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1 Introduction

Holographic tensor networks are one of the main tools to model the emergence of spacetime
in the AdS/CFT correspondence, and the associated error-correcting structure. Since the
discovery of the HaPPY code [28], a plethora of examples have shown that holographic
tensor networks make it possible to model numerous aspects of holography, in particular,
the Ryu-Takayanagi formula [15, 31] and quantum error correction [20].

Most holographic tensor networks realize an exact or approximate quantum error-
correcting code, in the sense that they (almost) isometrically map a Hilbert space of
semiclassical bulk degrees of freedom, modelled by qudits associated to dangling legs, to a
boundary Hilbert space, which represents the Hilbert space of the boundary conformal field
theory, and is modelled by qudits on the boundary of the tensor network. For well-chosen
boundary regions, the tensor network satisfies the quantum Ryu-Takayanagi formula [28].
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This means that the entanglement entropy of the restriction to a given boundary region
of a state in the code subspace equals the sum of the entanglement entropy of that state
in the bulk and an area contribution proportional to the number of internal legs of the
tensor network cut by the Ryu-Takayanagi surface of the region. The latter is defined as
the surface delimiting the region attainable from the boundary by the greedy algorithm [28].
Complementary recovery is then achieved when the greedy algorithm reaches complementary
bulk regions from complementary parts of the boundary.

Holographic tensor networks have an interesting geometric structure, which ranges
from tesselations of the hyperbolic plane [28] or higher-dimensional spaces [26] to p-adic
spaces [21] (see [7] for a complimentary perspective). Although it is often briefly mentioned
that hyperbolic tesselations have to do with Coxeter systems [26], the interplay between
holographic tensor networks and hyperbolic geometry has been left largely unexplored.1
The goal of this paper is to investigate this link in more detail, and show the pertinence
of the language of Gromov-hyperbolicity and building theory to talk about holographic
tensor networks.

More precisely, one can ask the following questions:

• What are the geometric structures that underlie the construction of holographic tensor
networks?

• How can we know when a graph makes a good holographic quantum error-correcting
code?

• Can we construct tensor networks that model holographic dualities where the boundary
is not homeomorphic to a sphere?

• How can we predict which boundary regions satisfy complementary recovery?

• How do we take an infinite-dimensional limit of holographic tensor networks?

• What are some insights that the geometry of holographic tensor networks can provide
for studying full AdS/CFT?

In this paper, we will provide an answer to these questions in the case of networks
constructed out of perfect tensors, utilizing the framework of Gromov hyperbolicity and
hyperbolic buildings. It will turn out that known examples of holographic tensor networks
can all be described by the notion of hyperbolic building. Buildings, which can have different
geometric structures (hyperbolic, Euclidean, spherical) are a geometric construct originally
introduced by Jacques Tits [1] aimed at geometrizing some aspects of group theory. In order
to do geometry on hyperbolic buildings, the right toolkit is provided by Gromov’s theory of
hyperbolicity, which studies metric spaces whose distance has a particular property that
can be viewed as a more abstract formulation of the concept of negative curvature. On
such spaces, a notion of boundary at infinity, the Gromov boundary, can be defined. In our

1However, see [2] for tensor network constructions in terms of tessellations of the hyperbolic plane inspired
by Coxeter systems and [26] for a geometric condition for a tiling to define an isometry.
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context, holographic dualities will be between semiclassical theories living on a hyperbolic
building and theories living on its Gromov boundary. Tensor networks will contain bulk
dangling legs in the chambers of the buildings, and boundary legs at a certain cutoff of the
building. These boundary legs can be thought of as a coarse-grained approximation to the
Gromov boundary.

One striking feature of this approach is that, unlike the case of the HaPPY code or
similar tessellations, the Gromov boundary of most hyperbolic buildings is not isomorphic
to a sphere — rather, it is often isomorphic to a fractal, which has a much more intricate
geometric structure. Thus, our holographic dualities provide examples of dualities where the
boundary theory lives on a sphere (or more generally a homology sphere) of any dimension,
but also where it lives on more complicated spaces of non-integer dimension. Moreover,
as we shall see, there is a close analog of conformal invariance for these theories, and it
exhibits a behavior closely related to that of a CFT.

Using the more general point of view of hyperbolic buildings also allows us to reflect on
some features of known holographic tensor networks, like complementary recovery. While
this property is supposed to hold for arbitrary boundary regions up to nonperturbative
errors in GN in AdS/CFT [14], it does not hold for all regions of the HaPPY code [28].
While this fact may seem puzzling, it has a very natural explanation in terms of hyperbolic
buildings: their global symmetry groups are smaller than the conformal group, hence
only regions which are well-adapted to these symmetry groups will satisfy complementary
recovery. In particular, we will provide a systematic construction of regions in the network
that do satisfy complementary recovery, and applies to all networks with perfect tensors.

For these regions, we will show that a Ryu-Takayanagi formula holds, and that for
ball-shaped boundary regions the number of links on the Ryu-Takayanagi surface follows a
logarithmic law in the radius when the boundary time slice has dimension 1, and a power
law in the radius, with exponent the Hausdorff dimension of the boundary minus one when
the boundary time slice has dimension greater than 1. This recovers known results for the
scaling of entanglement entropy in traditional conformal field theory, and introduces some
new scalings that are very suggestive: the Ryu-Takayanagi surfaces see the fractal structure
of the boundary! It is then of course very tempting to speculate that networks with fractal
boundary simulate conformal field theories on fractal spaces.

Another interesting aspect of our approach is that the Gromov boundary lives at
infinity, and makes it very natural to define an infinite-dimensional limit of holographic
tensor networks. This problem has already been touched upon in [17, 18], and more
generally, the question of describing holographic quantum error-correction in the language
of infinite-dimensional operator algebras is an active research program [16, 18, 19, 25]. Here
we will see that there is an appropriate way to take the limit of our holographic codes
such that they give a net of holographic conditional expectations. This structure has been
recently shown to capture essential aspects of bulk reconstruction in AdS/CFT [16].

We now give the main results of this work:

• A general framework for the construction of holographic tensor networks with perfect
tensors is given in terms of building theory and Gromov hyperbolic spaces.
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• This allows us to recover all known constructions, and gives examples of holographic
tensor networks in all integer dimensions.

• A lot of tensor networks fitting into that framework also have a fractal boundary,
hinting at new holographic dualities where the boundary theory lives on a fractal.

• A condition for our networks to be isometric is given, as well as a construction of
regions that satisfy complementary recovery. This construction can be applied to all
the buildings examined in this paper.

• A Ryu-Takayanagi formula is proven, showing that boundary entanglement entropy
for ball-shaped regions follows a logarithmic law in the radius when the boundary has
dimension 1, and a power law in the radius when the boundary has higher Hausdorff
dimension, where the exponent is the Hausdorff dimension of the boundary minus
one.

• A general technique is given to construct an infinite-dimensional limit of our networks
in the language of operator algebras. This limit gives rise to a net of holographic
conditional expectations.

• All our results can be applied to known examples of holographic tensor networks with
perfect tensors, such as the HaPPY code.

The rest of the paper is organized as follows: in section 2, we recall the basics of
the theory of Gromov-hyperbolic spaces and their boundaries, as well as the notions of
hyperbolic groups and buildings. In section 3, we focus for clarity on a particular case: that
of Bourdon buildings, which can be understood as HaPPY codes with branching. These
buildings have a boundary homeomorphic to a fractal Menger sponge, and we show that the
resulting tensor networks satisfy complementary recovery for nice regions, a Ryu-Takayanagi
formula with the expected scaling in terms of the Hausdorff dimension of the boundary.
We also construct an infinite-dimensional limit for these tensor networks. In section 4,
we extrapolate the methods of the previous section to define holographic quantum error
correcting codes on a much larger class of higher-dimensional hyperbolic buildings. We
give some explicit examples, including ones where the boundary is a homology-sphere of
arbitrary integer dimension. In section 5, we briefly comment on the results and discuss
some potential future directions. In appendix A we present an explicit example of a Bourdon
building, and in the slightly more technical appendix B we summarize relevant results
from Patterson-Sullivan theory which help formalize aspects of conformal field theories on
fractal spaces.

2 Gromov-hyperbolic spaces, hyperbolic groups and buildings

In this section, we introduce the general notion of Gromov-hyperbolic space, which will be
underlying our choices of bulk spaces. We focus on two types of Gromov-hyperbolic spaces,
hyperbolic groups and hyperbolic buildings, which will be the ones we will use in order to
construct our examples of holographic duality.

– 4 –
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2.1 General definitions

Gromov-hyperbolic spaces naturally generalize the setup in which one usually considers
holographic dualities. We begin with a definition of the Gromov product, which is the
crucial ingredient in the definition of Gromov-hyperbolic spaces (see [11]):

Definition 2.1. For (X,d) a metric space, the Gromov product of two points y, z ∈X with
respect to x ∈X is given by

(y, z)x ∶= 1
2(d(x, y) + d(x, z) − d(y, z)).

From there, a Gromov-hyperbolic space is defined by the following condition:

Definition 2.2. Let δ > 0. (X,d) is said to be δ-hyperbolic if for all x, y, z,w ∈X,

(x, z)w ≥min((x, y)w, (y, z)w) − δ.
X is then Gromov-hyperbolic if it is δ-hyperbolic for some δ > 0.

For our purposes, one of the main interesting features of Gromov-hyperbolic spaces is
that they are endowed with a natural notion of boundary, which will make it possible for
us to formulate a bulk-to-boundary correspondence. We first need to formulate a notion of
geodesics in Gromov-hyperbolic spaces.

Definition 2.3. Fix an origin O ∈X. A geodesic ray in X is an isometry r ∶ [0,+∞)!→X

such that
r(0) = O

and for all t > 0, r([0, t]) is the shortest path from O to r(t) in X. Two geodesic rays r1
and r2 are said to be equivalent if there exists K > 0 such that for all t > 0,

d(r1(t), r2(t)) ≤K.

The Gromov boundary ∂X of X is defined to be the set of equivalence classes of geodesic
rays starting at O.

X ∪∂X is then endowed with a natural topology: a basis is given by the sets of the form

V (p,ρ) ∶={q ∈∂X,there exist geodesic rays r1, r2 ending at p,q

such that lim
t1,t2→+∞(r1(t1),r2(t2))O ≥ρ.}

A convenient feature of the Gromov boundary ∂X is that one can construct a natural
metric on it [10]. In what follows, we shall fix a base point O for X. For x ∈X, define

∣x∣ ∶= d(x,O).
Then for a > 1, define

∣x − y∣a ∶= inf
r path from x to y

ˆ
r
a−∣x∣dx.
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One can then prove [10] that there exists a0 > 1 such that for 1 < a < a0, X ∪ ∂X is
homeomorphic to the completion of X for the metric ∣ ⋅ ∣a. Moreover, the metric ∣ ⋅ ∣a is very
well-controlled by the Gromov product of X (we shall see explicit examples of this in what
follows). In particular, there exists a constant λ which only depends on δ and a such that if
ξ and η are on ∂X, for x and y in small enough neighborhoods of ξ and η, we have [10]:

λ−1a−(x,y)O ≤ ∣ξ − η∣a ≤ λa−(x,y)O . (2.1)

Hence ∣ ⋅ ∣a is a natural metric, called visual metric, on ∂X. From here on, we will consider
the choices of the base point O and of a given a > 1 as implicit and we will drop the explicit
notation unless needed.2

Most of the Gromov-hyperbolic spaces we will consider here can be interpreted in terms
of hyperbolic groups. Here we give a general definition of a hyperbolic group, of which we
will consider specific explicit examples in the subsequent sections.

Definition 2.4. Let G be a finitely generated group, and X be its Cayley graph. G is said
to be a hyperbolic group if X, endowed with its graph metric, is Gromov-hyperbolic.

2.2 Hyperbolic buildings

In this paper, the main setup will be that of hyperbolic buildings. We will also encounter
their isometry groups, which will turn out to be hyperbolic groups. The theory of buildings
is a rich and fruitful mathematical framework, first introduced by Tits [1], whose goal is to
geometrize notions of group theory. Here we introduce the basic terminology associated
to this theory, which will be utilized in our paper. We will mostly follow the presentation
of [32], which the interested reader can consult for a more thorough introduction.

The simplest examples of buildings are Coxeter systems:

Definition 2.5. A Coxeter group is a group W that admits a presentation of the form

W = ⟨s ∈ S ∣ (st)mst = 1 for s, t ∈ S⟩ ,
with S a finite set, mss = 1 for s ∈ S, mst a (possibly infinite) integer ≥ 2 for s ≠ t. The pair(W,S) is then called a Coxeter system.

A particularly nice class of Coxeter systems is given by the right-angled ones, which
correspond to the case where the mst for s ≠ t are either 2 or ∞.

Many interesting Coxeter systems arise from regular tessellations of n-spheres, n-
Euclidean space, or n-hyperbolic spaces. In this case, the Coxeter group is generated by
reflections with respect to the sides of the basic polyhedron. This is for example the case
for the HaPPY code, which corresponds to a right-angled Coxeter system generated by
a right-angled regular pentagon in the hyperbolic plane (see figure 1). More generally,
a convex polyhedron in Xn (which can be the n-sphere, the n-Euclidean space or the
n-hyperbolic space), with all dihedral angles submultiples of π is called a Coxeter polytope.

2For instance, from here on we will drop the subscript a in the metric ∣ ⋅ ∣a.
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Figure 1. The right-angled pentagon tiling of the hyperbolic plane H2 used in the construction of
the HaPPY code.

These three possible cases for Xn are, respectively, referred to as spherical, Euclidean, and
hyperbolic buildings.

Another important notion in order to define a building is that of polyhedral complex.
Without going into too much generality, they are constructed by gluing polyhedra in spheres,
Euclidean space or hyperbolic space, using isometries along the faces. The main object of
interest in a polyhedral complex is its link at each vertex x: it is the (n − 1)-dimensional
polyhedral complex obtained by intersecting the given polyhedral complex with an n-sphere
of sufficiently small radius centered at x. For example, for a 2-complex, the link at vertex x

is a graph whose edges correspond to the faces adjacent to x, and whose vertices correspond
to the edges incident on x.

We are now ready to define a hyperbolic building, utilizing the notions of Coxeter
polytopes and polyhedral complexes.

Definition 2.6. Let P be a hyperbolic Coxeter polytope, and let (W,S) be the associated
Coxeter system. A hyperbolic building of type (W,S) is a polyhedral complex ∆ with a
maximal family of subcomplexes, called apartments, such that they each are isometric to a
tessellation of Hn by copies of P called chambers, and

• Any two chambers of ∆ are contained in a common apartment.

• Between any two apartments, there exists an isometry that fixes their intersection.

In the case of a hyperbolic building, W , called the Weyl group of the building, is a
hyperbolic discrete subgroup of the isometry group of Hn. It is also possible to show that
the link of an n-dimensional hyperbolic building at each vertex is an (n − 1)-dimensional
spherical building. The link structure of our buildings will be crucial for our proof of
complementary recovery.

– 7 –
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Remark 2.7. The condition that the apartments are tessellations of Hn can be relaxed
to include a larger class of hyperbolic buildings, where the apartments are certain polyhe-
dral complexes (Davis-Moussong complexes) with a hyperbolic structures, which are not
tessellations of a single hyperbolic space. This generalization makes it possible to obtain
hyperbolic buildings in arbitrary dimension, and we will discuss it in section 4.

3 Holography on Bourdon buildings

Our first example of building holography is given by the case where the bulk space is
the Bourdon building Ip,q [3], whose boundary is a Menger sponge, which is universal
among topological spaces of topological dimension 1, in the sense that all of them are
homeomorphic to a subset of the Menger sponge. When interpreted as a holographic tensor
network, we will see that our bulk space gives rise to the expected properties of holographic
codes and states: complementary recovery, and a Ryu-Takayanagi formula involving the
Patterson-Sullivan measure on the boundary.

3.1 Bourdon buildings
We start by defining the building Ip,q, for p ≥ 5 and q ≥ 3, closely following [3]. For the case
q = 2 see Remark 3.2 below.

Definition 3.1. Let p, q be two integers with p ≥ 5 and q ≥ 3. The Bourdon building Ip,q is
the only simply connected cellular 2-complex such that its 2-cells are isometric to a regular
p-gon, are attached by their edges and vertices, two 2-cells share at most one edge or one
vertex, and the link of each vertex is the bipartite graph K(q, q).

The existence and uniqueness of such a building is proven in [3]. Let Γp,q be the
hyperbolic group defined by its presentation

Γp,q ∶= ⟨s1, . . . , sp ∣ sqi = 1, [si, si+1] = 1⟩.
Then Γp,q acts simply transitively on the set of chambers of Ip,q. In particular, if one fixes a
zero chamber in Ip,q, then the chambers of Ip,q can be seen as the words formed by Γp,q up
to the relations in the group presentation, where each letter applies a group transformation
to the chamber.

Remark 3.2. In the case where q = 2, Γp,q is just a tesselation of the hyperbolic plane by
p-gons (and the Gromov boundary is a circle). In particular, whenever this tessellation
gives rise to an isometric network of perfect tensors, it can be interpreted as a form of
HaPPY tiling. We refer to these tessellations as the p-gon HaPPY tilings, with p ≥ 5.

For q ≥ 3, the Gromov boundary changes, and becomes a Menger sponge. The Bourdon
building then has branching: each tile branches out into q−1 tiles at each edge. Nevertheless,
the building still possesses a HaPPY-like structure, as its apartments are now tilings of
the hyperbolic plane by p-gons. The q = 2 case corresponds to when the building only
has one apartment. This nice apartment structure will greatly simplify our analysis of
tensor networks on Bourdon buildings, as it will enable us to transpose a lot of useful
error-correcting properties of the HaPPY code to the Bourdon case.

– 8 –
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Figure 2. An example of a subset of a Bourdon building with the associated link, from [4].

3.2 Bourdon tensor networks

We now define our Bourdon tensor network. The idea is to extend the HaPPY construction
to the more general case of the building Ip,q. In the rest of this section, we will consider the
case of holographic codes with a nontrivial code subspace, and we will hence suppose for
simplicity that p is odd, in order for our bulk tensors to always have an even number of
legs, independently of q.

Definition 3.3. The Ip,q tensor network is constructed in the following way:

• Insert a perfect tensor in the chambers of the building.

• Perform an index contraction between every two chambers sharing an edge.

• Add q − 1 dangling legs for each tensor.

• Choose a central tile, and cut the building at a finite distance Λ from this central tile.

As usual for holographic quantum error correcting codes, the bulk Hilbert space is identified
with the tensor product of the bulk dangling leg Hilbert spaces, while the boundary Hilbert
space is identified with the tensor product of the boundary leg Hilbert spaces.

Remark 3.4. The existence of perfect tensors that work for any given choice of p and q in
the range of Definition 3.1 follows from [22], see also [23].

Remark 3.5. We could have allowed for different types of tensor networks. In particular,
when p increases, we could have introduced k(q−1) dangling legs in the bulk with k ≤ p−4 (as
long as the total number of legs is even), while still satisfying the isometry and entanglement
wedge reconstruction properties proven in the next sections.

– 9 –
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3.3 Bulk-to-boundary isometry
We first prove that our network defines an isometry at each layer.

Theorem 3.6. At each layer, the Bourdon tensor network of Definition 3.3 determines an
isometry from the code subspace to the physical Hilbert space.

Proof. In this proof, we will freely use the fact that the p-gon HaPPY tilings define an
isometry from the bulk to the boundary. For a proof, see [28]. This being said, our strategy
will be to introduce an acyclic orientation on the edges of the network such that each tensor
has at least as many outgoing links as incoming links (including bulk nodes). We will do
this by induction on the layer number n. At the first layer, only the bulk node is introduced.
We assign an outgoing orientation to all the edges, and the condition is clearly satisfied.
Now suppose that up to layer n, the network determines an isometry. Take a chamber of
the building at layer n + 1. This chamber can be included in an apartment, which looks
like a HaPPY tiling. Inside this apartment, there are more tiles touching our chamber that
are part of layer n + 2 than there are that are part of layer n or n + 1. By symmetry of the
building, for a given tile at layer n + 2, there are q − 2 other tiles which are also at layer
n + 2 and share the same edge with our chamber. We therefore define an orientation on the
network in the following way: if two chambers share an edge, and one is in a higher layer
than the other, then define the orientation of the network from the one in the lower layer
to the one in the higher layer. Then collect all adjacent tiles that are in the same layer,
and define any acyclic orientation on the corresponding subgraph. This gives a well-defined
orientation that gives an explicit isometric interpretation to the tensor network.

We focused here on the case where we have a nontrivial code subspace, for which the
isometry condition can be stated. One can also consider similarly the case where we just
have a single holographic state.

3.4 Entanglement wedges
Just like in the HaPPY code, only certain bulk regions in the Bourdon tensor network
will satisfy complementary recovery, and hence the Ryu-Takayanagi formula. This has
to do with the fact that the isometry group of the tensor network is not quite the whole
conformal group. Here, we give a description of two nice families of such regions, thanks
to the notion introduced in [3] of tree-wall in the bulk as well as the link structure of the
Bourdon building.

Let us summarize the tree-wall construction of [3].

Definition 3.7. A wall in Ip,q is a bi-infinite geodesic contained in the 1-skeleton of Ip,q.
One can then define an equivalence relation on the 1-skeleton of Ip,q: two edges are equivalent
if they share a wall. The equivalence classes are q-valent homogeneous trees: they are the
tree-walls of the building.

In practice, in order to construct a tree-wall, one can perform the following construction.

Lemma 3.8. A tree-wall is obtained by the following steps:

• Choose an edge in the 1-skeleton of Ip,q.

– 10 –
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• Add to the tree-wall, on both sides of the chosen edge, the q − 1 neighboring edges
(distance one in the building) that are at distance 2 from this edge in the graph of the
link.

• Repeat the process.

Proof. The link of Ip,q is the bipartite graph K(q, q), so in this bipartite graph, q−1 vertices
(which correspond to q − 1 edges of the building) are diametrically opposed to our edge
(i.e. at distance 2 of it on the link’s graph).

Remark 3.9. Note that tree-walls cut the building (and hence its boundary) into q con-
nected components. These connected components will be suitable boundary regions to study
entanglement entropy, and the bulk tree-walls will be the analogues of Ryu-Takayanagi
surfaces for the Bourdon building. Hence we shall call these connected components entan-
glement wedges.

There is another way to look at the tree-wall construction, in terms of the Coxeter
system of the building.

Lemma 3.10. Consider a given chamber C of the Bourdon building, and pick one of its
edges, say E. The entanglement wedge with tree-wall boundary associated to the choice of
C and E is obtained by considering, in all apartments containing C, the portion that is on
the same side as C with respect to the hyperplane determined by E.

Proof. In any apartment containing C, E defines a reflection with respect to a given
hyperplane of this apartment. The intersection of the entanglement wedge defined by C

and E with the apartment then corresponds to the portion of the apartment on the same
side of the hyperplane as C. By applying this construction to all apartments containing C,
we recover the same entanglement wedge, with a tree-wall boundary.

The following procedure describes another geometric method for the construction of
valid entanglement wedges in Ip,q.

Lemma 3.11. The following construction defines a valid entanglement wedge in Ip,q.

• Choose a vertex V in the building.

• Look at the link around the chosen vertex and pick an edge in this link, which
corresponds to a chamber C in Ip,q.

• In a given apartment A, consider the set S(C,V,A) of tiles defined by the chamber C

and the vertex V as the set of tiles containing C and delimited by the two hyperplanes
which are edges of the chamber and intersect at V .

• Define the entanglement wedge associated to C and V as the union of all S(C,V,A),
for A containing C.

In this case, the entanglement wedge is delimited by two half-tree-walls attached to each other.

– 11 –
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Figure 3. The intersections of the two types of entanglement wedges described here with an
apartment of the Bourdon building. Each geodesic should be seen as a portion of a tree-wall in the
full building.

Figure 3 shows the intersection of the two types of entanglement wedges described in
this section with an apartment of the Bourdon building.

3.5 Complementary recovery and a Ryu-Takayanagi formula

We now show that for an entanglement wedge defined in one of the previous manners,
complementary recovery is satisfied in the Bourdon tensor network.

Proposition 3.12. Complementary recovery holds for an entanglement wedge in Ip,q
constructed as in Lemmas 3.8 and 3.11.

Proof. By symmetry, we will assume without loss of generality, both in the case defined
by the intersection of two tree-walls and the case defined by a single tree-wall, that the
considered entanglement wedges are on the opposite side of the tree-walls from the center of
the building. These regions can be identified with regions in the network that are spanned
by semi-infinite geodesics that start from the center and pass through a given chamber C

(see Remark 3.15). As shown in [28], complementary recovery amounts to showing that the
greedy algorithm reaches the surface which delimits the entanglement wedge, both starting
from the boundary of the entanglement wedge (i.e. the subset of the Gromov boundary of
Ip,q that can be reached by geodesics inside the entanglement wedge), and its complement.
Then, our proof amounts to showing that at layer n, the chambers inside the entanglement
wedge share an edge with at least as many chambers at layer n + 1 as at layer n or n − 1.
This comes from the apartment structure of the Bourdon building: each chamber can be
included in an apartment which is isomorphic to a regular tiling of the hyperbolic disk, and
for which each tile at layer n is in contact with at least as many at layer n + 1 as at layer
n or n − 1. By symmetry of the branching, the other tiles sharing the same edge will also
be at layer n + 1, which finishes the proof of the fact that it is possible to reconstruct the
entanglement wedge on its boundary.
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Now, it is also possible to reconstruct the complement of the entanglement wedge on the
complementary boundary region. In the case in which the entanglement wedge corresponds
to a region delimited by a tree-wall, the q connected components are symmetric with respect
to the tree-wall, and thus it is possible to achieve reconstruction on the q − 1 connected
components by symmetry.

Similarly, edges in the link (corresponding to chambers in the building) around a given
vertex have entanglement wedges that form a partition of the bulk, and satisfy recovery.
Thus, the complement of the entanglement wedge defined by a given chamber and a link
vertex also satisfies recovery.

Proposition 3.13. The Ryu-Takayanagi formula holds for entanglement wedges in Ip,q
constructed as in Lemmas 3.8 and 3.11.

Proof. Given the previous Proposition 3.12, the Ryu-Takayanagi formula directly follows
from the argument of [28]: since the entanglement wedge satisfies complementary recovery,
the entanglement entropy of a boundary state will satisfy

Sphys(ρ) = Ncut log d + Scode(ρ),
where Ncut is the number of links that are cut by the boundary of the entanglement wedge
and d is the bond dimension.

3.5.1 Ball entanglement wedges

We now turn our attention to entanglement wedges that correspond to ball-shaped regions
on the boundary. Their construction goes as follows.

Lemma 3.14. The following procedure gives an entanglement wedge construction in Ip,q.

• Fix a chamber C in Ip,q and the central chamber O.

• The “ball entanglement wedge” defined by C and O is then given by the set of semi-
infinite geodesics on the tensor network starting from C that can be extended to a
semi-infinite geodesic starting from O.

Remark 3.15. Note that ball entanglement wedges are particular cases of the entanglement
wedges defined in subsection 3.4, and can be defined by a chamber and either an edge or a
vertex depending on where the tile is in the building. In particular, the wedges we use in
the proof of Theorem 3.12 can be described in terms of ball entanglement wedges.

There is a nice way to estimate Ncut in terms of the radius of the ball which is the
boundary of our entanglement wedge.

Proposition 3.16. Let Λ be the layer of the network at which the code is cut off. Consider
a bulk ball entanglement wedge R starting at a point z, and let g be the distance of the
point z to O (note that g is the Gromov product of any two ends of the boundary of the
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entanglement wedge on the tensor network.) Then, if q ≥ 3, the number of tile edges in R at
layer less than Λ which are contained in ∂R equals

Ntiles = 2
q − 2 ((q − 1)Λ−g+1 − 1) − 1

if the entanglement wedge is delimited by a tree-wall, and

Ntiles = 2
q − 2 ((q − 1)Λ−g+1 − 1)

if the entanglement wedge is delimited by two half-tree-walls.

Proof. This is a direct consequence of the tree structure of the boundary of the entangle-
ment wedge.

At each of these tiles, q − 1 links are cut. Therefore,

Ncut = (q − 1)( 2
q − 2 ((q − 1)Λ−g+1 − 1) − 1) ,

or
Ncut = (q − 1) 2

q − 2 ((q − 1)Λ−g+1 − 1) .
Hence,

Ncut ∼ 2
q − 2

(q − 1)Λ+2
(q − 1)g .

We now follow arguments of [3] to obtain a precise Ryu-Takayanagi formula for ball-
shaped regions of the boundary.

Let us consider the case q > 2. Let Hdim∂Ip,q denote the Hausdorff dimension Hdim δx
of Theorem 1.1 and 1.2a of [3] (see Lemma 3.1.4 of [3]).

Theorem 3.17. The Ryu-Takayanagi formula holds for ball entanglement wedges in Ip,q,
as in Lemma 3.14, with

C−1rβ ≤ Ncut(q − 1)Λ ≤ Crβ, (3.1)

for a constant C > 0 (independent of the boundary region), and with

β = Hdim∂Ip,q − 1, (3.2)

with r the radius of the boundary ball.

Proof. In [3], it is proven that there exists a visual metric δx of parameter eτ(p,2) on the
boundary of the Bourdon building, where τ(p,2) is the growth rate of the Weyl group of
the building. By definition of the distance δx, the radius of a boundary ball is controlled by
a−g = e−gτ(p,2).3 Note that then,

Ncut(q − 1)Λ ∼ 1
(q − 1)g ∼ rβ, (3.3)

3One can make this statement more rigorous by using Sullivan’s shadow lemma, described in appendix B,
to relate the geometry of the group Γ to that of the Bourdon building itself. See also section 3.2 of [3].
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where
β = log(q − 1)

τ(p,2) . (3.4)

For this specific choice of a = eτ(p,2), it can be shown [10] that

β = Hdim δx − 1. (3.5)

This is because in the case of the Bourdon building, we have [3]

Hdim δx = τ(p, q)
τ(p,2) , (3.6)

and
τ(p, q) = τ(p,2) + log(q − 1). (3.7)

Remark 3.18. This proof implies, among other things, that this choice of δx realizes the
conformal dimension of the boundary of the Bourdon building [10]. This is an important
result from the point of view of geometric group theory.

This result is quite striking: it tells us that entanglement entropy in our tensor network
knows about the Hausdorff dimension of the boundary! It is also nice to realize that this
behavior is in agreement with cases of holographic CFTs whose Cauchy slice dimension is
an integer strictly larger than 1: in this case it is known that CFT entanglement entropy
scales as a power law in the radius, where the exponent is dictated by the dimension of
the time slice of the boundary minus one. Therefore, it seems like our tensor network is
simulating a conformal field theory on a fractal! Ryu-Takayanagi surfaces in the network
are given by rooted trees, and the entanglement entropy for corresponding ball-shaped
regions are given by our power law.

3.6 The case of HaPPY-like tilings
The case q = 2 corresponds to a Fuchsian tiling of the hyperbolic plane, i.e. to a p-gon
HaPPY tiling. In this case, it is easier to link Ncut with the size of the boundary ball.
Indeed, we have

Ntiles = Ncut = 2(Λ − g) + 1,

and the size r of the boundary region satisfies

−g ∼ log r.

Hence
Ncut ∼ logr

ε
,

where
ε = e−Λ

α

for some α > 0. This approximately reproduces the logarithmic behavior of entanglement
entropy on the boundary.
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3.7 The infinite-dimensional limit: Hilbert spaces and nets of local algebras

One of the advantages of our construction is that it provides us with a large family of nets
of infinite-dimensional exact quantum error-correcting codes with complementary recovery.
It is therefore an explicit example of nets of conditional expectations, as introduced by
Faulkner in [16].

Let us first associate an infinite-dimensional code and a physical Hilbert space to our
tensor network. The idea will be to take a direct limit of Hilbert spaces, both in the bulk
and on the boundary.

Proposition 3.19. There is an injection HΛ
code → HΛ+1

code of Hilbert spaces from the trun-
cated network at layer Λ to level Λ + 1 compatible with the maps uΛ ∶ HΛ

code → HΛ
phys

through commutative diagrams. These maps define as direct limits the infinite dimensional
Hilbert spaces

Hcode = lim!→
Λ

HΛ
code and Hphys = lim!→

Λ
HΛ

phys (3.8)

with an induced isometry u ∶ Hcode →Hphys.

Proof. For the bulk Hilbert space, define a reference state for the dangling qudits. Let us
denote it by ∣ref⟩. If HΛ

code denotes the code subspace of the truncated network at layer
Λ, we define an injection HΛ

code →HΛ+1
code by tensoring the state of HΛ

code with qudits in the
state ∣ref⟩ at layer Λ + 1.4 In order to construct a map from HΛ

phys to HΛ+1
phys, we simply take

the state at layer Λ, and map it through the tensor network from layer Λ to layer Λ + 1,
with all dangling bulk nodes fixed in the state ∣ref⟩. If uΛ denotes the map from HΛ

code toHΛ
phys, we then obtain a commutative diagram of the form

H1
code → H2

code → ⋯↓ ↓H1
phys → H2

phys → ⋯ ,

(3.9)

where the horizontal arrows denote the bulk-to-bulk maps and boundary-to-boundary maps,
and the vertical arrows denote the isometries uΛ. We can then take the direct limit of this
diagram and define

Hcode = lim"→
Λ

HΛ
code,

and
Hphys = lim"→

Λ

HΛ
phys,

as well as an isometry
u ∶ Hcode →Hphys

as in (3.8).
4These maps have a few shortcomings, like the fact that they do not create an entangled bulk state.

See [17] for another possible choice of Hilbert space maps. However, our maps here have good functorial
properties at the level of operators, and will be enough for our purposes.
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Now, we are interested in studying a net of local observables on the boundary, and
assigning an entanglement wedge to each of them.

Theorem 3.20. For a given entanglement wedge associated to a tile T as before, there
are C∗-algebras Acode and Aphys, obtained as direct limits of entanglement wedge algebrasAΛ

code at layers Λ and their bulk-to-boundary maps. They are related by a unital isometric⋆-homomorphism ι ∶ Acode → Aphys, which is compatible with the isometry u ∶ Hcode →Hphys
of Proposition 3.19 in the sense that ι(A)u = uA.

Proof. For this, consider a bulk tile T , and define an entanglement wedge associated to this
tile as in subsection 3.4. On top of each bulk qudit, we introduce a finite-dimensional algebraMd(C). The entanglement wedge algebra AΛ

code at layer Λ is given by the tensor product of
all bulk dangling legs, and the map from AΛ to AΛ+1 is given by tensoring with the identity
on qudits at layer Λ + 1. Recall that there is a well-defined bulk-to-boundary map ιΛ at
the level of operators, by successively tensoring with the appropriate number of identities
and conjugating by perfect tensor unitaries [28],5 and that by the previous subsections,
this map has a range contained on the boundary of the entanglement wedge defined by T .
Moreover, one can define a map from the complement algebra to the complement boundary
region, by complementary recovery. We can use the ιΛ to define a boundary-to-boundary
map at the level of algebras: just add one more layer of tensor network, and conjugate an
operator by the perfect tensor isometries with identitity matrices on the new bulk nodes,
following the map given by ιΛ+1. We then obtain another commutative diagram of the form

A1
code(T ) → A2

code(T ) → ⋯↓ ↓A1
phys(T ) → A2

phys(T ) → ⋯ ,

(3.10)

where the horizontal arrows are the bulk-to-bulk and boundary-to-boundary maps, and
the vertical arrows are the ιΛ. Like in the previous case, we can take the direct limit
C∗-algebra, and we obtain two C∗-algebras Acode and Aphys, related by a unital isometric∗-homomorphism

ι ∶ Acode → Aphys.

Moreover we can see Acode and Aphys as acting on Hcode and Hphys, and by construction of
ι, for A ∈ Acode,

ι(A)u = uA,

and similarly for the complementary algebras.

Note that this construction depends on our choice of map ι, which is not always unique.
For example, it is not unique in the case of the pentagonal HaPPY code. This breaks
the symmetry of the network, but it still gives rise to a net of holographic conditional
expectations in the sense of [16] (with the difference that we left the construction here at
the level of C∗-algebras).

5This map is not unique.
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4 The general case: holographic tensor networks on hyperbolic buildings

Our construction for the case of Bourdon buildings can be generalized to a much larger
class of buildings in various integer bulk dimensions and non-integer boundary Hausdorff
dimension. We first give a set of sufficient conditions for our construction to easily generalize.
We then introduce a few interesting examples of tensor networks that satisfy these conditions.

4.1 A class of tensor networks

We want to extend our construction to a well-chosen class of hyperbolic buildings. In order
for the same method to work, we need to check the following conditions:

• The tensor network still defines an isometric map at each layer.

• Complementary recovery still works for well-chosen entanglement wedges.

• The Ryu-Takayanagi scaling of the entanglement entropy for well-chosen boundary
balls still follows a power law of exponent β − 1, where β encodes the dimension of
the boundary time slice, if β > 1, or a logarithmic behavior if β = 1.

First, in order to show that the tensor network defines an isometric map at each layer,
we had to use the fact that, given a central chamber and a fixed apartment containing
it, any chamber of that apartment is adjacent to more outgoing tiles further away from
the center than tiles closer or equidistant to the center. Thus, our argument only used
the apartment structure. We are therefore reduced to finding a condition of the Weyl
group of our building that guarantees that it maps the bulk to the boundary Hilbert spaces
isometrically. An explicit sufficient condition on the Coxeter system has been found by
Kohler and Cubitt (see section 6.1.2 of [26]), and we use it here:

Definition 4.1. Let B be a building of Weyl group W with Coxeter system (W,S). LetF ∶= {J ⊂ S,WJ is finite}. We will say that B satisfies the isometry condition if for all J ∈ F ,

∣J ∣ ≤ t − 2
2 ,

where t is the number of indices of the perfect tensor, divided by the branching.

Lemma 4.2. The isometry condition is always satisfied for a right-angled hyper-
bolic building.

Proof. Indeed, in that case the Coxeter system associated to the building has matrix entries
2 and ∞. Hence, the subsets J of S for which WJ is finite can only contain elements for
which the Coxeter matrix elements for each pair are 2. These must then be adjacent faces
in the basic chamber of the building. Now, a hyperbolic polytope can be right angled iff it
has more faces than a hypercube. This means that a maximal set of adjacent faces will
always have less elements than half of the number of faces of the polytope. Identifying
Coxeter generators with the faces of the polytope, and recalling that there is always at least
one dangling leg inside the perfect tensors, we obtain the isometry condition.
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Remark 4.3. When the isometry condition is satisfied on top of our other conditions, a
slight adaptation of the argument of [28] shows that our building defines an isometry from
the bulk to the boundary at all layers.

The second point that needs to be confirmed is complementary recovery for well-chosen
entanglement wedges.

Lemma 4.4. The entanglement wedge constructions of section 3.4 extend to arbitrary
hyperbolic buildings satisfying the isometry condition and satisfy complementary recovery.

Proof. This is guaranteed by the building structure of our networks. More precisely, consider
a link in the building, and an (n − 1)-polytope P on that link corresponding to a given
tensor in the network. Embed P into a given apartment of the network. This apartment is
isomorphic to a hyperbolic Coxeter system, hence we can repeat the construction of the
previous section and use the link to construct a partition of the bulk into reconstructable
regions. The other definition in terms of one single hyperplane (generalization of the
tree-wall) is even more straightforward.

The third and last point is probably the most subtle one: our argument on the Hausdorff
dimension scaling required calculating the Hausdorff dimension of the Bourdon building for
a specific visual metric. A full study is out of the scope of this paper, but in order to be
able to generalize it, we want our building chambers to each connect to the same number
of edges through a wall, and to use the transitivity of the action of the isometry group of
X on the set of apartments that contain it, to reproduce the proof of the Ryu-Takayanagi
scaling. This requires B to contain a chamber whose fixator in the isometry group of X acts
transitively on the set of apartments that contain it. We now obtain the following result:

Theorem 4.5. Let B be an n-dimensional hyperbolic building such that:

• The Weyl group of B satisfies the isometry condition.

• The link at each point is the same, and each (n − 1)-polytope of the link is q-valent
(in the sense that it touches q other (n − 1)-polytopes) for some q.

• B contains a chamber whose fixator in the isometry group of X acts transitively on
the set of apartments that contain it.

Then, B defines a quantum error-correcting code with complementary recovery for well-
chosen bulk regions, and in a large class of these tensor networks, for these regions, the
size of the Ryu-Takayanagi surface scales like rβ−1, where r is the radius of the associated
boundary ball, and β is the scaling dimension of ∂B.

Remark 4.6. Note that in this theorem, the Ryu-Takayanagi formula scales like the
scaling dimension (self-similarity dimension, see chapter 4 of [29]) of the boundary, but not
necessarily like the Hausdorff dimension of a given visual metric. This is because in order
for these two dimensions to be equal, one needs to show the existence of a visual metric
with such a Hausdorff dimension, and this existence property is not always guaranteed. In
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the case of the Bourdon building, it was shown [3] that this could be done by explicitly
constructing a visual metric with parameter a equal to the growth rate of the Weyl group of
the building, that realizes the conformal dimension. However, it is a difficult and important
problem in geometric group theory to understand when such a metric can be constructed
in higher dimension. In particular, we expect this question to be related to subtle rigidity
properties of the buildings. Even in order to show a matching of the scaling dimensions,
one needs to have some nice formula that relates the growth rates of the building and of its
apartments. See for example [8], where some partial answers to these questions are given in
the case of right-angled buildings, particularly in three dimensions. We leave a more precise
study of the scaling properties of the RT surfaces in higher-rank buildings, as well as of
these issues related to the comparison of Hausdorff, scaling and conformal dimensions, to
future work.

4.2 Higher dimensional examples

We now show that our techniques can be adapted to construct holographic codes in arbitrary
integer dimensions (as well as non-integer boundary Hausdorff dimensions). This will be
done through an explicit construction, due to Davis-Moussong, of an interesting class of
hyperbolic buildings in any given dimension. This construction is slightly more technical
than the rest of the paper, the main takeaway being that holographic codes exist in all
integer bulk dimensions, and that the Ryu-Takayanagi formula and entanglement wedge
reconstruction for well-chosen regions, carry over to these more general cases.

We have focused primarily on the Bourdon buildings, which are the primary example
of hyperbolic buildings. More generally, it is known that hyperbolic buildings are more
difficult to obtain than Euclidean ones. Indeed, if one takes as part of the definition of
buildings the requirement that they are polyhedral complexes where apartments are (in
the hyperbolic case) polyhedrally isometric to a tesselation of the n-dimensional hyperbolic
space, then there are strong restrictions on the dimension of hyperbolic buildings. There is
a bound n ≤ 29 on the dimension of a compact convex hyperbolic Coxeter polytope [33]. In
particular, Theorem 4.5, as stated, only applies in this range.

In the case of the Bourdon buildings, as we have seen, a useful property is the fact
that they are right-angled buildings. In general, a Coxeter system (W,S) is right-angled if
all the mij with i ≠ j in the relations are equal to 2 or ∞. With this further requirement,
it is known that right-angled Coxeter polytopes can only exist in dimension n ≤ 4 [30].
Thus, right-angled hyperbolic buildings (with the definition as above) can only exist in
dimension n ≤ 4.

This seems to limit the range of validity of the general setting we introduced above for
the construction of holographic tensor networks on hyperbolic buildings. However, it is in
fact possible to relax slightly the definition of buildings in such a way that right-angled
hyperbolic buildings will be available in arbitrary dimension. This was done in [24] by
considering geometries where the apartments are Davis-Moussong complexes of the Coxeter
group W , instead of copies of hyperbolic space tessellated by the action of W . In general,
the Davis-Moussong complex associated to a Coxeter system (W,S) is a piecewise Euclidean
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(non-positively curved) polyhedral complex with a properly discontinuous cocompact action
of W , see [13, 27].

The construction of the Davis-Moussong complex K(W,S) is obtained in the following
way [27]. Given a Coxeter system, the associated nerve N(W,S) is the simplicial complex
with one vertex for each element of S, with subset T ⊂ S defining a simplex of N(W,S) if
the subgroup WT ⊂W generated by T is finite. Let N ′ be the barycentric subdivision of
N = N(W,S) and let CN ′ be the cone of N ′. For each s ∈ S let Xs be the closed star of
the vertex s in N ′. The collection M = {Xs}s∈S of closed subspaces of X = CN ′ is called
the set of panels. For x ∈X one also sets S(x) ∶= {s ∈ S ∣x ∈Xs}. There is an associated a
universal W -space U(W,X,M), with a CW complex structure, given by the quotient of
W ×X by the equivalence relation (w,x) ∼ (w′x′) if x = x′ and w−1w′ ∈WS(x). This space
is universal with respect to maps f ∶X → Y with sf(x) = f(x) for x ∈Xs: each such map
uniquely extends to a continuous W -equivariant map f ∶ U → Y . The Davis-Moussong
complex is K(W,S) = U(W,CN ′,M). It is contractible with K(W,S)/W ≃ CN ′.

There is a characterization of hyperbolic Coxeter groups, in terms of the presence
of a hyperbolic structure on the Davis-Moussong complex K(W,S). The Coxeter group
is hyperbolic iff it contains no subgroup isomorphic to Z ⊕ Z. This condition is in turn
equivalent to the condition that there is no subset T ⊂ S with WT an affine Coxeter system
of rank ≥ 3 and there are no pairs T1, T2 of disjoint subsets of S for which WT1 and WT2

commute and are infinite, see Theorem 17.1 of [27]. This last condition in turn implies that
K(W,S) can be given a hyperbolic structure by considering for each T ⊂ S with WT finite
a hyperbolic space HnT with nT = #T . The building blocks of CN ′ are the CN(WT , T )′
for T ⊂ S with WT finite. Each of these building blocks is homeomorphic to a combinatorial
nT -cube B(WT )ε ⊂ HnT , for some ε > 0 (see [27] for more details). These building blocks
are glued together according to the relations of subsets T ⊂ S into a decomposition of
K(W,S). The condition above on the hyperbolicity of the Coxeter group W ensures that,
with this hyperbolic structure on the blocks CN(WT , T )′, the complex K(W,S) itself has
a the structure of a hyperbolic complex.

The difference with the usual apartments of buildings in the more restrictive sense is
that here the contractible manifolds K(W,S) are in general not homeomorphic to Euclidean
space (hence not tessellated copies of Hn). Indeed, the boundary at infinity of K(W,S) is
not necessarily simply connected, but it has the topology of a generalized (n−1)-dimensional
homology sphere, see [13] and [24].

The construction of [24] of higher dimensional right-angled hyperbolic buildings with
Davis-Moussong complexes as apartments is obtained via complexes of groups.

A complex of groups is an assignment of groups and compatible maps to a simplicial
complex that reflects the properties of the orbit space of a group action on a cell complex,
see [12]. It generalizes the Bass-Serre construction of graphs of groups.

A complex of groups G(K) consists of combinatorial CW complex K (namely a CW
complex that is either simplicial or that can be subdivided into simplicial complexes), with
a group Geα assigned to each cell eα and monomorphisms φα,β ∶ Geα → Geβ for each cell eβ

in the boundary of eα. Boundary inclusions eγ ⊂ eβ ⊂ eα give Ad(g)φα,γ = φβ,γ ○ φα,β, for
some g ∈ Geγ acting by conjugation. For our purposes we can assume that K is a polyhedral
complex (or a simplicial complex after passing to barycentric subdivision).
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The complex of groups associated to a simplicial action of a group on a combinatorial cell
complex has finite stabilizer groups attached to the cells, with monomorphisms of stabilizers
contravariantly associated to inclusions of cells. A complex of groups is developable if it is
the complex of groups associated to a simplicial action of a group on a simply connected
combinatorial cell complex. Not all complexes of groups are developable, but developability
is implied by a non-positively curved condition [6].

The construction via complexes of groups of a right-angled building with apartments
shaped as Davis-Moussong complexes K(W,S) is obtained as follows. Start with a right-
angled Coxeter system (W,S) that satisfies the hyperbolicity condition above, so that
K(W,S) has a hyperbolic structure. Take as additional datum a set {qs}s∈S of integers
qs ≥ 2, and let Gs be a group of order qs. As above, vertices of CN ′ has type some J ⊂ S
with WJ finite. Let G(K) be the complex of groups that assigns to a vertex of type J

the group given by the direct product GJ = ∐s∈JGs, with maps given by inclusions. This
complex of groups is developable with cover a right-angled building. As above let Xs be
the closed star of the vertex s in N ′. Each copy of Xs is contained in qs chambers in this
building, with each chamber given by a copy of CN ′.

The existence in any dimension of this type of hyperbolic buildings with Davis-Moussong
apartments is then proved in [24] by showing the existence in any dimension of a right-angled
Coxeter system (W,S) satisfying the hyperbolicity condition, i.e. containing no subgroup
isomorphic to Z⊕Z.

This class of buildings satisfy our conditions for tensor networks with good holo-
graphic properties.

Theorem 4.7. The hyperbolic buildings built using Davis-Moussong complexes and with
all the qs = q, satisfy the isometry condition and have complementary recovery.

Proof. The isometry condition is still satisfied: as shown in [27], the girth of the links
is strictly greater than 2π, which means that if one fixes a vertex of a chamber of the
building, as the chamber is right-angled, more faces of the chamber will not touch that
vertex than touch it, and WJ can be finite only if J only contains faces that touch the same
vertex. This same argument allows us to prove complementary recovery for well-chosen
regions (generalizations of either tree-walls or vertex-based entanglement wedges). The
third condition formulated in Theorem 4.5 is satisfied by construction: the Davis-Moussong
complex can be seen as the quotient of the building by the action of the group developed
by the complex of stabilizers. So by acting on an apartment by all the group elements that
stabilize a given cell (which makes sense because the action is simplicial), one can obtain
all apartments containing that cell.

Remark 4.8. In the proof, we also included a discussion of the third condition of Theo-
rem 4.5, and it should also be possible to formulate a nice statement about of the area of
the Ryu-Takayanagi surfaces in terms of the scaling, Hausdorff or conformal dimensions of
the boundary. This question should also be interesting from the point of view of geometric
group theory.
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In particular, this shows the existence of tensor networks with good holographic
properties in arbitrary dimension.

5 Discussion

In this paper, we explained how one could construct a large class of holographic tensor
networks from hyperbolic buildings. The language of buildings and Gromov-hyperbolicity
allows to recover the usual properties of hyperbolic tensor networks and to describe them
in a unified way. In particular, our buildings:

• Contain a large class of bulk regions that satisfy complementary recovery. These
regions admit an explicit description in terms of building theory.

• Satisfy the Ryu-Takayanagi formula. For ball-shaped boundary regions of Hausdorff
dimension strictly greater than 1, the entanglement entropy of holographic states
follows a power law in the radius of the ball, with exponent given by the Hausdorff
dimension of the boundary minus one, in a large number of cases including the one
of Bourdon buildings. If the boundary has dimension 1, we recover the logarithmic
scaling of the HaPPY code.

• Exist for boundaries of all integer dimensions, and therefore provide explicit examples
of holographic codes in all integer dimensions.

• Recover all known holographic codes constructed out of networks of perfect tensors
as particular cases. In particular, the HaPPY code as well as the higher-dimensional
examples of [26] can be studied through the lens of our construction.

Several future directions can be envisioned. First, we only considered holographic codes
made out of perfect tensors in this paper, but it would be nice to study holographic codes
made out of random tensors in our context.

It would also be interesting to understand the situation for disconnected boundary
regions better. Our explicit entanglement wedge constructions all involve a connected
boundary region, and it would be nice to understand whether similar descriptions based on
building theory hold for disconnected boundary regions.

Another question is whether the fact that the entanglement entropy of ball-shaped
regions sees the fractal dimension of the boundary means that it could be possible to define
theories that resemble conformal field theory on a fractal background (see [5] for a related
attempt in one dimension).

It is also interesting to ask if more general objects than hyperbolic buildings are well-
adapted to the construction of holographic codes. In particular, it would be interesting to
understand if quotients of our buildings can be taken in order to describe nontrivial bulk
topologies in the spirit of the BTZ-like topologies constructed in [21]. We expect that the
setup of latin square designs [9] might be helpful to think about this kind of problem.

Finally, this paper showed that the theory of Gromov hyperbolicity can be very useful to
show geometric results about the bulk, such as the Ryu-Takayanagi formula. One can then
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wonder whether the notions of Gromov product and of hyperbolicity can also be utilized in
the continuum, to understand the geometric structure of the bulk in full AdS/CFT.
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A An example: the building I5,3

In this appendix, we explicitly compute the various quantities and regions described in the
bulk of the paper in the case of the simplest Bourdon building: the building I5,3.

We first describe explicitly the structure of the building I5,3.

• Apartment structure: the apartments of the building I5,3 are HaPPY tessellations
of the hyperbolic plane: regular, right-angled tessellations by pentagons. Their Schläfli
symbols are {5, 4}. Their Coxeter group is generated by five reflections r1, r2, r3, r4, r5
such that (riri+1)2 = 1 (where the index is understood modulo 5).

• Link: the link is the bipartite complete graph K(3,3). This means that at each
vertex of the building, six edges concur. These six edges can be split into two groups
of three. Each edge shares a face only with the three edges of the opposite group.

Then, we introduce the growth rates of the Weyl group and the isometry group of
the building [3]:

• Growth rate of the Weyl group: the growth rate of the Weyl group is equal to

τ(5,2) = Arccosh(32) (A.1)

• Growth rate of the isometry group: the growth rate of the isometry group is
equal to

τ(5,3) = Arccosh(32) + log 2. (A.2)

In the case of the Bourdon building, it is possible to show [3] that there exist visual
metrics on ∂I5,3 whose Hausdorff dimension realizes the conformal dimension of the building,
and is equal to the ratio of the growth rate of the isometry group by the growth rate of the
Weyl group. We then have:

Hdim(∂Ip,q) = 1 + log 2
Arccosh (32) (A.3)

The second term on the right hand side corresponds to the exponent of the scaling of
entanglement entropy.

Finally, we describe “ball entanglement wedge” bulk regions that satisfy complementary
recovery in the building I5,3. They are delimited either by a tree-wall or by the intersection
of two tree-walls. In the case of I5,3, a tree-wall divides the building into three valid
entanglement wedges (see figure 4).
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Figure 4. A tree-wall in I5,3 and its intersection with an apartment. The tree-wall coincides with a
geodesic in the HaPPY apartment, but at every tile, it divides into two branches due to the link
structure of I5,3. In the end, we end up with a homogeneous trivalent tree.

B Quasi-conformal measures and Patterson-Sullivan theory

In this slightly more technical appendix, we elaborate on the idea that our networks describe
some features of an approximate conformal field theory on a fractal space. The idea is that
for any visual metric of the boundary of a Gromov hyperbolic group (such as the isometry
group of the Bourdon building, which can be identified with its chambers), one can define a
privileged measure that behaves “almost conformally” under isometries. This measure is
called the Patterson-Sullivan measure, and we review its construction here. We begin with
a few definitions:

Definition B.1. Let r be a geodesic ray in X. The Busemann function associated to r is
the map

h ∶X !→ R
x$→ lim

t→+∞ (∣x − r(t)∣ − t) .
Note that this function is well-defined by the triangle inequality.

Definition B.2. Let Γ be a group of isometries of X, let γ ∈ Γ. For ξ ∈ ∂X, choose a
geodesic ray arriving at ξ, let h be its Busemann function, and define

jγ(ξ) ∶= a∆(ξ),

where
∆(ξ) = h (O) − h(γ−1O).

Let µ be a regular Borel measure on ∂X, of finite nonzero total mass. Then, define

γ∗µ ∶= µ ○ γ.
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The measure µ is said to be Γ-quasiconformal of dimension D if all the γ∗µ are absolutely
continuous with respect to each other6 for γ ∈ Γ, and there exists C ≥ 1 such that

C−1jDγ ≤ dγ∗µ
dµ

≤ CjDγ ,

µ-almost everywhere.7

One can view a Γ-quasiconformal measure as a measure on ∂X for which Γ “behaves like
a conformal group”. Under a reasonable assumption on Γ, there exists a generic construction
of such a Γ-quasiconformal measure, due to Patterson and Sullivan [10].

Let Y be the orbit of O under Γ. For R ≥ 0, let nY (R) be the number of points of Y
within a distance R of O.

Definition B.3. We define the base-a critical exponent of Γ as

ea(Γ) ∶= limsup
R→+∞

loganY (R)
R

.

For s ≥ 0, we define the Poincaré series

gY (s) ∶= ∑
y∈Y a−s∣y∣.

One can then prove [10] that this series is divergent for s < ea(Γ) and convergent for
s > ea(Γ). Then, one can construct a sequence (sn) of limit ea(Γ), with si > ea(Γ). Consider
the sequence of measures

µn ∶= 1
gY (sn) ∑y∈Y a−sn∣y∣δy,

where δy is the Dirac measure at y. As X ∪ ∂X is compact, one can then extract a weakly
convergent subsequence of (µn). The limit µ of this subsequence is called a Patterson-
Sullivan measure for Γ and one can prove (up to some technical refinements on the sequence(µn) in the case where the Poincaré series converges at ea(Γ)):
Proposition B.4 ([10]). If ea(Γ) is finite, then the Patterson-Sullivan measure µ is
Γ-quasiconformal of exponent ea(Γ). Moreover, its support is the limit set of Γ, denoted Λ.

Under the extra assumption of Γ being quasi-convex cocompact [10], more can be said
about the space of Γ-quasiconformal measures on ∂X:

Proposition B.5 ([10]). If Γ is a quasi-convex cocompact group acting on X such that ea(Γ)
is finite, then, Λ has Hausdorff dimension ea(Γ), and the associated Hausdorff measure is
Γ-quasiconformal of dimension ea(Γ). Moreover, if µ is another Γ-quasiconformal measure
whose support is contained in Λ, then it has dimension ea(Γ) and it is of the form ψH,
where H is the Hausdorff measure of Λ and ψ ∈ L∞0 (H). Reciprocally, all such measures
are Γ-quasiconformal of dimension ea(Γ) with support contained in Λ.

6This means that they have the same zero-measure sets.
7That is, the inequality holds everywhere except for a set of measure zero as measured with respect to µ.
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A lot of results in Patterson-Sullivan theory rely on Sullivan’s shadow lemma. We state
it here in its most general form, see also Lemma 8 of [34] for a useful variant:

Proposition B.6 ([10], Proposition 6.1). Let µ be a Γ-quasiconformal measure of dimension
D on ∂X. If O(x, d) is the intersection with ∂X of the set of all geodesic rays starting at
O and passing at a distance smaller than d of x, then there exist constants C ≥ 1 and d0 ≥ 0
such that for all d ≥ d0 and γ ∈ Γ,

C−1rD ≤ µ(O(x, d)) ≤ CrDa2Dd,

where we have chosen x = γ−1O, for the chosen base point O and r = a−∣x∣. The set O(x, d)
is called the shadow on ∂X of the ball centered on x with radius d.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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