Bσ by setting

hB(x, y) :=
∑

j

x jβB, jβ
∗
B, j y∗

j =
∑

$

hEB
B (x$, y$),

where βB, j ∈ B× are the elements of the standard hermitian structure hEB
B , x = ∑

$∈I v ′
j,$ ⊗ u′

j x j,$ with {v ′
j,$}$∈I a basis of 

EA as a K-vector space and x j = (x j,$)$ for fixed j and x$ = ∑
j v ′

j,$ ⊗ u′
j x j,$ for fixed $. Due to the fact that hEA

A and hEB
B

are standard hermitian metrics, hA and hB also satisfy the conditions in Definition 4.8 and Definition 4.6.. !

4.5. A height function on hermitian bimodules

We now discuss how to introduce a height function on the hermitian bimodules in (A,OA )H(B,OB ) , which we regard as 
our action functional for weighting the bimodules, thought of as “maps” of a noncommutative sigma model with target a 
noncommutative space Xnc

(A,OA ) (which we can think of as another manifestation of the noncommutative arithmetic curve 
Spec(OA)). We present here the general form the height function should take and we complete our definition of height 
after a further discussion of norms and volumes in §4.7 and 4.8.

First observe that, in the case of a “strong” hermitian bimodule, in the sense of Definition 4.9, one can proceed as in 
[6] to define a height function, as we recalled above, but taking into account the presence of two hermitian structures 
h = (hA, hB).

For σ an archimedean place of K, let Kσ :=R if σ is a real embedding and Kσ :=C if it is a complex embedding.
Let volhA ,σ denote a volume in An

σ determined by the norm associated to the bilinear form TrAσ |Kσ ◦ hA (see §4.7 below 
for a discussion of volumes associated to norms.) Let V be a free A-submodule of An of rank rA . We write the normalized 
and non-normalized heights, respectively, as

H̄OA ,hA ,σ (V) := volhA ,σ (V ∩ On
A)

volhA ,σ (OA)rA,σ
and HOA ,hA ,σ (V) := volhA ,σ (V ∩ On

A). (4.3)

The normalized height agrees with the height HOA of [6] when hA is the standard hermitian metric hn and σ is a real 
embedding. Note, however, that we are working here with the algebra Aσ = A ⊗K Kσ , with Kσ =R for a real embedding 
σ , rather than with the algebra AR = A ⊗Q R of [6], see Remark 4.3.

Definition 4.12. Let (E, hA, hB) be a hermitian bimodule in (A,OA )H(B,OB ) , as in Definition 4.8. We define the normalized 
and non-normalized heights of (E, hA , hB) as

H̄(E,hA,hB) :=
∏

σ

H̄OB ,hB ,σ (EB)

H̄OA ,hA ,σ (EA)
and H(E,hA,hB) :=

∏

σ

HOB ,hB ,σ (EB)

HOA ,hA ,σ (EA)
, (4.4)

where σ ranges over the archimedean places of K, with EA = A ⊗OA E and EB = E ⊗OB B .

11
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In order to have a meaningful minimization problem for (4.4) one needs to minimize over classes of hermitian bimodules 
with a fixed positive lower bound on H̄OA ,hA ,σ (EA) while minimizing over H̄OB ,hB ,σ . For modules of fixed rank, minimizing 
with respect to the normalized or non-normalized height is the same.

In our setting we also want to consider a notion of relative height in the case of finite projective modules instead of free 
modules, so that Definition 4.12 above can be applied to the more general class of hermitian bimodules of Definition 4.8
and not only to the strong ones.

4.6. The rank element

We will discuss more in detail how to obtain a suitable volume computation in §4.7 and §4.8. We discuss here the rank 
rA in (4.3). Given a finite projective left module P over a unital noncommutative ring R , there is a notion of trace of an 
endomorphism, and of rank element, given by the trace of the identity, [18]. Consider the identification

ϑ : P∨ ⊗R P 6→ HomR(P,P),

with P∨ = HomR(P, R) and ϑ(η ⊗ x)(y) = η(y)x. Also consider the morphism

π : P∨ ⊗R P → H H0(R) = R/[R, R],
with [R, R] the additive commutators subgroup of R and π(η ⊗ x) = η(x) mod [R, R].

Definition 4.13. Given a finite projective left module P over a unital noncommutative ring R , the trace of an endomorphism 
f ∈ HomR(P, P) is the element in H H0(R) obtained by setting TrR( f ) := π(ϑ−1( f )).

In the case where R = Mn(D) is a matrix algebra over a division algebra over a field K, an element X ∈ Mn(D) is in the 
commutator [Mn(D), Mn(D)] iff its trace is in [D, D]. Moreover (Corollary 13.6 of [28]) D is generated as a division algebra 
by Z(D) and all the commutators in [D, D]. If D is central, Z(D) =K, then the trace elements can be seen as scalars in K. 
More generally, the trace elements determine scalars in the field extension Z(D) of K. In particular, for f = id the identity, 
TrR(id) =: rR(P) is the rank element of P . If P = Re with e an idempotent in R , then rR (P) is the class of e in H H0(R) and 
it is independent of the choice of idempotent: if Ae 6 Ae′ 6 P then e ∼ e′ in H H0(R), see [18] for this and more general 
cases. This rank element is known as the Hattori–Stallings rank and the more general traces as in Definition 4.13 are usually 
referred to as the Hattori–Stallings trace.

Thus, for our purposes, we summarize the above in the following statement.

Lemma 4.14. Let A be a semisimple finite dimensional algebra over a number field K and E a finite projective (left) A-module (see 
Remark 4.10). The rank element rA = rA(E) is the class in H H0(A) = A/[A, A] given by the trace of the identity, TrR(id) =: rA(E). A 
choice of an archimedean embedding σ : K ↪→ C (or R) and a compatible embedding σ̃ of the extension L of K generated by the 
centers Z(Ai) of the simple components Ai of A determine an associated rank rA,σ = σ̃ (rA) ∈C (or R).

Proof. The center Z(A) of a semisimple algebra is a finite direct product of field extensions of K, Z(A) = ⊕iLi , with 
A = ⊕i Mni (Di) and Li = Z(Di) = H H0(Mni (Di)). The rank element rA ∈ H H0(A) is then given by a collection of elements 
rA,i ∈ Li . Given an embedding σ : K ↪→ C (or into R for a real place), let σ̃ : L ↪→ C (or R) be an extension of σ to an 
embedding of the smallest extension L of K that contains all the Li . Then setting σ (rA) := ∑

i σ̃ (rA,i) assigns a complex 
(or real) number to the rank element rA ∈ H H0(A). !

4.7. Norms and volumes

There are different possible ways of associating to a finite dimensional normed space of dimension N a volume form (and 
k-volume forms for k ≤ N): some of these, such as Busemann volume, Holmes–Thompson volume, Gromov mass, etc. are 
summarized in [1]. We discuss briefly the case of the Gromov mass, to illustrate what conditions need to be satisfied for a 
good notion of volume.

Let (V , ‖ · ‖) be a normed space of dimension N . The Gromov N-mass is defined as a function µN : -N V →R+

µN(a) := inf{
N∏

i=1

‖vi‖ | v1 ∧ · · · ∧ v N = a}.

In order to define in a similar way k-volumes for k < N = dim V , let -k
s V ⊂ -k V be the subset consisting of the 

“simple” k-vectors, that is, those of the form v1 ∧ · · · ∧ vk , with vi ∈ V . In order to define a k-volume, it suffices to assign 
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a volume to elements of -k
s V . Thus, one defines a k-volume as a homogeneous continuous function µk : -k

s V → R+ with 
µs(λa) = |λ| µs(a) for λ ∈R× . The analog of the Gromov mass µN is given by

µk(a) := inf{
k∏

i=1

‖vi‖ | v1 ∧ · · · ∧ vk = a}.

In this notion of k-volumes, the constrained optimization of the norms is designed to avoid redundancies that would 
make the norm unnecessarily large, such as adding to a vector in a basis a large multiple of another basis vector, and also 
to avoid changes to the norm due to an arbitrary scaling of a basis. The problem simplifies if the normed vector space V is 
endowed with a more rigid structure, given by the choice of a lattice VZ ⊂ V . In this case, if we want to assign k-volumes 
to elements of -k

s VZ , we can choose a different form of optimization of the norms by a priori selecting a “shortest basis” 
{v1, . . . , v N} for the lattice VZ . One can then define

µk(vi1 ∧ · · · ∧ vik ) :=
k∏

$=1

‖vi$‖ (4.5)

for the basis elements {vi1 ∧ · · ·∧ vik } of the Z-module -k VZ . The shortest basis for a lattice is the basis with the smallest 
possible orthogonality defect

δ({vi}) =
∏N

i=1 ‖vi‖
d(VZ)

, (4.6)

where d(VZ) is the lattice constant, which is equal to det(B), the determinant of the matrix B = (v1, . . . , v N) formed by 
the vectors vi , in the case where VZ is of rank N . For rank k ≤ N , one can still define the defect in the same way with 
d(VZ) = √

det(B∗B), which measures the Euclidean k-volume of the fundamental parallelepiped determined by the basis 
{vi}. The defect is therefore the ratio between the volume defined as in µk(vi1 ∧ · · · ∧ vik ) and the Euclidean volume, and 
µk is computed on the choice of basis where this discrepancy is as small as possible. A lattice reduction algorithm that 
approximates the shortest basis for a lattice is developed in [29].

Note that the quantity d(VZ) = √
det(B∗B) has itself an interpretation in terms of heights, since it is the archimedean 

part of the height of the matrix B seen as a point in a Grassmannian, see Remark 2.8.7 of [5].

Definition 4.15. Let - ⊂ V be a lattice of rank k inside a K-vector space of dimension N ≥ k, namely a finitely generated 
torsion free OK-module such that K- spans a k-dimensional subspace of V . Given a norm ‖ · ‖ on V , the k-volume of -
is

volk(-) := µk(v1 ∧ · · · ∧ vk) =
k∏

$=1

‖v$‖, (4.7)

where {v1, . . . , vk} is a shortest basis for -.

Lemma 4.16. Let (A, OA) be a pair of a semisimple finite dimensional algebra A over a number field K and an order OA . Let σ be an 
archimedean place of K with Kσ equal to R or C for real and complex places, respectively and let hA : Aσ × Aσ → Aσ be a hermitian 
structure. Let E be a (left) OA -module. The notion of volume of lattices of Definition 4.15 and the rank element rA(E) of Lemma 4.14
determine the quantity volhA ,σ (OA)rA,σ of (4.3).

Proof. As shown in [6] all hermitian structures on Aσ = A ⊗K Kσ are standard in the sense of Definition 4.6, hence there 
is an element β ∈ A× such that hA(x, y) = x∗β∗β y, and hA(x, x) is a positive element for all x ∈ Aσ . Thus, we have ‖x‖2 :=
Tr(hA(x, x)) ≥ 0 for all x ∈ Aσ . By Definition 4.2, an order OA in A is a OK-lattice with KOA = A as a K-vector space, 
hence the norm determined by hA also determines a volume, as in (4.7), of the lattice OA with k = dimK A, the dimension 
as K-vector space. With rA,σ = σ̃ (rA(E)) as in Lemma 4.14, we then obtain the expression in (4.3) that generalizes to our 
setting the height function (4.2) used in [6]. !

We will see in the following how to obtain also a good definition of the volumes volhA ,σ (E ∩ On
A), suitable for extending 

the definition of the height function as in (4.3) to our notion of arithmetic vector bundles.

4.8. Volumes, traces and heights

We look here more explicitly at the height function defined in (4.4) by writing more explicitly the traces and volume 
forms on the bimodules. We will assume here that hermitian structures as standard as in Definition 4.6.

13
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Proposition 4.17. Consider algebras of the form

A = ⊕i Mni (Di) and B = ⊕ j Mm j (D ′
j)

where Di, D ′
j are division algebras over the number field K. We also assume that an order OA (respectively, OB ) has been chosen. 

Let E be an OA -OB bimodule. For every choice of a (standard) hermitian structure (hA, hB) and archimedean place σ of K, there are 
associated volumes volhA ,σ ( j A(E) ∩ OnA

A ) and volhB ,σ ( jB(E) ∩ OnB
B ), where j A : E ↪→ AnA and jB : E ↪→ BnB realize the projective 

A-module (respectively, B-module) as a summand of a free module.

Proof. For semisimple algebras all left (respectively, right) modules are semisimple ([28], Theorem 2.5), hence we can 
consider A-B bimodules that are of the form

E = ⊕i, j Dni Ni
i ⊗ D ′

j
m j M j , (4.8)

with the obvious left and right action of the respective matrix algebras.
Standard hermitian structures hA : E × E → A and hB : E × E → B are obtained as follows.
A choice of elements βA,i ∈ Mni (Di)

× and βB, j ∈ Mm j (D ′
j)

× determines hermitian forms hA,i : Dni
i × Dni

i → Di and hB, j :
D ′

j
m j × D ′

j
m j → D ′

j by

hA,i(x, y) := xβA,iβ
∗
A,i y∗ and hB, j(u, v) := u∗β∗

B, jβB, j v

where x = (x1, . . . , xni ) in Dni
i (as a column vector) with x∗ the transpose (row vector) (x∗

1, . . . , x∗
ni

), and similarly for hB, j . 
These extend similarly to hermitian forms hA,i : Dni Ni

i × Dni Ni
i → Di and hB, j : D ′

j
m j M j × D ′

j
m j M j → D ′

j .
Here we are using the notation ∗ both for an involution on Mn(D) and for an involution on D , assuming compatible 

involutions on both. For example, if Mn(D) is a central simple algebra, then it admits an involution that is the identity on 
the field K (involution of the first kind) iff the division algebra D admits such an involution, with the involution on Mn(D)
given by the involution on D applied to all entries, combined with matrix transposition.

These hermitian structures on the Dni Ni
i and D ′

j
m j M j determine hermitian structures hA : E × E → A and hB : E × E → B

as shown in Lemma 4.11. In turn, for any archimedean place σ of K, these hermitian forms determine hermitian structures 
hA : Eσ × Eσ → Aσ , and similarly for hB .

Let {ei,k} denote a basis of Dni Ni
i as a left Mni (Di)-module and similarly let {e′

j,k′ } denote a basis of D ′
j
m j M j as a right 

Mm j (D ′
j)-module. Let {v ′

j,$′} be a basis of D ′
j
m j M j as a K-vector space and {vi,$} be a basis of Dni Ni

i as a K-vector space, 
so that, as in Lemma 4.11, we can consider ui, j;k,$′ = ei,k ⊗ v ′

j,$′ and u′
i, j;$,k′ = vi,$ ⊗ e′

j,k′ as bases, respectively, of E as a 
left A-module and as a right B-module, so that we can write elements ξ ∈ E in the form ξ = ∑

i, j,k,$′ ai, j;k,$′ ui, j;k,$′ with 
ai, j;k,$′ ∈ Mni (Di) or in the form ξ = ∑

i, j,$,k′ u′
i, j;$,k′bi, j;$,k′ with bi, j;$,k′ ∈ Mm j (D ′

j).
Since E is a finite projective module, both as a left A-module and as a right B-module (see Remark 4.10), we can 

use a choice of bases to determine embeddings j A : E ↪→ AnA and jB : E ↪→ BnB , which realizes E as E 6 OnA
A e A with 

an idemponent e A ∈ MnA (A) with components (e A)i j determined by the basis elements, and similarly for the B-module 
structure.

If the bimodule E is arithmetic, namely it is obtained as an A-B bimodule by change of coefficients E = A ⊗OA EO ⊗OB B
from an OA -OB bimodule EO , then it is possible to choose the bases in such a way that they are in EO , with the {ei,k} and 
{e′

j,k′ } giving OA and OB bases, respectively, and the {vi,$} and {v ′
j,$′} bases of OK-lattices, so that the resulting {ui, j;k,$′ }

and {ui, j;k,$′ } give bases of EO as a left and right OA and OB module, respectively. Let B, B′ denote the set of all such 
bases and let umin, u′

min be shortest basis

δ(umin) = inf
u∈B

δ(u) and δ(u′
min) = inf

u′∈B′
δ(u′),

with δ as in (4.6), where the norm ‖ · ‖ = Tr(hA(·, ·))1/2 (or hB , respectively) and the lattice constant d is computed as the 
Euclidean volume as Z-lattices.

We can then consider j A(EO) ∩ OnA
A and jB(EO) ∩ OnB

B . These can be viewed as OA -module (respectively, OB -module) 
and as OK-modules. Let kA , kB denote, respectively, their ranks as OK-modules.

We can then assign a volume to j A(EO) ∩ OnA
A and jB(EO) ∩ OnB

B as in (4.7), computed with respect to a shortest basis, 
in the sense discussed above. !

Thus, we obtain a well defined height functions

H̄OA ,hA ,σ (E) = volhA ,σ ( j A(E) ∩ OnA
A )

volhA ,σ (OA)σ (rA)
and H̄OB ,hB ,σ (E) = volhB ,σ ( jB(E) ∩ OnB

B )

volhB ,σ (OB)σ (rB )
(4.9)

that can be used in the height function of Definition 4.12.
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4.9. Multiplicative property

The issue here is that, while the height function (4.9) assigns to bimodules an “energy” as we want, it only sees bimod-
ules as forming a set, while we also want to keep track of the structure of our functor of points as a category. This means 
that we want a height function that is in a natural way compatible with the composition operation given by the tensor 
product of bimodules, while still being based on an appropriate notion of volumes. To obtain a simple setting that satisfies 
this property, we will restrict the class of bimodules and the choice of basis used to compute the height.

Arithmetic hermitian bimodules behave in the following way under tensor product.

Lemma 4.18. The tensor product (E, hA, hC ) in (A,OA)H(C,OC ) of arithmetic hermitian bimodules (E ′, h′
A, h′

B) in (A,OA)H(B,OB ) and 
(E ′′, h′′

B , h′′
C ) in (B,OB )H(C,OC ) is given by E = E ′ ⊗OB E ′′ with the hermitian structures

hA(x′ ⊗ x′′, y′ ⊗ y′′) := h′
A(x′ h′′

B(x′′, y′′), y′)

hC (x′ ⊗ x′′, y′ ⊗ y′′) := h′′
C (x′′,h′

B(x′, y′) y′′).

Proof. To prove this Lemma, one needs to show that (E, hA , hC ) satisfies all the properties of Definition 4.8. By construction, 
E = E ′ ⊗OB E ′′ is an OA −OC bimodule since E ′ is an OA -left module and E ′′ is an OC -right module, and those two actions 
are compatible. In addition, Remark 4.10 implies that A ⊗OA E and E ⊗OC C are finite projective as A-module and C-module, 
respectively.

For any archimedean place σ of K, one needs to show that the bimodule Eσ := Aσ ⊗OA E ⊗OC Cσ endowed with the 
pair of hermitian structures h = (hA, hB), as defined above, with hA : Eσ × Eσ → Aσ and hC : Eσ × Eσ → Cσ satisfying all 
the conditions in Definition 4.8:

• For all a ∈ Aσ and (x′ ⊗ x′′, y′ ⊗ y′′) ∈ Eσ , the identities

hA(a(x′ ⊗ x′′), y′ ⊗ y′′) = h′
A(ax′ h′′

B(x′′, y′′), y′)

= a h′
A(x′ h′′

B(x′′, y′′), y′)

= a hA(x′ ⊗ x′′, y′ ⊗ y′′)

and

hA(x′ ⊗ x′′,a(y′ ⊗ y′′)) = h′
A(x′ h′′

B(x′′, y′′),ay′)

= h′
A(x′ h′′

B(x′′, y′′), y′)a∗

= hA(x′ ⊗ x′′, y′ ⊗ y′′)a∗

where the second last equalities hold since h′
A satisfies conditions in Definition 4.8.

• For all x′ ⊗ x′′ ∈ Eσ , the element hA(x′ ⊗ x′′, x′ ⊗ x′′) is a positive element in Aσ since there is a βB ∈ B×
σ such that

hA(x′ ⊗ x′′, x′ ⊗ x′′) = h′
A(x′ h′′

B(x′′, x′′), x′)

= h′
A(x′ x′′βBβ∗

B x′′ ∗, x′)

= h′
A(x′ x′′βB , x′x′′βB)

and h′
A(x′ x′′βB , x′x′′βB) is positive element in Aσ given that h′

A satisfies condition in Definition 4.8.

And similarly reasoning holds for hC , finishing the proof. !

Let A be a semisimple finite dimensional algebra over a number field K. Then by Wedderburn theorem A = ⊕i Mni (Di)
with division algebras Di over K. The center Z(A) is then a direct sum of number fields Li that contain K.

Definition 4.19. Let AK(Z) denote the set of all semisimple finite dimensional algebras A over K such that Z(A) 6 Z with 
Z a fixed Z = ⊕iLi . Let H(K, Z) denote the set of A-B bimodules E satisfying the following properties

• The algebras A, B are in AK(Z);
• E is an arithmetic (A, OA)-(B, OB) hermitian bimodule, for some order OA in A and OB in B , with hermitian structures 

(hA, hB);
• There are bases {xi} and {y j} of E as a left A-module and a right B-module respectively, with the property that 

hA(xi, xi) ∈ Z and hB(y j, y j) ∈ Z ;
• As a Z -Z bimodule E is a symmetric bimodule, namely λξ = ξλ for all ξ ∈ E and all λ ∈ Z .
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Let BA(E) and BB(E) be, respectively, the set of all bases {xi} and bases {y j} that satisfy the condition above that hA(xi, xi) ∈
Z and hB(y j, y j) ∈ Z and such that xi, y j ∈ EO , for all i, j.

Note that the sum 
∑

i hA(xi, xi) is the trace of the identity endomorphism and is in Z (identified with H H0(A)) for an 
arbitrary choice of basis, and similarly for 

∑
j hB(y j, y j). The condition that hA(xi, xi) ∈ Z and hB(y j, y j) ∈ Z is verified, for 

instance when E = AnA p, for a projector p ∈ MnA (Z(A)) with diagonal and similarly E = p′BnB with p′ ∈ MnB (Z(B)).
We can then considered a 2-category H(K, Z) as follows. Note that, in Definition 4.19 we used the notation H(K, Z)

for what is the class of arrows of the category that we are now going to introduce. We will maintain, in Lemma 4.20 below, 
the same notation H(K, Z) for the category itself, since it is common use to identify a category with its class of arrows.

Lemma 4.20. Let K be a number field and let Z = ⊕iLi be a given sum of number field extensions Li of K. The following data form 
a 2-category H(K, Z):

• Objects: pairs (A, OA) of a semisimple finite dimensional algebra A in AK(Z) with a OK-order OA in A;
• 1-morphisms Mor((A, OA), (B, OB)): arithmetic (A, OA)-(B, OB) hermitian bimodules (E, hA, hB) with E in H(K, Z);
• compositions of 1-morphisms (E, h′

A, h′
B) and (F , h′′

B , h′′
C ) is

(E ′ ⊗B E ′′,hA,hC ),

with hA , hC as in Lemma 4.18;
• 2-morphisms: morphisms φ : (E, hA, hB) → (Ẽ, ̃hA, ̃hB) of hermitian bimodules, namely morphisms of bimodules that preserve 

the hermitian forms, h̃A(φ(x), φ(y)) = hA(x, y) and h̃B(φ(x), φ(y)) = hB(x, y), with the property that of {xi} and {y j} are bases 
of E hA(xi, xi) ∈ Z and hB(y j, y j) ∈ Z , then {φ(xi)} and {φ(y j)} can be completed to bases of F with the same property;

• horizontal composition: tensor product of morphisms of hermitian bimodules
• vertical composition: composition of morphisms of bimodules.

Proof. If {xi} and {y j} are bases of E as left A-module and a right B-module, satisfying h′
A(xi, xi) ∈ Z and h′

B(y j, y j) ∈ Z , 
and {u$} and {vk} are bases of F as a left B-module and a right C-module, also satisfying h′′

B (u$, u$) ∈ Z and h′′
C (vk, vk) ∈ Z , 

then {xi ⊗ u$} and {y j ⊗ vk} are bases for E ⊗B F as a left A-module and a right C-module satisfying

hA(xi ⊗ u$, xi ⊗ u$) = h′
A(xih

′′
B(ui, ui), xi) = h′′

B(ui, ui)h
′
A(xi, xi) ∈ Z , (4.10)

where the second equality uses the symmetric property of E as a Z -Z bimodule, and similarly

hC (y j ⊗ vk, y j ⊗ vk) = h′′
C (vk,h′

B(y j, y j)vk) = h′′
C (vk, vk)h

′
B(y j, y j) ∈ Z , (4.11)

similarly using the symmetry of F as Z -Z bimodule. The product E ⊗B F is also symmetric as Z -Z bimodule. Thus, 
composition of 1-morphisms is well defined in H(K, Z). The properties of the vertical and horizontal compositions of 
2-morphisms are similarly verified. !

Remark 4.21. Our (pointed) noncommutative functor of points Xnc
(A,OA),Z can then be thought of as assigning to (A, OA)

with A ∈ AK(Z) the collection of all the arrows (1-morphisms) in H(K, Z) with source (A, OA).

Here “pointed” simply refers to the fixed choice of the datum Z = ⊕iLi as in Definition 4.19, on which the construction 
of H(K, Z) depends.

We now define a height function as follows.

Definition 4.22. Suppose given an (A, OA)–(B, OB) arithmetic hermitian bimodule (E, hA, hB) in H(K, Z), with A, B ∈
AK(Z), and an archimedean place σ :K →Kσ . The heights of (E, hA, hB) are given by

HhA ,σ (E) := inf{xi}∈BA(E)
∏

i σ̃ (hA(xi, xi))

HhB ,σ (E) := inf{y j}∈BB (E)
∏

j σ̃ (hB(y j, y j)),
(4.12)

with σ̃ an embedding of Z in C that restricts to the embedding σ :K ↪→C. Correspondingly, we define a height function 
as in Definition 4.12 with

H(E,hA,hB) :=
∏

σ

HhB ,σ (E)

HhA ,σ (E)
. (4.13)

Lemma 4.23. The height function defined as in (4.13) satisfies

H(E ⊗B F,hA,hB) = H(E,h′
A,h′

B) · H(F,h′′
B ,h′′

C ), (4.14)
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for (E, h′
A, h′

B) an (A, OA)-(B, OB) hermitian bimodule and (F , h′′
B , h′′

C ) an (B, OB)-(C, OC ) hermitian bimodule, both in H(K, Z), 
and with hA, hB as in Lemma 4.18.

Proof. For any bases {xi} and {y j} of E in BA(E) and BB(E), respectively, and bases {u$} and {vk} of F in BB(F) and 
BC (F), by (4.10) and (4.11), we obtain a basis {xi ⊗ u$} in BA(E ⊗B F) and a basis {y j ⊗ vk} in BC (E ⊗B F). Moreover, also 
by (4.10) and (4.11)

∏

i,$

σ̃ (hA(xi ⊗ u$, xi ⊗ u$)) =
∏

i

σ̃ (h′
A(xi, xi)) ·

∏

$

σ̃ (h′′
B(u$, u$))

∏

j,k

σ̃ (hC (y j ⊗ vk, y j ⊗ vk)) =
∏

j

σ̃ (h′
B(y j, y j))

∏

k

σ̃ (h′′
C (vk, vk)),

hence minimizing over the choice of basis,

HhA ,σ (E ⊗B F) = Hh′
A ,σ (E)Hh′′

B ,σ (F)

HhC ,σ (E ⊗B F) = Hh′
B ,σ (E)Hh′′

C ,σ (F),

so that

H(E ⊗B F,hA,hC ) = HhC ,σ (E ⊗B F)

HhA ,σ (E ⊗B F)
=

Hh′
B ,σ (E)

Hh′
A ,σ (E)

·
Hh′′

C ,σ (F)

Hh′′
B ,σ (F)

. !

4.10. Dynamics generated by the height function

We explain more clearly in this subsection in what sense the height function introduced in the previous subsection 
makes our functor of points (B, OB) -→ Xnc

(A,OA)(B, OB) dynamical. To this purpose we take the point of view of quantum 
statistical mechanics and we define an algebra of observables over Xnc

(A,OA )(B, OB) with a time evolution generated by the 
height function. The main idea is very similar to the algebra and dynamics constructed in [10], associated to the space of 
Q-lattices with the commensurability relation, but the construction we present here is based on the convolution algebras 
of semigroupoids (small categories) and of 2-categories introduced in [42].

As we discussed in the introduction to this paper, we consider the height as a kind of “energy functional” on the 
“points” (here represented by bimodules) of a noncommutative space. We mentioned that this action functional makes 
our functor of points “dynamical”. To make this idea more precise, we associate to the 2-category H(K, Z) of bimodules 
whose 1-morphisms describe our functor of points, an algebra of observables and a time evolution determined by the action 
functional given by the height function (4.13).

As shown in [42] there are two convolution algebras A(1)
H(K,Z)

and A(2)
H(K,Z)

associated to the 2-category H(K, Z). The 
first is based on 1-morphisms and their composition, and the second is based on 2-morphisms and their horizontal and 
vertical compositions.

The algebra A(1)
H(K,Z)

is given by finitely supported functions on the set of 1-morphisms of H(K, Z), with the convolu-
tion product

( f1 4 f2)(5) =
∑

5=5′′45′
f1(5

′) f2(5
′′), (4.15)

for 5 = (E, hA, hB) in (A,OA )H(B,OB ) equal to the tensor product of 5′ = (E ′, hA, hB) in (A,OA)H(B,OB ) and 5′′ = (E ′′, hb, hC )
in (B,OB )H(C,OC ) , as in Lemma 4.18, with the composition 5′′ 45′ of 1-morphisms given by the tensor product of hermitian 
bimodules. This algebra is associative but noncommutative.

The algebra A(2)
H(K,Z)

is similarly defined but based on the two composition laws for 2-morphisms. It is given by finitely 
supported functions on the set of 2-morphisms (morphisms of hermitian bimodules) with two product operations

( f1 ◦ f2)(φ) =
∑

φ=φ′′◦φ′
f1(φ

′) f2(φ
′′)

( f1 • f2)(φ) =
∑

φ=φ′′•φ′
f1(φ

′) f2(φ
′′)

where ◦ is the vertical composition of 2-morphisms

φ′′ ◦ φ′ : (E,hA,hB)
φ′
→ (E ′,h′

A,h′
B)

φ′′
→ (E ′′,h′′

A,h′′
B)

while φ′′ • φ′ is the horizontal composition determined by the tensor product of hermitian bimodules.
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Lemma 4.24. The height function (4.13) for hermitian bimodules in H(K, Z) determines a time evolution on the convolution algebra 
A(1)

H(K,Z)
of 1-morphisms of H(K, Z).

Proof. We construct a 1-parameter family of automorphisms of A(1)
H(K,Z)

, that is, a group homomorphism α : R →
Aut(A(1)

H(K,Z)
) by taking

αt( f )(E,hA,hB) = H(E,hA,hB)it f (E,hA,hB)

Clearly, αt+s = αt ◦ αs . We need to check that the αt are algebra homomorphisms

αt( f1 4 f2)(E,hA,hB) = (αt( f1) 4 αt( f2))(E,hA,hB).

The left-hand-side is given by H(E, hA, hB)it ∑
f1(E ′, h′

A, h′
C ) f2(E ′′, h′′

C , h′′
B), with the sum over all the decompositions of 

(E, hA, hB) as tensor product of (E ′, h′
A, h′

C ) and (E ′′, h′′
C , h′′

B). The right hand side is given by
∑

H(E ′,h′
A,h′

B)it f1(E ′,h′
A,h′

C ) H(E ′′,h′′
A,h′′

B)it f2(E ′′,h′′
C ,h′′

B).

Lemma 4.23 shows that the height function behaves multiplicatively on a tensor product of bimodules, H(E, hA, hC ) =
H(E ′, h′

A, h′
B)H(E ′′, h′′

B , h′′
C ), so that these two expressions agree. !

Thus, the (non-normalized) height (4.13) of hermitian bimodules in H(K, Z) makes the spaces Xnc
(A,OA) (of which 

A(1)
H(K,Z)

represents the algebra of functions) dynamical through the time evolution αt . Notice that this dynamics, gen-
erated by a ratio of volumes on the two sides of a hermitian bimodule, is very similar to the time evolution generated by 
the ratio of volumes of two commensurable lattices in the case of the quantum statistical mechanical system of [10]. We 
can similarly define a time evolution on the algebra of 2-morphisms A(2)

H(K,Z)
of H(K, Z), using a notion of relative height.

Definition 4.25. The relative height H(φ) of a 2-morphism φ : (E, hA, hB) → (E ′, h′
A, h′

B) in H(K, Z) is defined as

H(φ) := H(Ẽ, h̃A, h̃B)

H(E,hA,hB)
. (4.16)

Lemma 4.26. We can write (4.16) equivalently in the form

H(φ) =
inf{yr}∈BB (Ẽ)!BB (E)

∏
σ

∏
r σ̃ (h̃B(yr, yr))

inf{xk}∈BA(Ẽ)!BA(E)

∏
σ

∏
k σ̃ (h̃A(xk, xk))

.

Proof. Let us recall Definition 4.22, which tells us that,

H(E,hA,hB) :=
∏

σ

HhB ,σ (E)

HhA ,σ (E)

where

HhA ,σ (E) := inf{xi}∈BA(E)
∏

i σ̃ (hA(xi, xi))

HhB ,σ (E) := inf{y j}∈BB (E)
∏

j σ̃ (hB(y j, y j)).

Then, by definition, we get

H(φ) : = H(Ẽ, h̃A, h̃B)

H(E,hA,hB)

=

∏
σ

Hh̃B ,σ (E)

Hh̃ A ,σ (E)

∏
σ

HhB ,σ (E)

Hh A ,σ (E)

=
(

inf{ ỹr }∈BB (Ẽ)

∏
σ

∏
r σ̃ (h̃B( ỹr, ỹr))

)(
inf{xi}∈BA(E)

∏
σ

∏
i σ̃ (hA(xi, xi)))

)

(
inf{x̃k}∈BA(Ẽ)

∏
σ

∏
k σ̃ (h̃A(x̃k, x̃k))

)(
inf{y j}∈BB (E)

∏
σ

∏
j σ̃ (hB(y j, y j))

)

=
(

inf{ ỹr}∈BB (Ẽ)

∏
σ

∏
r σ̃ (h̃B( ỹr, ỹr))

)(
inf{xi}∈BA(E)

∏
σ

∏
i σ̃ (h̃A(φ(xi),φ(xi)))

)

(
inf{x̃k}∈BA(Ẽ)

∏
σ

∏
k σ̃ (h̃A(x̃k, x̃k))

)(
inf{y j}∈BB (E)

∏
σ

∏
j σ̃ (h̃B(φ(y j),φ(y j)))

) !
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Lemma 4.27. The relative non-normalized height H(φ) of (4.16) determines a time evolution on the algebra A(2)
H(K,Z)

of 2-morphisms 
that is compatible with both vertical and horizontal composition.

Proof. We define the time evolution as αt( f )(φ) = H(φ)it f (φ). To verify compatibility with the two product structures of 
A(2)

H(K,Z)
, consider a vertical composition φ′′ ◦ φ′ with φ′ : (E, hA, hB) → (E ′, h′

A, h′
B) and φ′′ : (E ′, h′

A, h′
B) → (E ′′, h′′

A, h′′
B). By 

(4.16) we have H(φ′′ ◦ φ′) = H(φ′)H(φ′′), hence we have

αt( f1 ◦ f2)(φ) = H(φ)it
∑

φ=φ′′◦φ′
f1(φ

′) f2(φ
′′) =

∑

φ=φ′′◦φ′
αt( f1)(φ

′)αt( f2)(φ
′′).

In the case of a horizontal composition of φ′ : (E, hA, hB) → (Ẽ, ̃hA, ̃hB) with (E, hA, hB) the tensor product of (E ′, h′
A, h′

B)

and (E ′′, h′′
A, h′′

B) and (Ẽ, ̃hA, ̃hB) the tensor product of (Ẽ ′, ̃h′
A, ̃h′

B) and (Ẽ ′′, ̃h′′
A, ̃h′′

B), as in Lemma 4.24, with φ = φ′′ • φ′ , by 
Lemma 4.26 we have

αt( f1 • f2)(φ) =
(

H(E,hA,hB)

H(Ẽ, h̃A, h̃B)

)it ∑

φ=φ′′•φ′
f1(φ

′) f2(φ
′′)

=
∑

φ=φ′′•φ′

(
H(E ′,h′

A,h′
B)H(E ′′,h′′

A,h′′
B)

H(Ẽ ′, h̃′
A, h̃′

B)H(Ẽ ′′, h̃′′
A,h′′

B)

)it

f1(φ
′) f2(φ

′′) =
∑

φ=φ′′•φ′
αt( f1)(φ

′)αt( f2)(φ
′′). !

4.11. Partition function and height zeta function

We can consider subsystems of the algebras with time evolution discussed above, where the Hamiltonian H generating 
the time evolution has an associated partition function Z(β) = Tr(e−βH) that defines a height zeta function. To avoid obvious 
sources of infinite multiplicities, we can restrict to the subalgebra A(1)

HL
A (K,Z)

of A(1)
H(K,Z)

of functions supported on the 

subset HL
A(K, Z) of H(K, Z) consisting of A-A bimodules (E, hL

A, hR
A) with H L(E, hL

A, hR
A) = ∏

σ HhL
A ,σ (E) = 1, for which 

H(E, hL
A, hR) = H R(E, hL

A, hR) = ∏
σ HhR

A ,σ (E). This is indeed a subalgebra since for bimodules in H(K, Z) we have H L
A(E ⊗A

F , hL
A, hR

A) = H L
A(E, hL,′

A , hR,′
A )H L

A(F , hL,′′
A , hR,′′

A ) and both factors are equal to one if both E and F are in HL
A(K, Z), so the 

tensor product E ⊗B F is also in HL
A(K, Z). Thus, we consider the subsystem (A(1)

HL
A (K,Z)

, αt) with the same time evolution 
discussed above. The Hamiltonian generating this time evolution is given by

H f (E,hL
A,hR

A) = log H R
A(E,hL

A,hR
A) f (E,hL

A,hR
A),

with αt( f ) = e−itH f eitH , for functions f ∈ A(1)

HL
A(K,Z)

seen as acting on the Hilbert space $2(HL
A(K, Z)). The partition 

function is then of the form

Z(β) = Tr(e−βH) =
∑

(E,hL
A ,hR

A)∈HL
A(K,Z)

H B(E,hL
A,hR

A)−β ,

which gives the height zeta function for our definition of height. The question of whether this height zeta function is con-
vergent for sufficiently large β > 0 corresponds then to the question of whether there are finitely many “points” (E, hA, hB)
of bounded height H B (E, hL

A, hR
A) ≤ κ (with H A(E, hL

A, hR
A) = 1), which corresponds to the property that the spectrum of the 

Hamiltonian H has finite multiplicities, and the question of the asymptotic behavior of this height bound. We will return 
to discuss a simpler version of this height zeta function after introducing a version of the height function based on the 
Hattori–Stallings rank in §4.12.

4.12. Limitations of this notion of height

The height function as described in the previous subsections provides us with a viable analog of the corresponding 
notion used in [6], which in turn extends the commutative case where the height is computed in the form of a volume (or 
normalized volume).

As we discussed in the previous subsections, using this notion of height, however forces us to make some strong as-
sumptions in order to ensure the multiplicative behavior with respect to the composition (tensor product) of bimodules. 
Moreover, it is clear that the ad hoc solution that we adopted to circumvent this problem is specific to the finite dimen-
sional case (hence to noncommutative arithmetic curves) and does not generalize to higher dimensional cases.

Thus, it seems preferable to rethink the notion of height in this noncommutative context in such a way that the multi-
plicative property under composition of bimodules would be naturally satisfied, in a way that does not depend on special 
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conditions on the bimodules, and that extends to the case of algebras that are not finite dimensional, with Hilbert bimodules 
of finite type.

The prototype example of an invariant of bimodules of finite type that satisfies the multiplicative property is the Jones 
index (in the case of simple algebras). We will use this as a model for the properties that a desirable height function should 
satisfy.

As a heuristic justification for making this change of perspective, and proposing a different choice of height function, 
it is useful to keep in mind that in the usual arithmetic geometry context the height function comes in two flavors, a 
“logarithmic form” and an “exponential form” (see [5]). The latter is the one that gives rise to the volume description of the 
height presented in (4.2) and generalized in (4.9). The first is usually taken to be just the logarithm of the exponential one, 
h = log H . This logarithmic form implies that if H behaves like a volume, which scales with the size λ in the form vol ∼ λdim, 
then the h = log H would be proportional to the dimension. What we propose here is not the usual form h = log H of the 
height, with H as in (4.2), (4.9), but rather the use of the dimension itself, in the form of the Hattori–Stallings rank element
already discussed in §4.6.

If we define

hA(E) := rA(E) ∈ H H0(A),

the Hattori–Stallings rank, and

hA,σ (E,hA,hB) := σ̃ (rA(E)), (4.17)

with an embedding σ̃ of Z(A) that extends the embedding σ of K, then we obtain a better notion of height on bimodules 
that does not require restricting the category of bimodules as in Definition 4.19.

Remark 4.28. Instead of the category H(K, Z) of Definition 4.19, we can now consider a more general category H(K), 
defined as in Definition 4.19, but without the requirement that the semisimple finite dimensional algebras belong to AK(Z). 
The construction of the convolution algebras A(1)

H(K)
and A(2)

H(K)
is analogous to the case of H(K, Z) discussed previously.

We can dispose of the requirement that the algebras are AK(Z) because, as we show in Proposition 4.29 below, a 
height function defined as in (4.17) in terms of the Hattori–Stallings rank directly satisfies the multiplicative property, 
without imposing this restriction on the algebras.

A further advantage of working with this definition of height hA(E) := rA(E) is that the Hattori–Stallings rank is inde-
pendent of the generators {xi} of the projective module E . Indeed, the rank element can be computed using a choice of {xi}
and of a dual basis {ξi} of E∨ by rA(E) = ∑

i ξi(xi), but the result is independent of the choice of {xi} and {ξi}. Thus, we do 
not have to optimize over a choice of the basis, unlike in the case of the height (4.9) previously discussed.

Proposition 4.29. Consider arithmetic hermitian bimodules (E, hA, hB) in the category (A,OA)H(B,OB ) with the height defined as

h(E,hA,hB) =
∏

σ

σ (rB(E)

σ (rA(E)
, (4.18)

where σ ranges over the archimedean embeddings. Let A(1)
H(K)

be the convolution algebra of finitely supported functions over the set 
of bimodules in (A,OA)H(B,OB ) with the convolution product as in (4.15). Then setting

αt( f ) (E,hA,hB) = h(E,hA,hB)it f (E,hA,hB)

determines a time evolution on A(1)
H(K)

.

Proof. As above, we can compute the Hattori–Stallings rank as rA(E) = ∑
i ξi(xi), for a choice of generators {xi} of E and 

a dual set {ξi} in E∨ . In particular, for ξi = hA(·, xi), we obtain rA(E) = ∑
i hA(xi, xi). Thus, we are replacing the volume ∏

i hA(xi, xi) of our previous definition of height (4.9) with the trace 
∑

i hA(xi, xi). This sum is in Z(A) = ⊕iLi for some 
field extensions Li of the number field K. Given an archimedean embedding, σ :K ↪→R or C, extended to an embedding 
σ̃ of the Li , we obtain σ̃ (rA(E)) ∈R or C. Since the hA(xi, xi) are positive elements of A, the value of σ̃ (rA(E)) is actually 
in R×

+ . Thus, we have h(E, hA, hB)it ∈ U (1) for t ∈ R defining the time evolution. We need to know that σt( f1 4 f2) =
σt( f1) 4 σt( f2) with respect to the product (4.15). This follows by verifying that

h(E ⊗B F,hA,hC ) = h(E,h′
A,h′

B) · h(F,h′′
B ,h′′

C ),

for a tensor product of bimodules E ⊗B F , with the hermitian structures hA and hC as in Lemma 4.18. This is indeed the 
case because we have
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rA(E ⊗B F) =
∑

i j

h′
A(x′

ih
′′
B(x′′

j , x′′
j ), xi) =

∑

i

h′
A(x′

i · rB(F), x′
i)

rC (E ⊗B F) =
∑

$.r

h′′
C (u′′

$ ,h′
B(u′

r, u′
r)u′′

$) =
∑

$

h′′
C (u′′

$ , rB(E) · u′′
$),

where rB(F) and rB(E) are in Z(B). For a fixed embedding σ :K ↪→R or C, and an embedding σ̃ of the field extensions 
in Z(A), Z(B), and Z(C), that restricts to σ on the subfield K, the hermitian forms (h′

A,σ , h′
B,σ ) on Eσ and (h′′

B,σ , h′′
C,σ ) on 

Fσ , with values in Aσ and Bσ , respectively Bσ and Cσ , give

σ (rA(E)) =
∑

i

h′
A,σ (x′

i · σ (rB(F)), x′
i) = σ (rB(F)) · σ (rA(E)),

σ (rC (E ⊗B F)) =
∑

$

h′′
C,σ (u′′

$ ,σ (rB(E)) · u′′
$) = σ (rC (F)) · σ (rB(E)),

so that we obtain

h(E ⊗B F,hA,hC ) =
∏

σ

σ (rC (F))

σ (rB(F))

σ (rB(E))

σ (rA(E))
.

This completes the proof. !

The Hattori–Stallings rank is known to agree with the Jones index, [22,23,55], in the cases we will be considering in 
§5, so this discussion justifies and introduces the setting for higher dimensional arithmetic noncommutative spaces that we 
will be discussing below in §5.

4.13. Height zeta function with the Hattori–Stallings rank

We can consider again a subsystem with a partition function that provides a height zeta function, for the case of the 
height h(E, hA, hB). As we discussed in §4.11, in order to avoid infinite multiplicities in the spectrum of the Hamiltonian that 
generates the time evolution, we restrict to the subcategory HL

A(K) of H(K) (for H(K) as in Remark 4.28) consisting of 
A-A bimodules (E, hL

A, hR
A) with rank (with respect to the structure of left A-module) fixed to be rL

A(E) = 1. This determines 
a subalgebra A(1)

HL
A (K)

of the algebra of functions on H(K) with the convolution product corresponding to the tensor product 

of bimodules, and the Hamiltonian that generates the time evolution, for the algebra A(1)

HL
A (K)

acting on the Hilbert space 

$1(HL
A(K)), is given by

H f (E,hL
A,hR

A) = log

(
∏

σ

rR
A,σ (E)

)

f (E,hL
A,hR

A)

and with partition function

Z(β) = Tr(e−βH) =
∑

(E,hL
A ,hR

A)∈HL
A(K)

(
∏

σ

rR
A,σ (E)

)−β

.

The multiplicities of the eigenvalues of the Hamiltonian H, which determine if the series defining the partition function 
is convergent for sufficiently large β > 0, count the number of A-A bimodules (E, hL

A, hR
A) with rL

A(E) = 1 and with fixed 
rR

A(E) = r. For a finite dimensional semisimple algebra A = ⊕i Mni (Di) with division algebras Di over K, we can consider 
bimodules for the form Di ⊗K ⊕ j D

n j N j
j such that 

∑
j n j N j = r, which are counted by the number of these combinations, 

the number of solutions N j ≥ 0 of the relation above with r and the ni given.

4.14. Non-archimedean places

So far we only considered the archimedean component of the height function, associated to the archimedean places 
σ : K ↪→ Kσ of the number field K. The height function also has components associated to the non-archimedean places. 
For example, one sees clearly that the usual definition of the (archimedean) height function for points in projective spaces, 
Hσ (x) = maxi |xi |σ , for x = (x1 : · · · : xn) is only well defined when the non-archimedean places are taken into account 
in a product over all valuations, H(x) = ∏

v maxi |xi |v , since by the product formula H(λx) = H(x) for λ ∈ Gm . This issue 
does not arise in an affine setting, but it is still more natural to regard the height as a product over all archimedean and 
non-archimedean valuations.
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We discuss here briefly how to extend the height functions discussed in the previous subsection to the non-archimedean 
places.

Since we are working in a noncommutative setting, we recall briefly how one thinks of valuations in the context of 
finite dimensional algebras. Given a semisimple finite dimensional algebra A = ⊕i Mni (Di) over a number field K, let Kv

denote the completions at the non-archimedean valuations. These are extensions of the p-adic fields Qp for primes p. We 
write Av = A ⊗KKv for the corresponding algebras over Kv . The fields Kv are henselian, namely a valuation on Kv has a 
unique extension to each field algebraic over Kv , [47]. Let D be a division algebra over Kv and let Z(D) = F , an extension 
of Kv . There are different possible ways of defining valuations on a division algebra, summarized in [54]. We take here 
the following definition: a valuation on a division algebra D is a function v : D× → ), where ) is a totally ordered abelian 
group such that

v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)} for b /= −a.

Theorem 2.1 of [54] shows that, for a division algebra D with Z(D) = F and dimF (D) < ∞, a valuation v on F extends 
(uniquely) to a valuation on D if and only if v extends uniquely to any field L with F ⊂ L ⊂ D . In particular, if F
is henselian, then a valuation on F extends uniquely to a valuation on any finite dimensional division algebra D with 
Z(D) = F . Thus, the non-archimedean valuation v on Kv , extends uniquely to a division algebra over Kv . Moreover, a 
valuation on a division algebra D over Kv restricts to compatible valuations on subfields of D hence they all arise in this 
way. Thus, it suffices to consider the non-archimedean places of K with the corresponding valuations v and the associated 
completions Kv to account for all valuations on division algebras as well.

Consider then arithmetic bimodules (E, hA, hB) with hermitian structures hA, hB . Consider the elements hA(xi, xi) ∈ A
and hB(y j, y j) ∈ B , for sets of generators {xi} and {y j}. In the case of the height function H(E, hA, hB) of (4.9), and bimod-
ules (E, hA, hB) in the class H(K, Z) of Definition 4.19, we have hA(xi, xi) ∈ Z(A) = Z and hB(y j, y j) ∈ Z(B) = Z and we 
can compose these elements with the valuation v (the unique extension to the Li of the valuation v on Kv ). Thus, we can 
define H v(E, hA, hB) as in (4.9) in the form

H v(E,hA,hB) :=
inf{y j}∈BB (E) |

∏
j hB(y j, y j)|v

inf{xi}∈BA(E) |
∏

i hA(xi, xi)|v
,

where a shortest basis is used to evaluate these “volumes”. We then set

H(E,hA,hB) :=
∏

v

H v(E,hA,hB) ·
∏

σ

Hσ (E,hA,hB),

with v ranging over the non-archimedean places of K and σ over the archimedean places. Note that because at each 
place a (different) shortest basis {xi} is chosen that minimizes the corresponding “volume” | ∏i hA(xi, xi)|v , the product 
over places considered above is not subject to the product formula 

∏
v |λ|v · ∏

σ |λ|σ = 1 for all λ ∈ L (a number field), 
for the product over all archimedean and non-archimedean valuations of L. The time evolutions described in the previous 
subsections extend to these height functions that include the contributions of the non-archimedean places.

In the case of the height function defined using the rank element, and for any arithmetic hermitian bimodule, however, 
we cannot just define the height h(E, hA , hB) in the same way as above, because for rA(E) ∈L the product formula would 
give

∏

v

|rA(E)|v ·
∏

σ

|rA(E)|σ = 1.

This means that, in one defines the non-archimedean part of the height as in the previous case, then the non-archimedean 
part of the height would simply be equivalent to the archimedean part by the relation

hnar(E,hA,hB) =
∏

v

|rB(E)|v

|rA(E)|v
= har(E,hA,hB)−1 =

∏

σ

|rA(E)|σ
|rB(E)|σ

,

up to a change of direction of the time evolution they induce. Thus, in the case of the height function defined by the 
Hattori–Stallings rank, one can restrict to only considering the archimedean part.

There is another possible way to extend the Hattori–Stallings rank to a height function with non-archimedean compo-
nents, so that the product over all archimedean and non-archimedean places is non-trivial. If we view the archimedean part 
as

∏

σ

|rA(E)|σ =
∏

σ

∑

i

hA,σ (xi, xi) =
∏

σ

∑

i

‖xi‖2
A,σ ,

then it is natural to define

22



A. Lima and M. Marcolli Journal of Geometry and Physics 169 (2021) 104337

har(E,hA,hB) :=
∏

σ

|rB(E)|1/2
σ

|rA(E)|1/2
σ

=
∏

σ

(
∑

j ‖y j‖2
B,σ )1/2

(
∑

i ‖xi‖2
A,σ )1/2

.

By comparison with the usual definition of the height of points x = (x1, . . . , xn) ∈ Q̄n in the form

H(x) = Hnar(x)Har(x) =
∏

v

(max
i

|xi|v) ·
∏

σ

(
∑

i

|xi |2σ )1/2,

one can choose to set

h(E,hA,hB) = hnar(E,hA,hB)har(E,hA,hB)

where the archimedean part is defined as above and

hnar(E,hA,hB) :=
∏

v

inf{y j}∈BB (E) max j |hB(y j, y j)|v

inf{xi}∈BA(E) maxi |hA(xi, xi)|v
. (4.19)

Notice, however, that with this choice of non-archimedean part of the height, we have reintroduced the problem of optimiz-
ing over the choice of a basis and also the problem of the compatibility of the height with the tensor product of bimodules, 
which forces us then to restrict the category of bimodules to the H(K, Z) of Definition 4.19, both problems that the use of 
the Hattori–Stallings rank was meant to avoid.

Thus, in the following, in the case of the height based in the Hattori–Stallings rank, we will simply restrict to the 
archimedean part.

5. More general algebras

In the previous section we have taken inspiration from the setting of [6], designed to provide a noncommutative geom-
etry setting for the Arakelov geometry of noncommutative arithmetic curves. When we try to extend these ideas beyond 
the case of zero-dimensional varieties over a number field K (hence one-dimensional varieties over Spec(OK)) and their 
noncommutative counterparts, we encounter a more serious problem in how to introduce the data at infinity, that is, the 
contribution of the archimedean places. In the case of arithmetic surfaces (curves over a number field K, seen as surfaces 
over Spec(OK)), noncommutative geometry was used in different ways: in [11,12,41] noncommutative geometry was used 
to model the fiber at infinity of an arithmetic surface, following a model developed in [39] based on Schottky uniformization 
and geodesics in a hyperbolic handlebody (see also [40] for a physical interpretation in the setting of AdS/CFT holography). 
In [7] noncommutative geometry is used in a different way, by developing noncommutative versions of arithmetic surfaces, 
based on noncommutative projective schemes. In the context of Arakelov geometry it is natural to work with projective 
schemes, because one is interested primarily in developing a good intersection theory. However, from the point of view of 
noncommutative geometry this creates complications in relating the algebro-geometric noncommutative projective schemes 
to analytic noncommutative spaces that should provide the data at the archimedean places. While this problem is solved in 
the case of noncommutative arithmetic surfaces in [7] by a suitable definition of hermitian bundles, we take here a different 
viewpoint on noncommutative arithmetic spaces, which is based on affine geometry. This is sufficient for our purposes, and 
it will have the advantage that it makes more direct and transparent the role of the archimedean places.

5.1. Arithmetic noncommutative spaces

For our purposes, we take the following definition of an arithmetic noncommutative space.

Definition 5.1. Let K be a number field and OK its ring of integers. An arithmetic noncommutative space in arbitrary 
dimension is given by the following data.

(1) A is a finitely generated associative algebra over K.
(2) OA is a subring of A with the structure of flat OK-module.
(3) As K-vector spaces A = OA ⊗OK K.
(4) For every archimedean place σ : K ↪→ Kσ with Kσ = R or C, the real/complex algebra Aσ = A ⊗K,σ Kσ has an 

involution ∗.
(5) Aσ , for σ complex, and Aσ ⊗R C for σ real, are dense involutive subalgebras of a complex C∗-algebra Āσ .
(6) There is a normalized trace τσ : Āσ →Kσ such that τσ |OA takes values in OK .

This notion of arithmetic noncommutative spaces only involves Type II algebras. Thus, for example, certain noncommu-
tative spaces of arithmetic relevance such as the endomotives of [8], including the Bost–Connes type algebras over number 
fields of [56], are not included in this definition. While such algebras certainly should be regarded as arithmetic spaces, they 
would not be of finite type over Spec(OK), while our notion is meant to capture this finite type condition.
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Example 5.2. The arithmetic noncommutative torus is the finitely generated algebra A(Tθ ) over Q with generators 
U , V , U∗, V ∗ and relations U∗U = U U∗ = 1, V ∗V = V V ∗ = 1 and V U = e2π iθ U V for some fixed θ ∈R. The subring OA(Tθ )

is generated over Z by the same generators and relations. As a Z-module it is the span Z〈Un V m | n, m ∈ Z〉, which is an 
abelian group with no torsion, hence a flat Z-module. For the unique real embedding of Q the algebra A(Tθ )σ ⊗R C is a 
dense subalgebra of the usual C∗-algebra of the noncommutative torus. The trace τ (Un V m) = δn,0δm,0 maps OA(Tθ ) to Z.

For two C∗-algebras Ā and B̄ , we recall the notion of Hilbert Ā − B̄ bimodule, [24].

Definition 5.3. A Hilbert Ā − B̄ bimodule H of finite type is defined by the following properties:

• H is an Ā − B̄-bimodule, which is finitely generated projective as a right B̄-module and as a left Ā-module
• H is self-dual, with respect to the duality given by the conjugate bimodule.
• There are an Ā-valued inner product Ā〈·, ·〉 and a B̄-valued inner product 〈·, ·〉B̄ , with the first left-linear and right-

conjugate-linear and the second left-conjugate-linear and right-linear.
• For all a ∈ Ā, b ∈ B̄ , and x, y ∈ H

Ā〈ax, y〉 = a Ā〈x, y〉, and Ā〈x,ay〉 = Ā〈x, y〉a∗

〈x, yb〉B̄ = 〈x, y〉B̄ b and 〈xb, y〉B̄ = b∗ 〈x, y〉B̄

• For all x ∈ H , Ā〈x, x〉 ≥ 0 with Ā〈x, x〉 = 0 iff x = 0 and 〈x, x〉B̄ ≥ 0 with 〈x, x〉B̄ = 0 iff x = 0.
• For all x, y ∈ H ,

Ā〈x, y〉 = Ā〈y, x〉∗ and 〈x, y〉B̄ = 〈y, x〉∗
B̄

• The norms ‖x‖A := ‖ Ā〈x, x〉‖1/2
Ā

and ‖x‖B := ‖〈x, x〉B̄‖1/2
B̄

satisfy an estimate ‖ · ‖A norm (equivalently, the ‖ · ‖B

C1‖x‖A ≤ ‖x‖B ≤ C2‖x‖A

for some constants C1, C2 > 0 and for all x ∈ H . In particular, H is complete with respect to the ‖ ·‖A norm (equivalently, 
the ‖ · ‖B norm).

Remark 5.4. The finite type condition, that H is finitely generated projective both as a right B̄-module and as a left Ā-
module, and that it is self-dual with respect to conjugation is equivalent to the condition that there are a left Ā-basis 
{v1, . . . , vm} and a right B̄-basis {u1, . . . , un} such that, for all x ∈ H ,

x =
m∑

i=1
Ā〈x, vi〉vi and x =

n∑

j=1

u j 〈u j, x〉B̄ . (5.1)

See Lemma 1.7 of [24], and see also the comment on duality on p. 3443 of [24].

In terms of a right B̄-basis {u1, . . . , un}, the structure of H as a finitely generated projective right B̄-module can be 
seen explicitly by identifying H 6 pB̄n , where p ∈ Mn(B̄) is a projection given by pij = 〈ui, u j〉B̄ . The maps from H to pB̄n

and viceversa are given by x -→ (〈ui, x〉B̄)i , which maps H to the range of p in B̄n , and its inverse map (yi) -→
∑

i ui yi
from pB̄n to H . (See Lemma 1.11 of [24].) Also note that the condition on the equivalence of the norms ‖x‖A and ‖x‖B in 
Definition 5.3 and of completeness in these norms follow automatically from the finite type condition, as in Remark 5.4 (see 
Lemma 1.11 and Proposition 1.18 of [24].)

We can then generalize the definition of hermitian bimodules given in Definition 4.8 in the following way.

Definition 5.5. Let (A, OA) and (B, OB) be arithmetic noncommutative spaces as in Definition 5.1. The category 
(A,OA)H(B,OB ) of arithmetic hermitian bimodules of finite type has objects (E, hA , hB) satisfying all the properties of Defi-
nition 4.8 as well as the following:

• E is an OA − OB bimodule, and a left-right OK-lattice, such that A ⊗OA E is finitely generated projective as an A-
module and E ⊗OB B is finitely generated projective as B-module.

• for any archimedean place σ of K the bimodule Eσ := Aσ ⊗OA E ⊗OB Bσ is endowed with a pair h = (hA, hB) with 
hA : Eσ × Eσ → Aσ and hB : Eσ × Eσ → Bσ

• hA is left-linear and right-conjugate-linear and defines an Aσ -valued inner product on Eσ .
• hB is left-conjugate-linear and right-linear and defines a Bσ -valued inner product on Eσ .
• There is a Hilbert Āσ − B̄σ bimodule of finite type Ēσ with Āσ

〈x, y〉 = hA(x, y) and 〈x, y〉B̄σ
= hB(x, y)

• Ēσ is the completion of Eσ in the norm ‖x‖A = ‖hA(x, x)‖1/2
Āσ

(equivalently, in the norm ‖x‖B = ‖hB(x, x)‖1/2
B̄σ

).
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Morphisms φ : (E, hA, hB) → (E ′, h′
A, h′

B) are morphisms φ : E → E ′ of OA − OB bimodules such that the induced 
map φσ : Ēσ → Ē ′

σ is a finite rank operator that preserves the hermitian structures, h′
A(φσ (x), φσ (y)) = hA(x, y) and 

h′
B(φσ (x), φσ (y)) = hB(x, y).

With respect to a right B̄-basis {u1, . . . , un} of Ēσ a bimodule homomorphism φσ : Ēσ → Ē ′
σ satisfies

φσ (x) =
n∑

i=1

T (ui) 〈ui, x〉B̄σ
,

and similarly for a left Ā-basis {v1, . . . , vm} of Ēσ . Thus, for the condition that morphisms preserve the hermitian structure 
it suffices that on the basis elements hB (φσ (ui), φσ (u j)) = hB(ui, u j) and hA(φσ (vi), φσ (v j)) = hA(vi, v j).

Remark 5.6. The functor of points of an arithmetic noncommutative space (A, OA) assigns to (B, OB) the category 
(A,OA)H(B,OB ) of arithmetic hermitian bimodules of finite type as the (B, OB) points of (A, OA), and to (B, OB)-(B ′, O′

B)
bimodules F the functor F : (A,OA)H(B,OB ) → (A,OA )H(B ′,O′

B ) given by tensoring with F .

5.2. The case of noncommutative tori

We consider again the example of arithmetic structures on noncommutative tori, mentioned in Example 5.2 above.
The Rieffel construction of finite projective modules on noncommutative tori [48,49] is based on using imprimitivity 

bimodules. These are Hilbert bimodules AFB , for unital C∗-algebras A, B , with the property that the C∗-algebra valued 
inner products satisfy the relation

〈x, y〉A z = x B〈y, z〉 (5.2)

for all x, y, z ∈ AFB . An imprimitivity bimodule implements a strong Morita equivalence between the C∗-algebras A and B , 
[50]. Thus, these are regarded as a good notion of “isomorphism” of the corresponding non-commutative spaces, in a setting 
where morphisms are defined by (some class of) Hilbert bimodules. The construction of projective modules is based on the 
observation that, if AFB is an imprimitivity bimodule and p is a projection in A, then pF is a projective B-module, since 
there will be two sets {xi}n

i=1 and {yi}n
i=1 of elements of F such that

∑

i

〈xi, yi〉A = p.

Then for each z ∈ pF one has z = pz = ∑
i〈xi, yi〉A z = ∑

i xi B〈yi, z〉 so that the xi give a finite set of generators for pF and 
the maps

8 : Bn → pF and 5 : pF → Bn

8 : (bi) -→ ∑
i xibi and 5 : z -→ (B〈yi, z〉)

(5.3)

identify pF with a direct summand of the free module Bn , so that pF is indeed a projective B-module, see Proposi-
tion 1.2 of [49]. Thus, the construction of projective B-modules follows from the construction of projections p in the 
Morita-equivalent algebra A.

In particular, an arithmetic structure on a projective module X = pF over a noncommutative torus B = A(Tθ ) is obtained 
by considering the image 8(OA(Tθ )) ⊂ pF ,

8(OA(Tθ )) = {ξ ∈ pF | ξ = ∑
i xibi, with bi ∈ OA(Tθ )}

= {ξ ∈ pF | A(Tθ )〈yi, ξ〉 ∈ OA(Tθ )}.
(5.4)

The construction of projections in a noncommutative torus A = A(Tθ ) is obtained as in [48] by considering the A-valued 
inner product 〈ξ, ξ〉A of elements ξ ∈ AFB . The resulting pξ = 〈ξ, ξ〉A is a projection if and only if it satisfies the identity 
ξ B〈ξ, ξ〉 = ξ . Indeed, one can see that

p2
ξ = 〈ξ, ξ〉A 〈ξ, ξ〉A = 〈〈ξ, ξ〉A ξ, ξ〉A = 〈ξ B〈ξ, ξ〉, ξ〉A = 〈ξ, ξ〉A = pξ

and p∗
ξ = pξ . The converse follows similarly (see Lemma 3.2 of [34]). There are several explicit constructions of projections 

in noncommutative tori. In particular, Boca [4] presented a construction based on theta functions, and Luef and Manin [35]
and Luef [34] gave a general construction based on Gabor frames.

One can then obtain hermitian bimodules of finite type in the following way. Here we assume we have fixed a specific 
construction that associates to a pair of Morita equivalent C∗-algebras of irrational noncommutative tori and an imprim-
itivity bimodule implementing the Morita equivalence a projection in one of the two C∗-algebras obtained as described 
above.
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Proposition 5.7. Let Aθ = A(Tθ ) and Aθ ′ = A(Tθ ′ ) be the C∗-algebras of two irrational noncommutative tori. Let θ̃ and θ̃ ′ be a 
choice of points in the GL2(Z) orbits of θ and θ ′ respectively, under the action on P 1(R) by fractional linear transformations. Such a 
choice determines an (Aθ , OAθ )–(Aθ ′ , OAθ ′ ) hermitian bimodule as in Definition 5.5.

Proof. Since θ and θ̃ (respectively, θ ′ and θ̃ ′) are in the same GL2(Z) orbit by fractional linear transformations, the C∗-
algebras Aθ and Aθ̃ (respectively, Aθ ′ and Aθ̃ ′ ) are Morita equivalent, with the equivalence implemented by imprimitivity 
bimodules Aθ FAθ̃

and Aθ̃ ′ F ′
Aθ ′ . Let pθ̃ and pθ̃ ′ be projections in Aθ̃ and Aθ̃ ′ , respectively, and let X = F pθ̃ and X ′ = pθ̃ ′F ′

be the corresponding projective modules, constructed as recalled above. Consider then the Aθ –Aθ ′ Hilbert bimodule E =
X ⊗C X ′ . As above, let {xi} and {yi} be elements of F and {x′

j} and {y′
j} be elements of F ′ such that

∑

i

Aθ̃
〈yi, xi〉 = pθ̃ and

∑

j

〈x′
j, y′

j〉Aθ̃ ′ = pθ̃ ′ . (5.5)

Let 5θ̃ , 8θ̃ and 5θ̃ ′ , 8θ̃ ′ be the maps defined as in (5.3) with 8θ̃ : An
θ → X , 8θ̃ (ai) =

∑
i ai xi and 8θ̃ ′ : An

θ ′ → X ′ , 8θ̃ ′ (a′
j) =∑

j x′
ja

′
j . Elements ξ ⊗ ξ ′ ∈ E can be written as ξ ⊗ ξ ′ = ∑

i, j〈ξ, yi〉Aθ xi ⊗ x′
j Aθ ′ 〈y′

j, ξ〉 = ∑
i, j ai xi ⊗ x′

j a′
j . We define the 

arithmetic submodule EZ as in (5.4) by setting

EZ := {ξ ⊗ ξ ′ =
∑

i, j

ai xi ⊗ x′
j a′

j |ai ∈ OAθ ,a′
j ∈ OAθ ′ , ∀i, j}. (5.6)

We define hermitian structures hθ and hθ ′ on EZ as hθ (ξ, η) = Aθ 〈ξ, η〉 and hθ ′ (ξ, η) = 〈ξ, η〉Aθ ′ . !

Note that here we rely on results on noncommutative tori as C∗-algebras for the constructions of projections and im-
primitivity bimodules. The arithmetic structure is then obtained by selecting certain suitable “arithmetic submodules” like 
the EZ defined in (5.6). This approach of enriching a C∗-algebra construction with arithmetic subalgebras/submodules is 
common in other contexts (see for instance the Bost–Connes subalgebra and other similar arithmetic structures discussed 
at length in Chapters 3 and 4 of [9]).

5.3. Height function as volume

We would like then to assign a height to the bimodules (E, hA , hB) constructed as above. We first discuss how to obtain 
a version of the height H(E, hA, hB) that corresponds to the expressions (4.2) and (4.9). We then discuss how to obtain a 
notion of height h(E, hA, hB) that generalized the one based on the Hattori–Stallings rank that we discussed in the previous 
section.

We want to assign to an arithmetic hermitian bimodule of finite type (E, hA , hB) a height function of the form

H(E,hA,hB) = volB,hB (E)

volA,hA (E)
, (5.7)

as a direct analog of (4.9).
In order to obtain the volumes volA,hA (E) and volB,hB (E) we proceed as in the previous section. Let (E, hA, hB) be an 

arithmetic hermitian bimodule of finite type as in Definition 5.5. Let BAσ (E) and BBσ (E) be, respectively, the sets of left 
Āσ -bases of Eσ {v1, . . . , vm}, with that v j ∈ E , and the set of right B̄σ -bases {u1, . . . , un} of Eσ with ui ∈ E .

We define the volume via an optimization over the choice of basis. Namely, we set

volA,hA (E) :=
∏

σ

inf
BAσ (E)

∏

j

τAσ (hA(v j, v j)),

volB,hB (E) :=
∏

σ

inf
BBσ (E)

∏

i

τBσ (hB(ui, ui)),

where τAσ , τBσ denote the unique trace on the algebras Aσ , Bσ .
This provides an analog of (4.9) extending the notion of height derived from (4.2). However, as in the case of (4.9), the 

height function obtained in this way is not well behaved with respect to taking tensor products of bimodules, hence it is 
not directly compatible with the categorical composition operation on our noncommutative notion of “points”. To avoid this 
problem, we consider, as in the previous section, a different notion of height based on the appropriate notion of “dimension”, 
instead of a height function based on volumes.

5.4. Jones index as a height function

We return here to the general setting of Definition 5.3. The case of noncommutative tori discussed above is included as 
a special case.
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Let (E, hA, hB) be a arithmetic hermitian bimodule of finite type as in Definition 5.5 and let {u1, . . . , un} and {v1, . . . , vm}
be, respectively, a right B̄σ -basis and a left Āσ -basis. The right and left index are defined as the elements

IndA,σ (E) :=
∑

i

hA(ui, ui) ∈ Z( Āσ ) and IndB,σ (E) :=
∑

j

hB(v j, v j) ∈ Z(B̄σ ) (5.8)

with Z( Āσ ) and Z(B̄σ ) the centers of the respective C∗-algebras. These elements are independent of the choice of basis 
(Proposition 1.13 of [24]). We use here the notation IndA,σ (E) and IndB,σ (E) for what would be, respectively, IndR(Eσ ) and 
IndL(Eσ ) in the notation of [24].

Consider algebras A, B such that Z(Aσ ) = Z(Bσ ) =Kσ for all archimedean places σ . Then the Jones index is multiplica-
tive over tensor product of bimodules

IndA,sigma(E ⊗B F) = IndA,sigma(E) · IndB,σ (F), IndC,σ (E ⊗B F) = IndB,σ (E) · IndC,σ (F),

see Proposition 1.30 of [24].
For algebras with Z(Aσ ) = Z(Bσ ) =Kσ one can then define a height function as in (4.18)

h(E,hA,hB) :=
∏

σ

IndB,σ (E)

IndA,σ (E)
. (5.9)

Imprimitivity bimodules (E, hA, hB) that implement a Morita equivalence between Aσ and Bσ , have IndB,σ (E) = 1 =
IndA,σ (E), see Corollary 1.19 of [24]. Thus, imprimitivity bimodules are fixed points of the time evolution generated by 
the height function (5.9) as in Proposition 4.29.

The height zeta function associated to the height function (5.9) as discussed in §4.13 involves bimodules with fixed 
values of the Jones index. This shows that the problem of studying “points of bounded height” in this setting is potentially 
an interesting question with several possible connections to other areas of mathematics. In the von Neumann algebra setting, 
the related question of classifying subfactors of fixed index is solved for index less than 4 (see [45]) where the values of 
the Jones index are quantized, and also for index between 4 and 5 (see [21]) where after excluding an infinite family, one 
can again reduce the question to discrete data, while the question becomes intractable for higher values of the index for 
the reasons explained in [21]. A related question will be to generalize some of the settings we have been discussing in this 
paper to constructions in diophantine geometry beyond the height function, such as slopes (see [46]).
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