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structures and height functions, modeled on an interpretation of the classical functor of
points as a physical sigma model. We discuss different choices of such height functions,
based on different notions of volumes and traces, including one based on the Hattori-
Stallings rank. We show that the height function determines a dynamical time evolution

ﬁi{ﬁ:ﬁ;umive arithmetic spaces on an algebra of observables associated to our functor of points. We focus in particular the
Functor of points case of noncommutative arithmetic curves, where the relevant algebras are sums of matrix
Arakelov height algebras over division algebras over number fields, and we discuss a more general notion
Arithmetic curves of noncommutative arithmetic spaces in higher dimensions, where our approach suggests

an interpretation of the Jones index as a height function.
© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The use of noncommutative geometry methods in Arakelov geometry was originally introduced in [11,12], with a de-
scription of the special fiber at infinity of arithmetic surfaces in terms of a noncommutative space related to the geometry
of Schottky uniformization of Riemann surfaces. A formalism for Arakelov geometry for noncommutative arithmetic curves
and surfaces, based on arithmetic vector bundles and height functions, was later developed in [6,7]. This second approach is
based on noncommutative projective algebraic geometry in the sense of Artin-Zhang [3], while the results of [11,12] used
noncommutative differential geometry in the sense of Connes. In particular, the use of [3] limits the approach of [6,7] to the
cases of arithmetic curves and surfaces. The question of whether there is a good way to connect these two approaches and
include higher dimensional arithmetic noncommutative spaces is mentioned in [7]. One of the goals of the present paper
is to establish a formalism that adapts the viewpoint of [6] and [7] to work in a setting compatible with noncommutative
geometry in the sense of Connes and covering arithmetic noncommutative spaces of arbitrary dimension.

Our formalism to describe arithmetic noncommutative (or not necessarily commutative) spaces is based on the following
main ideas:

o It is possible to have a good notion of functor of points for noncommutative spaces, provided the usual set-valued notion
of S-points of an affine scheme X = Spec(R) given by X(S) = Homaj(R, S) is replaced by a functor with values in
categories, that replaces the set Hompjg(R, S) with the category of R-S bimodules.
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o The dual notion of functor of points as 7 : Sch®? — Sets with x(Y) = Homse, (Y, X) can be envisioned as a o-model
with target X, where the points, given by maps ¢ € Homg, (Y, X), are weighted by an action functional measuring their
energy, in the form of a height function.

e Suitable height functions can be defined for bimodules, and they give rise to a dynamical system on a convolution
algebra of bimodules with the tensor product operation, with a partition function that corresponds to a height zeta
function.

e The Jones index of Hilbert C*-bimodules of finite type can be seen as a possible height function for noncommutative
spaces.

In recent years extensions of o-models to noncommutative spaces have been studied in various contexts, sometime
motivated by string theory (see for instance [25,43]), sometimes by extending results on the geometry of solitons to the
noncommutative framework (see for instance [15]). As shown in [13,14], several interesting new phenomena occur in the
noncommutative setting and even very simple cases, such as the example of a target space consisting of a two-point space
can have highly nontrivial solutions.

Here we take a different viewpoint. We broadly regard o-models as describing dynamics on a space of maps between
two assigned geometries. Instead of the usual Riemannian viewpoint, however, we start from a different commutative set-
ting, consisting of the functor of points of algebraic geometry.

In order to make the functor of points “dynamical”, we need to assign a suitable “action functional” to points of an affine
scheme. We argue that a good measure of the “energy” of points (seen as maps between affine schemes) is provided by
the height function. The idea that height functions should be regarded as a physical action functional, with the height zeta
function playing the role of the partition function of the system, was already suggested by Manin in [37].

We adapt this viewpoint to the noncommutative setting. It is well known that an analogous notion of functor of points
for noncommutative rings is problematic, due to the scarcity of two-sided ideals, hence of non-trivial ring homomorphisms
(points in the classical sense). It is also well known, however, that in noncommutative geometry morphisms of algebras are
not the most natural choice of morphisms of noncommutative spaces, and bimodules are a much more natural choice, in
view of phenomena such as Morita equivalence, which provides the appropriate notion of isomorphism for noncommutative
spaces. Thus, we propose replacing the functor of points of affine schemes with a functor from the category of (noncom-
mutative) rings with morphisms given by bimodules, with values not in the category of sets, but in the 2-category of small
categories. Under this noncommutative “functor of points” the “S-points” of a ring R form the category of R — S bimodules.

We then seek an appropriate replacement for the height function that makes this notion of points dynamical. We present
two different proposals for a height function on bimodules. The first is based on extending to our setting a notion of height
developed for noncommutative arithmetic curves in [6] and based on volumes associated to hermitian forms on bimodules.
We show that this notion of height carries over to our setting but it has the drawback that it is not always compatible with
the composition operation given by the tensor product of bimodules. The compatibility can be restored by restricting to a
suitable subcategory of bimodules. The second form of height function that we consider is naturally compatible with tensor
products of bimodules and is based on the Hattori-Stallings rank. We show that, when generalized from noncommutative
arithmetic curves to higher dimensional noncommutative arithmetic spaces, this second notion gives rise to an interpretation
of the Jones index as a height function.

The paper is organized in the following way. In §2 we review some known facts about height functions that serve as
background motivation for what follows and justify our thinking of the height as an action functional. In §3 we introduce
our proposal for a functor of points in noncommutative geometry that uses categories of bimodules instead of sets of ring
homomorphisms. In §4 we focus on the case of finite-dimensional semisimple algebras, and correspondingly of noncom-
mutative arithmetic curves. We show that the height function used in [6] can be generalized to our setting, but is only
compatible with tensor product of bimodules if we restrict it to a specific subcategory. We propose an alternative notion
of height, based on the Hattori-Stallings rank, which is better behaved under tensor product of bimodules and we discuss
the time evolutions generated by these height functions seen as energy functionals. In §5 we introduce a setting describing
arithmetic noncommutative spaces in higher dimension and their functor of points, using hermitian bimodules of finite
type. We consider as an example, arithmetic structures on noncommutative tori. We show that the two notions of height
discussed in the case of finite dimensional algebras extend to this setting. The natural generalization of the height based on
the Hattori-Stallings rank uses the Jones index of Hilbert C*-bimodules.

2. Functor of points and height dynamics

Let X be an affine scheme over a field K. We will assume that K is number field. In fact, for our purposes we can just
take K = Q. Points of the scheme X are defined through the functor of points, from the opposite category of schemes to sets

7y : Sch®? — Sets, mx(Y) =Homsp (Y, X). (21)

The set wx(Y) describes the Y-points of X. An equivalent way of formulating the functor of points is dually in terms of the
corresponding algebras. Let R be a commutative K-algebra with X = Spec(R). We then consider

my 1 Algg — Sets, 1y (S) =Homyg, (R, S), (2.2)
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where Alg is the category of commutative algebras over K. The set n; (S) is the set of S-points of X. This includes for
example, the case of “geometric points” of X, that is X(Q) := 7y (Q), where geometric points is the usual terminology for
points over an algebraically closed field. It is customary to simply use the notation X(S) for the set 7,/ (S) of S-points of
the scheme X, for a K-algebra S and we will adopt this notation too.

More concretely, one can think of an affine scheme X over the field K as solutions to a set of polynomial equations
fix1,...,%) =0, ..., fN(X1,...,x,) =0 for a given set of polynomials in K[x1, ..., x,]. If we identify the scheme with the
system of equations, then the set X(S) of S-points of X for a K-algebra S represents the set of solutions to these polynomial
equations with x; € S. (The set of n-tuples of elements of the algebra S that satisfy the system of polynomial equations.)
This description of the scheme X is clearly equivalent to describing it through the ring R = K[x1, ..., x;]1/Zx with the
ideal Zx = (f1,..., fn). Any solution with x; € S defines a morphism R — S, hence we recover the previous description
of the functor of points. Thinking in terms of systems of equations, we then describe morphisms of affine schemes as
polynomial transformations between the sets of solutions of two different systems of equations. In other words, if X and
Y are affine schemes of finite type over K, with Y determined by equations g{(y1,...,¥;)=0,...,g(¥1,...,¥;) =0 and

X by equations f1(x1,...,xp) =0,..., fN(X1,...,X;) =0, a morphism o : Y — X can be described as a set of polynomials
V1o Y)s oo bn(¥1, ..., yr) such that, if (s1,...,s;) with s; € S is a solution to the first system, a point in Y (S), then
£1(51,-+-,57)y ..., €n(s1,...,5r) € S give a solution to the second system, a point in X(S). Equivalently the substitution of

variables (X1 = €1(¥1, ..., ¥r), ..., Xn = €n(¥1, ..., yr)) defines a morphism K[xq,...,x,] = K[y1,..., y;] that descends to
the quotients Ry = K[x1,...,x,]1/Zx — Ry =K[y1,...,yr1/Zy with Zx = (f1,..., fn) and Zy = (g1, ..., g1). We spelled
out morphisms explicitly in this way, since this will be useful in the next subsection. The assumption that X and Y are of
finite type over K is needed whenever this argument is applied.

A scheme is determined up to isomorphism by its functor of points. For a general introduction to the geometry of
schemes we refer the reader to [36].

2.1. Height as an action functional

We consider here the functor of points as providing the kinematics, namely the space of maps to the target space given
by the scheme X from a (variable) source space given by the scheme Y. In order to make this model dynamical, we need
to specify an action functional with respect to which the maps o € Homse, (Y, X) are weighted.

We recall a few facts about the height function. We refer the reader to [5] for a detailed introduction. As above let
K be a number field with d = [K : Q]. Let Px be the set of places of K, with Pg = P]‘I’gr U P]’fg where P]‘I’gr is the set
of archimedean places, consisting of r real embeddings K < R and k conjugate pairs of complex embeddings K «— C
(not contained in R) with d =1+ 2k, and Py is the set of non-archimedean places. For v € Pg we write K,, for the
corresponding local field (an extension of a p-adic field Q, at the non-archimedean places and a copy of R or C at the
archimedean ones). Let d, = [K, : Q,] be the degree of the extension at the non-archimedean places, and equal to either
1 or 2 at the archimedean cases that are either real or complex. We also write |x|, for the corresponding absolute values

normalized so as to satisfy the product formula HVGPK |x|ﬁ” =1.
The height of an algebraic number o € Q is defined as
H@) = [] max(1, |al,}*/, (23)
vePK

and the logarithmic height as

h(a) =logH(@) = Y %” log™ |et| (2.4)
vePK

with log™' t = logmax{1, t}. Here d and d, and the set of places Py are taken with respect to a choice of a finite extension
K of Q that contains ¢, though the resulting value is independent of this choice. The height of an algebraic number satisfies
h(a) =0 iff « is a root of unity.

In a similar way, one can define the height of a polynomial. One defines for

k k
FGa, )= ) gk Xy €KX ]
k1,...kn

d
h(fy= 3 ~rloglfly, where |fly= max lj, - (2.5)
vePK Toeee "

In fact, it is customary to replace in the archimedean contribution to the height h(f) in the above formula the term |f|,
with the better behaved Mahler measure

1

M(f) =exp @

/1og|f(e"91,...,e"9")|d91 o (2.6)
’]I‘n

3
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Indeed, while at the non-archimedean places one has |fg|, = |fly - |g|y this multiplicativity does not hold at the
archimedean places, while the Mahler measure satisfies M(fg) = M(f)M(g).

Given two affine schemes X and Y and a morphism o € Homgq, (Y, X), we can then define a height of o, by identifying
as in the previous section the morphism o with a collection of polynomials ¢1(y1,..., ¥r), ..., €n(¥1, ..., yr) that transform
by change of variables S-solutions of the polynomial equations defining Y to S-solutions of the polynomial equations
defining X. We then define, for the vector £ = (¢;)!_; in K[y1, ..., y,] the quantity ||£||, = maxj—1,...x |¢i|y and we compute
the height h(o) as in (2.5), (2.6) using this quantity (with M(¢;) instead of |¢;|, at the archimedean places).

The definition above provides us with a real valued action functional

,,,,,

h : Homseh (Y, X) — R, (2.7)

with h(o) given by the height of the morphism o. This means that we are thinking of the height as measuring the “energy”
of the points in X(S) for Y = Spec(S).

It is reasonable to think of the height as an energy functional. For example, the Mahler measure determines the free
energy and the growth rate of BPS states in toric quiver gauge theories, [57]. Mahler measure of certain bivariate poly-
nomials arises as the free energy in the planar dimer model, [27], for Mahler measures and dimer models see also [52].
The Mahler measure is also related to instanton expansion, [53]. The height function can be viewed as a measure of arith-
metic complexity, hence minimizing an action functional based on height means selecting points of minimal arithmetic
complexity.

2.2. The minimization problem

With our choice of energy functional (2.7) then looking for energy minimizers means minimizing the height function
over systems of polynomials £ = (¢;){_, : A" — A", subject to the constraints imposed by the source and target schemes Y
and X, namely that the polynomial map ¢ descends to a map of the quotients ¢ : K[x1,...,x,1/Zx — K[y1,..., y:1/Zy.

However, it is clear by looking at the archimedean contribution to the action functional given by the Mahler measure
that if we want to obtain a non-trivial and interesting minimization problem for this energy functional, we need to be
more restrictive in the choice of our class of maps. Indeed, it is better to work under the assumption that our schemes are
defined over Z (or the ring of integers of a number field). Let us assume for this discussion that they are defined over Z.
This means that we only need to consider polynomials with Z coefficients, both in the defining equations of our schemes
and in the morphisms between them,

l: Z[xl,...,xn]/l'x — Z[y1,...,yr]/Iy.

We are then seeking to minimize the height over such polynomials. That this is now an interesting minimization problem
can be seen already in the case where both X =Y = A! and a single polynomial map ¢: A! — A'. In this case the Mahler
measure satisfies M(¢) > 1 and it is known that equality holds whenever £(x) is a product of cyclotomic polynomials and
the monomial x. So these realize the minima of the Mahler measure. More interesting is the question of what are the
polynomials with the smallest value of the Mahler measure that is M(¢) > 1. This is known as the Lehmer problem, see
[19,17,44]. Lehmer noted that the polynomial £(x) = x'0 4+ x? —x7 —x6 — x> —x* —x3 + x4+ 1 has M(¢) =1.1762808... and
the question of whether this is an optimal lower bound is an open question. This shows that indeed there are interesting
minimization questions associated to the action functional we are considering.

It is also worth pointing out the following aspect of this problem. Consider a scheme X and its set of rational points
X (K). It is known that the distribution of rational points of bounded height is very not uniform: these points accumulate
on subsets that are the range of certain morphisms. In this case then the question becomes the search for algebraic points
of minimal height (for the appropriate version of the height function).

2.3. The case of correspondences

The above commutative case is discussed here only as motivation, hence we do not discuss in further detail this min-
imization problem. We do, however, discuss a variant of it, where morphisms o : Y — X are replaced by more general
correspondences, given by subschemes I' C Y x X. The case of a morphism o : Y — X is recovered as the particular case
where I'; C Y x X is the graph of the morphism I'y = {(y,0(y)) € Y x X|y € Y}. Passing from morphisms given by maps
of algebraic varieties or schemes to morphisms given by correspondences is a very natural step in algebraic geometry and
it is crucial in the development of the theory of motives. For us, the reason why it is useful to extend the setting discussed
above from maps to correspondences lies in the fact that morphisms given by correspondences are the commutative analog
of morphisms given by bimodules in noncommutative geometry (see a discussion of this in Chapter 4 of [9]). Passing from
morphisms of varieties to correspondences is very delicate, since one usually needs to consider correspondences up to some
notion of equivalence relation. This is related to the fact that the composition of correspondences is given geometrically by
an intersection product: for 't C Z x Y and I'; C Y x X the composite I'; o 'y C Z x X is obtained by pulling back both

4
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correspondences to the triple product Z x Y x X via the respective projections, intersecting them, and pushing the result
forward to Z x X,

[0l =7zxx, (7 y(T1) @y, x(I'2)).

We do not discuss this in detail here, but some of the subtleties involve having to work with smooth projective varieties
rather than affine schemes, having the freedom to move representative algebraic cycles describing the correspondences
within an equivalence class that preserves intersection numbers, etc. All these technical aspects are worked out in the
construction of categories of (pure) motives, where morphisms are described in this way. We will not deal directly with
motives here, and we simply refer the reader to [2] for a detailed introduction.

For our purposes, it suffices to point out that the notion of height of a morphism o : Y — X that we discussed above,
based on measuring the height of a polynomial, can be generalized to a notion of height of a variety, which can then be
applied to a correspondence T', seen as a subvariety of Y x X. We are making here a simplifying assumption and considering
varieties instead of more general schemes. Notions of height function for motives are discussed in [26].

We will not be dealing directly with correspondences in the commutative case, but we mention this setting as a com-
parison, because our approach to the noncommutative case, which we will be discussing shortly, is based on the analog of
correspondences for noncommutative spaces, which is given by bimodules.

3. Bimodules and a noncommutative functor of points

When we move from the commutative to the noncommutative world, the notion of functor of points as usually con-
structed in algebraic geometry is clearly inadequate. If R and S are noncommutative K-algebras, there are in general very
few algebra homomorphisms ¢ : R — S, hence defining a functor of points using Hompg, (R, S) gives very little informa-
tion. There are various ways in which noncommutative geometry has considered the problem of a good definition of points.
A widely used approach consists of replacing the notion of points as algebra homomorphisms with the notion of points as
extremal measures (delta measures supported on points in the classical commutative case). In noncommutative geometry,
this involves the notion of states on the algebra of functions. In the case of a complex involutive unital algebra Rc, a state
is a linear functional ¢ : Rc — C that is normalized ¢(1) =1 and satisfies a positivity condition ¢(a*a) > 0 for all a € Rc.
These two properties generalize to the noncommutative setting the notion of a measure. In contrast to the set of algebra
homomorphisms, which tends to be too small in the noncommutative case, the set of extremal points of the convex set
of states tends to be too large, but this problem is usually cured by introducing additional requirement, for example only
considering special states that are equilibrium (KMS) states for a dynamical evolution of the noncommutative algebra. This
approach was successfully used in applications of noncommutative geometry to number-theoretic settings, see for instance
Chapters 3 and 4 of [9]. However, this is not the main viewpoint that we want to consider in this paper.

We want to highlight here the idea that the category of sets is not a good category in which to formulate a notion of
points for noncommutative spaces. There are many instances in modern mathematics where it is clear that categories are
a natural replacement for sets. Thus, we consider the possibility of a functor of points with values in the category of small
categories.

3.1. Bimodules, 2-categories, and a functor of points

Again we fix a field K, which we take to be a number field. As a category of algebras over K we consider the following.

Definition 3.1. Let N Ak denote the category with objects given by associative (not necessarily commutative) algebras R
over K and morphisms Homa/ 4, (R, S) given by bimodules rEs. The composition of morphisms is given by the tensor
product REs ®s sFt =: rRF o ET.

The associativity of the tensor product of bimodules can be seen in the following way. Given Eq, E, E3, with E; an
Ri_1 — R; module, the tensor product E = E1 ®g, E2 ®g, E3 is an Rg — R3 bimodule with a multilinear map w : E1 x E3 x
E3 — E from the underlying product of sets that is K-linear in each variable and satisfies agu(e1, e2, €3) = (ages, €2, €3),
u(er, ez, e3)as = [u(eq, ez, e3as), p(eiar, ez, e3) = u(er, arez, e3), (e, e2az, e3) = ju(eq, ez, azes), for all a; € R; and e; € E;.
The map p determines uniquely maps w1 : (E1 ®g, E2) x E3 — E and uy : E1 x (E2 ®g, E3) — E and is in turn uniquely
determined by each of them.

Remark 3.2. Since R — S bimodules form a category, the Hom s 4, (R, S) are categories, hence N Ax is a category enriched
over categories, that is, a strict 2-category.

We then propose the following definition of functor of points for noncommutative spaces. Let Cat denote the category
of small categories. This is also a 2-category with objects that are small categories, morphisms that are functors, and 2-
morphisms that are natural transformations.
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The category gBs of R — S bimodules is not in itself a small category. Indeed, even for the simplest case with R =S =K,
any set Z gives rise to a bimodule KZ, so the category is as large as the category of sets. In the following we need to work
with small categories, so we will impose some restrictions on the categories of bimodules, that are natural in our context,
as follows.

Remark 3.3. In the following, when we refer to “the category gr3s of R — S bimodules”, we always mean a small category
of finitely generated bimodules.

Lemma 3.4. For R an associative (noncommutative) algebra over K, let wg : N'Ag — Cat be the functor that assigns to an object S
in N Ax the category gBs of R — S bimodules. A morphism s, Fs, € Homps 4, (S1, S2) is mapped to the functor F : gBs, — grBs,
that sends REs, — rEs, ®s, s, Fs,. Then mg is a 2-functor.

Proof. Recall that in order for 7 : N A — Cat to be a 2-functor, it must be an assignment of O-cells (objects), 1-cells,
and 2-cells in N A to those in Cat that strictly preserves identity 1-cells, identity 2-cells, vertical compositions of 2-cells,
and horizontal compositions of 1-cells and of 2-cells [20].

e For O-cells S in N A, mg assigns the category gBs of R — S bimodules;

e For 1-cells s, Fs, € Homar 45 (51, S2), g assigns the functor F : gBs, — grBs, that sends rEs, = REs; ®s; s, Fs,;

e For 2-cells f:s,Fs, — SIF/sz in N A, g assigns the following natural transformation 7 : F — F’, defined for any
REs, € RBs,. e € REs, and m; € 5, Fs,

NREs, (Zei ® mi) = Zei ® f(mj)
i i
This is a natural transformation since for any bimodule homomorphism g : REs, — RE’SI,

F'(g) omzes, (D_ei@mi) =F'(g)() e ® f(my)
=D _g(en® fm)
= TREy, (Zg(ei) ®m;)

=1ley, 0 F@(D_ei@mi)

1

e 7Tk preserves identity 1-cells since for any 0-cell S in N Ak, 7 takes its identity 1-cell sSs to the functor S : gBs —
rBs that sends rEs +— rEs ®s sSs. Since rEs ®s sSs = rEs, the functor S: gBs — rBs is the identity functor of g Bs;

e 7y preserves identity 2-cells since any identity bimodule homomorphism f : s, Fs, — 5,Fs, is sent to the natural
transformation 7 : F — F, defined for any rEs, € gBs,, i € REs, and m; € 5, Fs,

nees, (Y _ei®@mi) =Y e ® f(m)
=) ei®@m

which is precisely an identity natural transformation since it maps each object rEs, of rBs, to the identity morphism
idr (s, in RBs,;
e For any two composable bimodules s, Fs,, s,Gs,,
7TR(s, F 0 Gsy) = 7R (s, Fs, ®s, 5,G5s3)
= ®S] S1 FSZ ®52 52G53
= (_ ®S1 S1 FSz) o (_ ®52 52653)
=7Rr(s, Fs,) o R (s,Gss)

showing that mg preserves the horizontal compositions of 1-cells;
e For two vertically composable bimodule homomorphisms f :s,Fs, = 5,Gs, and g :s,Gs, — s,Hs, in N Ak, and
REs, € RBs,. e € REs, and m; € 5, Fs,
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Tr(g 0 ees, (Y ei®@mi) =) ei®(go f)(mi)
i i
= TR(&)sEs, (Y€ ® f(my))
i
= (r(8) o TR(/))gEs, (Y _ei @ m;)
i

e Finally, for two horizontally composable bimodule homomorphisms f : s, Fs, — s, F/S2 and g :5,Gs; — 526’53, and
REs, € RBs,, €i € REsy, mi € 5, Fs,, nj € 5,Gs3,

TR(f ® Qyrs, (Y _ei@mi@n)=> e ® f(m;) ® g(ny)
=7R(ees, (Y ei @m;i ® g(ny))

= (r(f) o MR()yEs, (D _ei®@mi@ni) O

1

The previous result motivates the following definition.

Definition 3.5. Let X} denote the noncommutative space determined by the algebra R over K. We define the noncommu-
tative functor of points by setting X}°(S) := rBs for any K-algebra S.

Thus, the S-points X3°(S) of the noncommutative space X3 form a 2-category rather than a set and consist of all R — S
bimodules.

Thus, we consider XQC(S) = pBs to be our kinematic space for noncommutative sigma models, where the noncommuta-
tive space X§ is the (fixed) target space of the sigma model and the noncommutative space determined by the algebra S
is the (variable) source space of the sigma model.

The next step is then to make these spaces dynamical by assigning an action functional that generalizes the height action
functional we have been discussing in the previous section.

4. The case of finite dimensional algebras

Before discussing the general problem of how to obtain an action functional on our noncommutative “functor of points”
XE (S) = rBs, we focus on the simpler case of finite dimensional algebras.

It is convenient to adopt the viewpoint of Arakelov geometry in a noncommutative setting, [6,7]. Consider a finite dimen-
sional semisimple algebras A over a number field K. In the case where A is a division algebra, the construction of a height
function for free submodules of A" was obtained in [31], generalizing the commutative construction of heights of subspaces
of a vector space over a number field using volumes of Euclidean lattices (see [51]). If A is not a division algebra, then it
has zero-divisors, and this prevents the usual construction of valuations. This case is analyzed in [6], where a different way
of defining a height function hp (V) of a free submodule of A" is introduced, which for division algebras agrees up to a
scale factor with the height defined in [31].

The general structure of finite dimensional algebras is analyzed in [16]. For our purposes, we consider the case of semi-
simple algebras, since these algebras can be viewed as sums of simple algebras, and this naturally generalizes to the number
field case the much simpler complex case where one deals with sums of matrix algebras. Indeed, every simple algebra is
isomorphic to a matrix algebra M, (D) over some division algebra D over K.

We show here how to adapt in our setting this approach to associate an action functional defined on our X} (S) = rBs,
in the case where both R and S are semisimple finite dimensional algebras over a number field K.

4.1. Noncommutative arithmetic curves

In arithmetic geometry, an arithmetic (affine) curve is Spec(Ox), for a number field K with ring of integers Ok.
The curve is “compactified” by adding to Spec(O) the “primes at infinity”, that is, the n embeddings o : K «— C for
n=[K:Q]=deg(K) the degree of the number field. Heuristically, one thinks of an arithmetic curve Spec(Ox) as having
at each finite place g in Spec(Ox) a copy of the corresponding residue field F; = O /. (At the archimedean places these
should be replaced by a more mysterious object 1, which has many different mathematical incarnations, [33,38].)

In noncommutative algebraic geometry there is a similar notion of an arithmetic noncommutative curve, see [6], which
we review briefly here.
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Definition 4.1. A full O -lattice A in a semisimple finite dimensional algebra A over a number field K is a finitely gener-
ated torsion free O -module with the property that KA = A as K-vector spaces.

Definition 4.2. Given a semisimple finite dimensional algebra A over a number field K, an O -order O4 in A is a subring
of A such that Q4 is a full O -lattice in A.

For a noncommutative ring B, one can define Spec(B) as in [6] as the set of prime ideals of B, defined as proper nonzero
two-sided ideals g in B such that aBb ¢ e for all a,b € B \ g.

A notion of arithmetic noncommutative curve is then provided by Spec(Q4) where Oy is an O -order in A. The reason
why it makes sense to consider this a noncommutative arithmetic curve lies in the fact that the prime ideals g in Spec(O4)
are maximal two-sided ideas of O4 and the quotients O4/g are simple algebras hence isomorphic to some matrix algebra
My, (D) over some division algebra Dy,. Thus, this construction replaces the commutative objects IFq attached to the places
g of Spec(OK) in a classical (commutative) arithmetic curve, with the noncommutative objects M, (D) attached to the
places g of the noncommutative curve Spec(Qa).

While this point of view is very helpful, it is slightly different from the one we will be following here, since it is still
based on taking two-sided ideals g, related to a classical notion of points. We will however, keep this main idea in mind in
framing our setting, while adapting it to our notion of points described in the previous section.

Before developing our setting, we recall a few more aspects of the theory of noncommutative arithmetic curves, as
developed by Borek in [6], which will be useful in our setting as well, in particular some notions of height that we will be
adapting to our setting in the next subsections.

For a semisimple finite dimensional algebra A over a number field K, we write Ag := A®q@ R and Ay :=GL;(AR) for
the group of units (multiplicatively invertible elements) in AR.

Remark 4.3. Note that here, as in [6], we are taking the tensor product over Q, not over K, hence the number field K is
not assumed to have a real embedding, and even when there is a 0 : K < R, the algebra Ar considered here is not the
same as the algebra A, = A ®k » R.

For a Ok -order Q4 in A, we also write J(Oy,) for the set of full left-O4-ideals in A. These are left O4-modules that
are full O -lattices. For a full left- Ox-ideal a in A there is an r € Ok such that ar C O, is a left-ideal in Q4. The set of
complete O4-ideals is j(OA) =TJ(Opn) x Aﬂxg. We write complete O4-ideals as @ = (a, ax) € J(O4) x Ary, as in [6]. For
ae J(Op) one takes

 #Oafar)
N@ = 4 On/Oan)

This is independent of the choice of an r € Ok for which ar is a left-ideal in Q4. As shown in Theorem 1 of [6], the
norm N '(a) of (4.1) has an equivalent expression as product over the prime ideals g in Spec(QO4). The “absolute norm”
N (a) is given by the product of N (a) and a contribution of the archimedean component as, given by | N Ag IR (ac0) | where
Nag R is the norm map from Agr to R. (In general, given a finite dimensional algebra B over a field F an element x € B
acts by left multiplication defining an F-endomorphism of B. The norm Ngjf : B — F is the multiplicative map given by
Npr(x) = det(x), the determinant of the resulting F-linear transformation.)

One can also define a volume vol(a) := vol(ay j(a)), where j: A — Ar maps a to a Z-lattice j(a) in Ag with Rj(a) =
AR, and the volume of the lattice a.,j(a) is the volume of its fundamental domain in the measure defined by the norm
associated to the bilinear form Ag x Ag — R determined by the trace (x, y) = Trag R (xy). This is related to the absolute
norm by vol(a) = N (a) vol(Oy,), see §4 of [6]. We will discuss more generally in §4.7 and §4.8 the assignment of a volume
to a normed space and notions of volume we will be using in the construction of height functions.

The last notions that we need to recall from the Arakelov geometry of noncommutative curves of [6] is arithmetic vector
bundles and the associated arithmetic degree map. Again, the notion of arithmetic vector bundle that we will be using is
slightly different from the one used in [6] that we recall here, but it is closely related.

(41)

Definition 4.4. Let K be a number field and A a semisimple finite dimensional algebra over K, with 04 an order in A.
Let £ be a left O4-module. Let o be an archimedean place of K and let K, be either R or C, with the corresponding
embedding o : K — Ky, and let Ay =K, ®k A and & = As ®o, £. A hermitian structure h on £ is a s-hermitian
bilinear form h: &, x £, — Ay such that Try |k, oh: & x & — Kg, (X, ) = Trp, Kk, (h(x, y)) is positive definite.

Such hermitian metrics can be constructed in the following way, [6]. The verification of the following statement is
immediate and we omit it.

Lemma 4.5. The choice of a collection of elements 8; € AJ, fori =1, ..., n determines a hermitian structure on the free module A%
by setting h(x, y) =) _; xii ;' y}. By restriction, it determines a hermitian structure on a projective A -module that is a summand of
the free module A7,
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In more physical terms, we can regard o; = 8;8; as a “density matrix” and Tra, |k, o h(x,y) =Tr(y*xp) as the state
associated to this density matrix.

Definition 4.6. Let £ be a finite projective left A-module. For ¢ an archimedean place of K, a hermitian structure h :
Es x & — Ky is said to be “standard” if it is the restriction of a hermitian form as in Lemma 4.5 on A}, for an embedding
ja: & — Al realizing & as a summand of a free module.

It is shown in [6] that all hermitian structures h: Agx x Ag — AR on a real semisimple finite dimensional algebra are
of the standard form h: (x, y) — xB8*y* as above. The standard hermitian structures will be sufficient for our purposes, so
we will limit some of the arguments to this case.

An arithmetic vector bundle over the noncommutative arithmetic curve Spec(Q,) is defined in [6] as a pair (£, h), where
£ is a left O4-module that is also an Ok -lattice, such that A ®o, £ is a free A-module, and h is a hermitian structure
h:Er x Er — AR on Er = AR ®o, €. Our notion of arithmetic vector bundle is discussed in Definition 4.7 below.

The Grothendieck group Ko(Spec(Qy)) of arithmetic vector bundles of [6] over the noncommutative arithmetic curve
Spec(Oy) is generated by isomorphism classes of (£, h), where isomorphism is given by isomorphisms of left O4-modules
that preserve the hermitian structure, modulo the relations [(£, h)] = [(§',h)] + [(£”,h")] for short exact sequences 0 —
& — & — & — 0 of Oq-modules such that the sequence 0 — é’ﬁg - ER — Sﬁ% — 0 splits orthogonally, that is, with
Eﬁé = (<€]’R)L the orthogonal with respect to the hermitian structure.

Complete Og-ideals a € j (O4) determine hermitian line bundles L(a) that generate the Grothendieck group
Ko(Spec(O4)). The degree map

degp, (£(a)) := —log NV ()

extends uniquely to a degree map on Ko(Spec(O4)).

Finally, we recall the notion of height used in the Arakelov geometry of noncommutative curves, [6]. Let h, denote
the hermitian metric on A, given by hy : ((1,...,XN), (¥1,..., ¥N)) = > ;X{y;. For a free A-submodule V' of A" the
logarithmic height is defined as

ho,(V) =logHp, (V) :=—degp, (VN 0%, hp).
By the relation of the norm to the volume, the height can be further identified with

vol(V N OY)

Ho,(V) = Vol(O)rank(»)’

(4.2)

where the volume in Ap, is defined by the norm associated to the quadratic form Trpg R © hp. This generalizes to the
noncommutative setting the height of [51]. In the case of division algebras it agrees (up to scaling factor given by the
degree [K : Q]) with the height of [30-32]. Here the hypotheses that an arithmetic vector bundle is a free A-module as
well as an O -lattice, assumed in [6] are used in defining the volume of VN O} and the rank of V. We will discuss how
this definition of height adapts to our setting in the next subsections.

4.2. Free modules versus finite projective modules

The notion of arithmetic vector bundle over a noncommutative arithmetic curve, that we recalled above from [6], in-
cludes the requirement that the left O4-module £ satisfies the property that A®p, £ is a free A-module.

It would seem more natural, if we want to regard £ as a vector bundle, to relax this requirement and only require that
A®op, £ is a finite projective A-module. As we see in the following, in our setting based on bimodules, this less restrictive
condition will allow us to include some very natural families of bimodules that we certainly want to include in our counting
of “points” over our noncommutative arithmetic spaces.

Thus, in our setting, we give the following slightly different definition of an arithmetic vector bundle.

Definition 4.7. Let A be a semisimple finite dimensional algebra over a number field K and let O4 be an order in A. A left
arithmetic (A, Oa)-vector bundle (£, h) is a finitely generated left O4-module, together with the assignment h = (hy), for
all archimedean places o of K, of a hermitian structure h: &, x £ — Aq.

Since A is a semisimple finite dimensional algebra, the finitely generated A-module A ® o, £ is finite projective (see
also Remark 4.10 below).
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4.3. Functor of points on finite dimensional algebras

We now adapt the notions developed in the Arakelov geometry of noncommutative arithmetic curves in [6] to our
setting.

Let A be a semisimple finite dimensional algebra over a number field K. Let o : K < C be an embedding (either real or
complex), that is, an archimedean place of K. We can associate to A and o a real or complex algebra A; = A®Kk » R for a
real embedding and A; = A ®k » C for a complex embedding. Assuming A = @®; My, (D;) where the simple summands are
matrix algebras of rank n; over a division algebra D; over K, we can similarly decompose A, = @;M;;, (C) in the complex
case and Ay, = &M, (R) ®; M (C) & My, (H) for the real case, where H is the division algebra of quaternions.

Definition 4.8. An arithmetic structure on a semisimple finite dimensional algebra A over a number field K is the choice
of an Ok -order O4 in A. Given two such choices (A, O4) and (B, Op), we define the category of arithmetic hermitian
bimodules (4,0,)H B,0,) With objects the pairs (£, h) where £ is an O4 — Op bimodule, such that A®e, £ and £ ®¢, B
are finite projective as A-module and B-module, respectively. Moreover, for any archimedean place o of K the bimodule
& =As ®0, £ ®0; By is endowed with a pair of hermitian structures h = (ha, hg) with ha : & x & — Ay and hp :
s x & — By with the following properties

e For all a € A, the identities ha(ax, y) =aha(x, y) and ha(x,ay) =ha(x, y)a* hold for all (x,y) € &, x &5.

e For all x € & the element ha(x, x) is a positive element in A, (that is, an element of the form g*8 for some 8 € A,
and ha(x,x) =0 iff x=0.

e For all b € By, the identities hg(x, yb) = hg(x, y)b and hg(xb, y) = b* hg(x, ¥) hold for all (x, y) € E; x Es.

e For all x € &; the element hp(x, x) is a positive element in B, and hp(x,x) =0 iff x=0.

Morphisms ¢ : (£, ha, hg) — (€', h;, h) are morphisms ¢ : £ — £’ of O4 —Op bimodules such that the induced morphisms
b : Ec — & satisfy W (96 (%), ¢5 (¥)) =ha(x, y) and h(do (X), o (¥)) =hp(x, ¥).

Definition 4.9. Consider an arithmetic structure on a semisimple finite dimensional algebra A over a number field K as
in Definition 4.8. A strong arithmetic hermitian bimodule (£, h) is an object of (4,0, H (B, 0y as in Definition 4.8 with the
additional properties that £ is also left-right O -lattice, such that A ®p, £ is a free A-module and £ ®p, B is a free
B-module.

Definition 4.9 more closely matches the notion of arithmetic vector bundles used in [6]. We prefer here to consider the
more general class of bimodules of Definition 4.8.

Remark 4.10. The condition that A ®p, £ and £ ®@, B are finite projective modules in Definition 4.8 is automatically
satisfied since A and B are semisimple algebras ([28], Theorem 2.8 and Corollary 3.7).

Given such a choice of a pair (A, O4), and another (B, Op), we define as in the previous section the noncommutative
functor of points X'& OA)(B, Op) (the (B, Op)-“points” of the noncommutative space defined by (A, O4)) to be the category
of hermitian bimodules defined as above,

X{h.00) (B, O8) := (a.0)H(B.0p)-
We refer here to arithmetic vector bundles over Spec(Oy4) as left arithmetic vector bundles and we similarly define right
arithmetic vector bundles (£, h) in the same way but with £ a right O4-module.

4.4. Hermitian structures on bimodules

We discuss here some explicit construction of hermitian structures on bimodules between semisimple finite dimensional
algebras, which will be useful later in the construction of the height function.

Lemma 4.11. As above, let (A, O,) and (B, Op) be pairs of semisimple finite dimensional algebras over a number field K and orders.
Let (Ea, hi") be a left arithmetic (A, Oa)-vector bundle and let (Ep, h‘;‘*) be a right arithmetic (B, Og)-vector bundle, where the her-
mitian structures are standard as in Definition 4.6. Then £ = £4 ® Ep is an arithmetic hermitian bimodule with standard hermitian
structures.

Proof. £ = &4 Qi Ep is a hermitian bimodule if it satisfies all the conditions in Definition 4.8. Given that (£4,h4) and
(€, hp) are left and right arithmetic vector bundles, respectively, then £ = &4 Q@ Ep is an O4 — Op bimodule. As noted in
Remark 4.10, the condition that A ®o, £ and £ ®, B are finite projective modules is automatically satisfied.

10



A. Lima and M. Marcolli Journal of Geometry and Physics 169 (2021) 104337

For any archimedean place o of K, one needs to show that the bimodule &; := A; ®0, £ ®, Bs can be endowed with
a pair of hermitian structures h = (ha, hg) with hy : £ x & — Ay and hp : & x E; — By satisfying all the conditions in
Definition 4.8.

Consider the given hermitian structure hi’* :€a.0 X Eae = As. We are assuming it is standard in the sense of Defini-
tion 4.6, hence we have:

e an integer n =ny € N such that £4 = A"e,4 for an idempotent e4 € M, (A)

e elements B4 € A%, fori=1,...,n such that hf/* x,y) = Z,-x,-ﬂA’,-ﬁ;‘Hy,- =:a(x, ¥)

e elements {u;} in €4 such that x =) ;x;u; and y =) ; yiu; with x; = a(x,u;) and y; = a(y,u;) and with (ea);j =
Alug, uj).

Consider & as a vector space over K, and for eachi=1,...,n let {v; ;},c 7 be a choice of a basis for &g as K-vector space.
Then the set {u; ® v; ¢} of elements of £4 ® £p has the property that § =, ;X Ui ® v, for x € £4 ®k &g, with the
Xi¢ € A.

One can then define hy on &; as follows. We write an element x € &; as above, with the x; , € A, and similarly for
y = Zi,e YieUi @ vi . With a slight abuse of notation we will still denote by 84 ; as above the diagonal matrix in M;(A)
with r =#] with B4; € A* on the diagonal. We can then define

ha(,y) =Y XiPaiBhyi =Y he . yo).
i ¢
where xiﬂA,iﬂj;Yiy;." = ves xi,lﬂA,i.M’ﬂf\,i,z,e/yiz/ and X :=) ;i Xi ¢Ui ® Vi, Ye = ; YieUi ® vi . The resulting hy con-
structed in this way is manifestly also a standard hermitian structure.
The construction of the hermitian structure hp is similarly obtained, using hg's, the hermitian metrics coming from the
arithmetic vector bundle £g. One defines hp : &, — B, by setting

hp(x.y) =Y x;Be By vi =Y h5 (xe. o).
j [

where Bg j € B* are the elements of the standard hermitian structure th, X= yer V;‘,l ® u’j xj ¢ with {V;ye}gez a basis of

Ea as a K-vector space and x; = (x;j,¢)¢ for fixed j and x, =}"; v;. ¢ ® u; xj¢ for fixed €. Due to the fact that hif* and h‘gB
are standard hermitian metrics, ha and hp also satisfy the conditions in Definition 4.8 and Definition 4.6.. O

4.5. A height function on hermitian bimodules

We now discuss how to introduce a height function on the hermitian bimodules in (4, 0,)H5,05), which we regard as
our action functional for weighting the bimodules, thought of as “maps” of a noncommutative sigma model with target a
noncommutative space X?fx,o,;) (which we can think of as another manifestation of the noncommutative arithmetic curve
Spec(Oj4)). We present here the general form the height function should take and we complete our definition of height
after a further discussion of norms and volumes in §4.7 and 4.8.

First observe that, in the case of a “strong” hermitian bimodule, in the sense of Definition 4.9, one can proceed as in
[6] to define a height function, as we recalled above, but taking into account the presence of two hermitian structures
h = (hy, hp).

For o an archimedean place of K, let K, :=R if ¢ is a real embedding and K, := C if it is a complex embedding.

Let voly, » denote a volume in A}, determined by the norm associated to the bilinear form Trp, [k, oha (see §4.7 below
for a discussion of volumes associated to norms.) Let V be a free A-submodule of A" of rank r4. We write the normalized
and non-normalized heights, respectively, as

volp, « VN OY)
VOlhA,U (OA)rA’U

The normalized height agrees with the height Hp, of [6] when hy is the standard hermitian metric h, and o is a real
embedding. Note, however, that we are working here with the algebra A, = A ®x K., with K, =R for a real embedding
o, rather than with the algebra Agr = A ®g R of [6], see Remark 4.3.

Hophpo(V) = and Ho, ny.0 (V) i=volp, (VN OY). (4.3)

Definition 4.12. Let (£, ha, hp) be a hermitian bimodule in (4, 0,)HB,0;), as in Definition 4.8. We define the normalized
and non-normalized heights of (£, ha, hp) as

_ H g H £
H(E, ha, hp) ::Hw and H(E, hp, hg) := I—IM

= , (4.4)
o Houhao(Ea) o Hoahao(En)

where o ranges over the archimedean places of K, with £4 = A ®0p, € and £ =€ @, B.

11
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In order to have a meaningful minimization problem for (4.4) one needs to minimize over classes of hermitian bimodules
with a fixed positive lower bound on I:I@A,hA,g (€£4) while minimizing over FI@B,hB,U. For modules of fixed rank, minimizing
with respect to the normalized or non-normalized height is the same.

In our setting we also want to consider a notion of relative height in the case of finite projective modules instead of free
modules, so that Definition 4.12 above can be applied to the more general class of hermitian bimodules of Definition 4.8
and not only to the strong ones.

4.6. The rank element

We will discuss more in detail how to obtain a suitable volume computation in §4.7 and §4.8. We discuss here the rank
ra in (4.3). Given a finite projective left module P over a unital noncommutative ring R, there is a notion of trace of an
endomorphism, and of rank element, given by the trace of the identity, [18]. Consider the identification

9 :PY ®r P = Homg(P, P),

with PY =Homg (P, R) and ¢ (1 ® x)(¥) = n(y)x. Also consider the morphism

7 :PY ® P — HHo(R) =R/[R,R],

with [R, R] the additive commutators subgroup of R and 7 (n ® x) = (x) mod [R, R].

Definition 4.13. Given a finite projective left module P over a unital noncommutative ring R, the trace of an endomorphism
f € Homg (P, P) is the element in HHg(R) obtained by setting Trg(f) := 7 (3~ 1(f)).

In the case where R = M,;(D) is a matrix algebra over a division algebra over a field K, an element X € M,(D) is in the
commutator [My(D), M, (D)] iff its trace is in [D, D]. Moreover (Corollary 13.6 of [28]) D is generated as a division algebra
by Z(D) and all the commutators in [D, D]. If D is central, Z(D) =K, then the trace elements can be seen as scalars in K.
More generally, the trace elements determine scalars in the field extension Z(D) of K. In particular, for f =id the identity,
Trr(id) =: rg(P) is the rank element of P. If P = Re with e an idempotent in R, then rg(P) is the class of e in HHg(R) and
it is independent of the choice of idempotent: if Ae >~ Ae’ >~ P then e ~ e’ in HHg(R), see [18] for this and more general
cases. This rank element is known as the Hattori-Stallings rank and the more general traces as in Definition 4.13 are usually
referred to as the Hattori-Stallings trace.

Thus, for our purposes, we summarize the above in the following statement.

Lemma 4.14. Let A be a semisimple finite dimensional algebra over a number field K and £ a finite projective (left) A-module (see
Remark 4.10). The rank element r4 =4 () is the class in HHo(A) = A/[A, A] given by the trace of the identity, Trg(id) =:r4(£). A
choice of an archimedean embedding o : K — C (or R) and a compatible embedding & of the extension I of K generated by the
centers Z(A;) of the simple components A; of A determine an associated rankra o =6 (ra) € C (or R).

Proof. The center Z(A) of a semisimple algebra is a finite direct product of field extensions of K, Z(A) = &;IL;, with
A =®iMy,(D;) and IL; = Z(D;) = HHo(Mp,(D;)). The rank element r4 € HHg(A) is then given by a collection of elements
rai € L;. Given an embedding o : K < C (or into R for a real place), let 6 : L. < C (or R) be an extension of o to an
embedding of the smallest extension I of K that contains all the ;. Then setting o (ra) :=) ;5 (ra,;) assigns a complex
(or real) number to the rank element r4 € HHo(A). O

4.7. Norms and volumes

There are different possible ways of associating to a finite dimensional normed space of dimension N a volume form (and
k-volume forms for k < N): some of these, such as Busemann volume, Holmes-Thompson volume, Gromov mass, etc. are
summarized in [1]. We discuss briefly the case of the Gromov mass, to illustrate what conditions need to be satisfied for a
good notion of volume.

Let (V.| - ||) be a normed space of dimension N. The Gromov N-mass is defined as a function uy : ANV — R,

N
pn@ :=inf{[ TIvil lvi A+ Avy=a).

i=1

In order to define in a similar way k-volumes for k < N =dimV, let AKXV c AKXV be the subset consisting of the
“simple” k-vectors, that is, those of the form vi A --- A vy, with v; € V. In order to define a k-volume, it suffices to assign

12
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a volume to elements of AXV. Thus, one defines a k-volume as a homogeneous continuous function w : AKV — R with
Us(Aa) = |A| us(a) for A € R*. The analog of the Gromov mass wuy is given by

k
(@) :=inf(] Tlvill [vi A+ Avie=a).
i=1

In this notion of k-volumes, the constrained optimization of the norms is designed to avoid redundancies that would
make the norm unnecessarily large, such as adding to a vector in a basis a large multiple of another basis vector, and also
to avoid changes to the norm due to an arbitrary scaling of a basis. The problem simplifies if the normed vector space V is
endowed with a more rigid structure, given by the choice of a lattice V C V. In this case, if we want to assign k-volumes
to elements of A’S‘VZ, we can choose a different form of optimization of the norms by a priori selecting a “shortest basis”
{v1,..., vy} for the lattice V5. One can then define

k
iy A Avi) =[] v (45)
=1

for the basis elements {vj; A--- A v;,} of the Z-module A¥V . The shortest basis for a lattice is the basis with the smallest
possible orthogonality defect

[T lvil
S({vi) = —F———, 46
(vih =" (46)
where d(Vy) is the lattice constant, which is equal to det(B), the determinant of the matrix B = (vq, ..., vy) formed by

the vectors v;, in the case where Vy is of rank N. For rank k < N, one can still define the defect in the same way with
d(Vyz) = +/det(B*B), which measures the Euclidean k-volume of the fundamental parallelepiped determined by the basis
{vi}. The defect is therefore the ratio between the volume defined as in pk(vi, A--- Avj,) and the Euclidean volume, and
i is computed on the choice of basis where this discrepancy is as small as possible. A lattice reduction algorithm that
approximates the shortest basis for a lattice is developed in [29].

Note that the quantity d(Vy) = +/det(B*B) has itself an interpretation in terms of heights, since it is the archimedean
part of the height of the matrix B seen as a point in a Grassmannian, see Remark 2.8.7 of [5].

Definition 4.15. Let A C V be a lattice of rank k inside a K-vector space of dimension N > k, namely a finitely generated

torsion free O -module such that KA spans a k-dimensional subspace of V. Given a norm || - || on V, the k-volume of A
is
k
Vol (A) == (v A= Avi) =] T lIvell. (47)
=1
where {vq,..., v¢} is a shortest basis for A.

Lemma 4.16. Let (A, O4) be a pair of a semisimple finite dimensional algebra A over a number field K and an order Q4. Let o be an
archimedean place of K with K, equal to R or C for real and complex places, respectively and let hs : Ay x A — Ao be a hermitian
structure. Let € be a (left) O s-module. The notion of volume of lattices of Definition 4.15 and the rank element r4(€) of Lemma 4.14
determine the quantity vol, o (Oa)" of (4.3).

Proof. As shown in [6] all hermitian structures on A, = A ® x K, are standard in the sense of Definition 4.6, hence there
is an element 8 € A* such that ha(x, y) = x**By, and ha(x, x) is a positive element for all x € A,. Thus, we have ||x|? :=
Tr(ha(x,x)) > 0 for all x € A,. By Definition 4.2, an order Q4 in A is a O -lattice with KO, = A as a K-vector space,
hence the norm determined by h, also determines a volume, as in (4.7), of the lattice O4 with k = dim A, the dimension
as K-vector space. With r4 o =& (ra(€)) as in Lemma 4.14, we then obtain the expression in (4.3) that generalizes to our
setting the height function (4.2) used in [6]. O

We will see in the following how to obtain also a good definition of the volumes voly, (£ N OY), suitable for extending
the definition of the height function as in (4.3) to our notion of arithmetic vector bundles.

4.8. Volumes, traces and heights

We look here more explicitly at the height function defined in (4.4) by writing more explicitly the traces and volume
forms on the bimodules. We will assume here that hermitian structures as standard as in Definition 4.6.
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Proposition 4.17. Consider algebras of the form
A=®iMy,(D;) and B= @ijj(D’j)

where Dj, D/j are division algebras over the number field K. We also assume that an order O4 (respectively, Op) has been chosen.
Let € be an O 4-Op bimodule. For every choice of a (standard) hermitian structure (ha, hg) and archimedean place o of K, there are
associated volumes voly, - (ja(€) N OZA) and voly, o (j(E) N (’)g’*), where ja: E — A™ and jp : £ — B"S realize the projective
A-module (respectively, B-module) as a summand of a free module.

Proof. For semisimple algebras all left (respectively, right) modules are semisimple ([28], Theorem 2.5), hence we can
consider A-B bimodules that are of the form
£=a;;Dj" @ ;™M (4.8)
with the obvious left and right action of the respective matrix algebras.
Standard hermitian structures hy : £ x £ — A and hp : £ x £ — B are obtained as follows.
A choice of elements B4 ; € My, (D)™ and Bp j € Mmj(D})X determines hermitian forms hga ; : D?" X D?" — D; and hp ; :
D/jmf X D;.mi — Dj; by

hai(x, y) :==xBaifp;y" and hg j(u,v):=u"By ;s jv

where x = (x1, ..., Xp;) in D?i (as a column vector) with x* the transpose (row vector) (x7,...,x;), and similarly for hp ;.
These extend similarly to hermitian forms hy ; : D?"N" X D?’Nf — Dj and hp ;: D/jmef X D’jmef — D’j.

Here we are using the notation * both for an involution on M,(D) and for an involution on D, assuming compatible
involutions on both. For example, if M,(D) is a central simple algebra, then it admits an involution that is the identity on
the field K (involution of the first kind) iff the division algebra D admits such an involution, with the involution on M, (D)
given by the involution on D applied to all entries, combined with matrix transposition.

These hermitian structures on the D?"Ni and D}mef determine hermitian structures hy :E x & —- Aand hg: ExE — B
as shown in Lemma 4.11. In turn, for any archimedean place o of K, these hermitian forms determine hermitian structures
hg: & x & — Ay, and similarly for hp.

Let {e;x} denote a basis of D?iNi as a left Mp,(D;)-module and similarly let {e}yk,} denote a basis of D;mef as a right
Mmj(D/j)—module. Let {V’M,} be a basis of D;.””Mf as a K-vector space and {v; ¢} be a basis of D?"N" as a K-vector space,
so that, as in Lemma 4.11, we can consider u; j. ¢ = €j ® V;‘,z/ and u;,j;e,k’ =Vi(® e/j’k, as bases, respectively, of £ as a
left A-module and as a right B-module, so that we can write elements & € £ in the form & = Z,-Y]»’kj, i, j:k,e' Ui, j:k,er With
aj j:k,¢ € Mp;(D;) or in the form & = Zi,j,e,k’ u;’j:(’k,bi’j;g,kf with b; j.o v € Mmj(D;.).

Since £ is a finite projective module, both as a left A-module and as a right B-module (see Remark 4.10), we can
use a choice of bases to determine embeddings ja : £ < A" and jp: & < B"8, which realizes £ as £ ~ (’)Z’* es4 with
an idemponent e4 € My, (A) with components (e4);; determined by the basis elements, and similarly for the B-module
structure.

If the bimodule £ is arithmetic, namely it is obtained as an A-B bimodule by change of coefficients £ = A®p, Eo ®o, B
from an O4-Op bimodule £p, then it is possible to choose the bases in such a way that they are in £, with the {e; } and
{e/jyk,} giving O and Op bases, respectively, and the {v;,} and {V/j,e’} bases of Ok -lattices, so that the resulting {u; j.x ¢}
and {u; j.x ¢} give bases of £p as a left and right O4 and Op module, respectively. Let 13, 5" denote the set of all such
bases and let umin, ”;nm be shortest basis

8(umin) = inf S(u) and  S(upyy) = inf S,

with § as in (4.6), where the norm | - || = Tr(ha(-, -))'/? (or hg, respectively) and the lattice constant d is computed as the
Euclidean volume as Z-lattices.

We can then consider ja(Ep) N OZ’* and jp(Ep) N OZB. These can be viewed as O4-module (respectively, Op-module)
and as O -modules. Let ka, kg denote, respectively, their ranks as O -modules.

We can then assign a volume to ja(Ep) N OZA and jp(Ep) N OZB as in (4.7), computed with respect to a shortest basis,
in the sense discussed above. O

Thus, we obtain a well defined height functions

voly, o (ja(€) NOY)
voly, o (0p)7 )

volp, 5 (jB(E) N OFF)
volp, o (Op)7 8)

Hoy o (€)= and  Hoy ngo(€) = (4.9)
that can be used in the height function of Definition 4.12.
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4.9. Multiplicative property

The issue here is that, while the height function (4.9) assigns to bimodules an “energy” as we want, it only sees bimod-
ules as forming a set, while we also want to keep track of the structure of our functor of points as a category. This means
that we want a height function that is in a natural way compatible with the composition operation given by the tensor
product of bimodules, while still being based on an appropriate notion of volumes. To obtain a simple setting that satisfies
this property, we will restrict the class of bimodules and the choice of basis used to compute the height.

Arithmetic hermitian bimodules behave in the following way under tensor product.

Lemma 4.18. The tensor product (£, ha, hc) in (4,0, Hc,0c) of arithmetic hermitian bimodules (€', h',, h) in (a0, H(B,05) and
(&7, hg, Q) in (3, 0nH(c,0c) is given by € = £’ @, £” with the hermitian structures

ha @x",y' ®y") :=hy(hp", y"). ¥")

he @x",y' ®y") :=h¢ X" hg (X, y) y").
Proof. To prove this Lemma, one needs to show that (€, ha, hc) satisfies all the properties of Definition 4.8. By construction,
E=E"®p, " is an Oy — O¢ bimodule since £’ is an O4-left module and £” is an O¢-right module, and those two actions
are compatible. In addition, Remark 4.10 implies that A®o, £ and £®¢, C are finite projective as A-module and C-module,
respectively.

For any archimedean place o of K, one needs to show that the bimodule & := A; ®0, £ ®. C; endowed with the

pair of hermitian structures h = (ha, hp), as defined above, with ha : & x & — As and hce : E; x E; — C, satisfying all
the conditions in Definition 4.8:

e Forallac Ay and (¥ ® X",y ® y”) € &, the identities

hataX ®X"),y' ® y") =hy@x' hzx", y"), y")
=ahy X hg(x",y"). y)
— ahA(x’ ®XN, y/ Q y//)

and

haX' @ X", a(y' ® y")) = hy (X hp(x", y"), ay")
= My HE ("), y) @
=haX X",y ®y")a*
where the second last equalities hold since h’; satisfies conditions in Definition 4.8.
e For all ¥ ® x" € &, the element ha(x' ® X", ¥ ® x”) is a positive element in A, since there is a g € BS such that
hatx @ X", X @ X"y =W, (x' h(x",x"), %)
=h, (X' X" BpPpx"". X))
=hj (X' x"Bp. X'x"Bp)

and h', (x' x"Bp, X'x" Bg) is positive element in A, given that h/, satisfies condition in Definition 4.8.

And similarly reasoning holds for h¢, finishing the proof. O

Let A be a semisimple finite dimensional algebra over a number field K. Then by Wedderburn theorem A = @®; My, (D;)
with division algebras D; over K. The center Z(A) is then a direct sum of number fields IL; that contain K.

Definition 4.19. Let A (Z) denote the set of all semisimple finite dimensional algebras A over K such that Z(A) ~ Z with
Z a fixed Z = @;LL;. Let H(K, Z) denote the set of A-B bimodules £ satisfying the following properties

e The algebras A, B are in Ak (Z);

e £ is an arithmetic (A, O4)-(B, Op) hermitian bimodule, for some order Q4 in A and Op in B, with hermitian structures
(ha,hg);

e There are bases {x;} and {y;} of £ as a left A-module and a right B-module respectively, with the property that
ha(xi,x;) € Z and hp(yj, yj) € Z;

e As a Z-Z bimodule £ is a symmetric bimodule, namely A& =&A for all £ € £ and all 1 € Z.
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Let B4(£) and Bp(€) be, respectively, the set of all bases {x;} and bases {y;} that satisfy the condition above that ha (x;, x;) €
Z and hp(yj, yj) € Z and such that x;, y; € £o, for all i, j.

Note that the sum ) ; ha(x;, x;) is the trace of the identity endomorphism and is in Z (identified with HHq(A)) for an
arbitrary choice of basis, and similarly for Z]- hg(yj, y;). The condition that h4(x;,x;) € Z and hg(yj, y;) € Z is verified, for
instance when £ = A™ p, for a projector p € My, (Z(A)) with diagonal and similarly £ = p’B"8 with p’ € My, (Z(B)).

We can then considered a 2-category H (K, Z) as follows. Note that, in Definition 4.19 we used the notation H(K, Z)
for what is the class of arrows of the category that we are now going to introduce. We will maintain, in Lemma 4.20 below,
the same notation H (K, Z) for the category itself, since it is common use to identify a category with its class of arrows.

Lemma 4.20. Let K be a number field and let Z = &;IL; be a given sum of number field extensions IL; of K. The following data form
a 2-category H(K, Z):

e Objects: pairs (A, Op) of a semisimple finite dimensional algebra A in Ak (Z) with a O -order O4 in A;
e 1-morphisms Mor((A, O4), (B, Op)): arithmetic (A, Oa)-(B, Op) hermitian bimodules (£, ha, hg) with £ in H(K, Z);
e compositions of 1-morphisms (£, h'y, hYy) and (F, Y, h{) is

(&' ®p E", ha,he),

with hy, he as in Lemma 4.18;

e 2-morphisms: morphisms ¢ : (£, ha, hg) — &, ha, hB) of hermitian bimodules, namely morphisms of bimodules that preserve
the hermitian forms, ha(¢ (x), ¢ (y)) =ha(x, y) and hB((/) (%), (¥)) =hp(x, y), with the property that of {x;} and {y ;} are bases
of E ha(xi, X)) € Zand hg(y;, yj) € Z, then {¢(x;)} and {¢(y )} can be completed to bases of F with the same property;

e horizontal composition: tensor product of morphisms of hermitian bimodules

e vertical composition: composition of morphisms of bimodules.

Proof. If {x;} and {y;} are bases of £ as left A-module and a right B-module, satisfying h’, (x;, x;) € Z and h};(y;, yj) € Z,
and {u¢} and {vy} are bases of F as a left B-module and a right C-module, also satisfying h (u¢, u¢) € Z and h{(vy, vi) € Z,
then {x; ® u,} and {y; ® v} are bases for £ ®p F as a left A-module and a right C-module satisfying

ha(xi ® ug, X ® ug) = h)y (xihg (Ui, up), x;) = hg (Ui, uph'y (xi, x;) € Z, (4.10)

where the second equality uses the symmetric property of £ as a Z-Z bimodule, and similarly

he(¥j® Vi, ¥j ® Vi) = hi (v, h(¥j. ¥ j)Vk) = h¢ (vi, viohg (¥, ¥j) € Z, (411)

similarly using the symmetry of F as Z-Z bimodule. The product £ ®p F is also symmetric as Z-Z bimodule. Thus,
composition of 1-morphisms is well defined in H(K, Z). The properties of the vertical and horizontal compositions of
2-morphisms are similarly verified. O

Remark 4.21. Our (pointed) noncommutative functor of points X( 4.0,z CaN then be thought of as assigning to (A, Oya)
with A € Ak (Z) the collection of all the arrows (1-morphisms) in H(K Z) with source (A, Op).

Here “pointed” simply refers to the fixed choice of the datum Z = @;IL; as in Definition 4.19, on which the construction
of H(K, Z) depends.
We now define a height function as follows.

Definition 4.22. Suppose given an (A, O4)-(B, Op) arithmetic hermitian bimodule (&, hya, hg) in H(K, Z), with A,B €
Ax (2Z), and an archimedean place o : K — K. The heights of (£, ha, hpg) are given by

Hp, .o (&) := infixyesae) [ 1; 6 (ha(xi, xi))
Hpy o (€) := infiy;jeBye) [1;6 (e (yj, ¥ ).

with 6 an embedding of Z in C that restricts to the embedding o : K — C. Correspondingly, we define a height function
as in Definition 4.12 with

(412)

Hpy o ()
H(E,ha, hp) := —B= (4.13)
AT UHW(&
Lemma 4.23. The height function defined as in (4.13) satisfies
H(E ®p F,ha,hg) = H(E, hy, W) - H(F, hg, h{), (4.14)
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for (£, 1, hy) an (A, O4)-(B, Op) hermitian bimodule and (F, h, h{) an (B, Op)-(C, Oc) hermitian bimodule, both in H(K, Z),
and with ha, hg as in Lemma 4.18.

Proof. For any bases {x;} and {y;} of £ in Ba(£) and Bg(£), respectively, and bases {u,} and {vi} of F in Bp(F) and
Bc(F), by (4.10) and (4.11), we obtain a basis {x; @ u,} in Ba(€ ®p F) and a basis {y; ® vi} in Bc (€ @p F). Moreover, also
by (4.10) and (4.11)

Ha(hA(xl®uz,xl®uz>)—1'[a<hA<x,,x,>> Ha(hé(uz,um

il

[]6 ey v y,@vk»—]'[o(hB(y] y,))]'[a( Cie Vi),

j.k

hence minimizing over the choice of basis,

Hp, 5 (€ ®p F) = Hh’A,U(‘S)Hh’é,a(f)
Hhe,0 (€ ®8 F) = Hy o (O)Hpy o (F),
so that

Hheo (€@ F)  Hiyo(E) Hyyo(F)

H(E ®p F,ha,hc) = = .
A T Hy o€ @5 F)  Hy o(&) Hyy o (F)

4.10. Dynamics generated by the height function

We explain more clearly in this subsection in what sense the height function introduced in the previous subsection
makes our functor of points (B, Op) = X[} (B, Op) dynamical. To this purpose we take the point of view of quantum
statistical mechanics and we define an algebra of observables over X(A O )(B, Op) with a time evolution generated by the
height function. The main idea is very similar to the algebra and dynamlcs constructed in [10], associated to the space of
Q-lattices with the commensurability relation, but the construction we present here is based on the convolution algebras
of semigroupoids (small categories) and of 2-categories introduced in [42].

As we discussed in the introduction to this paper, we consider the height as a kind of “energy functional” on the
“points” (here represented by bimodules) of a noncommutative space. We mentioned that this action functional makes
our functor of points “dynamical”. To make this idea more precise, we associate to the 2-category H(K, Z) of bimodules
whose 1-morphisms describe our functor of points, an algebra of observables and a time evolution determined by the action
functional given by the height function (4.13).

As shown in [42] there are two convolution algebras AH(K 2 and AH(K 2 associated to the 2-category H(K, Z). The
first is based on 1-morphisms and their composition, and the second is based on 2-morphisms and their horizontal and
vertical compositions.

The algebra A;{)(K 2
tion product

(fix )@= Y [i(®)fr(@"), (415)

P=0"xP’

is given by finitely supported functions on the set of 1-morphisms of H(K, Z), with the convolu-

for ® = (£, ha, hp) in (a,0,)H(B,05) €qual to the tensor product of ' = (£, ha, hp) in (a,0,)H(B,05) and " =(E”, hy, hc)
in (3. 05 H(c.0c), as in Lemma 4.18, with the composition ®” @’ of 1-morphisms given by the tensor product of hermitian
bimodules. This algebra is associative but noncommutative.

The algebra AH K.z is similarly defined but based on the two composition laws for 2-morphisms. It is given by finitely
supported functions on the set of 2-morphisms (morphisms of hermitian bimodules) with two product operations

(fiof@ = Y f@)f2(4"
$=¢"o¢’

(fie @)= Y [©@)6")
d=¢"og/

where o is the vertical composition of 2-morphisms
¢" 0¢": (€, ha, hp) ? (5 hly, /B) (5” wshg)
while ¢” e ¢’ is the horizontal composition determined by the tensor product of hermitian bimodules.
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Lemma 4.24. The height function (4.13) for hermitian bimodules in H (K, Z) determines a time evolution on the convolution algebra
A%)(K 2 of 1-morphisms of H(K, Z).

Proof. We construct a 1-parameter family of automorphisms of Al that is, a group homomorphism « : R —

HIK,Z)
Aut(AH(]K 2) by taking
ar(f)(E, ha,hp) = H(E, ha, hp)™ f(E, ha, hp)

Clearly, o¢+s = a¢ o ors. We need to check that the o are algebra homomorphisms

ae(f1x f2)(E,ha, hp) = (e (f1) * 0 (f2))(E, ha, hp).

The left-hand-side is given by H(E, hA hp)t S f1(Eh Wohe) f2(E7, k¢, ), with the sum over all the decompositions of
(€,ha, hp) as tensor product of (£, h’,, hy) and (7, h, h”) The rlght hand side is given by

ZH(‘S/ / /B)itfl(g/a /A!h/C)H(gN // )ltfz(g// // g)

Lemma 4.23 shows that the height function behaves multiplicatively on a tensor product of bimodules, H(E, ha, h¢) =
H(E' Wy, hp)H(E", hy, h{), so that these two expressions agree. O

Thus, the (non-normalized) height (4.13) of hermitian bimodules in H (K, Z) makes the spaces X(A o (of which
A%(K 7) Tepresents the algebra of functions) dynamical through the time evolution «;. Notice that this dynamics, gen-

erated by a ratio of volumes on the two sides of a hermitian bimodule, is very similar to the time evolution generated by
the ratio of volumes of two commensurable lattices in the case of the quantum statistical mechanical system of [10]. We

can similarly define a time evolution on the algebra of 2-morphisms A?—L(K 2) of H(K, Z), using a notion of relative height.

Definition 4.25. The relative height H(¢) of a 2-morphism ¢ : (£, ha, hg) — (€', W), h}) in H(K, Z) is defined as

__ H(E, hy, hp)
H(¢) := HE hatin); (4.16)

Lemma 4.26. We can write (4.16) equivalently in the form

infl, ey @)~ o) o T1:6 (BB (yr. y1)

H(¢) =
f{Xk}EBA(S)\BA(S) 1_[(; nk O'(hA(Xk, Xk))

Proof. Let us recall Definition 4.22, which tells us that,

Hp, o (€
H(E, ha, hp) :=1‘[H:B'—Egi
o A0

where
Hp, 0 () = infixyenae) [ 16 (ha(xi, %)
Hpy o (€) := infiyjeBye) [1;0 (hB (¥, ¥))-
Then, by definition, we get
H(E, ha, hp)
H(E, ha, hp)
(&)

HUH”L

hrr)

H(®):=

Hp O'(E)
l_[o' Hhi (&)

~ (infig, ey o [1:6 (s Fr, 70) (infigenae) [Ty [16 (hai, x))))
* (infgy ey [To Tk (ha G %0)) (infiyyemy e T1o T1;6 (e (35, 1))
 (infig ey o [1:6 (e G 3r) (infixyesae) T [1:6 (@ (), ¢ (x0)))
- (lnf{xk B o [T 6 (haGe, %)) (infiy) wiyess© [s 1; & (e (). ¢(y)))
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Lemma 4.27. The relative non-normalized height H(¢) of (4.16) determines a time evolution on the algebra AP
that is compatible with both vertical and horizontal composition.

HK.2) of 2-morphisms

Proof. We define the time evolution as o (f)(¢) = H(¢) f(¢). To verify compatibility with the two product structures of

A;_ZL)K z)» consider a vertical composition ¢" o ¢' with ¢’ : (£,ha, hp) — (€', 0, h}) and ¢" : (£, W, hp) — (£”,h;, h). By

(4.16) we have H(¢" o ¢') = H(¢')H(¢"), hence we have

a(fro )@ =H@" > f[@hfa¢h= Y a(f)@)au(f)@").
$=¢" o' $=0"o¢'

In the case of a horizontal composition of ¢’ : (£, ha, hg) — (£, ha, hg) with (€, ha, hp) the tensor product of (£, ), hp)

and (£”,h;, h) and (€, ha, hg) the tensor product of (£, h h/B) and (£, h” h”) as in Lemma 4.24, with ¢ = ¢” o¢’ by
Lemma 4. 26 we have
H(E,ha, hp)

it
H(é,ﬁA,FzB>) > [i@hfag"

$=¢"e¢'
— Z H(g/s’;l,A”j/B)H(g// h:[\vh/B,)
H(E' 1,y W) HE" 5, hp)

ar(fie f2)(@) = (

it
) @@= > a(f)@)a(f)¢"). o

=009’ 9="'e¢/

4.11. Partition function and height zeta function

We can consider subsystems of the algebras with time evolution discussed above, where the Hamiltonian §) generating
the time evolution has an associated partition function Z(8) = Tr(e™ /3’3) that defines a helght zeta function. To avoid obvious
sources of infinite multiplicities, we can restrict to the subalgebra AHL K.2) of AH(K 2 of functions supported on the

subset L (K, Z) of H(K, Z) consisting of A-A bimodules (£, h%, h®) with HL(E, hL, hf) =T], Hhﬁ,a(g) =1, for which
H(E, hk hRy = HR (&, nk hR) =TT, Hyx o (€). This is indeed a subalgebra since for bimodules in H(K, Z) we have HL (€ ®4
F,hL hR) = H/L“(S,hL’/,hi’/)HfL\(}", hL’//,hi’N) and both factors are equal to one if both £ and F are in H (K, 2), so the
tensor product £ ®gp F is also in ’Hﬁ (K, Z). Thus, we consider the subsystem (A(U o) with the same time evolution

HL (K, 2)’
discussed above. The Hamiltonian generating this time evolution is given by

9 f(& hL hRy =1ogHR (£, nL, hR) F(&, ki, hk),

with o (f) = e~it9 fei9 for functions f e A;}L)L (K.z) Seen as acting on the Hilbert space ¢2(HL (K, Z)). The partition
LK,
function is then of the form
Z(B) =Ti(e #?) = > Hp(E, hy. hf)=F,

(&,hh .hEyeHk (K, 2)

which gives the height zeta function for our definition of height. The question of whether this height zeta function is con-
vergent for sufficiently large 8 > 0 corresponds then to the question of whether there are finitely many “points” (£, ha, hp)
of bounded height Hg (&, h%, h}) <« (with Ha(&, hY, h%) = 1), which corresponds to the property that the spectrum of the
Hamiltonian $ has finite multiplicities, and the question of the asymptotic behavior of this height bound. We will return
to discuss a simpler version of this height zeta function after introducing a version of the height function based on the
Hattori-Stallings rank in §4.12.

4.12. Limitations of this notion of height

The height function as described in the previous subsections provides us with a viable analog of the corresponding
notion used in [6], which in turn extends the commutative case where the height is computed in the form of a volume (or
normalized volume).

As we discussed in the previous subsections, using this notion of height, however forces us to make some strong as-
sumptions in order to ensure the multiplicative behavior with respect to the composition (tensor product) of bimodules.
Moreover, it is clear that the ad hoc solution that we adopted to circumvent this problem is specific to the finite dimen-
sional case (hence to noncommutative arithmetic curves) and does not generalize to higher dimensional cases.

Thus, it seems preferable to rethink the notion of height in this noncommutative context in such a way that the multi-
plicative property under composition of bimodules would be naturally satisfied, in a way that does not depend on special
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conditions on the bimodules, and that extends to the case of algebras that are not finite dimensional, with Hilbert bimodules
of finite type.

The prototype example of an invariant of bimodules of finite type that satisfies the multiplicative property is the Jones
index (in the case of simple algebras). We will use this as a model for the properties that a desirable height function should
satisfy.

As a heuristic justification for making this change of perspective, and proposing a different choice of height function,
it is useful to keep in mind that in the usual arithmetic geometry context the height function comes in two flavors, a
“logarithmic form” and an “exponential form” (see [5]). The latter is the one that gives rise to the volume description of the
height presented in (4.2) and generalized in (4.9). The first is usually taken to be just the logarithm of the exponential one,
h = log H. This logarithmic form implies that if H behaves like a volume, which scales with the size A in the form vol ~ A4im,
then the h =log H would be proportional to the dimension. What we propose here is not the usual form h =1logH of the
height, with H as in (4.2), (4.9), but rather the use of the dimension itself, in the form of the Hattori-Stallings rank element
already discussed in §4.6.

If we define

ha(€) :=ra(&) € HHo(A),

the Hattori-Stallings rank, and

bao (€ ha,hp) :==6(ra()), (4.17)

with an embedding & of Z(A) that extends the embedding o of K, then we obtain a better notion of height on bimodules
that does not require restricting the category of bimodules as in Definition 4.19.

Remark 4.28. Instead of the category H (K, Z) of Definition 4.19, we can now consider a more general category H(K),
defined as in Definition 4.19, but without the requirement that the semisimple finite dimensional algebras belong to A (Z).

The construction of the convolution algebras A%)(K) and A;_Z[)(K) is analogous to the case of H(K, Z) discussed previously.

We can dispose of the requirement that the algebras are A (Z) because, as we show in Proposition 4.29 below, a
height function defined as in (4.17) in terms of the Hattori-Stallings rank directly satisfies the multiplicative property,
without imposing this restriction on the algebras.

A further advantage of working with this definition of height h4 () :=ra(€) is that the Hattori-Stallings rank is inde-
pendent of the generators {x;} of the projective module £. Indeed, the rank element can be computed using a choice of {x;}
and of a dual basis {} of £ by ra(€) =), &(x;), but the result is independent of the choice of {x;} and {£;}. Thus, we do
not have to optimize over a choice of the basis, unlike in the case of the height (4.9) previously discussed.

Proposition 4.29. Consider arithmetic hermitian bimodules (£, ha, hp) in the category a,0,)H(8,05) With the height defined as

o (rg(&)

, 418
o (ra() (418)

b(&E hahg) =] |

o

where o ranges over the archimedean embeddings. Let A%)(K) be the convolution algebra of finitely supported functions over the set
of bimodules in (4, 0,)H (B,0) With the convolution product as in (4.15). Then setting

@ (f) (€ hahg) =b(E ha,hp)" f(£, ha, hp)

. . . 1
determines a time evolution on AH(K).

Proof. As above, we can compute the Hattori-Stallings rank as ra(€) = Y_; &(x;), for a choice of generators {x;} of £ and
a dual set {&} in £. In particular, for & = ha(-, x;), we obtain ra(€) = Y ;ha(x;, x;). Thus, we are replacing the volume
[Tiha(xi, x;) of our previous definition of height (4.9) with the trace ) ;ha(x;, x;). This sum is in Z(A) = @;LL; for some
field extensions IL; of the number field K. Given an archimedean embedding, o : K < R or C, extended to an embedding
& of the IL;, we obtain 6 (ra(€)) € R or C. Since the ha(x;, x;) are positive elements of A, the value of & (r4(£)) is actually
in RY. Thus, we have h(E, ha,hp)t € U(1) for t € R defining the time evolution. We need to know that o;(fi * f2) =
01 (f1) xo¢(f2) with respect to the product (4.15). This follows by verifying that

h(€®3 -F»hA»hC):h((c/"h/ ) %)'h(-}—5h”s /(/‘)a

for a tensor product of bimodules £ ®g F, with the hermitian structures hy and h¢ as in Lemma 4.18. This is indeed the
case because we have
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ra(€®p F) =Y hy&hp(].x)).xi) = hy(x{-r5(F).x))
ij i

re(€ ®p F) =Y hi(uy Wy(up upuy) = > hi(uy.r(€) - up),
Lr Jé

where rg(F) and rg(€) are in Z(B). For a fixed embedding o : K < R or C, and an embedding & of the field extensions
in Z(A), Z(B), and Z(C), that restricts to o on the subfield K, the hermitian forms (h/A’U, h’B,G) on & and (hg’g, h/c/,a) on
Fo, with values in A, and By, respectively B, and Cy, give

oTaE) =Y (-0 (rp(F)).x) =0 (p(F)) -0 TaE)),

o(rc(€®p F)) = Zh/c/,g(uﬁf, o (rp(£)) - uy) = o (rc(F)) - o (rp(£)),
¢

so that we obtain
o (re(F)) o(r(&))
o (rp(F)) o (ra(€))

h(E ® F.haho) =[]

g

This completes the proof. O

The Hattori-Stallings rank is known to agree with the Jones index, [22,23,55], in the cases we will be considering in
§5, so this discussion justifies and introduces the setting for higher dimensional arithmetic noncommutative spaces that we
will be discussing below in §5.

4.13. Height zeta function with the Hattori-Stallings rank

We can consider again a subsystem with a partition function that provides a height zeta function, for the case of the
height H(E, ha, hp). As we discussed in §4.11, in order to avoid infinite multiplicities in the spectrum of the Hamiltonian that
generates the time evolution, we restrict to the subcategory HQ(K) of H(K) (for H(K) as in Remark 4.28) consisting of

A-A bimodules (&, hL, hﬁ) with rank (with respect to the structure of left A-module) fixed to be rﬁ (&) = 1. This determines
(1)
HE(K)

of bimodules, and the Hamiltonian that generates the time evolution, for the algebra A

e (HE (K)), is given by

a subalgebra A of the algebra of functions on H(K) with the convolution product corresponding to the tensor product

(1)

L (K) acting on the Hilbert space
A

ff(& hs, hR) =log (Hrﬁy“ﬁ)) f(&, hk, nk)

and with partition function

-B
ZB) =Tre "= Y (]‘[rﬁ,a(&).

(€. hRYyeHL@®) \ O

The multiplicities of the eigenvalues of the Hamiltonian $), which determine if the series defining the partition function
is convergent for sufficiently large f > 0, count the number of A-A bimodules (£, hL, hﬁ) with r/’;‘ (£) =1 and with fixed
rﬁ () =r. For a finite dimensional semisimple algebra A = @;Mp,(D;) with division algebras D; over K, we can consider

) iN; . -
bimodules for the form D; @k @jD';.J ! such that }°;n;N;=r, which are counted by the number of these combinations,
the number of solutions N; > 0 of the relation above with r and the n; given.

4.14. Non-archimedean places

So far we only considered the archimedean component of the height function, associated to the archimedean places
o0 : K < K, of the number field K. The height function also has components associated to the non-archimedean places.
For example, one sees clearly that the usual definition of the (archimedean) height function for points in projective spaces,
Hg (x) = max; |Xj|g, for x = (x1 : --- : X;) is only well defined when the non-archimedean places are taken into account
in a product over all valuations, H(x) = [, max; |x;|y, since by the product formula H(xx) = H(x) for A € Gy,. This issue
does not arise in an affine setting, but it is still more natural to regard the height as a product over all archimedean and
non-archimedean valuations.
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We discuss here briefly how to extend the height functions discussed in the previous subsection to the non-archimedean
places.

Since we are working in a noncommutative setting, we recall briefly how one thinks of valuations in the context of
finite dimensional algebras. Given a semisimple finite dimensional algebra A = @;Mpy,(D;) over a number field K, let K,
denote the completions at the non-archimedean valuations. These are extensions of the p-adic fields Q for primes p. We
write Ay, = A® K, for the corresponding algebras over K,. The fields K, are henselian, namely a valuation on K, has a
unique extension to each field algebraic over K, [47]. Let D be a division algebra over K, and let Z(D) =IF, an extension
of K,. There are different possible ways of defining valuations on a division algebra, summarized in [54]. We take here
the following definition: a valuation on a division algebra D is a function v: D* — TI", where I is a totally ordered abelian
group such that

v(ab) =v(a) +v(b) and v(a+b) > min{v(a),v(b)} forb # —a.

Theorem 2.1 of [54] shows that, for a division algebra D with Z(D) = and dimp (D) < oo, a valuation v on IF extends
(uniquely) to a valuation on D if and only if v extends uniquely to any field . with F c I ¢ D. In particular, if F
is henselian, then a valuation on IF extends uniquely to a valuation on any finite dimensional division algebra D with
Z(D) = F. Thus, the non-archimedean valuation v on K,, extends uniquely to a division algebra over K,. Moreover, a
valuation on a division algebra D over K, restricts to compatible valuations on subfields of D hence they all arise in this
way. Thus, it suffices to consider the non-archimedean places of K with the corresponding valuations v and the associated
completions K, to account for all valuations on division algebras as well.

Consider then arithmetic bimodules (£, ha, hg) with hermitian structures hg, hg. Consider the elements ha(x;, x;) € A
and hg(yj, y;j) € B, for sets of generators {x;} and {y;}. In the case of the height function H(&, ha, hp) of (4.9), and bimod-
ules (£, ha, hp) in the class H(K, Z) of Definition 4.19, we have ha(x;,x;) € Z(A) = Z and hg(y;,yj) € Z(B) = Z and we
can compose these elements with the valuation v (the unique extension to the IL; of the valuation v on K, ). Thus, we can
define H,(E, ha, hp) as in (4.9) in the form

infiy ez [ hBYj, ¥ )lv
infixjesace) | TTihaCi, x)lv

where a shortest basis is used to evaluate these “volumes”. We then set

Hy(E,hp, hp) =

H(E ha,hp) :=[ [Hy(€,ha,hp) - [ [ Ho (€. ha, hp),
v o

with v ranging over the non-archimedean places of K and o over the archimedean places. Note that because at each
place a (different) shortest basis {x;} is chosen that minimizes the corresponding “volume” |[];ha(x;,xi)|y, the product
over places considered above is not subject to the product formula [, [A|y - []; Ao =1 for all A € L (a number field),
for the product over all archimedean and non-archimedean valuations of IL. The time evolutions described in the previous
subsections extend to these height functions that include the contributions of the non-archimedean places.

In the case of the height function defined using the rank element, and for any arithmetic hermitian bimodule, however,
we cannot just define the height (&, ha, hp) in the same way as above, because for r4(£) € I the product formula would
give

[Tira@l - []ira@®lo =1.

This means that, in one defines the non-archimedean part of the height as in the previous case, then the non-archimedean
part of the height would simply be equivalent to the archimedean part by the relation

Irg(E)lv Ira©lo

nare ha hg) = Al
9 (&, ha, ig) H|m<€)|v 5 (E)lo

v

=b"(& hahp) ' =] ]

g

up to a change of direction of the time evolution they induce. Thus, in the case of the height function defined by the
Hattori-Stallings rank, one can restrict to only considering the archimedean part.

There is another possible way to extend the Hattori-Stallings rank to a height function with non-archimedean compo-
nents, so that the product over all archimedean and non-archimedean places is non-trivial. If we view the archimedean part
as

[TIra@®le =TT haotix) =] Ixill 0.

then it is natural to define
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Irs(€)|Y/? 1yl )2
h¥ (€, ha, hp) := = : )
m U|m(6)|3/2 1:[ (X 1xil13 )12

By comparison with the usual definition of the height of points x = (x1,...,%n) € Q" in the form
He = H" oH® 00 = [ Tmax xilv) - [T Ixil)',
v o i
one can choose to set
H(E, ha,hp) =H""(E, ha, hp)h™ (€, ha, hp)

where the archimedean part is defined as above and

infiy )esye) max; [hg(yj, ¥j)lv
infiyjeBa(e) Max; [ha(xi, xi)lv

6" (& hahp) =] | (419)

Notice, however, that with this choice of non-archimedean part of the height, we have reintroduced the problem of optimiz-
ing over the choice of a basis and also the problem of the compatibility of the height with the tensor product of bimodules,
which forces us then to restrict the category of bimodules to the H (K, Z) of Definition 4.19, both problems that the use of
the Hattori-Stallings rank was meant to avoid.

Thus, in the following, in the case of the height based in the Hattori-Stallings rank, we will simply restrict to the
archimedean part.

5. More general algebras

In the previous section we have taken inspiration from the setting of [6], designed to provide a noncommutative geom-
etry setting for the Arakelov geometry of noncommutative arithmetic curves. When we try to extend these ideas beyond
the case of zero-dimensional varieties over a number field K (hence one-dimensional varieties over Spec(Or)) and their
noncommutative counterparts, we encounter a more serious problem in how to introduce the data at infinity, that is, the
contribution of the archimedean places. In the case of arithmetic surfaces (curves over a number field K, seen as surfaces
over Spec(O)), noncommutative geometry was used in different ways: in [11,12,41] noncommutative geometry was used
to model the fiber at infinity of an arithmetic surface, following a model developed in [39] based on Schottky uniformization
and geodesics in a hyperbolic handlebody (see also [40] for a physical interpretation in the setting of AdS/CFT holography).
In [7] noncommutative geometry is used in a different way, by developing noncommutative versions of arithmetic surfaces,
based on noncommutative projective schemes. In the context of Arakelov geometry it is natural to work with projective
schemes, because one is interested primarily in developing a good intersection theory. However, from the point of view of
noncommutative geometry this creates complications in relating the algebro-geometric noncommutative projective schemes
to analytic noncommutative spaces that should provide the data at the archimedean places. While this problem is solved in
the case of noncommutative arithmetic surfaces in [7] by a suitable definition of hermitian bundles, we take here a different
viewpoint on noncommutative arithmetic spaces, which is based on affine geometry. This is sufficient for our purposes, and
it will have the advantage that it makes more direct and transparent the role of the archimedean places.

5.1. Arithmetic noncommutative spaces

For our purposes, we take the following definition of an arithmetic noncommutative space.

Definition 5.1. Let K be a number field and Oy its ring of integers. An arithmetic noncommutative space in arbitrary
dimension is given by the following data.

) A is a finitely generated associative algebra over K.

) Oy is a subring of A with the structure of flat Ok -module.

) As K-vector spaces A =0 ®oy K.

) For every archimedean place ¢ : K — K, with K, =R or C, the real/complex algebra A; = A ®k » Ky has an
involution .

(5) Ay, for o complex, and A, ®g C for o real, are dense involutive subalgebras of a complex C*-algebra A .

(6) There is a normalized trace T, : A, — K, such that 75| , takes values in Ok.

(1
(2
3
(4

This notion of arithmetic noncommutative spaces only involves Type II algebras. Thus, for example, certain noncommu-
tative spaces of arithmetic relevance such as the endomotives of [8], including the Bost-Connes type algebras over number
fields of [56], are not included in this definition. While such algebras certainly should be regarded as arithmetic spaces, they
would not be of finite type over Spec(O ), while our notion is meant to capture this finite type condition.
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Example 5.2. The arithmetic noncommutative torus is the finitely generated algebra A(Ty) over Q with generators
U,V,U* V* and relations U*U =UU*=1, V*V =VV*=1 and VU =e?"®UV for some fixed 6 € R. The subring Ox(T,)
is generated over Z by the same generators and relations. As a Z-module it is the span Z(U"V™|n,m € Z), which is an
abelian group with no torsion, hence a flat Z-module. For the unique real embedding of Q the algebra A(Ty)s ®r C is a
dense subalgebra of the usual C*-algebra of the noncommutative torus. The trace T(U"V™) = 8y,06m,0 maps Ox(,) to Z.

For two C*-algebras A and B, we recall the notion of Hilbert A — B bimodule, [24].

Definition 5.3. A Hilbert A — B bimodule H of finite type is defined by the following properties:

H is an A — B-bimodule, which is finitely generated projective as a right B-module and as a left A-module

H is self-dual, with respect to the duality given by the conjugate bimodule.

e There are an A-valued inner product il and a B-valued inner product (-, -)g, with the first left-linear and right-
conjugate-linear and the second left-conjugate-linear and right-linear.

e Forallac A, beB,andx,y e H

alax,y)=az(x,y), and jz(x,ay)=z(x, y)a*
(x,yb)g=(x,y)gb and (xb,y)s=Db"(x,¥)z

For all x e H, 5(x,x) >0 with ;(x,x) =0 iff x=0 and (x,x)z >0 with (x,x); =0iff x=0
For all x, y € H,

A y)=a(y.x)" and (x,y)p=(y.x)}

|1/2

The norms |[|x||4 := || 5 (x, X)| A and ||x||g := [|(x, x)g||}3/2 satisfy an estimate || - |4 norm (equivalently, the || - || 5

Cilixlla < llxllp < C2lixlla
for some constants Cq, C; > 0 and for all x € H. In particular, H is complete with respect to the |-||4 norm (equivalently,

the || - ||g norm).

Remark 5.4. The finite type condition, that H is finitely generated projective both as a right B-module and as a left A-
module, and that it is self-dual with respect to conjugation is equivalent to the condition that there are a left A-basis

{v1,...,vm) and a right B-basis {u1, ..., us} such that, for all x € H,
m n
x:Z;‘(x,vi)vi and X:ZUj(Uj,X>B. (5.1)
i=1 j=1

See Lemma 1.7 of [24], and see also the comment on duality on p. 3443 of [24].

In terms of a right B-basis {uq,...,up}, the structure of H as a finitely generated projective right B-module can be
seen explicitly by identifying H ~ pB", where p € M,(B) is a projection given by pij = {ui, uj)3. The maps from H to pB"
and viceversa are given by x — ((u;, x)g);, which maps H to the range of p in B", and its inverse map (y;) — >oiuiyi
from pB" to H. (See Lemma 1.11 of [24].) Also note that the condition on the equivalence of the norms ||x|4 and ||x|p in
Definition 5.3 and of completeness in these norms follow automatically from the finite type condition, as in Remark 5.4 (see
Lemma 1.11 and Proposition 1.18 of [24].)

We can then generalize the definition of hermitian bimodules given in Definition 4.8 in the following way.

Definition 5.5. Let (A, O,4) and (B, Op) be arithmetic noncommutative spaces as in Definition 5.1. The category
A,00H,0p) of arithmetic hermitian bimodules of finite type has objects (€, ha, hp) satisfying all the properties of Defi-
nition 4.8 as well as the following:

e £ is an Oy — Op bimodule, and a left-right Ok -lattice, such that A ® o, € is finitely generated projective as an A-
module and £ ®p, B is finitely generated projective as B-module.

e for any archimedean place o of K the bimodule &; := As ®0, £ o, Bs is endowed with a pair h = (ha, hg) with
ha:& xE; — Ay and hp : E5 x E5 — By

e hy is left-linear and right-conjugate-linear and defines an A, -valued inner product on &;.

e hp is left-conjugate-linear and right-linear and defines a B, -valued inner product on & .

e There is a Hilbert A, — B, bimodule of finite type &, with A, (%, ¥)=ha(x,y) and (x, y)5 =hp(x,y)

o &y is the completion of & in the norm ||X]a = [|ha(x, x)|| / (equivalently, in the norm ||x||g = ||hp(x, x)\|1/2)

24



A. Lima and M. Marcolli Journal of Geometry and Physics 169 (2021) 104337

Morphisms ¢ : (£,ha, hp) — (€', ), hp) are morphisms ¢ : £ — & of O4 — Op bimodules such that the induced
map ¢, : &y — 5_[/, is a finite rank operator that preserves the hermitian structures, h’,(¢o (X), ¢s(¥)) = ha(x,y) and
hy (9 (%), do (¥)) = hp(x, ¥).

With respect to a right B-basis {u1, ...,u,} of & a bimodule homomorphism ¢, : &y — c‘f(/, satisfies

n
b () =D T(up) (ui, Xz,
i=1
and similarly for a left A-basis {vi,...,vm} of & . Thus, for the condition that morphisms preserve the hermitian structure
it suffices that on the basis elements hp (¢ (i), ¢o (Uj)) = hp(ui, uj) and ha(ds (vi), do (V) =ha(vi, v)).

Remark 5.6. The functor of points of an arithmetic noncommutative space (A, (O4) assigns to (B, Op) the category
(A,00)H(B,0p) Of arithmetic hermitian bimodules of finite type as the (B, Op) points of (A, Oa), and to (B, Op)-(B’, Of)
bimodules F the functor F: (4, 0,)HB,05) — (A,OA>H(B’,O§?) given by tensoring with F.

5.2. The case of noncommutative tori

We consider again the example of arithmetic structures on noncommutative tori, mentioned in Example 5.2 above.

The Rieffel construction of finite projective modules on noncommutative tori [48,49] is based on using imprimitivity
bimodules. These are Hilbert bimodules 4Fp, for unital C*-algebras A, B, with the property that the C*-algebra valued
inner products satisfy the relation

x,y)az=xp(y,2) (5.2)

for all x, y, z € 4 Fp. An imprimitivity bimodule implements a strong Morita equivalence between the C*-algebras A and B,
[50]. Thus, these are regarded as a good notion of “isomorphism” of the corresponding non-commutative spaces, in a setting
where morphisms are defined by (some class of) Hilbert bimodules. The construction of projective modules is based on the
observation that, if 4 Fp is an imprimitivity bimodule and p is a projection in A, then pF is a projective B-module, since
there will be two sets {x;}}_; and {y;}{_, of elements of F such that

> (i, yida=p.

i
Then for each ze pF one has z=pz=7) ;(xi, yi)az=) _; Xip(¥i, z) so that the x; give a finite set of generators for pF and
the maps

V:B"—»pF and &:pF— B"

(5.3)
W:(bj))— > ;xib; and &:z+— (p(yi,2)

identify pF with a direct summand of the free module B", so that pF is indeed a projective B-module, see Proposi-
tion 1.2 of [49]. Thus, the construction of projective B-modules follows from the construction of projections p in the
Morita-equivalent algebra A.

In particular, an arithmetic structure on a projective module X = pF over a noncommutative torus B = A(Ty) is obtained
by considering the image W(Oy(,)) C pF,

V(OacTy)) = {§ € pF & =) ;xibi, withb; € Opt,)}
= {& epFlamy(Vi-&) € Oarty))-

The construction of projections in a noncommutative torus A = A(Ty) is obtained as in [48] by considering the A-valued
inner product (£,£)4 of elements & € 4 Fp. The resulting ps = (§,&)4 is a projection if and only if it satisfies the identity
& g(£,&) =E&. Indeed, one can see that

PE=(6.6)a (6.5 =((E.6)a8.5)a=(E(E8).5)a=(5.5)a=D:

and pg‘ = pg. The converse follows similarly (see Lemma 3.2 of [34]). There are several explicit constructions of projections
in noncommutative tori. In particular, Boca [4] presented a construction based on theta functions, and Luef and Manin [35]
and Luef [34] gave a general construction based on Gabor frames.

One can then obtain hermitian bimodules of finite type in the following way. Here we assume we have fixed a specific
construction that associates to a pair of Morita equivalent C*-algebras of irrational noncommutative tori and an imprim-
itivity bimodule implementing the Morita equivalence a projection in one of the two C*-algebras obtained as described
above.

(5.4)
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Proposition 5.7. Let Ay = A(Ty) and Ay = A(Ty) be the C*-algebras of two irrational noncommutative tori. Let 6 and &' be a
choice of points in the GLy(Z) orbits of @ and 6’ respectively, under the action on P1(R) by fractional linear transformations. Such a
choice determines an (Ag, Oa,)~(Ag', On,, ) hermitian bimodule as in Definition 5.5.

Proof. Since 6 and § (respectively, #’ and §’) are in the same GLy(Z) orbit by fractional linear transformations, the C*-
algebras Ap and Ay (respectively, Apr and Ay ) are Morita equivalent, with the equivalence implemented by imprimitivity
bimodules Ae]:Ag and Ay F, e Let p; and p; be projections in A; and Ay, respectively, and let X = F p; and X' = p; F’
be the corresponding projective modules, constructed as recalled above. Consider then the Ay-Ay Hilbert bimodule £ =
X ®c X'. As above, let {x;} and {y;} be elements of F and {x’j} and {y}} be elements of ' such that

Y a;yix)=ps and > (X, y})a; =P (5.5)
i J
Let ®;, ;5 and @, W; be the maps defined as in (5.3) with W : Aj — X, Ws(a;) =) ;aix; and Wy, : A7, — X', ¥, (a;.) =

Zj x}a/j. Elements £ ® & € £ can be written as § ® &' = Zi’j@, Vi), Xi ® x} Ay (y},é) = Zi.jaixi ® x’j a}. We define the
arithmetic submodule £y as in (5.4) by setting

£z =(®& =) aix®x;dj|a;€Op,.d; €On,. Vi, j). (5.6)
ij

We define hermitian structures hy and hy' on £z as hg(§,n) = 4,(§,n) and he' (5, 1) = (€, N)a,. O

Note that here we rely on results on noncommutative tori as C*-algebras for the constructions of projections and im-
primitivity bimodules. The arithmetic structure is then obtained by selecting certain suitable “arithmetic submodules” like
the £ defined in (5.6). This approach of enriching a C*-algebra construction with arithmetic subalgebras/submodules is
common in other contexts (see for instance the Bost-Connes subalgebra and other similar arithmetic structures discussed
at length in Chapters 3 and 4 of [9]).

5.3. Height function as volume

We would like then to assign a height to the bimodules (£, ha, hp) constructed as above. We first discuss how to obtain
a version of the height H(E, hya, hg) that corresponds to the expressions (4.2) and (4.9). We then discuss how to obtain a
notion of height h(€, ha, hp) that generalized the one based on the Hattori-Stallings rank that we discussed in the previous
section.

We want to assign to an arithmetic hermitian bimodule of finite type (£, ha, hg) a height function of the form

volp p, (£)

H(E,ha,hg) = )
(€,ha,hp) Volan, €)

(5.7)
as a direct analog of (4.9).

In order to obtain the volumes voly p,(£) and volg 5, (£) we proceed as in the previous section. Let (£, ha, hg) be an
arithmetic hermitian bimodule of finite type as in Definition 5.5. Let B4, (£) and Bp, () be, respectively, the sets of left
Ag-bases of & {v1,..., vm}, with that vje &, and the set of right By -bases {u1, ..., un} of & with u; € €.

We define the volume via an optimization over the choice of basis. Namely, we set

volA,hA(é‘):=l—[Binf HTAU(hA(V]’,Vj)),
o Bac©)7

volg s (€) :=[ [ inf [ zs, (hp(ui up),
o Bbo (&) ;

where 74, 7, denote the unique trace on the algebras Ay, Bs.

This provides an analog of (4.9) extending the notion of height derived from (4.2). However, as in the case of (4.9), the
height function obtained in this way is not well behaved with respect to taking tensor products of bimodules, hence it is
not directly compatible with the categorical composition operation on our noncommutative notion of “points”. To avoid this
problem, we consider, as in the previous section, a different notion of height based on the appropriate notion of “dimension”,
instead of a height function based on volumes.

5.4. Jones index as a height function

We return here to the general setting of Definition 5.3. The case of noncommutative tori discussed above is included as
a special case.

26



A. Lima and M. Marcolli Journal of Geometry and Physics 169 (2021) 104337

Let (£,ha, hg) be a arithmetic hermitian I_)imodule of finite type as in Definition 5.5 and let {uq,...,us} and {v1,..., vn}
be, respectively, a right B, -basis and a left A -basis. The right and left index are defined as the elements
Indao (€)=Y ha(ui,u) € Z(A;) and Indp o (€)=Y hp(vj,vj) € Z(By) (5.8)
i J

with Z(Ay,) and Z(B,) the centers of the respective C*-algebras. These elements are independent of the choice of basis
(Proposition 1.13 of [24]). We use here the notation Ind »(£) and Indp  (£) for what would be, respectively, IndR(&y) and
Ind! (&) in the notation of [24].

Consider algebras A, B such that Z(Ay;) = Z(Bs) =K, for all archimedean places o. Then the Jones index is multiplica-
tive over tensor product of bimodules

IndA,sigma(g ®p F) = lrld/‘\,sigma(g) -Indp o (F), Indcs(€ ®p F)=Indp s (E) - Indc o (F),

see Proposition 1.30 of [24].
For algebras with Z(Ay) = Z(Bys) =K one can then define a height function as in (4.18)

Indp »(€)

—IndA,U @ (5.9)

b hahp) =] |

o

Imprimitivity bimodules (€, ha,hg) that implement a Morita equivalence between A, and By, have Indg,(£) =1 =
Inda o (£), see Corollary 1.19 of [24]. Thus, imprimitivity bimodules are fixed points of the time evolution generated by
the height function (5.9) as in Proposition 4.29.

The height zeta function associated to the height function (5.9) as discussed in §4.13 involves bimodules with fixed
values of the Jones index. This shows that the problem of studying “points of bounded height” in this setting is potentially
an interesting question with several possible connections to other areas of mathematics. In the von Neumann algebra setting,
the related question of classifying subfactors of fixed index is solved for index less than 4 (see [45]) where the values of
the Jones index are quantized, and also for index between 4 and 5 (see [21]) where after excluding an infinite family, one
can again reduce the question to discrete data, while the question becomes intractable for higher values of the index for
the reasons explained in [21]. A related question will be to generalize some of the settings we have been discussing in this
paper to constructions in diophantine geometry beyond the height function, such as slopes (see [46]).
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