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Abstract The most standard description of symmetries of a mathematical structure
produces a group. However, when the definition of this structure is motivated by
physics, or information theory etc., the respective symmetry objects might become
more sophisticated such as quasigroups, loops, quantum groups. In this paper, we
introduce and study quantum symmetries of very general categorical structures:
operads. Its initial motivation were spaces of probability distributions on finite sets.
We also investigate here how structures of quantum information, such as quantum
states and some constructions of quantum codes, are algebras over operads.
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5.1 Introduction and Brief Survey

The common definition of symmetries of a structure given on a set S (in the sense
of Bourbaki) is the group of bijective maps S → S compatible with this structure.

But in fact, symmetries of various structures related to storing and transmitting
information such as information spaces are naturally embodied in various classes of
loops such asMoufang loops, non-associative analogs of groups (cf. [4]).

Here are some representative examples: quasigroups, loops, and Moufang loops.
A quasigroup is a set L together with binary composition law

∗ : L × L → L : (x1, x2) $→ x1 ∗ x2 =: x3, (5.1)

such that any two elements among {x1, x2, x3} uniquely determine the third one.
A loop is a quasigroup with two-sided identity e ∈ L: it means that e ∗ x =

x ∗ e = x for any x ∈ L.
Finally, a Moufang loop is a quasigroup whose compostion law satisfies the

“near-associativity” condition

(x1 ∗ x2) ∗ (x3 ∗ x4) = x1 ∗ ((x2 ∗ x3) ∗ x4). (5.2)

The idea of symmetry embodied in a group is closely related to classical physics,
in a very definite sense, going back at least to Archimedes. When quantum physics
started to replace classical, it turned out that classical symmetries must also be
replaced by their quantum versions. For a short history of this evolution, see pp.
1–4 of [7] and also [6, 8, 9]. As a result, the mathematical theory of quantum groups
emerged.

In this paper we suggest to apply the formalism of quantisation on the operadic
level [2] to symmetries of information spaces. The motivation of our use of adjective
“quantum” in [2] was sometimes too intuitive, but the tools developed in [13],
furnish a very precise and well axiomatized framework for this.

The general conception of “Quantum Operad” introduced and studied here was
also inspired by the introduction of quantum error-correcting codes with a Moufang
loop action: see [4], Sec. 6.

We are pleased to dedicate our paper to C. N. Yang, who led the breakthrough
studies of gauge symmetries in quantum field theory.

5.2 Quantum Structures in Symmetric Monoidal Categories

5.2.1 Monoidal (=Tensor) Categories V ([13], Sec. 2.2, 2.3)

Data: multiplication ⊗ of objects, with identity object 1 and natural isomorphisms

αA,B;C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), ρA : A ⊗ 1 → A, λA : 1 ⊗ A → A.
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5.2.2 Symmetric Monoidal Categories

Additional twist isomorphisms τA,B : A ⊗ B → B ⊗ A, with τA,BτB,A = idA⊗B ,
plus many commutative diagrams.

5.2.3 Magmas, Comagmas, Bimagmas, Associativity and
Commutativity for (co, bi)magmas in Symmetric
Monoidal Categories ([13], Sec. 2.4)

Basic data for a magma: an objectAwith multiplication morphism∇ : A⊗A → A.
Basic data for a comagma: an object A with comultiplication morhism % : A →

A ⊗ A.
Basic data for a bimagma: a triple (A,∇,%) as above such that the “bimagma

diagram” (2.4) ([13], p. 49) commutes.
(Co, bi)-magmas in a symmetric monoidal category V are themselves objects

of respective categories. Morphisms in them are those morphisms in V , which are
compatible with respective basic data.

Unitality and counitality structures for a magma (A,∇) (resp. comagma (A,%))
are respectively the morphisms η : 1 → A or ε : A → 1 subject to additional
restrictions.

5.2.4 Monoids, Comonoids, Bimonoids, and Hopf Algebras in
Symmetric MonoIdal Categories ([13], Def. 2.7)

They are essentially (co, bi)magmas with additional (co,bi)associativity restrictions.

5.2.5 Quantum Quasigroups ([13], Sec. 3.1)

A quantum quasigroup (A,∇,%) is a bimagma, for which both left composite and
right compositemorphisms are invertible:

These morphisms are sometimes called fusion operators or Galois operators.
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5.2.6 Quantum Loops

A quantum loop in V is a biunital bigmagma (A,∇,%, η, ε) such that (A,∇,%) is
a quantum quasigroup.

5.2.7 Functoriality ([13], Prop. 3.4)

Any symmetric monoidal functor

F : (V ,⊗, 1V ) → (W ,⊗, 1W )

sends quantum quasigroups (resp. quantum loops) in V to quantum quasigroups
(resp. quantum loops) inW .

5.2.8 Magmas etc. in the Categories of Sets with Direct Product

According to [13], beginning of Sec. 3.3, in such categories comultiplication in a
counital comagma is always the respective diagonal embedding. As a corollary, we
see that quantum loops and counital quantum quasigroups in such caregories are
cocommutative and coassociative.

As a result, we see, that in such a category counital quantum quasigroups are
equivalent to classical quasigroups, and quantum loops are equivalent to classical
loops ([13], Prop. 3.11).

5.3 Monoidal Categories of Operads

5.3.1 Graphs and Their Categories

Our basic definition of graphs as quadruples (F, V, ∂, j) and their categories is
explained in [2], Sec. 1.1, p. 251. There F , resp. V , are called the sets of flags, resp.
vertices, and structure maps ∂ , resp. j are called boundary maps, resp. involutions.
Usually one flag is a pair consisting of flag as such, and a label, that should be
defined separately.Geometric realization of a graph is the quotient set of the disjoint
union of semi-intervals (0, 1/2] labeled with flags of this graph, modulo equivalence
relation, in which 0-points of a flag is glued to 1/2 of another flag, if these flags are
related by the boundary relation, or structure involution.

Depending on the context and/or type of labelling of τ , elements of Fτ might
be called flags, leaves, tails ... In the study of magmatic operad [3] and the relevant
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binary trees, vertices of the relevant corollas are called nodes, non-root flags are
called left child, right child etc. We will try to attach all such “heteronyms” to our
basic terminology of [2].

Below the most typical labeling of our graphs will be (see details in [2], Sec.
1.3.2 a) and 1.3.2 e), pp. 257–259):

(i) Orientation.
(ii) Cyclic labeling.

To give an orientation and cyclic labeling of corolla is essentially the same as
to define it as a planar graph: corolla, embedded into an oriented real affine plane,
with labeling compatible with its orientation.

Graphs endowed with various labelings form categories, upon which the oper-
ation of disjoint union ( defines a monoidal structure: see [2], Sec. 1.2.4, pp.
254–255. Our central objects of study are initially defined only for connected
graphs. Therefore, introducing this monoidal product, we must first take care of
“empty” (or partially empty) graphs and explain details of their functoriality. The
paper [2] is interspersed with subsections directly or indirectly motivated by this
necessity.

For the purposes of this paper, the most important graphs are labelled trees and
forests—disjoint unions of trees, forming “selva selvaggia e aspra e forte”.

5.3.2 Operads and Categories of Operads (See [2], Sec. 1.6, p.
262)

We recall here the first definition of operads in [2], 1.6 (I), andmorphisms of operads
as in [2], Sec. 1.6.1.

First of all, we fix a symmetric monoidal category of labelled graphs ) with
disjoint union as the monoidal structure, and a symmetric monoidal ground category
(G,⊗), satisfying a part of conditions 1.4a–f in [2], p. 259.

(i) An operad is a tensor functor between two monoidal categories A : (),() →
(G,⊗) that sends any grafting morphism to an isomorphism.

(ii) A morphism between two operads is a functor morphism.

Denote this category of operads by )GOPER.

5.3.3 Operads and Collections as Symmetric Monoidal
Categories

Following [2], Sec. 1.8, we will introduce now the monoidal “white product” of two
operads A,B : (),() → (G,⊗) by the formula

A ◦ B(σ ) := A(σ ) ⊗ B(σ )
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extended to morphisms in a straightforward way.
Clearly, ()GOPER, ◦) is a symmetric monoidal category.
An important related notion is that of collection. Starting with ) as above, denote

by )COR its subcategory, whose objects are corollas in ), and morphisms between
them are isomorphisms.

Combining it with the ground category (G,⊗) as above, we can introduce the
category )GCOLL of )G-collections: its objects are functors A1 : )COR → G,
and morphisms are natural transformations between these functors.

The restriction of white product ◦ to )GCOLL defines on it the structure of
symmetric monoidal category. If (G,⊗) has an identity object 1, then the collection
1coll sending each corolla to 1 and each isomorphism of corollas to the identical
isomorphism of 1, is the identity collection.

5.3.4 Operads as Monoids

We briefly describe here a construction by B. Vallette [14], reproduced in [2],
Appendix A, Subsection 5.

We will have to use here a stronger labeling of graphs in ) than just orientation.
Besides orientation, connected objects of ) must admit a continuous real-valued
function such that it decreases whenever one moves in the direction of orientation
along each flag. Such graphs are called directed ones (see [2], Sec. 1.3.2 b).

A graph τ is called a two-level graph, if it is oriented, and if there exists a partition
of its vertices Vτ = V 1

τ ( V 2
τ with the following properties:

(i) Tails at V 1
τ are all inputs of τ , and tails at V 2

τ are all outputs of τ .
(ii) All edges in Eτ go from V 1

τ to V 2
τ .

For any two )G-collections A1, A2 define their product as

(A2 !c A
1)(σ ) := colim(⊗v∈V 1

τ
A1(τv)) ⊗ (⊗v∈V 2

τ
A2(τv)).

Here colim is taken over the category of morphisms from two level graphs to σ .

Theorem 5.1 The product !c is a monoidal structure on collections, and operads
are monoids in the respective monoidal category.

5.3.4.1 Freely Generated Operads

For any )G-collection A1 one can define another collection F(A1) together with
a canonical structure of operad on it, and for any operad A each morphism of
collections A1 → A extends to a morphism of operads fA : F(A1) → A.

We can imagine F(A1) as the operad freely generated by the collection A1.
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5.3.5 Comonoids in Operadic Setup

We will now introduce a category OP of operads given together with their
presentations ([2], Sec. 2.4). We start with ) and G as above.

One object of OP is a family (A,A1, iA), where A is a )G-operad, A1 is a
)G-collection, such that fA : F(A1) → A is surjective.

Define onOP a product * by the formula

(A,A1, iA) * (B,B1, iB) = (C,C1, iC),

in which C1 := A1 ◦B1 (cf. 2.3 above),C:= the minimal suboperad, containing the
image (iA ◦ iB)(A1 ◦ B1) ⊂ A ◦ B, and iC is the restriction of IA ◦ iB on A1 ◦ B1.

Theorem 5.2 (See [2], Sec. 2.4)

(i) The product * defines on OP a structure of symmetric monoidal category.
(ii) The categoryOP is endowed with the functor of inner cohomomorphisms

cohomOP : OPop × OP → OP

so that we can identify, functorially with respect to all arguments,

HomOP (A,C * B) = HomOP (cohomOP (A,B),C)

(iii) Therefore, one can define canonical coassociative comultiplication morphisms

%A,B,C : cohomOP (A,C) → cohomOP (A,B) * cohomOP (B,C).

Corollary 5.1 For any A, the coendomorphism operad

coendOPA := cohomOP (A,A)

is a comagma in the sense of 5.2.3 above.

5.3.6 The Magmatic Operad (See [3])

Below we give a brief survey of some definitions and results from [3], sometimes
slightly changing terminology and notation.

Here objects of our basic symmetric monoidal category (),() will be disjoint
unions of oriented trees with the following additional labeling: for each tree, its
outgoing flags (or leaves) are cyclically ordered. Corollas in it are one-vertex graphs
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with one root and at least two leaves. Connected objects can be obtained from a
union of disjoint corollas by grafting each root of a corolla to one of leaves of
another corolla. Morphisms are compatible with labeling.

An algebra over magmatic operad is a family (!, ∗) consisting of a set ! with
binary composition law ∗ : !× !→ !.

Thus, corollas in the magmatic category correspond to products

(x1 ∗ ((x2) ∗ . . . (...(xn)))...),

and generally, connected graphs in it correspond to monomials of generic arguments
with all possible arrangements of brackets.

5.3.7 Quasigroup Monomials and Planar Trees

Monomials that can be obtained by iteration of binary multiplication ∗ as in (5.1)
correspond to planar trees: see 5.3.1 above for discussion of planar corollas. Below,
discussing quasigroups in general, andMoufang loops in particular, we will consider
connected planar trees and quasigroup monomials as encoding each other in this
way.

5.4 Moufang Loops and Operads

5.4.1 Moufang Monomials and Their Encoding by Labeled
Graphs

We will start with comparing mathematical structures of two types: labeled graphs,
andMoufang monomials.

The words loop monomialswill refer to the following class of objects. Let (L, ∗)
be a Moufang loop in the sense of [4], Definition 5.1.1. Let (x1, . . . , xn) ∈ L. We
can produce new elements of L from this sequence by applying to them iterated
multiplication ∗.

The basic examples are

x1 ∗ x2, (5.3)

(x1 ∗ x2) ∗ (x3 ∗ x4). (5.4)

We will encode the monomial (5.3) by a cyclically labeled oriented corolla with
one vertex and three flags, exactly one of which is the output. The bridge from (5.3)
to this corollamight be imagined as an enrichment of it by additional labeling: x1∗x2
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at the output, and x1, x2 at two other flags, such that (x1, x2, x1 ∗ x2) corresponds to
the given cyclic labeling.

Since (5.4) can be obtained from (5.3) by iteration and variables change, we must
explain, how such an iteration is encoded on the level of labeled graphs. The answer
is obvious: it corresponds to graftings of certain outputs to certain inputs, so that
these outputs in the enriched picture become the inputs of the respective iteration.

In this way, (5.4) becomes encoded by an oriented and cyclically labeled tree,
with four ordered inputs, two edges, three vertices, and one output.

5.4.2 Passage to Moufang Operad: Basic Identity

According to [4], Def. 5.1.1, the Moufang loops are defined as structures (L, ∗)
satisfying the “near-associativity” relations

(x1 ∗ x2) ∗ (x3 ∗ x4) = x1 ∗ ((x2 ∗ x3) ∗ x4) (5.5)

The r.h.s. of (5.5) is, in turn, encoded by an oriented and cyclically labeled tree, with
four ordered inputs (the same ones as in (5.4)), two edges, and four vertices.

5.4.3 Moufang Collections (See [2], Sec. 1.5, pp. 259–261)

Call a Moufang corolla an oriented cyclically ordered connected graph with
one output, and morphims are isomorphisms between them. They are objects of
categoryMCOR (particular case of categories )COR above). Clearly,MCOR is
a groupoid.

Choose a symmetric monoidal ground category (G,⊗), and define respective
Moufang collections.

5.4.4 Latin Square Designs and Their Encoding by Graphs

LetD = (P,L) be a Latin square design as in [4], Def. 6.8.2.1.
Denote by G0(D) the graph, defined by the following family of data (see [2],

p.251):
Vertices VG0(D) are lines ofD:

VG0(D) := L.

Flags FG0(D) are pairs (p, l) ∈ P × L such that p ∈ l.
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The boundary map ∂G0(D) : FG0(D) → VG0(D) sends each (p, l) to l.
The involution jG0(D) : FG0(D) → FG0(D) sends (p, l) to (p′, l′), if p -= p′ and

l = l′.

5.4.4.1 Simplest Examples

Using notation from [4], Def. 6.8.2.1, we see that three simplest examples corre-
spond to cases N := cardL = 0, 1, 2.

The case N = 0 is degenerate: the respective designs and graphs are empty, and
usually are included in consideration only for categorical reasons.

The case N = 1 produces a corolla: the graph with one vertex and three flags,
and boundary map sending each flag to this vertex. The involution map is identical
one.

5.4.5 From Loops to Latin Square Designs

Consider an ML L. Produce three labelled copies of L: L1, L2, L3, with pairwise
empty intersections. Define the design (P,L) by putting P := L1 ( L2 ( L3 and
defining a line as such triple of points (x1, x2, x3), xi ∈ Li that (x1 ∗ x2) ∗ x3 =
1 ∈ L. In this last formula we implicitly forget labels 1, 2, 3 and consider Moufang
multiplication in L.

5.5 Operadic Structures on Quantum States

In this section we show that the operadic structures associated to classical proba-
bilities on finite sets, introduced in [10], extend to non-unital operads on quantum
states.

5.5.1 Operads of Classical and Quantum Probabilities

We first recall the main operadic structures of classical probabilities, as intro-
duced in [10], which we follow for the exposition in this subsection. It was
observed in [1] and [10] that classical probabilities on finite sets come endowed
with an operad structure that describes the combination of independent subsys-
tems.
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Namely, denote by P the operad in Sets with objects P(n) = %n, the simplex of
probabilities on the finite set {1, . . . , n},

%n = {P = (pi)
n
i=1 |pi ≥ 0,

n∑

i=1

pi = 1},

and with composition operations

γ : P(n) × P(k1) × · · · × P(kn) → P(k1 + · · · + kn)

given by the composition of probabilities of independent subsystems

γ (P ;P1, . . . , Pn) = (prpr,jr )r=1,...,n,jr=1,...,kr

for Pr = (pr,jr )
kr
jr=1 and P = (pr)

n
r=1.

5.5.1.1 Averages as an Algebra Over the Operad P

Making explicit in this setup the general definitions from Sects. 5.3.2–5.3.4 above,
we see that an algebra A over the operad P in a symmetric monoidal category is a
family of morphisms

α : P(n) ⊗ A⊗n → A,

satisfying associativity and unitality conditions, and compatibility with the symmet-
ric groups actions.

The set of non-negative real numbersR+ can be seen as a category with a single
object andmorphisms x ∈ R+ and as an algebra (in the category of small categories)
over the operad P with the simple operations

α(P ; x1, . . . , xn) =
∑

i

pixi,

for P = (pi)
n
i=1 and xi ∈ R+.

5.5.1.2 A∞-Operad and Entropy

As was shown in [10], there is another operadic structure in the setting of classical
probability distributions over finite sets.

Let T be the A∞-operad of planar rooted tress. We say that a collection of n-ary
information measures Sn for n ∈ N , satisfies the coherence condition, if for any
n > m, the n-th entropy functional Sn agrees with Sm, when n − m of the variables
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are vanishing. In other words, assume that among the probabilities (p1, . . . , pn) the
only non-zero ones are (pi1 , . . . , pim ) for some i1 < i2 < · · · < im. Then coherence
condition means that

Sn(p1, . . . , pn) = Sm(pi1, . . . , pim).

We can now determine on R+ the structure of algebra over the operad T with the
operations

α(τ, x1, . . . , xn) = min

{
n∑

i=1

pixi − 1
β
Sτ (p1, . . . , pn) |P = (pi) ∈ %n

}
,

where τ ∈ T(n) is a planar rooted tree with n leaves, and β > 0 is a thermodynamic
parameter (inverse temperature). The n-ary entropy functional Sτ (p1, . . . , pn)

associated to the tree τ is uniquely determined by the branching structure of the
tree τ and the collection of coherent entropies Sn.

5.5.2 Classical Probabilities from Quantum States

LetM(n) denote the convex set of n × n-density matrices (quantum states),

M(n) = {ρ ∈ Mn×n(C) | ρ∗ = ρ, ρ ≥ 0, Tr(ρ) = 1}.

Positivity condition means here, that ρ = a∗a for some a ∈ Mn×n(C), hence
Spec(ρ) ⊂ R+. In a fixed basis, the diagonal density matrices form a copy of
the simplex %n embedded in M(n).

There are two classical probability distributions naturally associated to a quantum
state as follows.

Definition 5.1 Given ρ ∈ M(n), let

- = (λi )
n
i=1 with λi ∈ Spec(ρ),

be the set of eigenvalues of ρ, sorted in non-increasing order, and let

P = (pi)
N
i=1 with pi = ρii

be the list of the diagonal entries of ρ.

Definition 5.2 Given two non-increasing sequences A = {a1, . . . , an} and C =
{c1, . . . , cn} with

∑N
i=1 ai =

∑N
i=1 ci , one says that A majorises C, or A 1 C, if

for all 1 ≤ k ≤ N one has
∑k

i=1 ai ≥ ∑k
i=1 ci .
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Lemma 5.1 The Shannon information of the two classical probability distributions
- = -(ρ) and P = P(ρ) is related by S(P ) ≥ S(-).

Proof By Schur lemma, the sequence - of eigenvalues of the hermitian matrix
ρ majorises the sequence P of its diagonal entries, when both are sorted in non-
increasing order. It is well known that for probabilities - 1 P is equivalent to
the existence a bistochastic matrix B such that P = B-. The Shannon entropy is
monotonically non-decreasing under bistochastic matrices, so S(B-) ≥ S(-).

3(
The eigenvalues probability - = -(ρ) determines the information content of

the quantum probability ρ, since in the von Neumann entropy

S(ρ) = Tr(ρ logρ)

the term logρ is defined via the spectral theorem, so that we have

S(ρ) = S(-) = −
∑

i

λi logλi ,

the Shannon entropy of the classical probability -.
We will show in the next subsections that these two classical probabilities P(ρ)

and -(ρ) determine two non-unital operad structures on the space of quantum
states. The operad obtained usingP(ρ) has better properties and directly agrees with
the operad of classical probabilities recalled in Sect. 5.5.1 above when restricted to
%n ⊂ M(n).

5.5.3 Non-unital Operads

In the unital case, one can equivalently describe an operad O through the composi-
tion laws

γ : O(n) ⊗ O(k1) ⊗ · · · ⊗ O(kn) → O(k1 + · · · + kn),

with the associativity conditions (and the symmetricity and unitality conditions in
the respective cases), or else one can describe O through insertion operations

◦i : O(n) ⊗ O(m) → O(n+m − 1).
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For 1 ≤ j ≤ a and b, c ≥ 0, with X ∈ O(a), Y ∈ O(b), and Z ∈ O(c), these
insertions are subject to the conditions

(X ◦j Y ) ◦i Z =






(X ◦i Z) ◦j+c−1 Y 1 ≤ i < j

X ◦j (Y ◦i−j+1 Z) j ≤ i < b + j

(X ◦i−b+1 Z) ◦j Y j + b ≤ i ≤ a + b − 1.

The composition laws γ satisfying the associativity condition can be obtained from
the insertions ◦i through

γ (X, Y1, . . . , Yn) = (· · · (X ◦n Yn) ◦n−1 Yn−1) · · · ◦1 Y1).

While these two descriptions of operads are equivalent in the unital case, they
give rise to two different versions of the notion of non-unital operad, see the
discussion in [11]. Indeed, non-unital operads defined through the operations ◦i
are also non-unital operads with the composition operations γ , but the converse no
longer holds, so the first class of non-unital operads is more restrictive.

We will show below that the non-unital operads of quantum states belong to the
more restrictive class, according to the stronger notion of non-unital operad as in
[11].

5.5.4 The QP -Operad of Quantum States

We show here that the operad P of classical probabilities on finite sets extends to a
compatible but non-unital operad QP on quantum states.

Definition 5.3 For n ≥ 1 denote by QP (n) = M(n) the convex set of density
matrices, endowed with the composition laws

γP : QP (n) × QP (k1) × · · · × QP (kn) → QP (k1 + · · · + kn) :

γP (ρ; ρ1, . . . ,ρn) = γ (P (ρ); ρ1, . . . ,ρn) =





p1ρ1
p2ρ2

... · · ·
...

pnρn




.

Lemma 5.2 The action of the symmetric group .n on M(n) given by σ (ρ) =
σρσ ∗ is compatible with the action by permutation of the coordinates on classical
probabilities. It acts on the two probability distributions P(ρ) and -(ρ) by

P(σρσ ∗) = σ ∗P(ρ) and -(σρσ ∗) = -(ρ).



5 Quantum Operads 127

Proof By realising the set of classical probability distributions%n ⊂ M(n) as set of
diagonal density matrices in a chosen basis, we see that σρσ ∗ permutes the entries
by σ ∗. The diagonal entries of ρ can be obtained as ρii = Tr(πiρ) with πi the i-th
1-dimensional projection in the chosen basis, and Tr(πiσρσ ∗) = Tr(σ ∗πiσρ) =
Tr(πσ−1(i)ρ) = ρσ−1(i)σ−1(i). So we have P(σρσ ∗) = σ ∗P(ρ). In the case of
-(ρ), since this distribution is defined after choosing an order in which to list the
eigenvalues of ρ, such as non-increasing order, we have -(ρ) = -(σρσ ∗), since
both matrices have the same spectrum. 3(

Proposition 5.1 The convex sets QP (n) with the composition operations γP of
Definition 5.3 determine a non-unital symmetric operad QP that restricts to the
unital operad P on classical probabilities %n ⊂ M(n).

Proof It is clear by the definition of the composition operations γ that they
agree with the composition operations of the operad P when restricted to classical
probabilities %n ⊂ M(n). We need to check that they satisfy the associativity and
symmetry axioms on the larger set M(n) of quantum states.

The associativity condition is given by the identities

γ (γ (ρ(m); ρ(n1), . . . ,ρ(nm)); ρ(r1,1), . . . ,ρ(r1,n1 ), . . . ,ρ(rm,1), . . . ,ρ(rm,nm)) =

γ (ρ(m); γ (ρ(n1); ρ(r1,1), . . . ,ρ(r1,n1 )), . . . , γ (ρ(nm); ρ(rm,1), . . . ,ρ(rm,nm))),

for ρ(m) ∈ Q(m), ρ(ni ) ∈ Q(ni), i = 1, . . . ,m, and ρ(ri,0i ) ∈ Q(ri,0i ) with 0i =
1, . . . , ni . The left-hand-side is

γ









ρ
(m)
11 ρn1

ρ
(m)
22 ρn2

... · · ·
...

ρ
(m)
mmρnm




; ρ(r1,1), . . . , ρ(r1,n1 ), . . . ,ρ(rm,1), . . . , ρ(rm,nm )




=





ρ
(m)
11 ρ

n1
11ρ

(r1,1)

. . .

ρ
(m)
11 ρ

n1
n1n1ρ

(r1,n1 )

. . .

ρ
(m)
mmρ

n1
11ρ

(rm,1)

. . .

ρ
(m)
mmρ

n1
nmnmρ(rm,nm)





,
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which agrees with the right-hand-side

γ



ρ(m);




ρ
n1
11ρ

(r1,1)

. . .

ρ
n1
n1n1ρ

(r1,n1 )



 , . . . ,




ρ
nm
11 ρ(rm,1)

. . .

ρ
nm
nmnmρ(rm,nm)







 .

The compatibility with the symmetric group action for QP is obtained directly
from Lemma 4.4.2. Indeed, symmetric property of an operad is expressed by the
following two identities, for permutations σi ∈ .ni and σ ∈ .m. The first condition
is

γP (σ (ρ); ρσ−1(1), . . . ,ρσ−1(m)) = σ̃ (γP (ρ; ρ1, . . . ,ρm)),

where on the right-hand-side σ̃ ∈ .n1+···+nm is the permutation that splits the set
of indices into blocks of ni indices and permutes the blocks by σ . The second
symmetric group condition is

γP (ρ; σ1(ρ1), . . . , σm(ρm)) = σ̂ (γP (ρ; ρ1, . . . ,ρm)),

where on the right-hand-side σ̂ ∈ .n1+···+nm is the permutation that acts on the i-th
block of ni indices as the permutation σi .

In the first case, we have

γP (σ (ρ); ρσ−1(1), . . . ,ρσ−1(m)) = γP (σ
−1P(ρ); ρσ−1(1), . . . ,ρσ−1(m)),

which is the same as σ̃ γP (ρ; ρ1, . . . ,ρm))̃σ ∗ in M(n1+···+nm). A similar argument
proves the second relation.

The operad is non-unital. Indeed, the unit axiom is only satisfied for ρ = 1 ∈
Q(1) with γP (1; ρ) = ρ, but it fails when ρi = 1 ∈ Q(1), where the composition
gives instead γP (ρ; 1, . . . , 1) = P(ρ). The unit axiom γP (ρ; 1, . . . , 1) = ρ is
satisfied on the subset%n ⊂ M(n) of classical probabilities, where the operad agrees
with the unital operad P. 3(

Proposition 5.2 The composition laws γP of the non-unital operadQP are induced
by insertion operations ◦i : QP (n) × QP (m) → QP (n+m − 1), hence the operad
QP is also a non-unital operad in the stronger sense.

Proof For the composition operations γP to be obtained from insertions ◦i , we need
to have

γP (ρ; ρ1, . . . ,ρn) = (· · · (ρ ◦n ρn) · · · ◦1 ρ1),
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for ρ ∈ M(n) and ρi ∈ M(ni ). We can define morphisms

◦i : QP (n) × QP (m) → QP (m+ n − 1)

as the operations (ρ,ρ′) $→ ρ ◦i ρ′ that take a density matrix ρ ∈ M(n) and replace
the i-th row and columns with m rows and m columns, respectively, where all the
entries outside of the m × m-block around the diagonal are zero, and the diagonal
block is given by the matrix ρiiρ

′. Clearly this implies that the repeated application
of these insertions performed in the order (· · · (ρ ◦n ρn) · · · ◦1 ρ1) produces exactly
the matrix γP (ρ; ρ1, . . . ,ρn). 3(

5.5.5 The Q!-Operad of Quantum States

We can construct, in a very similar way, another operad of quantum states, using
the classical probabilities -(ρ) instead of P(ρ). The resulting operad has slightly
different properties, coming from the choice of an ordering of the eigenvalues.

Definition 5.4 For n ≥ 1 let Q-(n) = M(n) be the convex set of density matrices,
endowed with the composition laws

γ- : Q-(n) × Qλ(k1) × · · · × Q-(kn) → Q-(k1 + · · · + kn)

γ-(ρ; ρ1, . . . ,ρn) = γ (-(ρ); ρ1, . . . ,ρn) =





λ1ρ1
λ2ρ2

... · · ·
...

λnρn





with λi the eigenvalues of ρ listed in non-increasing order.

Proposition 5.3 The convex sets Q-(n) with the composition operations γ- of
Definition 5.4 determine a non-unital non-symmetric operad Q-. The composition
laws γ- are induced by insertion operations ◦i : Q-(n)×Q-(m) → Q(n+m−1).

Proof The argument is completely analogous to Propositions 5.1 and 5.2. The
associativity requirement for the composition laws γ- follows as in Proposition 5.1,
using the fact that

Spec





λ1ρ
n1

λ2ρ
n2

... · · · ...

λmρnm




=

⋃

i

λi Spec(ρ
ni ).
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The operad Q- is non-unital for the same reason as QP , namely γ-(ρ; 1 . . . , 1) =
-(ρ) -= ρ. Even in the case of diagonal matrices these differ in general by a
permutation.

The operad is non-symmetric, because we must choose an ordering of the eigen-
values in -(ρ), for example, non-increasing ordering. This breaks the symmetric
group action in the first of the two identities, making Q- non-symmetric.

The insertion operations ◦i are as in Proposition 5.2, but the centralm×m block
is now of the form λiρ

′ 3(

5.5.6 Trees of Projective Quantum Measurements

We consider the range of compositions of insertion maps of the operad QP and
quantum channels associated to these ranges.

First observe that the image of the insertion map

◦i : QP (n) × QP (m) → QP (n+m − 1)

consists of the set of those density matrices ρ ∈ M(n+m−1) that are block diagonal
with one (n−1)×(n−1)-block and onem×m-block. Moreover, all block diagonal
density matrices are in the image of some composition of insertion maps. These
are quantum states that decompose nontrivially into disjoint states with orthogonal
ranges. On the other hand, a block diagonal density matrix can be obtained in more
than one way through a composition of insertion maps.

Operators on density matrices are described by quantum channels, namely
quantum measurements realized by completely positive maps. A particular class
of such operators consists of projective quantum measurements.

In the following we work with a finite dimensional Hilbert spaceH of dimension
N with a chosen orthonormal basis, and we denote as before by M(N) the set of
density matrices, written in the chosen basis.

Definition 5.5 A projective quantum measurement is a family 1 = {1i}ni=1 of
projectors 1∗

i = 1i = 12
i in a finite dimensional Hilbert spaceH of dimensionN ,

that are mutually orthogonal, 1i1j = δij1i , and satisfy the condition
∑

i 1i = 1.
The outcome of the projective measurement 1 on a quantum state given by density
matrices ρ ∈ M(N) is

ρi =
1iρ1i

Tr(1iρ)
with probability pi = Tr(1iρ).

The projective quantum channel 1 then maps ρ $→ 1(ρ) = ∑
i piρi .

The range in M(N) of a composition of insertion maps is specified by assigning
a decomposition N = k1 + · · · + kn and the locus Mk1,...,kn ⊂ M(N) of density
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matrices that are block-diagonal in the chosen basis, with n blocks of size ki . The
following is immediate by construction.

Lemma 5.3 Let 1 be the projective measurement 1 = {1i}ni=1, where 1i is the
orthogonal projection onto the span of the i-th subset of ki basis elements, given
by a quantum channel. It maps 1 : M(N) → Mk1,...,kn , assigning to ρ the block-
diagonal density matrix 1(ρ) = ∑

i piρi .

Just as elements of Mk1,...,kn can be obtained in different ways as compositions
of insertion operations of the operad QP of quantum states, with different tree
structures, the quantum channel1 : M(N) → Mk1,...,kn can also be realized through
different tree structures.

Let τ be a planar rooted tree with n leaves labeled by the non-negative integers
ki . We view the tree τ as oriented from the leaves toward the root. We assign to the
root vertex v0, the identity projector 1(v0) = 1. Let v be any vertex in the tree, and
consider the set of incoming edges e at v, with ve = s(e) their source vertices. Let
{1(ve)}t (e)=v be a set of orthogonal projections with

∑
e:t (e)=v 1(s(e)) = 1(v). Let

1i denote the resulting projectors at the leaves. We write, for t (e) = v,

ρ(s(e)) = 1(s(e))ρ(v)1(s(e))

Tr(1(s(e))ρ(v))
,

with ρ(v0) = ρ.
Consider the quantum measurement 1τ that assigns to a density matrix ρ ∈

M(N), with N = k1 + · · · + kn outcomes ρτ
i with probabilities pτ

i where

pτ
i =

∏

w

Tr(1(w)
iw

ρ(w))

with the product over the vertices on the directed path from the i-th leaf to the root
of τ , with iw indicating the direction at the vertex w along this path and the ρτ

i are
obtained by repeatedly computing ρ(s(e)) from ρ(t (e)) along the path connecting the
i-th leaf to the root.

Lemma 5.4 All the quantum channels 1τ obtained in this way, are just the same
quantum channel 1 : M(N) → Mk1,...,kn .

Proof This can be seen very easily by writing

∏

w

Tr(1(w)
iw

ρ(w)) =
∏

0

Tr(1(w0)1(w0−1) · · ·1(w0)ρ)

Tr(1(w0−1) · · ·1(w0)ρ)
=

∏

0

Tr(1(w0)ρ)

Tr(1(w0−1)ρ)
= Tr(1iρ)

with 1i the projection at the leaf, since we have 1
(s(e))
j 1

(t (e))
e = 1

(s(e))
j as 1

(s(e))
j

is a projection onto a subspace of the range of 1
(t (e))
e . We similarly obtain ρτ

i =
ρi = 1iρ1i

Tr(1iρ)
. 3(
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5.5.7 Entropy Functionals

Consider a family of quantum entropy functionals

Sn : M(n) → R

satisfying the consistency condition that Sn restricts to Sk for k < n over any
copy of M(k) embedded in M(n) as density matrices with a set of n − k vanishing
eigenvalues.

Examples of such consistent collections of entropy functionals include the von
Neumann entropy

N(ρ) = −Tr(ρ logρ),

or, for a real parameter q > 0 with q -= 1, the quantum Rényi entropy

Ryq(ρ) =
1

1 − q
log Tr(ρq)

and the quantum Tsallis entropy

T sq(ρ) =
1

1 − q
(Tr(ρq) − 1).

We obtain a family of quantum entropies associated to trees in the following way,
as a direct generalization of the entropy functionals Sτ for classical probabilities
constructed in [10].

Proposition 5.4 A tree τ with n leaves labeled by integers ki ≥ 1, together with a
coherent family {Sn} of quantum entropies, determines an entropy functional

Sτ : M(N) → R

for N = k1 + · · · + kn.

Proof In the case where τ is a corolla with a single root vertex and n leaves, we set

Sτ (ρ) = S(P ) +
∑

i

piS(ρi )

with pi = Tr(1iρ), resp. ρi = 1iρ1i
Tr(1iρ)

, are the probabilities, resp. density matrices,
at the leaves. In the case of the von Neumann entropy, by the extensivity property,
this is the same as N(1τ (ρ)) = N(

∑
i piρi ). Inductively assuming that Sτ is

constructed for all trees with less than n leaves, consider the subtrees τj , j =
1, . . . ,m, attached at the root vertex v0, each with a set Lj of leaves, cardLj < n.
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By the construction of the quantum channel 1τ we have a system 1j of orthogonal
projections with

∑
j 1j = 1 associated to the incoming edges ej at the root vertex,

and probabilities pj = Tr(1jρ) and density matrices ρj = 1j ρ1j

Tr(1jρ)
associated to

the root vertices vj of the subtrees τj . We then set

Sτ (ρ) = S(P )+
∑

j

pjSτj (ρj ),

where S(P ) is the Shannon entropy of the classical probability P = (pj ) and Sτj

are the entropy functionals inductively constructed for the subtrees τj with less than
n leaves. This suffices to determine Sτ uniquely. 3(

Remark 5.1 In the case of the von Neumann entropy, the extensivity property and
the identification of all the quantum channels 1τ with the quantum channel 1 :
M(N) → Mk1,...,kn , seen in Lemma 5.4 above, imply that Nτ (ρ) = N(

∑
i piρi ) =

S(P ) + ∑
i piN(ρi ) for all τ . This is not the case for non-extensive entropies like

Rényi and Tsallis.

5.5.8 A∞-Operad of Quantum Channels

We now investigate structures on quantum states that generalize the operations based
on classical probabilities that we recalled in Sect. 5.5.1.2.

Definition 5.6 A quantum channel 3 : M(N) → M(N) is a trace preserving
completely positive map. It is well known that any such map can be represented,
in a non-unique way, in Kraus form, namely as

3(ρ) =
∑

i

Aiρ A∗
i

for a collection {Ai} of operator satisfying the condition
∑

i A
∗
i Ai = 1.

The projective quantum channels considered in the previous subsections are
those for which the operators Ai are mutually orthogonal projectors.

We can construct more general quantum channels associated to rooted trees.
We consider a finite dimensional complex Hilbert space H of dimension N . All
operators here will be linear operators onH.

Definition 5.7 Let τ be a planar rooted tree with n leaves. We consider τ oriented
from the leaves to the root. A tree quantum channelCτ

A is an assignment of operators
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A = {Ae}e∈E(τ ) to the edges of τ , satisfying the condition that at each vertex v

∑

e : t (e)=v

A∗
eAe = 1.

Lemma 5.5 The tree quantum channels Cτ
A of Definition 5.7 are quantum channel

as in Definition 5.6, acting on density matrices ρ ∈ M(N) by

Cτ
A(ρ) =

n∑

i=1

Aei,1 · · ·Aei,mi
ρ A∗

ei,mi
· · ·A∗

ei,1
,

where the sum is over the leaves of τ and for each i = 1, . . . , n we consider the
oriented path ei,1, . . . , ei,mi from the i-th leaf to the root, s(ei,1) = vi , t (ei,j ) =
s(ei,j+1), t (ei,mi ) = v0, the root vertex.

Proof This is essentially the Kraus form of a quantum channel, since we have

n∑

i=1

A∗
ei,mi

· · ·A∗
ei,1

Aei,1 · · ·Aei,mi
= 1.

Indeed, write Av := Ae1 · · ·Aem for the composition of the operators Ae along the
oriented path from the vertex v to the root v0. So we write the above as

∑
i A

∗
i Ai .

Starting at the leaves and considering the adjacent vertices, we can rewrite the sum
as

∑

v

∑

i : t (ei )=v

A∗
vA

∗
ei,1

Aei,1Av =
∑

v

A∗
vAv,

where the set {i : t (ei) = v} is non-empty only for the vertices v adjacent to the
leaves. This reduces by one the length of the path. Thus, we obtain inductively that
the normalisation

∑
v A

∗
vAv = 1 holds, with the condition

∑
e : t (e)=v A

∗
eAe = 1

implying that it holds for length one. 3(

Theorem 5.3 The tree quantum channels Cτ
A form an A∞-operad QC.

Proof Consider Z-modules QC(n) := spanZ{Cτ
A | τ ∈ T(n)} where T(n) is the

A∞-operad of planar rooted trees. The operadic composition laws

γQC : QC(n) ⊗ QC(k1) ⊗ · · · ⊗ QC(kn) → QC(k1 + · · · + kn)

are given by

γQC(Cτ
A;Cτ1

A1
, . . . , C

τn
An
) = C

γT(τ ;τ1,...,τn)
A∪{A1,...,An} .
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The associativity, unity, and symmetric properties of QC follow directly from the
same properties of the operad T. The DG-structure of QC is also inherited from the
DG-structure of the A∞-operad T, with the differential given by edge contractions

dCτ
A =

∑

τ ′ : τ=τ ′/e

ε Cτ ′
A′ ,

where ε = (−1)0(e) with 0(e) the number of edges below and to the left of e in τ

with respect to the planar structure.
The collection of operators A′ on a tree τ ′ with τ = τ ′/e agrees with A on all

edges e′ with t (e′) -= t (e), s(e) and is of the following form on the remaining edges.
Let Et be the set of edges e′ of τ such that t (e′) = t (e) in τ ′ and Es the set of edges
e′ in τ such that t (e′) = s(e) in τ ′. The set Et ∪ Es consists of all the edges of τ

with the same target vertex v in τ that is split into two vertices s(e), t (e) in τ ′. Thus,
in Cτ

A we have the relation
∑

e′∈Et∪Es
A∗
eAe = 1.

LetBt :=
∑

e′∈Et
A∗
e′Ae′ andBs :=

∑
e′∈Et

A∗
e′Ae′ . These are positive operators,

namely 〈Bv, v〉 ≥ 0 for all v ∈ H. Put Ns = cardEs and consider the operators
1
Ns

Bt and A∗
e′Ae′ + 1

Ns
Bt for e′ ∈ Es . These are also positive operators. Thus,

we can write Bs = A∗A and A∗
e′Ae′ + 1

Ns
Bt = Ã∗

e′Ãe′ for some operators A and
Ãe′ .

We then take A′
e := A and A′

e′ := Ãe′ for e′ ∈ Es . This completes the
description of A′ on τ ′ in a way that still satisfies the conditions at vertices

∑

e′ : t (e′)=s(e)

A′
e′

∗
A′
e′ =

∑

e′∈Es

(A∗
e′Ae′ + 1

Ns
Bt) =

∑

e′∈Es

A∗
e′Ae′ +

∑

e′∈Et

A∗
e′Ae′ = 1,

∑

e′ : t (e′)=t (e)

A′
e′

∗
A′
e′ = A′

e
∗
A′
e +

∑

e′∈Et

A∗
e′Ae′ =

∑

e′∈Es

A∗
e′Ae′ +

∑

e′∈Et

A∗
e′Ae′ = 1.

Note that, in order to make the composition operations compatible with the
differential of the DG-structure, they should also include appropriate signs, as
specified for instance in [15]. We will omit the details as they are exactly the same
as in the original case of the A∞-operad T.

3(
Taking formal linear combinations of quantum channels, as in the definition

of QC above, has the advantage of being able to define the differential and DG-
structure described in Theorem 5.3. However, it is somewhat unnatural, since the
positivity property of quantum channels is lost in the linear combinations. It is
therefore more natural in this context to consider only convex combinations. This
leads to a variant of the operad QC of tree quantum channels.

Definition 5.8 Let QC+ be given by QC+(n) = convex span{Cτ
A | τ ∈ T(n)}. The

QC+(n) are convex sets rather than Z-modules (or vector spaces). The composition
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operations are the same as the γQC (without signs),

γQC+(Cτ
A;Cτ1

A1
, . . . , C

τn
An
) = C

γT(τ ;τ1,...,τn)
A∪{A1,...,An} .

Then QC+ defined in this way is an operad, though it no longer has a DG-
structure.

Proposition 5.5 The convex set M(N) has the structure of an algebra over the
operad QC+.

Proof The operations α : QC+(n) ⊗ M(N)⊗n → M(N) are given by a slight
modification of the action of tree quantum channels of Lemma 5.5,

α(Cτ
A; ρ1, . . . ,ρn) =

n∑

i=1

pi ρ̃i ,

ρ̃i =
AγiρiA

∗
γi

Tr(A∗
γi
Aγiρi )

and pi = Tr(A∗
γi
Aγi ),

where Aγi = Aei,1 · · ·Aei,mi
, along the oriented path γi = ei,1, . . . , ei,mi from the

i-th leaf to the root. 3(

5.6 Operads and Almost-Symplectic Quantum Codes

In this section we continue our investigation of operadic structures in quantum
information, by revisiting a construction of quantum codes from (not always
Moufang) loops obtained from almost-symplectic vector spaces over finite fields
that we developed in [4]. Here we need to consider a slightly different definition
of almost-symplectic structure over finite fields with respect to the one used in [4].
The choice we consider here is better because it allows for an operadic composition,
but the construction of the associated quantum codes is then less well behaved. We
show that the space of almost-symplectic structures (in the sense we consider here)
is an algebra over operad modelled on May’s little square operad, and the set of data
defining the associated quantum codes is a partial-algebra over the same operad.

5.6.1 Rational and Binary Little Square Operads

The little square operad [12] provides a characterization of topological spaces that
are 2-fold loop spaces. Little n-cube operads [12] similarly characterize n-fold loop
spaces.



5 Quantum Operads 137

We consider first a sub-operad where we impose an additional condition on the
linearly scaled versions of the unit square in the operad, namely that they have
corners located at rational points in the unit square, namely that the scaling is
affected by linear functions with rational coefficients.

Let I = [0, 1] be the unit interval, with J = (0, 1) its interior. Let IQ = I ∩ Q
and JQ = J ∩ Q. Thus, I2 is the unit square with its interior J2 and I2

Q and J2
Q

are the respective sets of rational points. A rational little square is a function

c : I2
Q → I2

Q, c = (c1, c2), ci(t) = (yi − xi)t + xi ∀t ∈ IQ,

for some xi, yi ∈ IQ. An n-tuple 〈c1, . . . , cn〉 of rational little squares has disjoint
interiors if ci(J2

Q) ∩ cj (J2
Q) = ∅ for i -= j .

The n-th object of the rational little square operad CQ
2 (n) is the space of n-tuples

〈c1, . . . , cn〉 of rational little squares with disjoint interiors. For n = 0, the space
CQ
2 (0) consists of a unique function ∅ → I2.
Let (nI2 denote the disjoint union I2( · · ·(I2 of n copies of I2. By identifying

〈c1, . . . , cn〉 with a function c1 ( · · · ( cn : (nI2 → I2, the set CQ
2 (n) is endowed

with the topology induced by the compact-open topology on the set of continuous
maps from (nI2 to I2.

The operad compositions

◦i : CQ
2 (n) × CQ

2 (m) → CQ
2 (n+m − 1)

of c = 〈c1, . . . , cn〉 ∈ CQ
2 (n) and c

′ = 〈c′
1, . . . , c

′
m〉 ∈ CQ

2 (m) are determined by the
diagrams

The unit of the rational little square operad is the identity map id : I2
Q → I2

Q in
CQ
2 (1). The action on c = 〈c1, . . . , cn〉 of a permutation σ in the symmetric group

.n is given by

cσ := 〈cσ (1), . . . , cσ (n)〉 ,

permuting the labels of the little squares.
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5.6.1.1 Binary Little Square Operad

We then consider subspaces Cℱ2
2 (n) ⊂ CQ

2 (n) given by those rational little squares
c = 〈c1, . . . , cn〉 with disjoint interiors, with the property that the endpoints of each
ci(I2) are rational points of I2 that lie on the square grid of length 2−N , for some
N ≥ 0.

We refer to the parallel grid of length 2−N in the unit square I2 as the N-grid.

Lemma 5.6 The subspaces Cℱ2
2 (n) ⊂ CQ

2 (n), with the induced composition

operations, determine an operad Cℱ2
2 , the “binary little square operad”.

Proof Under the operad composition operations of CQ
2 , the compositions c ◦i c′ of

two binary little squares is still a binary little square, so Cℱ2
2 is a sub-operad of CQ

2 .
3(

5.6.1.2 Strict Binary Little Squares

Given a binary little square c ∈ Cℱ2
2 (n), with c = 〈c1, . . . , cn〉, let Nc ∈ N be the

smallest natural number such that the corners of all the ci(I2) are at vertices of the
Nc-grid of size 2−Nc .

Definition 5.9 A binary little square c is “strict” if every row and column of the
Nc-grid has at least one square that is not contained in the union ∪n

i=1ci(I2).

Consider the sub-spaces Cℱ2,s
2 (n) ⊂ Cℱ2

2 (n) consisting of binary little squares
that are strict.

Lemma 5.7 The Cℱ2,s
2 (n) with the induced composition operations, determine a

sub-operad of Cℱ2
2 .

Proof We need to check that the operad compositions preserve the strict property of

little squares. Given c ∈ Cℱ2,s
2 (n) and c′ ∈ Cℱ2,s

2 (m), the endpoints of the regions
(c◦i c′)j (I2), j = 1, . . . , n+m−1 are on a grid of size 2−Nc◦i c′ , with Nc◦i c′ ≥ Nc.
Suppose there is a row R (or column) of theNc◦i c′ -grid that is completely contained
in the region ∪n+m−1

j=1 (c ◦i c′)j (I2). If R does not intersect the region ci(I2), then

it is contained in the union of the cj (I2) with j -= i. Since this region has all
sides along the Nc-grid, this implies that there must be in fact a row of the Nc-grid,
containing R, that is contained in ∪j -=i cj (I2), but this is not possible because c is
strict. Thus, R must intersect the region ci(I2). This means that, within the region
ci(I2) a row of the Nc◦i c′ -grid is completely contained in the union of the linearly
scaled images of the c′

j (I2), but this in turn implies that in I2 a row of the Nc′ -grid

must be contained in the union of the c′
j (I2), which cannot happen because c′ is

strict. 3(
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5.6.2 Binary Little Square Operads and Almost Symplectic
Spaces

We consider here a class of (not always Moufang) loops that we previously
introduced and investigated in [4]. These are obtained from almost-symplectic
structures on vector spaces over a finite field of characteristic 2. We recall the basic
setting from [4]. However, the notion of almost-symplectic form we consider here
is somewhat different from [4]: this will allow for better properties with respect
to operadic composition, but will in turn have worse properties with respect to
representations of the resulting loops, hence the construction of quantum codes
considered in [4] will not directly extend to this setting.

Let ℱ = ℱ2r be a finite field of characteristic two and let V be a finite
dimensional vector space over ℱ. Let K be an unramified extension of Q2 with
residue field OK/mK = ℱ. Consider the ring R = OK/m

2
K and a free R-module Ṽ

with V = Ṽ /mK . Consider functions ω̃ : Ṽ × Ṽ → R with ω = 2ω̃ the induced
function ω : V × V → R. Note that these functions are not linear as they do not
satisfy the Hochschild cocycle condition of symplectic forms, namely we require
that

dω(u, v,w) = ω(v,w) − ω(u+ v,w) + ω(u, v + w) − ω(u, v) -= 0 .

A pair (V,ω) as above is an almost-symplectic space if ω is non-degenerate,
in the sense that for any u ∈ V there is some v ∈ V with (u, v) -= (0, 0), such
that ω(u, v) -= 0. (Note that with this definition the almost-symplectic structure ω

does not satisfy ω(0, v) = ω(u, 0) = 0, for all u, v ∈ V .) The almost-symplectic
structure ω has a polarization β : V × V → R satisfying β(u, v) − β(v, u) =
ω(u, v). The loop L(V,β) associated to the data (V,β) is the extension

0 → R → L(V,β) → V → 0

with non-associative multiplication

(x, u) 6 (y, v) = (x + y + β(u, v), u + v) .

The non-associativity is a consequence of the fact that (V,ω) is almost-symplectic
and not symplectic, hence the Hochshild coboundary of β is nonzero,

dβ(u, v,w) = β(v,w)− β(u+ v,w)+ β(u, v+w)− β(u, v) = γ (u, v,w) -≡ 0 .

The Moufang condition for the loopL(V,β) is equivalent to an identity for γ =
dβ, see [4]. We do not necessarily require here the condition that the loop L(V,β)

is Moufang.
We focus in particular on the special case where ℱ = ℱ2 and R = Z/4Z. We

can identify the map ω = 2ω̃ : V × V → R, where V = ℱN
2 , as a subdivision
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of the square I2 = [0, 1] × [0, 1] into the N-grid of 2N × 2N sub-squares of side
2−N , which we can label by the pairs (u, v) ∈ V ×V . Each square is colored white
or black according to whether ω(u, v) = 0 or not. The property that ω is almost-
symplectic (that is, non-degenerate) is equivalent to the fact that in every row and
column of the subdivided square there is at least one black sub-square.

LetVℱ2 be the space of almost symplectic finite dimensional vector spaces over
ℱ2, topologized as a subset of the space of maps ∪NMaps(ℱN

2 × ℱN
2 , R), where

Vℱ2 consists of those maps that satisfy the non-degenerate condition above, with
range 2R ⊂ R, since ω = 2ω̃.

Theorem 5.4 The spaceVℱ2 of almost symplectic finite dimensional vector spaces

overℱ2 is an algebra over the operad Cℱ2,s
2 .

Proof To realizeVℱ2 as an algebra over Cℱ2,s
2 we need operations

Cℱ2,s
2 (n) × Vℱ2 × · · · × Vℱ2

︸ ︷︷ ︸
n−times

→ Vℱ2,

that assign to an n-tuple (V1,ω1), . . . , (Vn,ωn) and a strict binary little square c =
〈c1, . . . , cn〉 a new almost-symplectic space (V,ω) = γ (c; (V1,ω1), . . . , (Vn,ωn)),

compatibly with the composition operations in the operad Cℱ2,s
2 . We construct

(V,ω) in the following way. For Vi = ℱNi
2 , we consider the regions ω−1

i (0) with
sides on the Ni-grid in I2. We take each of these copies of I2 subdivided in the
subsquares of theNi -grid, with those in ω−1

i (0) colored white and the others colored
black, and we scale it linearly so as to fit, respectively, into the ci(I2) regions of I2

determined by the binary little square c = 〈c1, . . . , cn〉. We color black the outside
of ∪i ci(I2) in I2. Let N ∈ N be the smallest integer such that all the resulting
contours in I2 separating the black and the white colored areas are on the N-grid.
We then set V = ℱN

2 and we assign the values of ω(v,w) according to the color of
the corresponding square. The fact that the binary little square is strict implies that
ω is non-degenerate. 3(

5.6.3 Colored p-ary Little Squares

Let now q = pr be some prime power with p > 2. We construct an operad
that generalizes the strict binary little squares operad considered in the case of
characteristic 2.

For simplicity, as in the case of characteristic 2, we restrict to the case ofℱp. We
then define the p-ary N-grid in the unit square I2 to the parallel grid of size p−N ,
with pN ×pN sub-squares. We just refer to it as theN-grid when the choice of p is
understood.
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Definition 5.10 A colored p-ary little square is a decomposition of the unit square
I2 into p regions R0, . . . ,Rp−1 with disjoint interiors J(Ri ) ∩ J(Rj ) = ∅, for
i -= j , with J(R) denoting the interior of a region R. With the property that, for
each i = 0, . . . , p − 1, and for some integers ni,Ni ∈ N , there is a rational little
square c(i) = 〈c(i)1 , . . . , c

(i)
ni 〉 in CQ

2 (ni), with endpoints on a p-aryNi-grid, such that
Ri = ∪ni

j=1c
(i)
j (I2). The colored p-ary little square is strict if, for i = 0, the little

square c(0) is strict, namely no row or column of the p-ary N0-grid is completely

contained in ∪n0
j=1c

(0)
j (I2). We denote by Cℱp

2 (n0, . . . , np−1) the set of colored
p-ary little squares as above and we take

Cℱp

2 (n) :=
⋃

n1,...,np−1

Cℱp

2 (n, n1, . . . , np−1) .

The set of strict colored p-ary little squares Cℱp,s

2 (n) is similarly defined.

We denote the (strict) colored p-ary little squares in Cℱp

2 (n) (or Cℱp,s

2 (n),
respectively) with the notation

I2(R0, c
(0);R) :=

{
(R0, c

(0) = 〈c(0)1 , . . . , c(0)n 〉), (Rj , c
(j))j=1,...,p−1

}
,

with R := {(Rj , c
(j))}j=1,...,p−1. The composition operations

◦i : Cℱp

2 (n) × Cℱp

2 (m) → Cℱp

2 (n+m − 1)

are determined by taking

I2(R0, c
(0);R) ◦i I2(R′

0, c
′(0);R′)

to be given by the decomposition of the unit square I2 into the regions

I2 = B ∪
⋃

j -=0

Rj ∪
⋃

0 -=i

c
(0)
0 (I2) ,

where the regionB is obtained by linearly scaling the square I2 = ∪jR′
j subdivided

into the regions of the second colored p-ary little square and placing it in place of
the region c(0)i (I2).

Lemma 5.8 With the composition operations above the Cℱp

2 (n) (respectively,

Cℱp,s

2 (n)) form an operad.
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Proof The new regionsR′′
0 with 0 = 1, . . . , p−1 of the composedI2(R0, c

(0);R)◦i
I2(R′

0, c
′(0);R′) are given by

R′′
0 = R0 ∪ c

′(0)
i (R′

0)

while the R′′
0 region of the composed I2(R0, c

(0);R) ◦i I2(R′
0, c

′(0);R′) is given by

R′′
0 =

⋃

j -=i

c
(0)
j (I2) ∪ c

′(0)
i (R′

0) .

Thus we see that these composition operations are still the same composition
operations of the operad CQ

2 , acting on the c(0) little squares while maintaining all
the rest of the data unaffected. The strict condition is preserved under composition
by the same argument as in Lemma 5.7. 3(

5.6.3.1 Operads and Almost-Symplectic Structures Overℱp

An almost-symplectic vector space overℱp is a pair (V,ω) of a finite dimensional
vector space over ℱp and a function ω : V × V → ℱp which is non-degenerate,
in the sense that for all u ∈ V there is some v with (u, v) -= (0, 0) such that
ω(u, v) -= 0. and with nontrivial Hochschild coboundary

dω(u, v,w) = ω(v,w) − ω(u+ v,w) + ω(u, v + w) − ω(u, v) -= 0 .

In this case again the non-vanishing of the Hochschild coboundary implies that ω

cannot be a linear map.
Note that here also the notion of almost symplectic structure we are considering

is different from [4], hence the construction of representations and quantum codes
described there does not apply directly to this case.

In this case, the (not necessarily Moufang) loopL(V,ω) associated to the almost
symplectic structure (V,ω) is obtained as the extension

0 → ℱp → L(V,ω) → V → 0

with the non-associative multiplication given by

(x, u) 6 (y, v) = (x + y + 1
2
ω(u, v), u + v) .

As shown in [4], the Moufang condition for L(V,ω) is expressed as an identity
satisfied by the function dω.

Let Vℱp denote the space of almost symplectic structures (V,ω) overℱp.
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Theorem 5.5 The spaceVℱp is an algebra over the operadCℱp,s

2 of strict colored
p-ary little squares.

Proof The argument is similar to Theorem 5.4, except for the coloring of the
regions. Given an n-tuple of almost symplectic spaces (Vi,ωi ) and a strict colored

p-ary little square I2(R0, c
(0);R) ∈ Cℱp,s

2 (n), we form a new

(V,ω) = γ (I2(R0, c
(0);R); (V1,ω1), . . . , (Vn,ωn))

by associating to each (Vi,ωi ), with Vi = ℱNi
p , a p-ary Ni -grid in I2 subdivided

into regions R0 = ω−1
i (0) for 0 ∈ ℱp. This determines a colored p-ary little square

I2(Ri,0, c
i,(0);Ri ) associated to each (Vi,ωi ), which is strict because ωi is non-

degenerate. We then compose these according to the composition

γ (I2(R0, c
(0);R);I2(R1,0, c

1,(0);R1), . . . ,I2(Rn,0, c
n,(0);Rn))

γ : Cℱp,s

2 (n) × Cℱp,s

2 (k1) × · · · × Cℱp,s

2 (kn)) → Cℱp,s

2 (k1 + · · · + kn)

obtained from repeated application of the compositions ◦i in the operad Cℱp,s

2 . This
results in a new colored p-ary little square with regionsR′′

0 , which is also strict. This
in turn defines the resulting almost symplectic space (V,ω) which has V = ℱN

p ,
with N the smallest natural number such that the subdivision into regions R′′

0 of the
resulting colored p-ary little square is along the p-ary N-grid, and ω(u, v) = 0 for
(u, v) ∈ R′′

0 . This ω is non-degenerate because the little square is strict. 3(

5.6.4 Operad Partial-Action on Quantum Codes

A vector space V = ℱN
q , determines a corresponding complex vector space

(Cq)⊗N , representing a system ofN q-ary qubits, endowed with the canonical basis
given by the |v〉, labelled by the vectors v ∈ V .

We consider here the case of ℱp with p > 2. The argument can be adapted
to the case of characteristic 2 along the lines discussed in [4]. Let L = L(V,ω)
be the loop obtained from an almost-symplectic (V,ω) over ℱp as recalled above.
It acts on H = C[L(V,ω)] by left and right multiplication ((x, u) 6 f )(y, v) =
f ((x, u) 6 (y, v)) and (f 6 (x, u))(y, v) = f ((y, v) 6 (x, u)). This gives rise to a
loop representation, which is the productL×H endowed with the (non-associative)
multiplication

((x, u), f ) 6 ((y, v), f ′) = ((x, u) 6 (y, v), (x, u) 6 f ′ + f 6 (y, v)) .
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Consider the following sets Let Sω
1 = ω−1(0) ∩ ω−1(0)τ = {(u, v) ∈ V ×

V |ω(u, v) = ω(v, u) = 0}. Given a subset 7 ⊂ V × V , we write

7ij = π−1
ij 7 ⊂ V L = V × · · · × V︸ ︷︷ ︸

L−times

,

with πij the projection onto the product of the i-th and j -th components. For L ≥ 2
let SL ⊂ V L,

Sω
L =

⋂

1≤i<j≤L

(Sω
1 )ij .

Let S = ∪
(V ,ω)∈Vℱp

∪L≥1 Sω
L.

Given a character χ : ℱp → C∗, let Hχ ⊂ H be the subspace of functions
f (x, u) that transform by ((x ′, 0) 6 f )(x, u) = χ(x ′)f (x, u). An element u =
(u1, . . . , uL) ∈ SL determines a set {χ(x1)Eu1, . . . ,χ(xL)EuL}xi∈ℱp

of mutually

commuting operators on Hχ . This determines a quantum code Qλ
χ,u ⊂ H given by

a common eigenspace of these operators with eigenvalue λ. We refer to the quantum
codes obtained in this way as “almost-symplectic quantum codes”.

The operad action on almost-symplectic structures described in Theorem 5.5
induces a partial-action of the same operad on the data that determine these quantum
codes. The notion of partial-action of an operad (partial-algebra over an operad) was
introduced in [5].

Proposition 5.6 The space S is a partial-algebra over the operad Cℱp,s

2 of strict
colored p-ary little squares.

Proof In Sn = S × · · · × S︸ ︷︷ ︸
n−times

consider the subspace

Sn
0 = {(u(1), . . . , u(n)) ∈ Sω1

L1
× · · · × Sωn

Ln
| (̃u(1), . . . , ũ(n)) ∈ Sω

L1+···+Ln
}

for (V,ω) = γ (I(R0, c
(0);R); (V1,ω1), . . . , (Vn,ωn)) the operad action of The-

orem 5.3.4, and with (̃ui) the vector in V obtained from the vectors ui ∈ Vi

under this composition. Then the operad action on Vℱp induces a partial-action

γ : Cℱp,s

2 (n) × Sn
0 → S. 3(
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