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Abstract
We consider cosmological models based on the spectral action formulation of
(modi!ed) gravity. We analyze the coupled effects, in this model, of the pres-
ence of nontrivial cosmic topology and of fractality in the large scale structure
of spacetime. We show that the topology constrains the possible fractal struc-
tures, and in turn the correction terms to the spectral action due to fractality
distinguish the various cosmic topology candidates, with effects detectable in a
slow-roll in"ation scenario, through the power spectra of the scalar and tensor
"uctuations. We also discuss explicit effects of the presence of fractal structures
on the gravitational waves equations.

Keywords: spectral action, cosmic topology, fractality

(Some !gures may appear in colour only in the online journal)

1. Introduction

The paper is organized in the following way. In this introductory section we review the (mod-
i!ed) gravity model based on the spectral action functional, and we introduce the question of
cosmic topology and the question of the possible presence of fractality in the large scale struc-
ture of the universe. These two problems have so far been investigated as separate questions in
theoretical cosmology, while our goal here is to focus on the combined effects of the presence
of both cosmic topology and fractality.

In section 2 we present Sierpinski constructions that are suitable for describing fractality
within each of the possible spherical and "at cosmic topology candidate. These Sierpinski
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constructions are based on the polyhedral fundamental domains (in the three-sphere or in the
three-torus) for these cosmic topology candidates. For each of these cases, we then compute
the spectral action expansion, !rst in a simpli!ed static model and then in the actual Robert-
son–Walker model. We identify the correction terms to the spectral action that arise due to
the presence of fractality and we show the resulting effect on an associated slow-roll potential
arising as a scalar perturbation of the Dirac operator in the spectral action. We show that the
presence of fractality determines detectable effects that suf!ce to distinguish between all the
possible cosmic topology candidates. We also discuss other, Koch-type, forms of fractal growth
and we state a general question regarding the construction of fractal structures on manifolds,
to which we hope to return in future work.

In section 3 we discuss the original type of fractal arrangement of the packed Swiss cheese
cosmology model, in the case of the sphere topology, which is modelled on Apollonian sphere
packings. We discuss here in particular some arithmetic cases of packings with integer curva-
tures, for which the zeta function is computable explicitly. We show that, in these cases, an
interesting connection emerges between the form of the asymptotic expansion of the spectral
action and series of number theoretic interest, involving the derivative of the Riemann zeta
function at the non-trivial zeros. We also discuss how the fractality models based on sphere
packings are not stable under small random perturbations of the geometry, which would lead
to intersecting spheres, while we propose that fractal models based on ‘cratering’ (removal of
a random collection of spheres creating a fractal residual set) can provide a version of these
fractal arrangements of sphere that is stable under the introduction of some randomness factor.

In section 4 we investigate effects of the presence of fractality on the gravitational wave
equations. In this !rst section on this topic, we consider the usual general relativity (GR)
equations, without additional modi!ed gravity terms from the spectral action, and we look
at the kind of model of sphere arrangements that we proposed in the previous section, where
some of the spheres are intersecting. We show that, in such a model, there is transmission of
gravitational waves between the different spheres across their intersection, creating oscillations
inside the sphere of intersection. Thus, multiple gravitational wave sources near the intersection
would induce a three-ball of interfering gravity wave modes on the boundary hypersurface.

In section 5 we continue investigating effects of fractality on the gravitational waves. In this
section we focus more speci!cally on the gravitational waves equation arising from the spectral
action, and we consider the fractal structures investigated in section 2 for Robertson–Walker
spacetimes associated to the various cosmic topology candidates. We focus on the effect on the
gravitational waves equation of the correction terms to the spectral action due to fractality, with
particular attention to the contribution of the !rst term of the series coming from the poles of the
fractal zeta function, the one associated to the pole s0 given by the self-similarity dimension. We
show that the variation of the metric determines a tensor given by the corresponding variation
of the value at s0 of the zeta function of the Dirac operator on the Robertson–Walker geometry.
This tensor plays the role of an energy–momentum tensor in the equations, so that the presence
of fractality emulates the presence of a type of matter than only interacts gravitationally but is
otherwise dark.

1.1. Spectral action model of gravity

The spectral action functional as a model of gravity originates in noncommutative geometry
[7], where it provides a setting for the construction of geometric models of gravity coupled to
matter, [8] (see also [61] and ch 1 of [14] for an overview).

The main underlying geometric setting is given by spectral triples, [13], which provide a
generalization of Riemannian spin geometry to the noncommutative setting.
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A spectral triple (A, H, D) consists of an involutive algebra A, with a representation π : A →
B(H) as bounded operators on a complex Hilbert space H, and a self-adjoint operator D on a
dense domain in H, with compact resolvent. The compatibility condition between the algebra
and the Dirac operator is expressed as the property that the commutators [D, π(a)] are bounded
operators for all a ∈ A. The spectral action functional of a spectral triple is de!ned as

SΛ(D) := Tr
(

f
(

D
Λ

))
. (1.1)

Here the Dirac operator is the dynamical variable of the spectral action functional, with Λ > 0
an energy scale that makes the integral unitless and f is an even smooth function of rapid
decay.

The test function f is a smooth approximation to a cutoff function that regularizes the (oth-
erwise divergent) trace of the Dirac operator. For example, it is convenient to take the test
function to be of the form

f (x) =

∫ ∞

0
e−tx2

dm(t) (1.2)

where dm(t) is some measure on R+.
The properties of a spectral triple recalled above include the requirements that D is

self-adjoint and with compact resolvent, which imply the discreteness of the spectrum
Spec(D) ⊂ R, so that the de!nition (1.1) makes sense. The main idea here is that gravity is
encoded geometrically through the Dirac operator, rather than in the metric tensor, as in the
usual formutation of GR. The usual Einstein–Hilbert action functional of GR is recovered
from the spectral action through its asymptotic expansion for large Λ→∞, as we recall in
more detail below, along with other higher derivatives terms that make the spectral action into
an interesting modi!ed gravity model.

As a prototype (commutative) example of a spectral triple, one should think of A = C∞(X) as
the algebra of smooth functions on a compact Riemannian spin manifold X, with H = L2(X, S)
the Hilbert space of square-integrable spinors, and D = 'DX the Dirac operator. This example
immediately illustrates two delicate points in the use of the spectral triples formalism in rela-
tion to cosmological model: compactness and Euclidean signature. Indeed, taken in itself, the
spectral action model of gravity that we will summarize in the rest of this section is a model of
Euclidean gravity, which moreover requires a compactness hypothesis. This seems ill suited
for modeling realistic spacetimes. However, as we discuss below, the asymptotic expansion
of the spectral action provides local gravity terms that still make sense when Wick rotated
to Lorentzian signature, and in more general geometries (for example with suitable boundary
terms as discussed in [29]). Thus, one should view spectral geometry models of gravity in
the following way: one uses Wick rotation to Euclidean signature and compacti!cation as a
computational device to achieve the desired analytic properties of the Dirac operator that are
required for the de!nition and main features of the spectral action functional. The terms then
obtained from the expansion of the spectral action can be interpreted in the original geometry,
so that conclusions about cosmological models can be derived. In this paper we will work with
explicit examples constructed using Riemannian metrics and compacti!ed spacetimes, which
will be suf!cient to illustrate the main phenomena we are interested in, through the compu-
tation of the spectral action expansion. For a recent approach to spectral action gravity that
works directly with Lorentzian geometry see [15, 16].

The asymptotic expansion of the spectral action is closely related to the associated heat
kernel expansion for the square D2 of the Dirac operator. Assuming that the operator D2 has a
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Figure 1. Fundamental domain for the lens space L(3, 1) with face identi!cations; fun-
damental domain of the prism manifold of the binary dihedral group D∗

5 of order 20; fun-
damental domains for the binary tetrahedral, binary octahedral, and binary icosahedral
group.

small time heat kernel expansion

Tr(e−tD2
) ∼t→0

∑

α

aα(D)tα, (1.3)

using a test function of the form (1.2) gives a corresponding expansion of the spectral action
as

Tr
(

f
(

D
Λ

))
∼Λ→∞ a0 f (0) +

∑

α

fαcαΛ−α, (1.4)

with

fα =






∫ ∞

0
f (v)v−α−1dv α < 0

(−1)α f (α)(0) α > 0.

We refer the reader to [7, 61] for details.
There is a well known Mellin transform relation between the heat kernel and the zeta

function of the Dirac operator,

|D|−s =
1

Γ(s/2)

∫ ∞

0
e−tD2

ts/2−1dt (1.5)

so that

ζD(s) = Tr(|D|−s) ∼
∑

α

aα

Γ(s/2)

∫ ∞

0
tα+s/2−1dt.
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For α < 0, the values s = −2α correspond to poles of ζD(s) with

Ress=−2αζD(s) =
2aα

Γ(−α)
.

Thus, one can express the coef!cients of the leading terms (the case α < 0) in the spectral
action expansion in terms of residues of the Dirac zeta function. At each of these residues one
has an associated notion of integration, de!ned as

−
∫

a|D|−β := Ress=βζa,D(s) = Ress=βTr(π(a)|D|−s),

and the set of points β where the zeta functions ζa,D(s) have poles is referred to as the dimen-
sion spectrum of the spectral triple. In the case of the commutative or almost-commutative
geometries used in models of gravity and matter, these integrals at the points of the dimen-
sion spectrum correspond to local terms given by integration of certain curvature forms on the
underlying manifold, which recover the classical form of various physical action functionals.

In the case of the spectral triple (C∞(X), L2(X, S), 'DX) for a smooth compact Riemannian
spin manifold of dimension dim X = 4 the leading terms in the asymptotic expansion of the
spectral action are of the form

Tr
(

f
(
'DX/Λ

))
∼ f2Λ

2 −
∫

|D|−2 + f4Λ
4 −
∫

|D|−4 + f (0)ζD(0) + o(1),

with

f2Λ
2 −
∫

|D|−2 =
96f2Λ

2

24π2

∫

X
R dvol(g),

f4Λ
4 −
∫

|D|−4 =
48f4Λ

4

π2

∫

X
dvol(g),

f (0)ζD(0) =

(
f0

10π2

∫

X

11
6

R∗R∗ − 3CabcdCabcd
)

dvol(g),

where Cabcd is the Weyl curvature tensor and R∗R∗ is the Gauss–Bonnet term. Thus, in this
case one obtains as leading terms the Einstein–Hilbert action with cosmological term, with an
additional modi!ed gravity term, involving conformal and Gauss–Bonnet gravity. The effect
of these modi!ed gravity terms on the gravitational waves equations was analyzed in [46].

Cosmological and gravitational models based on the spectral action functional were con-
sidered, for instance, in [2, 4, 5, 10, 18–21, 39–44, 47, 48, 60], though this is certainly not
an exhaustive list of references on the subject. The main goal of the present paper is to con-
tinue this investigation by combining the analysis of cosmic topology effects considered in
[5, 43, 44], with the analysis of the effect of multifractal structures considered in [2, 20].

1.2. Cosmic topology

The problem of cosmic topology in theoretical cosmology aims at identifying possible sig-
natures of the presence of non-trivial topology on the spatial hypersurfaces of the spacetime
manifold modeling our universe. The main focus of investigation is possible signatures that
may be detectable in the cosmic microwave background. Observational constraints favor a spa-
tial geometry that is either "at or slightly positively curved, while the negatively curved case
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Figure 2. The !rst step of the Sierpinski construction for octahedron and dodecahedron,
and for the cuboctahedron.

of hyperbolic three-manifolds is observationally disfavoured. Thus, under the assumption of
(large scale) homogeneity, the possible candidate cosmic topologies are either spherical space
forms, namely quotients Y = S3/Γ of the round constant positive curvature three-sphere by a
!nite group of isometries, or (under the compactness assumption we work with in our spectral
gravity model) the Bieberbach manifolds that are quotients Y = T3/Γ of the "at three-torus by
a group of isometries.

For a general overview of the problem of cosmic topology, we refer the reader to [36], and
also [1, 37, 38, 53]. The cosmic topology question was studied within the framework of spectral
action models of gravity in [5, 39, 40, 43, 44, 60].

The main way in which the presence of nontrivial cosmic topology may be detectable, in
the case of a model of gravity based on the spectral action functional, is through a slow-roll
potential for cosmic in"ation that arises in the model as a scalar perturbation of the Dirac
operator.

In a slow-roll in"ation model, the power spectra Ps and Pt of the scalar and tensor perturba-
tions of the metric have a dependence on the shape of the slow-roll potential V. More precisely,
the "uctuations, as a function of the Fourier modes, obey a power law

Ps(k) ∼ Ps(k0)(k/k0)1−ns+
αs
2 log(k/k0) and Pt(k) ∼ Pt(k0)(k/k0)1−nt+

αt
2 log(k/k0),

6
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where the exponents ns, nt,αs,αt are linear functions of the slow-roll parameters ε, η, ξ, whose
dependence on the potential V is as follows, up to a numerical factor that depends on a power
of the Planck mass,

ε ∼
(

V ′

V

)2

, η ∼ V ′′

V
, ξ ∼ V ′V ′′′

V2 .

On the other hand, the amplitudes also depend on the shape of the potential as

Ps ∼
V3

(V ′)2 and Pt ∼ V ,

again up to a constant factor given by a power of the Planck mass, see [57] and also the
discussion in section 1 of [44].

It is shown in [44] that a scalar perturbation D2 *→ D2 + φ2 of the Dirac operator in the
spectral action determines a slow-roll potential V(φ), which exhibits the typical "at plateau
of slow-roll in"ation models. The potential is computed explicitly for the candidate cosmic
topologies in both the spherical and the "at case. This shows that the resulting slow-roll param-
eters ε, η, ξ are the same within each curvature class, namely the same for all the spherical space
form and the same for all the Bieberbach manifolds, but different for the two classes, hence
they distinguish whether the geometry is "at or positively curved. Within each class, the ampli-
tudes differ by a factor, which is the order of the group in the spherical case and a numerical
factor depending on the group and the shape of the fundamental domain in the Bieberbach
case. These further amplitude values do not distinguish all cases. For example, in the spherical
case some lens spaces can have, by coincidence, the same order of the group as one of the other
non-isomorphic spherical space forms.

In this paper, we re!ne this model by assuming that the universe can exhibit, at the same
time, non-trivial cosmic topology and a fractal structure, where the self-similarity of the frac-
tal structure now necessarily depends on the topology, through the shape of the fundamental
domain of the candidate topology. We discuss fractality in the following subsection. We show
in this paper that this combination of cosmic topology and fractality resolves the ambiguities
and the slow-roll potential generated by the spectral action now completely distinguished all
the possible cosmic topologies.

1.3. Multifractal cosmological models

The standard cosmological paradigm, or cosmological principle, postulates that (at suf!ciently
large scales) the universe should be homogeneous and isotropic. A homogeneous spacetime
(X, g) is one that can be foliated by a one-parameter family of spatial hypersurfaces, with the
property that any two points in each hypersurface can be transported to the other along an
isometry of the metric. In other words, this is the assumption that there is no ‘special place’ in
the universe. The other assumption, isotropy, requires that at any point p ∈ X, given two vectors
v1, v2 orthogonal to a timelike curve passing through p, we can !nd an isometry rotating v1

into v2. This corresponds to the idea that there is no ‘special direction’ in the universe.
A !rst possible clue that the homogeneity hypothesis may fail even at very large scales came

from the distribution of galaxy clusters. Statistical analysis in [59] showed fractal correlations
up to the observational limits. Similarly, in [24] it is shown that all clustering observed have
scaling and fractal properties, which cannot be properly described by small-amplitude "uc-
tuations theory. However, as emphasized in [24, 59], the presence of fractality in large scale
spacetime is still an undetermined question in cosmology. A new generation of cosmology
probes may be able to give us an answer in larger scales.

7
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A theoretical model of spacetime exhibiting multifractal structures is provided by the packed
Swiss cheese cosmology models, see [45]. This model originates from an idea of Rees and
Sciama, [52], that generated inhomogeneities by altering a standard Robertson–Walker cos-
mology through the removal of a con!guration of balls. In the packed Swiss cheese cosmology
model this is done so that the resulting spacetime is described by the geometry of an Apollonian
packing of spheres.

In [2, 20] the packed Swiss cheese cosmology models are analyzed from the point of view
of spectral action gravity and it is shown that the presence of fractality is detectable in the
form of additional terms in the spectral action, coming from poles of the zeta function off the
real line and from the non-integer Hausdorff dimension, as well as in a modi!cation to the
effective gravitational and cosmological constants of the terms of the action coming from the
underlying Robertson–Walker cosmology. This analysis is done in [2] in the case of a static
model, and in [20] in the more general case of a Robertson–Walker cosmology with a nontrivial
expansion/contraction factor.

One of the mathematical dif!culties in describing a model of gravity with fractality lies in
the fact that one cannot directly describe such spaces in terms of ordinary differential geom-
etry, because of their fractal nature. One needs a generalization of Riemannian geometry that
applies to non-manifold structures like fractals. Even though fractals are ordinary commuta-
tive spaces, the fact that they are not smooth manifolds makes them amenable to the tools of
noncommutative geometry: although these methods were originally designed to apply to non-
commutative spaces, they also apply to commutative but non-smooth spaces like fractals. In
particular, fractals such as Apollonian packings of spheres, various Sierpinski-type construc-
tions, Koch curves and their higher-dimensional analogs, and other such geometries, are well
described by the formalism of spectral triples, hence they have a well de!ned gravity action
functional given by the spectral action. This shows that the spectral action model of gravity
is the most directly suitable for the description of gravity in the presence of fractality and of
cosmology in fractal spacetimes.

The main question we focus on in this paper is how the effects of fractality (multifrac-
tal cosmologies) and of nontrivial topology (cosmic topology) combine in the spectral action
model of gravity. We will consider various relevant examples of fractal geometries, includ-
ing the Apollonian packings of spheres and fractal arrangements obtained from various kinds
of solids representing fundamental domains of cosmic topology models, and we will show
how the effects of fractality vary in different topological background and, conversely, how the
effect of nontrivial topology of the spacelike hypersurfaces are affected by the presence of
fractality.

2. Fractality and topology in static models and in Robertson–Walker models

In this section we consider different candidate cosmic topology models, !rst in the spherical
and then in the "at case, with two models of spacetime: a simpli!ed static model based on
a product Y × S1 with circle compacti!cation, and then a more realistic Robertson–Walker
model on a cylinder Y × R with an expansion/contraction factor a(t). We compute the asymp-
totic expansion of the spectral action in all of these cases, along the lines of [2] for the static
model and of [20] for the Robertson–Walker case. For every cosmic topology candidate we
identify a corresponding possible fractal structure, based on a Sierpinski construction asso-
ciated to the fundamental domain in the three-sphere (or the three-torus, respectively). We
compute how the presence of fractality affects the spectral action expansion in each of these
cases. We show that these correction terms coming from fractality suf!ce for the spectral action

8
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(and the associated slow-roll potential) to distinguish all the possible cosmic topology candi-
dates. The main mathematical tools in these calculations are the Poisson summation formula
and the Feynman–Kac formula.

At the end of this section we also analyze other models of fractal growth based on polyhedral
domains, modelled on the case of the Koch snow"ake. We discuss Koch-type constructions
based on tetrahedra and octahedra and compute the associated zeta functions. We discuss
the related problem of constructing fractal structures on more general manifolds that are not
quotients with polyhedral fundamental domains.

2.1. Static model

The !rst case we analyze is the static model considered in [2], where the spacetime (Euclidean
and compacti!ed) is taken to be of the form S1

β × P , where β > 0 is the radius of the circle-
compacti!cation and the spacelike hypersurfaces are given by a fractal arrangement P . The
main case discussed in [2] was with P an Apollonian packing of three-spheres, but section 5
of [2] also discusses an exactly-self-similar model where P is a fractal arrangement of dodec-
ahedra, giving rise to a dodecahedral-space cosmic topology model with fractality. Our goal
in this subsection is to extend the analysis of section 5 of [2] by comparing fractal arrange-
ments based on different candidate cosmic topology models and describe how the different
topology affects the contribution of fractality to the spectral action functional. From the purely
mathematical perspective, the results of this subsection rely essentially on a combination of
earlier results proved in [2, 5, 43, 44]. We also correct here an inaccuracy in proposition 5.2 of
[2] and we provide a more detailed discussion of the (weak) convergence of the series of the
log-periodic terms.

2.1.1. The fractal arrangements. The general setting here is the following. Consider a spheri-
cal three-manifold of the form Y = S3/Γ, where Γ is a !nite group of isometries of S3, which
can be identi!ed with the symmetry group of a platonic solid PΓ. These manifolds cover the
main signi!cant candidates for positively curved cosmic topologies (with the exclusion of lens
spaces, which we will discuss separately). For each of these candidate models, we then con-
struct a Sierpinski fractal, PΓ, using the appropriate construction rules associated with the
underlying platonic solid PΓ with symmetry group Γ. Each Sierpinski construction yields a
scaling factor and a replication factor, which we will denote by 1

fσ
and fρ, respectively. We

can identify PΓ with a fundamental domain of the action of Γ on S3 and, with the closed three-
manifold Y obtained by gluing together the faces of this solid according to the action of Γ. In
this way the fractal arrangement PΓ of polyhedra PΓ gives rise to a fractal arrangement PY of
copies of Y.

2.1.2. The Sierpinski construction. We recall here the main examples of Sierpinski construc-
tions, [30]. Our goal is to compare the effects on the spectral action functional and the associ-
ated slow-roll potentials of the different fractal arrangements associated to different candidate
cosmic topologies. We compare the candidate topologies given by spherical forms Y = S3/Γ.
These are quotients by a !nite subgroup Γ ⊂ SU(2). According to the classi!cation of such
subgroups, [63], there are two in!nite families, cyclic groups Zn and binary dihedral groups
D∗

n, and three additional cases, the binary tetrahedral group T, binary octahedral group O, and
binary icosahedral group I. In the case of cyclic groups Zn one obtains a lens space Y = L(n, 1),
with fundamental domain a lens-shaped spherical solid (see !gure 1). The sphere S3 is tiled by
n copies of this fundamental domain. In the case of the binary dihedral group D∗

n, the quotient
Y is a prism manifold, where the fundamental domain is a prism with 2n sides, 4n of which tile
the sphere (see !gure 1). In the three last cases, the fundamental domain is given, respectively,

9
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by a (spherical) octahedron, a truncated cube (cuboctahedron), and a spherical dodecahedron.
The sphere S3 is tiled by 24 copies of the octahedron, by 48 copies of the truncated cube, and
by 120 copies of the dodecahedron. We describe fractal Sierpinski constructions for various
such spaces. We !rst discuss the case of the two regular solids, octahedron and dodecahedron,
then the Archimedean case (the cuboctahedron), and then the case of lenses and prisms. Gen-
eral Sierpinski constructions for polyhedra, and in particular for regular solids, are described
in [30, 32–35].

The binary tetrahedral group T ⊂ SU(2), with |T| = 24, can be identi!ed with the group of
units in the ring of Hurwitz integers

T = {±1, ±i, ± j, ±k,
1
2

(±1 ± i ± j ± k)}.

Its action on S3 has fundamental domain given by a spherical octahedron. A fractal arrangement
for this case can therefore be obtained by considering a Sierpinski construction of octahedra,
as illustrated in !gure 2. Each step of this Sierpinski construction replaces each octahedron
of the previous step with 6 identical copies scaled by a scaling factor of 1/2. Thus, in this
case we have fρ = 6 and fσ = 2 and the self-similarity dimension, which for these regular
constructions equals the Hausdorff dimension, is

dimH PT =
log fρ
log fσ

=
log 6
log 2

.

The resulting fractal arrangement PT is the fractal obtained as !xed point of the iteration of
this construction, and the arrangement PY is then obtained by closing up all the octahedra in
PT according to the action of T on its fundamental domain, to give copies of Y.

The other regular solid is the dodecahedron, which is the fundamental domain for the binary
icosahedral group I. The !rst step of a Sierpinski construction of dodecahedra is illustrated in
!gure 2. Here at each step the dodecahedra of the previous step are replaced with 20 identical
copies scaled by a factor of (2 + φ)−1 where φ = 1+

√
5

2 is the golden ratio. This is the same
Sierpinski construction considered in section 5 of [2]. One has fρ = 20 and fσ = 2 + φ and

dimH PI =
log fρ
log fσ

=
log 20

log(2 + φ)
.

A similar Sierpinski construction can be done for Archimedean solids, [33]. In the case of
the cuboctahedron, which is the fundamental domain of the binary octahedral group O, with
|O| = 48, the !rst step of the Sierpinski construction is also illustrated in !gure 2. In this case
one replaces a cuboctahedron with 12 identical copies with a scaling factor of 1/3, so that
fρ = 12 and fσ = 3 and

dimH PO =
log fρ
log fσ

=
log 12
log 3

.

A Sierpinski construction suitable for handling the case of cyclic groups (lens spaces) and
of binary dihedral groups (prism manifolds) can be obtained by considering planar Sierpin-
ski constructions for the underlying polygons and obtain from those an associated Sierpinski
construction for the respective lenses/prisms. In a Sierpinski n-polygon (also known as an n-
poly"ake), see [17], a regular n-polygon is replaced by fρ(n) = n copies scaled by a factor

10



Class. Quantum Grav. 39 (2022) 165007 P Guicardi and M Marcolli

Figure 3. Second step of the Sierpinski construction of an hexa"ake.

1/ fσ with

fσ(n) = 2



1 +

-n/4.∑

k=1

cos
(

2πk
n

)

.

For example, the second step of the Sierpinski construction of the hexa"ake is illustrated in
!gure 3. For the hexa"ake fρ(6) = 6 and fσ(6) = 3.

Given a Sierpinski n-polygon (respectively, 2n-polygon), we can obtain a fractal arrange-
ment PZn (respectively, PD∗

n) of lenses/prisms, by building either a lens (double cone) or a
prism (product with an interval) over each polygon in the construction and a corresponding
fractal arrangement of lens spaces or prism manifolds PY , by closing up each lens/prims in the
construction according to the face identi!cations speci!ed by the group action. So we have

dimH PZn =
log n

log( fσ(n))
and dimH PD∗

n =
log(2n)

log( fσ(2n))
.

2.1.3. The spectral triple. We then construct spectral triples associated to these arrangements
PY , as done in [2], modelled on the spectral triples of Sierpinski gaskets constructed in [11, 12].
Namely, to a fractal arrangement PY where the building blocks are manifolds Yan scaled by a
sequence of scaling factors (radii) an, we assign a spectral triple of the form

(APY , HPY , DPY ) = (APY ,⊕nHYan
,⊕nDYan

)

where Yan = S3
an

/Γ, with S3
an

a sphere with radius an, with the sequence {an} of radii deter-
mined by the Sierpinski construction. The algebra APY ⊂ ⊕nC(Yan) is given by collections
of functions in the algebras of continuous functions C(Yan) that agree on all the points of
contact between the different Yan in the packing PY . Each component of the Hilbert space
is HYan

= L2(Yan , S).

11
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Figure 4. The fundamental domains of Bieberbach manifolds correspond to tilings
of R3 by parallelepipeds (G1, G2, G4) or hexagonal prisms (G3, G5), while the
Hantzsche–Wendt manifold G6 has a fundamental domain given by a rhombic dodeca-
hedron.

2.1.4. The zeta function. As discussed in [2], the zeta function of the Dirac operator
DPY = ⊕nDYan

factorizes as a product of the zeta function ζDY (s) of the quotient Y = S3/Γ
of the sphere of radius one, and the zeta function of the fractal string LΓ = {an} given by the
sequence of the radii of the packing PΓ,

ζDPY
(s) = ζLΓ(s) · ζDY (s), (2.1)

where

ζLΓ (s) :=
∑

n

as
n. (2.2)

Indeed, we have

ζDPY
(s) = Tr(|DPY |−s) =

∑

n

Tr(|DYan
|−s) =

∑

n

as
n ζDY (s),

where the last identity follows from the fact that, if the length scales by a factor of a > 0, the
Dirac eigenvalues scale by a factor of a−1.

12
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2.1.5. The fractal string zeta function. Thus, in the speci!c case of the Sierpinski constructions
PΓ associated to the polyhedra PY , the sequence of radii of the packing can be described as a
set

LΓ = {an,k | n ∈ N, k ∈ {1, 2, . . . , f n
ρ}},

with fρ the replication factor of the Sierpinski construction. Moreover, because these are exact
self-similar constructions, where the scaling is uniform across any n, we have, at level n,

an,k = a · f −n
σ

for some a > 0 and for all k = 1, . . . , f n
ρ, so that we obtain the very simple expression

ζLΓ (s) =
∑

n,k

as
n,k = as

∞∑

n=1

f n
ρ f −sn

σ =
as

1 − fρ f −s
σ

. (2.3)

2.1.6. The manifold zeta function and the spectral action. First consider the zeta function
ζDY (s) for the Dirac operator on the three-manifold Y = S3/Γ. Note that, while on S3 there is
a unique (trivial) spin structure, the manifold Y has different choices of spin structures, each
with its own Dirac operator, and the Dirac spectrum is dependent on the choice of the spin
structure. However, as shown in [60], there are cancellations that happen when summing over
the spectrum that make the resulting spectral action independent of the spin structure, so that
the spectral action simply satis!es, as Λ→∞

SΛ(DY) ∼ 1
|Γ| SΛ(DS3 ). (2.4)

In fact, in [5] it is shown that this identity for the spectral action follows from the rela-
tion between the heat kernel of D2

Y and the heat kernel for D2
S3 , which is of the form (lemma

3.9 of [5])

Tr(e−tD2
Y ) =

1
|Γ|Tr(e−tD2

S3 ) +
1

|Γ|
∑

γ∈Γ\{e}

∫

S3
tr
(
ρ(γ)(xγ−1)

×KS3 (t, xγ−1, x)
)
dvolS3 (x), (2.5)

where KS3 (t, x, y) is the integral kernel of the heat kernel operator e−tD2
S3 and ρ is the action of

the group Γ on the spinor bundle on S3.
Note that the Mellin transform relation between heat kernel and zeta function implies that

the zeta functions ζDY (s) and 1
|Γ| ζDS3 (s) similarly differ by a term determined by the Mellin

transform of the last term in the heat kernel relation. As shown in [5] (proof of theorem 3.6),
these terms decay faster than any power of Λ when integrated against a rapidly decaying test
function φ ∈ S(0,∞)

∫ ∞

0

(∫

S3
tr(ρ(γ) (xγ−1)KS3

( s
Λ2 , xγ−1, x

)
dvolS3 (x)

)

× φ(s)ds = O(Λ−∞),

13
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which implies the identity (2.4) of the spectral actions for a test function f (x) = L(φ)(x2),
written as Laplace transform of a rapidly decaying φ,

Tr
(

f
(

D
Λ

))
=

∫ ∞

0
Tr(e−sD2/Λ2

)φ(s)ds.

We then consider the relation between the leading terms in the expansion of the spectral
actions SΛ(DY) and SΛ(DS3 ) and the poles and residues of the respective zeta functions ζDY (s)
and ζDS3 (s), namely

SΛ(DY) ∼
∑ fαΛ

α

2
Ress=αζDY + f (0)ζDY (0)

SΛ(DS3 ) ∼
∑ fαΛ

α

2
Ress=αζDS3 + f (0)ζDS3 (0),

(2.6)

where the sums are over poles with α > 0 of the respective zeta functions. Direct comparison
between (2.4) and (2.6) gives

SΛ(DY) ∼
∑ fαΛ

α

2|Γ| Ress=αζDS3 +
f (0)
|Γ| ζDS3 (0) = Λ3 f3

|Γ| − Λ
f1

4|Γ| ,

with the two terms corresponding to the poles α = 3 and α = 1 of

ζDS3 (s) = 2ζ
(

s − 2,
3
2

)
− 1

2
ζ

(
s,

3
2

)
, (2.7)

where ζ(s, q) is the Hurwitz zeta function. The remaining term is ζDS3 (0) = 0, since it is equal
to − 2

3 B3(3/2) − 1
2ζ(0, 3

2 ) = 0, with B3(x) the third Bernoulli polynomial.
Similarly, we obtain for the spectral action expansion for the Dirac operator of the fractal

packing DPY

SΛ(DPY ) ∼
∑

α

fαΛ
α ζLΓ (α)
2|Γ| Ress=αζDS3 +

∑

β

fβΛ
β ζDS3 (β)

2|Γ| Ress=βζLΓ (2.8)

where we used the identity (2.1) of the zeta functions. Here the !rst sum ranges over the poles
α > 0 of the zeta function ζDS3 and the second sum ranges over the poles with R(β) > 0 of the
zeta function ζLΓ , where again we do not have the zero-order term as ζDS3 (0) = 0. This gives

SΛ(DPY ) ∼ Λ3 f3 ζLΓ(3)
|Γ| − Λ

f1 ζLΓ (1)
4|Γ| +

∑

β

fβΛ
β ζDS3 (β)

2|Γ| Ress=βζLΓ , (2.9)

where the terms in the last sum depend on the Sierpinski construction.
Using the explicit form of the fractal string zeta function from (2.3) we see that the zeta

function ζLΓ has poles where

fρ f −s
σ = 1 ⇔ e−s log fσ+ log fρ = e2πin, n ∈ Z,

which gives the set of poles

ΣLΓ =

{
sn :=

log fρ
log fσ

+
2πin

log fσ

∣∣∣∣ n ∈ Z
}

. (2.10)
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The pole on the real line is also the value of the Hausdorff dimension (self-similarity dimension)
of the fractal string

s0 =
log fρ
log fσ

= dimH LΓ.

The residues are given by

Ress=snζLΓ = Ress=sn

as

(s − sn) log fσ
=

asn

log fσ
. (2.11)

Thus, we obtain an overall expression for the spectral action expansion of the form

SΛ(DPY ) ∼ Λ3 f3 ζLΓ(3)
|Γ| − Λ

f1 ζLΓ (1)
4|Γ| +

∑

n∈Z
Λsn

fsn asn ζDS3 (sn)

2|Γ| log fσ
(2.12)

∼ Λ3 a3 f3

|Γ|(1 − fρ f −3
σ )

− Λ a f1

4|Γ|(1 − fρ f −1
σ )

+
∑

n∈Z

Λsn fsn asn ζDS3 (sn)

2|Γ| log fσ
.

2.1.7. Weak convergence. Note that in general asymptotic series are not convergent series
and one relies on truncations to get approximations (see section 4 of [2] for a discussion of
truncations). Nonetheless, we can analyze more closely the behavior of the series on n ∈ Z in
(2.12). We can equivalently write the series in the form

(Λa)s0

2|Γ| log fσ

∑

n∈Z
fsn ζDS3 (sn) exp

(
2πin

log(Λa)
log fσ

)
.

We can assume the momenta fsn of the test function are uniformly bounded. Thus, by (2.7), the
behavior of this series depends on the behavior of the Hurwitz zeta function ζ(s, 3/2) along
the vertical lines

L = {s = s0 + it | t ∈ R} and L′ = {s = s0 − 2 + it | t ∈ R}.

The asymptotic behavior of the Hurwitz zeta function along vertical lines satis!es (see
lemma 2 of [31])

µs0,q = lim sup
t→±∞

|ζ(s0 + it, q)|
log |t| !






1
2
− s0 s0 < 0

1
2

(1 − s0) 0 ! s0 ! 1

0 s0 " 1.

(2.13)

In particular, the sequences ζ(sn, 3/2) and ζ(sn − 2, 3/2) are bounded when the self-similarity
dimension is in the range s0 " 3. In all cases, because of the estimate (2.13) the coef!cients of
the series satisfy, for suf!ciently large |n|,

|ζDS3 (sn)| ! 2
∣∣∣∣ζ
(

s0 − 2 + i
2π

log fσ
n,

3
2

)∣∣∣∣ +
1
2

∣∣∣∣ζ
(

s0 + i
2π

log fσ
n,

3
2

)∣∣∣∣

! 5
2

(
2π

log fσ
|n|

)µ

! C|n|N
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with µ = max{µs0,3/2, µs0−2,3/2} and N " 1µ2.
We can interpret the series

∑

n∈Z
ζDS3 (sn) exp

(
2πin

log(Λa)
log fσ

)

as a Fourier series
∑

n∈Zcneinx with x = 2π log (Λa)
log fσ

. The condition

|cn| ! C |n|N

for some C > 0 and some N ∈ N ensures the weak convergence of the Fourier series to a
periodic distribution (see theorem 9.6 of [22]). For example, the periodic delta distribution is
the weak limit of the Fourier series

δper(x) :=
∑

n∈Z
δ(x − 2πn) weak lim

=
1

2π

∑

n∈Z
einx.

Thus, we can write

SΛ(DPY ) ∼ Λ3 f3 ζLΓ(3)
|Γ| − Λ

f1 ζLΓ (1)
4|Γ| +

(Λa)s0

2|Γ| log fσ
ΘPΓ

(
log(Λa)
log fσ

)
, (2.14)

where we write

ΘPΓ

(
log(Λa)
log fσ

)
weak lim

=
∑

n∈Z
ζDS3 (sn) exp

(
2πin

log(Λa)
log fσ

)
(2.15)

for the log-periodic distribution de!ned by the weak limit of the Fourier series.

2.1.8. The static spacetime action. We consider a product geometry of the form S1
β × PY ,

with Y = S3/Γ and PY the fractal arrangement resulting from the Sierpinski construction for
the polyhedra PY , as discussed above, and with S1

β a circle of some (large) compacti!cation
radius β > 0. The Dirac operator on this product geometry is of the form

DS1
β×PY

=

(
0 DPY ⊗ 1 + i ⊗ DS1

β

DPY ⊗ 1 − i ⊗ DS1
β

0

)
. (2.16)

The spectral action for this product geometry can be computed with the same method used
in [9], given the previous computation of the spectral action for PY . The heat kernel of the
operator D2

S1
β×PY

of (2.16) satis!es

Tr

(
e
−sD2

S1
β
×PY

/Λ2
)

= 2 Tr

(
e
−sD2

S1
β

/Λ2
)

Tr
(

e−sD2
PY

/Λ2)
. (2.17)

The spectrum of DS1
β

is β−1(Z + 1/2), and the leading part of the heat kernel expansion is
given by, for all k > 0

Tr

(
e
−sD2

S1
β

/Λ2
)

∼
√

π

s
βΛ + O(Λ−k).
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Thus, we have, for all k > 0

Tr

(
e
−sD2

S1
β
×PY

/Λ2
)

= 2βΛTr
(√

π/s e−sD2
PY

/Λ2)
+ O(Λ−k+3).

Thus, we obtain

Tr



h




D2

S1
β×PY

Λ2







 ∼ 2βΛTr
(
κ

(D2
PY

Λ2

))
, (2.18)

for test functions h(x) = e−sx and k(x) =
√
π/s e−sx and more generally for a test function

h(x) and k(x) =
∫∞

0 v−1/2h(x + v)dv, see lemma 2 of [9].
Thus, we obtain, as in proposition 3.6 of [2], an expansion of the spectral action of DS1

β×PY

of the form

SΛ(DS1
β×PY

) ∼ β

|Γ|

(
Λ4 2 ζLΓ (3) h3 −

Λ2

2
ζLΓ (1) h1+

∑

n∈Z

Λsn+1 asn ζDS3 (sn)

log fσ
hsn

)

∼ β

|Γ|

(
2Λ4 a3

(1 − fρ f −3
σ )

h3 −
Λ2 a

2(1 − fρ f −1
σ )

h1 +
∑

n∈Z

Λsn+1 asn ζDS3 (sn)

log fσ
hsn

)
,

(2.19)

where

h3 := π

∫ ∞

0
h(ρ2)ρ3 dρ,

h1 := 2π
∫ ∞

0
h(ρ2)ρ dρ,

hsn = 2
∫ ∞

0
h(ρ2)ρsn dρ.

2.1.9. Slow roll potentials. Correspondingly, if we consider a scalar perturbation of the Dirac
operator, of the form

D2 *→ D2 + φ2,

the spectral action computed above and the one for this modi!ed Dirac operator differ by a
Lagrangian density for the scalar !eld φ, which in the case of these static models only contains
a potential term of the form

L(φ) = A Λ4 V(φ2/Λ2) + B Λ2 W(φ2/Λ2) +
∑

n∈Z
Cn Λsn+1 Un(φ2/Λ2), (2.20)

where

A =
πβ a3

|Γ|(1 − fρ f −3
σ )

, B = − πβ a
2|Γ|(1 − fρ f −1

σ )
, Cn =

2β asn ζDS3 (sn)

|Γ| log fσ
(2.21)
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and

V(x) :=
∫ ∞

0
u(h(x + u) − h(u))du, W(x) :=

∫ x

0
h(u)du, (2.22)

Un(x) =

∫ ∞

0
u(sn−1)/2(h(x + u) − h(u))du, (2.23)

see [2], and also [5, 9, 43, 44].
One can see the behavior of the potentials V(φ2/Λ2), W(φ2/Λ2), Un(φ2/Λ2), and of the

resulting Lagrangian L(φ), in the regime where φ/Λ is small, in the following way.
Consider the potential Un(x) as in (2.23). A variable substitution yields

∫ ∞

0
(v − x)(sn−1)/2h(v)dv −

∫ x

0
(v − x)(sn−1)/2h(v)dv −

∫ ∞

0
u(sn−1)/2h(u)du.

If we assume we have a function that is approximately constant on the interval [0, x], such as a
smooth approximation to a cutoff function in the range where x is suf!ciently small, the middle
term simpli!es to

2 h(0)eiπ(sn+1)/2

sn + 1
x(sn+1)/2.

Additionally, using the binomial expansion for complex coef!cients, the !rst and third terms
can be written as

∞∑

j=1

(
(sn − 1)/2

j

)
(−1) j F j x j,

F j =

∫ ∞

0
v(sn−1)/2− j h(v) dv.

The factor of Λsn+1 implies that, in the limit Λ→∞, we may write

Un(φ2/Λ2) ∼
-(sn+1)/2.∑

j=1

(
(sn − 1)/2

j

)
F j · (−1) j(φ/Λ)2 j +

2 h(0)eiπ(sn+1)/2

sn + 1
(φ/Λ)(sn+1).

The contribution of the real pole s0 of the fractal string zeta function then becomes

2βas0ζDS3 (s0)Λs0+1

|Γ| · log fσ
U0(φ2/Λ2) ∼

-(s0+1)/2.∑

j=1

a jΛ
s0+1−2 jφ2 j + b0φ

s0+1,

a j = C0

(
(s0 − 1)/2

j

)
(−1) jF j, b0 = C0

2 h(0)eiπ(s0+1)/2

s0 + 1
,

with C0 as in (2.21). Under the same assumptions, denoting
∫∞

0 h(v)dv = |h|, we also have
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V(φ2/Λ2) ∼ −|h|φ
2

Λ2 +
h(0)
2Λ4 φ

4

W(φ2/Λ2) ∼ h(0)
φ2

Λ2 ,

in the range where φ/Λ is suf!ciently small, where the !rst expansion is obtained via
integration by parts, with h(u + x) − h(u) ∼ h′(u)x + 1

2 h′′(u)x2 and with
∫ ∞

0
uh′(u)du = −

∫ ∞

0
h(u)du = −|h| and

1
2

∫ ∞

0
uh′′(u)du = −1

2

∫ ∞

0
h′(u)du =

h(0)
2

.

Thus, in this range the Lagrangian can be written in the form

L(φ) ∼ (B h(0) − A |h|Λ2)φ2 +
h(0)

2
φ4 + b0φ

s0+1 +

-(s0+1)/2.∑

j=1

a jΛ
s0+1−2 jφ2 j + O(Λ,φ),

where O(Λ,φ) is the contribution to the complex poles of fractal zeta function, which as
discussed in section 2.1.7 converges in a weak sense,

O(Λ,φ) =
∑

n∈Z−{0}

CnΛ
sn+1Un(φ2/Λ2).

The behavior of the Lagrangian in the small φ/Λ allows us to compute the effective mass
term of the !eldφ, by comparing the quadratic term in our Lagrangian to the mass term− 1

2 mφ2.
We obtain an effective mass of the form

meff =
πβ

|Γ|

(
2a3h(0)

1 − fρ f −3
σ

+
a |h|Λ2

1 − fρ f −1
σ

+
2as0(s0 − 1)

log fσ
Λs0−1ζDS3 (s0)F1

)
. (2.24)

A normalization with h(0)Λ2 ∼ 1 and |h|Λ2 ∼ 1, where the latter corresponds to normalizing
the integral

∫∞
0 h(u/Λ2)du, would make the !rst term negligible in the large Λ range. The F1

terms can also be similarly estimated to be negligible for large Λ, so that the dominant term
for large Λ would be

meff ∼
π β a

|Γ|(1 − fρ f −1
σ )

.

In the range where φ2/Λ2 is large, the approximations considered above no longer apply,
and the potentials V , W , and Un "atten out to an asymptotic plateau (see the corresponding
discussion in [9] and in section 3.2 of [44]). It is this plateau behavior for large φ2/Λ2 that
makes the resulting L(φ) suitable for describing a slow-roll in"ation model in cosmology.

2.1.10. Fractality and cosmic topology in static spherical models. In [43] it was shown that
the different candidates for spherical cosmic topology are distinguished, in a spectral action
model of gravity, only through the different scaling factors |Γ| in the spectral action, which in
turn gives a different scaling factor in the amplitude of the power spectra determined by the
slow-roll potential. However, there are some ambiguities that cannot be resolved by this simple
dependence on the scaling factors |Γ|. For example, the lens space L(24, 1), the prism manifold
of the binary dihedral group D∗

6, and the spherical manifold of the binary tetrahedral group
will all have the same scaling factor 1/|Γ| = 1/24. So the action functional with slow-roll
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Figure 5. The !rst step of the Sierpinski construction for the rhombic dodecahedron,
[32].

potential given by the spectral action will not distinguish between these cases, and other similar
situations. However, in the presence of both cosmic topology and fractality, the dependence
on the topology of the spectral action model of gravity is more subtle, as the type of Sierpinski
fractal arrangement itself depends on the topology, so that the contributions of fractality to the
spectral action and the slow-roll potential will themselves depend explicitly on the topology.

To see the effect explicitly, it suf!ces to consider the contribution of the real pole s0 of the
zeta function ζLΓ to the spectral action and the slow-roll potential. These are, respectively,
given by the expressions

Λs0ζDS3 (s0)

2|Γ| log fσ
and

2βΛs0+1ζDS3 (s0)

|Γ| log fσ

∫ ∞

0
u(s0−1)/2

(
h
(
φ2

Λ2 + u
)
− h(u)

)
du

(2.25)

The following table of values shows that in this case, even for cases where |Γ| has the
same value, other terms are different, so that the terms above distinguish the different spherical
topologies. Notice moreover, that the shape of the potential U0(φ2/Λ2) given by the integral
above, also depends explicitly on the value of s0. This means that not only the amplitude of the
power spectra determined by the slow-roll potential has a dependence on the topology, but also
the slow-roll parameters will now depend on the topology, due to the presence of fractality.

Γ |Γ| s0 ζD
S3 (s0) log fσ

Zn n log n
log fσ (n) 2ζ( log n

log fσ (n) − 2, 3
2 ) − 1

2 ζ( log n
log fσ (n) , 3

2 ) log( fσ(n))
D∗

n 4n log n
log fσ (2n) 2ζ( log n

log fσ (2n) − 2, 3
2 ) − 1

2 ζ( log n
log fσ (2n) , 3

2 ) log( fσ(2n))
T 24 log 6

log 2 ∼ 2.5849 ζD
S3 ( log 6

log 2 ) ∼ −5.1396 log(2) ∼ 0.6931
O 48 log (12)

log 3 ∼ 2.2618 ζD
S3 ( log (12)

log 3 ) ∼ −3.0905 log(3) ∼ 1.0986
I 120 log (20)

log (2+φ) ∼ 2.3296 ζD
S3 ( log (20)

log (2+φ) ) ∼ −3.3486 log(2 + φ) ∼ 1.2859
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2.2. Robertson–Walker model

We consider here a more realistic Robertson–Walker model of multifractal cosmology, where
the individual manifolds in the fractal con!guration are copies of four-dimensional Robert-
son–Walker spacetimes. This is the same type of model considered, in the case of Apollonian
packings of spheres, in [20].

A (Euclidean) Robertson–Walker metric on a spacetime X = R × S3 is of the form

ds2
RW = dt2 + a(t)2dσ2

with dσ2 is the metric on the unit sphere S3. The scale factor a(t) describes the expan-
sion/contraction of the spatial sections of the four-dimensional spacetime. In [20] the full
asymptotic expansion of the spectral action functional was computed for a Robertson–Walker
spacetime (X = R × S3, ds2

RW) and for a multifractal cosmology given by a product R × P ,
with P an Apollonian packing of three-spheres, with a metric that is of the form

ds2
n,k = a2

n,k(dt2 + a(t)2dσ2) (2.26)

on each sub-cylinder R × S3
n,k of the packing R × P , where the an,k are the radii of the spheres

occurring in the level n of the recursive construction of the packing. The case of a metric of
the form dt2 + a(t)2a2

n,kdσ2 is also discussed in [20], but for simplicity we will focus here on
the analog of (2.26) for other fractal geometries.

The explicit computation of the spectral action expansion for the Robertson–Walker met-
ric is obtained in [20] using a technique originally introduced in [10], based on represent-
ing the heat kernel in terms of the Feynman–Kac formula and Brownian bridge integrals
(see [56]).

We summarize here brie"y the main steps of the calculation of [20] that we will extend
to our fractal geometries. The Dirac operator DS3 has eigenvalues Spec(DS3 ) = {(. + 3

2 )}.∈Z
with multiplicities µ(. + 3

2 ) = 4(. + 1)(. + 2). On a basis of eigenspinors {ψ., j | . ∈ Z, j =
1, . . . , 4(. + 1)(.+ 2)}, with V. ⊂ L2(S3, S) the eigenspaces V. = span{ψ., j | j = 1, . . . ,
4(. + 1)(. + 2)}, we decompose the operator as

D2
S3 |V. =

(
. +

3
2

)2

.

Similarly, as shown in [10], we can decompose the operator

D2
R×S3 = ⊕.H.

H. = − d2

dt2 + V.(t)

V.(t) =

(
. + 3

2

)

a(t)2

(((
. +

3
2

)
− a′(t)

)
,

so that the heat kernel can be written in the form

∑

.

µ

(
. +

3
2

)
Tr(e−sH.).
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This can be evaluated using the Feynman–Kac formula, which gives

e−sH.(t, t) =
1

2
√
πs

∫
e−s

∫ 1
0 V.(t+

√
2s α(u))du D[α] (2.27)

where D[α] denotes the Brownian bridge integral. The Brownian bridge is the Gaussian pro-
cess {α(s)}0!s!1 closely related to Brownian motion and determined by the condition that the
expectation values satisfy

E(α(s)α(t)) = s(1 − t), for 0 ! s ! t ! 1.

The Feynman–Kac formula (2.27) for the heat kernel (see [56]) is a consequence of the rela-
tion between Brownian motion and heat kernel on the line, and the Trotter product formula to
incorporate the presence of the potential V..

In [20], after the change of variables

U = s
∫ 1

0
B(t +

√
2sα(u))du, V = s

∫ 1

0
A′(t +

√
2sα(u))du, (2.28)

with A(t) = a(t)−1 and B(t) = A(t)2, and x = . + 3
2 , which gives

−s
∫ 1

0
V.(t +

√
2sα)dv = −x2U − xV , (2.29)

the Poisson summation formula is applied to the function

fs(x) =

(
x2 − 1

4

)
e−x2U−xV

over the lattice L = {. + 3/2 | . ∈ Z}. The summation of the Fourier dual f̂ s localizes at the
origin and gives

∑

x∈L

fs(.) =
∑

y∈L̂

f̂ s(y) ∼
∫

R
fs(x) dx

∫

R
fs(x) dx =

√
πe

V2
4U (−U2 + 2U + V2)

4U5/2

so that one obtains the generating function for the spectral action expansion as

esH. (t, t) =
1

2
√
πs

∫ 


∑

x=.+3/2, .∈Z
µ(x)e−x2U−xV



D[α] =
1

2
√
πs

∫ (
∑

w∈Z
f̂s(w)

)
D[α]

∼ 1√
s

∫
e

V2
4U (−U2 + 2U + V2)

4U5/2 D[α].

By further expanding U and V in powers of τ =
√

s, it is shown in [20] that one has an
expansion
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e
V2
4U UrVm = τ 2(r+m)

∞∑

M=0

C(r,m)
M τM (2.30)

where the coef!cients C(r,m)
M have an explicit expression in terms Bell polynomials, which we

do not recall here as we will not directly need it. All these coef!cients are functions of the
Brownian bridge process α through the expressions (2.28). Thus, one can write the heat kernel
expansion as

Tr(e
−τ2 D2

R×S3 ) ∼
∞∑

M=0

τ 2M−4
∫

×
(∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 − C−1/2,0

2M−2 )
)

D[α]
)

dt.

For a further discussion of how to evaluate these Brownian bridge integrals, see section 4,
especially lemma 4.14 and theorem 4.15, of [20]. Again we do not need here the explicit
expressions for these Brownian bridge integrals: we only need the fact that they are explic-
itly computable, given the expression for the C(r,m)

M in terms of Bell polynomials, also obtained
in [20].

We need a simple modi!cation of the computation above that takes into account replacing
the three-sphere S3 with a spherical form Y = S3/Γ and forming a fractal arrangement PΓ of
scaled copied of Y with scaling factors

LΓ = {an,k = f −n
σ | n ∈ N, k = 1, . . . , f n

ρ} (2.31)

for the same Sierpinski constructions considered in the previous section.
The replacement of S3 with Y = S3/Γ in the argument above affects the multiplicities of

the spectrum and the corresponding Poisson summation formula argument. This is the same
argument used in [43, 60] to compute the spectral action on Y. It was shown in [60] that, for
each three-dimensional spherical space form Y = S3/Γ, the spectrum of the Dirac operator DY

admits a decomposition into a union of arithmetic progressions

Spec(DY ) =
⋃

i

Li

as in (2.33) below, where the multiplicities are polynomial functions

µ(λ) = Pi(λ), for λ ∈ Li.

These polynomials satisfy

∑

i

Pi(x) =
1
R

(
x2 − 1

4

)
, (2.32)

for some R ∈ N, while the corresponding arithmetic progressions are of the form

Li = {bi + Nm | m ∈ Z} ⊂
{

3
2

+ . | . ∈ Z
}

(2.33)

for some bi ∈ Q, where the integers N and R are related by
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N · R = |Γ|. (2.34)

While the speci!c form of the Li and Pi and the values of N, R depend on which Γ one is
considering, in all cases one obtains the following identity for the Poisson summation. Let
Pi(x) =

∑
j ci jx j, and gi(x) = Pi(x) fs(x) with hi(x) = gi(bi + Nx) = Pi(bi + Nx) fs(bi + Nx).

We also set P(x) = (x2 − 1/4) and g(x) = P(x) fs(x). The Poisson summation formula gives

∑

i

∑

λ∈Li

Pi(λ) fs(λ) =
∑

i

∑

m∈Z
Pi(bi + Nm) fs(bi + mN)

=
∑

i

∑

k∈Z

1
N

e2πbik/Nĝi(k/N),

since

ĥi(y) =

∫
hi(x)e−2πixydx =

∫
Pi(bi + Nx) fs(bi + Nx)e−2πixydx (2.35)

=
1
N

e2πibiy/Nĝi(y/N).

Thus, if we retain only the contribution at the origin of the Fourier dual summation we have

∑

i

∑

λ∈Li

Pi(λ) fs(λ) ∼
∑

i

1
N

∑

j

ci j f̂ ( j)
s (0).

Using then (2.32) and (2.34) we can write the above equivalently as

∑

i

∑

λ∈Li

Pi(λ) fs(λ) ∼ 1
|Γ| ĝ(0) (2.36)

since

1
|Γ| ĝ(0) =

1
R · N

P̂ · fs =
1
N

∑

i

P̂i · fs =
∑

i

1
N

∑

j

ci j f̂ ( j)
s (0).

Thus, we consider the decomposition D2
R×Y along eigenspaces V. of DY ,

D2
R×Y = ⊕i,.Hi,.

Hi,. = − d2

dt2 + Vi,.(t)

Vi,.(t) =
(bi + N.)

a(t)2

(
(bi + N.) − a′(t)

)
,
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with the heat kernel

Tr(e−sD2
R×Y ) =

∑

i,.

Pi(bi + N.)Tr(e−sHi,.).

The Poisson summation argument above then provides an overall factor of 1/|Γ| in the
expansions

esHi,. (t, t) ∼ 1
|Γ|

1√
s

∫
e

V2
4U (−U2 + 2U + V2)

4U5/2 D[α],

and consequently in the expansion

Tr(e−sD2
R×Y ) ∼ 1

|Γ|

∞∑

M=0

τ 2M−4

×
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 − C−1/2,0

2M−2 )
)

D[α]
)

dt, (2.37)

where the coef!cients C(r,m)
M on the right-hand-side of this expansion are those computed for

the case of the heat kernel of the operator D2
R×S3 .

Note that the presence of this overall factor 1/|Γ| can also be deduced directly from the heat
kernel argument of [5] that we recalled in the previous section, applying (2.5) and showing as
in [5] that it is only the !rst term on the right-hand-side of (2.5) that contributes to the spectral
action expansion, as the other terms give rise to contributions smaller than any power of Λ.

The fractal arrangement of scaled copies of Y into the corresponding Sierpinski construction
can be accounted for in the calculation of the spectral action expansion by the same method
used in [20] for the packing of spheres. As above let LΓ = {an,k} be the list of radii of the
Sierpinski construction for Y = S3/Γ, as in (2.31). As in [20], we use the following general
result of complex analysis. Let h(τ ) be a function with a small τ asymptotic expansion

h(τ ) ∼τ→0+
∑

N

cN τN

and let M(h)(z) be the (non-normalized) Mellin transform,

M(h)(z) =

∫ ∞

0
h(τ )τ z−1dτ.

Let gΓ(τ ) be the series

gΓ(τ ) :=
∑

n,k

h(an,k τ ), with LΓ = {an,k}.

This has Mellin transform M(gΓ)(z) = ζLΓ (z) · M(h)(z). Then, from the relation between
small-time asymptotic expansion of a function and singular expansion of its Mellin transform,
gΓ(τ ) has a small-time asymptotic expansion

gΓ(τ ) ∼τ→0+
∑

N

cN ζLΓ(−N) τN +
∑

α

Resz=αζLΓ · M(h)(α) · τ−α

where α ranges over the poles of ζLΓ (z).
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We apply this directly to h(τ ) = Tr(e−τ2 D2
R×Y ) with the asymptotic expansion (2.37). Under

the scaling ds2
n,k = a2

n,k(dt2 + a(t)2dσ2) of the Robertson–Walker metric on R × Y, the spec-
trum of the Dirac operator D2

(R×Y)n,k
scales by a−2

n,k , so that we can identify Tr(e−τDR×PΓ )
obtained with these scaled metrics with

gΓ(τ ) =
∑

n,k

Tr(e
−τ2 D2

(R×Y)n,k ) =
∑

n,k

f (an,kτ ),

with corresponding asymptotic expansion

Tr(e−τDR×PΓ ) ∼ 1
|Γ|

∞∑

M=0

τ 2M−4 ζLΓ(−2M + 4)

×
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 − C−1/2,0

2M−2 )
)

D[α]
)

dt

+
∑

n∈Z
Ress=snζLΓ M(h)(sn) τ−sn ,

where ΣΓ = {sn | n ∈ Z} is the set of poles of ζLΓ . We now use what we explicitly know
about ζLΓ and M(h). Using the Mellin transform relation (1.5) and M(h)(s) = 1

2M( f )(s/2)
for h(τ ) = f (τ 2), we obtain

M(h)(s) =
1
2
Γ(s/2) ζDR×Y (s).

Thus, using (2.10) and (2.11) for the poles and residues of ζLΓ we obtain

Tr(e−τDR×PΓ ) ∼ 1
|Γ|

∞∑

M=0

τ 2M−4 ζLΓ(−2M + 4)

×
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 − C−1/2,0

2M−2 )
)

D[α]
)

dt

+
1

2|Γ| log fσ

∑

n∈Z
Γ(sn/2) ζDR×Y (sn) τ−sn .

Correspondingly, the spectral action expansion is of the form

Tr( f (DR×PΓ/Λ)) ∼ 1
|Γ|

∞∑

M=0

Λ4−2M f4−2M

(1 − fρ f 2M−4
σ )

·

×
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 − C−1/2,0

2M−2 )
)

D[α]
)

dt

+
1

2|Γ| log fσ

∑

n∈Z
fsn Γ(sn/2) ζDR×Y (sn)Λsn . (2.38)

Again we see, as in the discussion of the static model in the previous section, that the
different Sierpinski constructions for the different topologies Y = S3/Γ give rise to different
correction terms to the spectral action, through the different values of fσ , s0, and the values
ζL(4 − 2M), M ∈ N, and ζDR×Y (sn). Different candidate spherical cosmic topologies are fully
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detectable by the spectral action model of gravity in the presence of fractality, in the form of
the corresponding Sierpinski constructions.

2.3. Fractality in flat cosmic topologies

In this section we have focused primarily on the spherical space forms as candidate cosmic
topologies, and we have shown that the possible presence of fractality and the explicit form of
the contributions of fractality to the spectral action functional depend on the choice of spherical
space form for the underlying cosmic topology. It is natural to ask whether the same effect
persists in the case of the "at cosmic topologies, given by the Bieberbach manifolds, obtained as
quotients Y = T3/Γ of a torus by a !nite group of isometries. The spectral action for Bieberbach
manifolds was computed in [44, 49].

There are six af!ne equivalence classes of (compact and orientable) Bieberbach mani-
folds, usually labelled G1, . . . , G6, with G1 = T3. The other classes are, respectively, known
as half-turn space G2, third-turn space G3, quarter-turn space G4, sixth-turn space G5, and
Hantzsche–Wendt space G6, which corresponds to a half-turn along each coordinate axis. The
corresponding groups, which we denote by ΓGi , are of the form (with ti implementing the
translation by the vector ai):

• With a1 = (0, 0, H), a2 = (L, 0, 0), and a3 = (T, S, 0), H, L, S ∈ R∗
+ and T ∈ R

ΓG2 = 〈α, t1, t2, t3 |α2 = t1, αt2α−1 = t−1
2 , αt3α−1 = t−1

3 〉,

• With a1 = (0, 0, H), a2 = (L, 0, 0) and a3 = (− 1
2 L,

√
3

2 L, 0), for H and L in R∗
+

ΓG3 = 〈α, t1, t2, t3 |α3 = t1, αt2α−1 = t3, αt3α−1 = t−1
2 t−1

3 〉

• With a1 = (0, 0, H), a2 = (L, 0, 0), and a3 = (0, L, 0), with H, L > 0

ΓG4 = 〈α, t1, t2, t3 |α4 = t1, αt2α−1 = t3, αt3α−1 = t−1
2 〉

• With a1 = (0, 0, H), a2 = (L, 0, 0) and a3 = ( 1
2 L,

√
3

2 L, 0), H, L > 0

ΓG5 = 〈α, t1, t2, t3 |α6 = t1, αt2α−1 = t3, αt3α−1 = t−1
2 t3〉

• With a1 = (0, 0, H), a2 = (L, 0, 0), and a3 = (0, S, 0), with H, L, S > 0

ΓG6 = 〈α, β, γ, t1, t2, t3 |

α2 = t1, αt2α−1 = t−1
2 , αt3α−1 = t−1

3 ,

β2 = t2, βt1β−1 = t−1
1 , βt3β−1 = t−1

3 ,

γ2 = t3, γt1γ−1 = t−1
1 , γt2γ−1 = t−1

2 ,

γβα = t1t3〉

.

The fundamental domains for the Bieberbach manifolds are parallelepipeds (for G1, G2,
G4) or hexagonal prisms (for G3, G5), see !gure 4. The Hantzsche–Wendt manifold has a
more interesting structure (for its role in cosmic topology see [1]) and a fundamental domain
given by a rhombic dodecahedron, see !gure 4. For a general discussion of these manifolds in
the context of the cosmic topology problem see [37, 38, 53]).
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Figure 6. The !rst steps of the Sierpinski construction for the Sierpinski–Menger
snow"ake.

Thus, the presence of fractality would, in this case, require a Sierpinski construction based
on these parallelepipeds and hexagonal prisms. The case of parallelepipeds, as in the cube case,
leads to Menger-sponge type fractals, while the hexagonal prisms have a Sierpinski construc-
tion based on the hexa"ake, see !gure 3. In the case of the Hantzsche–Wendt manifold, we
need to use a Sierpinski construction for the rhombic dodecahedron. We have already analyzed
the Sierpinski construction for a prism based on the hexa"ake fractal in the previous section,
so we focus here on the case of a parallelepiped (for which it suf!ces to consider the case of
a cube) and of a rhombic dodecahedron. For the latter, Sierpinski constructions for Catalan
solids have been developed in [32]. In the case of the rhombic dodecahedron, the !rst step of
the Sierpinski construction is shown in !gure 5.

The case of a cube (or parallelepiped) is slightly more subtle than it seems at !rst. If
one applies the same type of Sierpinski construction that we have used for the regular,
Archimedean, and Catalan solids, [32–34], then one does not obtain a fractal, as eight copies
of a cube scaled by 1/2 just !ll an identical copy of the same cube, so this Sierpinski construc-
tion just replicated the cube itself without introducing fractality. One can instead construct
Menger-sponge type fractals based on cubes, where a cube is subdivided into scaled copies of
itself and only some of these copies are retained. However, not all such Menger constructions
are suitable for our purpose, since we need each cube in the construction to be a fundamental
domain of a Bieberbach manifold, which means that the faces of the cube should be free to be
glued to other faces according to the group action, and not attached to faces of other cubes in
the Menger solid. This means that cubes need to be removed so that the remaining ones are
only adjacent along edges or vertices, but not along faces. All the Sierpinski constructions we
considered so far have this property. A Menger construction that satis!es this property is given
by the Sierpinski–Menger snow"ake (!gure 6).

In the Sierpinski–Menger snow"ake construction of !gure 6, at every step each of the pre-
vious cubes is replaced by eight corner cubes and one central cube of 1/3 the size. Thus, for
this Sierpinski construction the replication factor is fρ = 9 and the scaling factor is fσ = 3,
with

dimH PGa =
log fρ
log fσ

=
log 9
log 3

= 2, for a ∈ {1, 2, 4}.

It is worth pointing out that, among the Sierpinski constructions associated to the candidate cos-
mic topologies in both positive and "at curvature this is the only case where the self-similarity
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dimension agrees with the value observed from the large scale distribution of galaxy clusters,
[24, 59].

In the case of the hexa"ex prism, we have, as discussed in the previous section,

dimH PGa =
log 6
log 3

∼ 1.630 93, for a ∈ {3, 5},

while in the case of the rhombic dodecahedron, at each step of the Sierpinski construction
each rhombic dodecahedron is replaced by 14 identical copies scaled by a factor of 1/3 so that
fρ = 14 and fσ = 3 and

dimH PG6 =
log(14)
log 3

∼ 2.402 17.

2.4. Static model in the flat case

The computation of the spectral action, for both the static and the Robertson–Walker model,
follow the same pattern that we discussed in the previous section, but with S3 replaced with
the "at torus T3. As shown in [43, 44], the spectral actions of the torus and the Bieberbach
manifolds are related by a scalar factor

Tr( f (DGa/Λ)) ∼ λGa · Tr( f (DT3/Λ)) =
λGa Λ

3

4π3

∫

R3
f (u2 + v2 + w2) du dv dw

up to O(Λ−∞) terms. In this case, the factor λGa also depends on the continuous parameters
H, L, S, T in the generators of the groups ΓGa (see the explicit presentations recalled above), so
they are not just a rational number 1/|Γ| as in the spherical case. Nonetheless, the argument is
otherwise very similar. On the product S1

β × T3 the spectral action is of the form (see [43])

Tr(h(DS1
β×T3/Λ)) =

Λ4β

4π

∫ ∞

0
uh(u)du + O(Λ−∞).

Also, as shown in [43], in the "at torus case, the corresponding slow-roll potential is only given
by the term

V(φ2/Λ2) =

∫ ∞

0
u(h(u + φ2/Λ2) − h(u)) du

without the part W(φ2/Λ2) of the spherical case (2.22). For the fractal arrangement PGa we
will again obtain

SΛ(DPGa
) ∼

∑

α

fαΛ
α λGa ζLΓ (α)

2
Ress=αζDT3 +

∑

β

fβΛ
β λGa ζDT3 (β)

2
Ress=βζLΓ

and the same argument based on (2.17) and (2.18) gives then
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SΛ(DS1
β×PGa

) ∼ β λGa

(
Λ4 2 ζLΓ(3) h3 +

∑

n∈Z

Λsn+1 asn ζDT3 (sn)

log fσ
hsn

)
(2.39)

∼ β λGa

(
Λ4 2

(1 − fρ f −3
σ )

h3 +
∑

n∈Z

Λsn+1 asn ζDT3 (sn)

log fσ
hsn

)
,

where

h3 :=π

∫ ∞

0
h(ρ2)ρ3 dρ and hsn = 2

∫ ∞

0
h(ρ2)ρsndρ.

The slow-roll potential is of the form

L(φ) = A Λ4 V(φ2/Λ2) +
∑

n∈Z
Cn Λsn+1 Un(φ2/Λ2), (2.40)

with A =
πβ λGa

(1 − fρ f −3
σ )

, and Cn =
2β λGa asn ζDT3 (sn)

log fσ
,

and with V(φ2/Λ2) as above and Un(φ2/Λ2) as in (2.23).

2.5. Robertson–Walker model in the flat case

We sketch here the argument for the Robertson–Walker model (R × T3, dt2 + a(t)2dsT3 ) and
the corresponding fractal arrangements (R × PGa , a2

n,k(dt2 + a(t)2dsT3 )). We will not provide
a full computation in this paper.

We start by considering the Dirac operator DT3 on the "at three-torus T3 = R3/Z3. We take
the standard torus for simplicity, but one can also consider more generally tori R3/L, for other
lattices L ⊂ R3. The spectrum of D2

T3 consists of

λ2
(n,m,k) = 4π‖(n, m, k) + (n0, m0, k0)‖2, for (n, m, k) ∈ Z3,

where each (n, m, k) ∈ Z3 contributes with an additional multiplicity 2, and where the vector
(n0, m0, k0) depends on the choice of one of the eight possible spin structures. Since the spectral
action itself is independent of the choice of spin structure (see [43]), we can !x any of the eight
choices of v0 = (n0, m0, k0). The eigenspinor spaces decompose as

Vλ =
⊕

v∈Z3 : ±2
√
π‖v+v0‖=λ

Vv,±.

We then decompose the operator D2
R×T3 with the Robertson–Walker metric dt2 + a(t)2dsT3 on

R × T3 as

D2
R×T3 = ⊕v∈Z3 Hv,±

Hv,± = − d2

dt2 + Vv(t)

Vv(t) =
λv

a(t)2

(
λv − a′(t)

)
, with λv = ±2

√
π‖v + v0‖,
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so that the trace of the heat kernel is written as
∑

v∈Z3

Tr(e−sHv,±).

We again then use the Feynman–Kac formula to express the heat kernel as

e−sHv,±(t, t) =
1

2
√
πs

∫
e−s

∫ 1
0 Vv,±(t+

√
2s α(u)) du D[α].

We use the same variables U and V of (2.28) as in the sphere case, so that we have the same
expression (2.29) with x replaced by λv = ±2

√
π ‖v + v0‖. Thus, we now apply the Poisson

summation to the functions

fs,±(v) = e−λ2
v U±|λv | V ,

and again we select the term at w = (0, 0, 0), which is the main term contributing to the spectral
action expansion. We obtain

∑

v∈Z3

( fs,+ + fs,−)(v) =
∑

w∈Z3

( f̂ s,+ + f̂ s,−)(w) ∼
∫

R3
( fs,+ + fs,−)(x, y, z)dx dy dz

= Vol(S2)
(∫ ∞

0
e−4πr2 U−2

√
π r V r2 dr +

∫ ∞

0
e−4πr2 U+2

√
π r V r2 dr

)

=
1√
π

∫

R
e−x2 U−x V x2 dx =

e
V2
4U (2U + V)

4U5/2 .

Note that this expression differs from the case of the sphere only in the absence of the term
−U2 in the numerator, and in the normalization factor of

√
π.

Thus, we then have a very similar argument to [20] for the full expansion of the spectral
action for the Robertson–Walker metric on R × T3. Using the same expansion (2.30) in powers
of τ = s2 we obtain

1√
πτ

e
V2
4U (2U + V2)

4U5/2 =
1
4

∞∑

M=0

C(−5/2,2)
M τM−2 +

1
2

∞∑

M=0

C(−3/2,0)
M τM−4,

which differs from the case of S3 of [20] in the absence of the C(−1/2,0)
M terms. Thus, we obtain

the heat kernel expansion

Tr(e
−τ2 D2

R×T3 ) ∼
∞∑

M=0

τ 2M−4
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

C−5/2,2
2M−2

)
D[α]

)
dt.

The evaluation of the Brownian bridge integrals can then be done as in the sphere case, and we
refer the reader to [20] for a detailed discussion.

Passing from the expansion for the heat kernel of D2
R×T3 to the expansion for D2

R×Ga
for the

Bieberbach manifolds Ga can be handled in the same way as we did in the previous section
for the spherical space forms, using a decomposition of the spectrum of DGa into subregions
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of the lattice Z3, with appropriate multiplicity functions, as shown in [44], and applying this
decomposition to the Poisson summation formula in the argument above. The spin structure
v0 on T3 needs to be chosen in a subset of those that descend to the quotient Ga. The resulting
spectral action is still independent of this choice.

We summarize the results of [44, 49] on the Bieberbach manifolds. According to the Dirac
spectrum computation of [50], the spectrum of DGa decomposes into a symmetric and an asym-
metric component. The asymmetric component is only present for certain spin structures and it
is not present at all in the case of G6. The symmetric part of the spectrum is parameterized by a
!nite collection of regions Ii ⊂ Z3 in the lattice, with the corresponding eigenvalues given by
a function λi(v), v ∈ Ii with multiplicity a constant multiple of the number of v ∈ Ii realizing
the same value λ = λi(v). The asymmetric component is an arithmetic progression of the form
B = {2πH−1(k. + c) | . ∈ Z} where c depends on the spin structure, and k is 2 for G2, 3 for
G3, 4 for G4, and 6 for G5. Arguing as in [44, 49], the Poisson summation formula for the T3

case,

∑

v∈Z3

( fs,+ + fs,−)(v) =
1√
π

∫

R
e−x2 U−x V x2 dx

is replaced by the summation

∑

i

∑

v∈Ii

fs,i(v) +
∑

.∈Z
fs

(
2πc
H

+
2πk
H

.

)
,

where fs(x) = e−x2U−xV and fs,i(v) = e−λi(v)2U−λi(v)V . As in (2.35), the second summation gives

∑

.∈Z3

H
2πk

e2πic./k f̂ s

(
H.

2πk

)
∼ H

2πk

∫

R
fs(x) dx,

while the !rst term in the Poisson summation, coming from the symmetric component of the
spectrum can be dealt with as in the individual cases discussed in [44, 49], which we do not
recall explicitly here. In all cases the Fourier transformed sides of the Poisson summation add
up so that the zero-term of the combined summation is simply a multiple of the same term in
the torus case,

∑

i

∑

v∈Ii

fs,i(v) +
∑

.∈Z
fs

(
2πc
H

+
2πk
H

.

)
∼ λGa

∫

R3
( fs,+ + fs,−)(x, y, z)dx dy dz

= λGa

e
V2
4U (2U + V)

4U5/2 ,

where, as mentioned above, the factor λGa depends on the continuous parameters H, L, S, T in
the groups ΓGa but not on the spin structure.

Thus, we obtain the same expansion for the expression above and a corresponding heat
kernel expansion of the form
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Tr(e−τ2 D2
R×Ga ) ∼ λGa

∞∑

M=0

τ 2M−4
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

C−5/2,2
2M−2

)
D[α]

)
dt.

(2.41)

We can then apply the same method as in the spherical cases to pass to the heat kernel expansion
for the fractal arrangement, and we obtain

Tr(e−τDR×PGa ) ∼ λGa

∞∑

M=0

τ 2M−4 ζLΓ(−2M + 4)
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

C−5/2,2
2M−2

)
D[α]

)
dt

+
λGa

2 log fσ

∑

n∈Z
Γ(sn/2) ζDR×Ga

(sn) τ−sn .

The spectral action is correspondingly of the form

Tr( f (DR×PGa
/Λ)) ∼ λGa

∞∑

M=0

Λ4−2M f4−2M ζLΓ (4 − 2M)·

×
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

C−5/2,2
2M−2

)
D[α]

)
dt

+
λGa

2 log fσ

∑

n∈Z
fsn Γ(sn/2) ζDR×Ga

(sn)Λsn (2.42)

∼ λGa

∞∑

M=0

Λ4−2M f4−2M

(1 − fρ f 2M−4
σ )

∫ (∫ (
1
2

C−3/2,0
2M +

1
4

C−5/2,2
2M−2

)
D[α]

)
dt

+
λGa

2 log fσ

∑

n∈Z
fsn Γ(sn/2) ζDR×Ga

(sn)Λsn .

2.6. Fractal structures on manifolds

In our analysis in the previous sections of the possible fractal structures associated to the dif-
ferent cosmic topologies, we have used the fact that these are all homogeneous manifolds
obtained as quotients by group actions, which admit a nice polyhedral fundamental domain
(either spherical or "at Euclidean). This allowed us to use Sierpinski constructions based on
the model polyhedron, and apply them to build a fractal arrangement of copies of the same
manifold.

More generally, one can ask a broad question about fractal constructions based on manifolds
with decompositions into polyhedra. These more general manifolds will not provide standard
candidate cosmic topologies as they fail to have the desired homogeneity property. However,
this appears to be a question of independent interest, both for the spectral action model of
gravity we are considering and for more general physical models.
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Figure 7. The !rst two stages of the tetrahedral Sierpinski construction.

We will return to this question in a separate paper, where we develop the necessary mathe-
matical background to address it in the required generality. However, in this section we outline
brie"y some aspects of this problem and some relevant examples.

2.6.1. Fractality from triangulations. The easiest form of decomposition of a manifold into
polyhedral structures is a triangulation, namely a decomposition into simplices (tetrahedra in a
three-manifold case, triangles in a surface case), glued together along lower dimensional faces.
The algebraic topology of simplicial sets describes the general topological objects (not always
smooth manifolds) obtained by such arrangements of simplices. Not all topological manifolds
admit a triangulation, but all smooth manifolds do.

Thus, a !rst possible idea of how to obtain fractal arrangements of manifolds would be to
consider fractal constructions associated to tetrahedra (and higher dimensional simplices) and
apply them to every tetrahedron (simplex) in the triangulation, by compatibly performing all
the gluing that describe the triangulation at each level of the fractal construction. A similar idea
was used, for instance, in [6].

In the case of a three-dimensional manifold M with a triangulation T, this can be done,
for instance, by considering the Sierpinski construction for the tetrahedron, as illustrated in
!gure 7. For this tetrahedral Sierpinski construction we have fρ = 4 and fσ = 2, so that the
self-similarity dimension is

dimH PT =
log fρ
log fσ

= 2,

where PT is the resulting fractal arrangement of tetrahedra arising from a given triangulation
T. The corresponding fractal string zeta function is of the form

ζL(s) =
1

1 − 22−s ,

with poles sn = 2 + 2πin
log 2 , for n ∈ Z. Note that in all these cases, the self-similarity dimension

is 2 (as expected for cosmological reasons, [24, 59], though M will in general not satisfy the
requirement of a candidate cosmological model).

In order to be able to perform the gluing of the tetrahedra, as prescribed by the triangulation,
at each level of the fractal construction, we again need to use the fact that the tetrahedra in
each subdivision of a previous level are only adjacent along vertices and not along faces. The
resulting fractal arrangement of copies of M will be denoted by PM . For a higher dimensional
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simplex ∆n generalizations of the Sierpinski construction have been considered, for instance,
in [64].

If the spectral action SΛ(DM) for the three-manifold M is given by

SΛ(DM) ∼
∑ fαΛ

α

2
Ress=αζDM + f (0)ζDM (0),

then the spectral action of the fractal arrangement PM is

SΛ(DPM ) ∼
∑ fαΛ

α ζL(α)
2

Ress=αζDM + f (0)ζDM (0)ζL(0)

+
∑

n∈Z

fsnΛ
snζDM (sn)

2 log 2

∼
∑ fαΛ

α

2(1 − 22−α)
Ress=αζDM − f (0)ζDM (0)

3

+
∑

n∈Z

fsnΛ
snζDM (sn)

2 log 2
.

The asymptotic expansion for the spectral action on a static model S1
β × M can then be

obtained from this along the same lines as in the cases discussed in the previous section. We
do not have in this case a direct analog of the argument for the Robertson–Walker models,
unless something more explicit is known about the spectrum and eigenspaces of DM , which is
usually the case only for homogeneous spaces like those we considered before.

2.6.2. Koch-type fractal growth. There are other natural fractal constructions associated to
tetrahedra (and to higher dimensional simplices) to which we cannot directly apply the argu-
ment described in the previous subsection for the Sierpinski construction. The simplest such
example is the Koch construction. In the case of triangles, the Koch construction produces
the well known Koch snow"ake as the boundary curve. At each step of the Koch curve con-
struction, one replaces each segment with four segments of length 1/3 so the self-similarity
dimension is log(4)/log(3). Note that this is a fractal construction based on the boundary curve.
If we consider two-dimensional triangles, then at the !rst step of the construction the initial
triangle is replaced by 12 triangles with scaling factor 1/3, as all the triangles !lling the trian-
gle of the previous step are also retained. So at each next step the number Tn of triangles is
Tn = 9 · Tn−1 + Sn−1 where Sn−1 is the number of boundary sides Sn = 3 · 4n−1.

In the case of a tetrahedron, the !rst steps of the Koch construction are illustrated in !gure 8.
At each step of the Koch construction one attaches a new tetrahedron, scaled by 1/2, in the
center of each of the triangular faces of the previous step. As in the case of the Koch snow"ake,
we can view this as a fractal construction for the boundary triangles, or for the interior solids.
The boundary has exact self-similarity in the sense that 6 new triangles of size 1/2 replace
each triangular face with dimH = log(6)/log(2) and the zeta function is then just given by
ζL(s) = (1 − 6 · 2−s)−1. However, the interior solid does not have exact self-similarity, since
the interior region of the !rst tetrahedron is replaced in the !rst step of the Koch construction
by a union of an octahedron and 8 tetrahedra, but the octahedron does not further decompose
into other regular tetrahedra.

We can consider a similar case by constructing a Koch-like fractal from an octahedron.
Starting with an octahedron, in each of its faces we place another octahedron scaled by 1

2 , see
!gure 9. Again the situation is the same as in the tetrahedron case. The fractal construction
seen on the two-dimensional surface has exact self-similarity with each triangle being !rst
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Figure 8. The !rst three steps in the Koch construction for a triangle (Koch snow"ake)
and for a tetrahedron, and the tetrahedron decomposition into tetrahedra and an octahe-
dron.

subdivided into four subtriangles of size 1/2, of which three are retained and seven new ones
are added in place of the fourth one. Due to the geometry of the octahedron, in the second
step of the construction, three of the scaled copies placed on each face are tangent to faces
both in the original face (red) and in the octahedron from the previous iteration (blue). Thus,
if T0 is the number of triangles in the original copy, namely T0 = 8, at the !rst step we have
T1 = 10T0 = 80 (three subtriangles in each original one plus 7 new ones in place of the fourth
one), while at the second step we have T2 = 10T1 − 3T0, where the 3T0 accounts for those new
faces that end up matching subtriangles of the original faces. We can repeat this process for
each of the next iterations: at the nth step the number of triangles is Tn+1 = 10Tn − 3Tn−1. The
solution of this recursion with T−1 = 0 and T0 = 8 is

Tn =

(
10
11

√
22 + 4

)
(5 +

√
22)n +

(
−10

11

√
22 + 4

)
(5 −

√
22)n,

with the !rst few terms equal to T1 = 80, T2 = 776, T3 = 7520, T4 = 72 872, T5 = 706 160,
etc. This example is slightly different from the cases of self-similarity we analyzed so far,
because instead of having a single replication factor fρ and a similarity factor fσ , in this case
we have a weighted combination of two different replication factors fρ,± = 5 ±

√
22. (Note
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Figure 9. The !rst steps of a Koch octahedron construction, on one of the faces of the
original solid, and the decomposition of an octahedron into six octahedra with 1/2 scale
factor and four tetrahedra.

that here fρ,± are not integers but their weighted combinations Tn = a+ f n
ρ,+ + a− f n

ρ,−, with
a± = 4 ± 10

11

√
22 are integers. Thus, in this case we have

L = {an,k = 2−n | k = 1, . . . , Tn}

so that the zeta function is

ζL(s) =
∑

n"0

Tn 2−ns =

(
10
11

√
22 + 4

)∑

n

(5 +
√

22)n2−ns

+

(
−10

11

√
22 + 4

)∑

n

(5 −
√

22)n2−ns

=

(
10
11

√
22 + 4

)

1 − (5 +
√

22)2−s
+

(
− 10

11

√
22 + 4

)

1 − (5 −
√

22)2−s
.

The three-dimensional solid octahedra in this construction do not have exact self-similarity.
Indeed, as in the case of the tetrahedron, an octahedron does not decompose exactly into
octahedra of 1/2 the size, but requires additionally four tetrahedra (see !gure 9).
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Moreover, in the tetrahedral case we cannot directly proceed as in the Sierpinski case to
glue the tetrahedra of each step of the construction into a manifold triangulation, as some faces
of the tetrahedra are already glued to parts of faces of tetrahedra of the previous step. Similarly
for the octahedral construction.

However, one still expects that interesting fractal versions of simplicial objects should be
obtainable from this type of fractal growth model as well. To this purpose, one needs to analyze
more in depth the usual notion of simplicial sets in algebraic topology, and the analogous notion
of cubical sets, and enrich it with a notion of fractality implemented by scaling maps. We will
discuss the mathematical structure necessary for this construction, and some of its applications,
in a forthcoming paper.

3. Arithmetic structures in fractal packings

In this section we consider again the packed Swiss cheese cosmology models considered in
[2, 20], based on Apollonian packings of spheres, as in [45]. As observed in other settings,
[18, 19, 21], cosmological models based on the spectral action often reveal interesting arith-
metic structures. Thus, we focus here on a class of Apollonian packing that have nice arithmetic
properties and we investigate how the associated spectral action function re"ects the presence
of an arithmetic structure.

3.1. Integral Apollonian packings

We consider the integral Apollonian packings as in [25, 27], based on three-spheres. These are
packings where the curvatures of all spheres are integers. Note that the term ‘curvature’ in this
setting denotes the oriented curvature, ai = 1

ri
. We recall the general structure of Apollonian

packings from [27]. Explicit examples of constructions of sphere packings of three-spheres
and four-spheres are given in [58].

Apollonian packings of (n − 1)-spheres in Rn are characterized by n + 2 tangent spheres
obeying the Descartes relation for n dimensions

n+2∑

i=1

a2
i =

1
n

(
n+2∑

i=1

ai

)2

,

where ai = 1
ri

is the curvature of each sphere. Following [27] we consider

QD,n := In+2 −
1
n

1n+21T
n+2,

where In+2 is the identity and (1n+2) j = 1, ∀ j ∈ {1, 2, . . . , n + 2} with In+2 ∈ Mn+2(R) and
1n+2 ∈ Rn+2. The Descartes relation for (n − 1)-spheres can then be written equivalently as

aTQD,na = 0.

Consider a Lorentz quadratic form:

aTQL,na = −a2
1 + a2

2 + · · · + a2
n+2 = 0.

Descartes forms and Lorentz forms are real-equivalent in all dimensions, as discussed in [27].
This leads to a bijection {aD

n+2} 8 {aL
n+2}, which means Descartes forms can be counted using
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the Lorentz forms. We also need to recall the notion of dual Apollonian packing from [27]. The
packing is described by the dual Apollonian group

A⊥
n = {S⊥

1 , S⊥
2 , . . . , S⊥

n+2},

where S⊥
i = In+2 + 2 · 1n+2eT

i − 4 · eieT
i , with 1n+2 as before and ei the standard Cartesian

basis in Rn+2. Let WD denote the curvature-center coordinate matrix of the original Descartes
form. The dual Apollonian group acts on it by S⊥

i WD.
Here, we will work with the dual Apollonian con!guration of sphere packings, since it has

been shown to not intersect, when taking higher dimensional spheres in the packing, whereas
the usual Apollonian construction leads to intersections under the same circumstances. Addi-
tionally, Theorem 4.1 of [27] suggests that Apollonian packings in higher dimensions do not
necessarily remain integral. However, dual Apollonian packings do retain integral curvature for
n > 1. Altogether, Apollonian con!gurations in higher dimensions are not always an appropri-
ate choice for sphere packings, but dual Apollonian con!gurations retain all the usual qualities
associated with circle packings for higher dimensions.

In the construction of the dual Apollonian packing, if the initial con!guration of spheres
has integer curvatures, then all the curvatures will remain integer in the whole packing. The
packing zeta function can then be described as

ζL(s) =
∑

n,k

rs
n,k =

∑

n∈N

r∗5(a2
n)

as
n

,

where r∗5(k) denotes the number of primitive integer representations of k as a sum of 5 square
integers. As shown in [28], this is given by

∑

n∈N

r∗5(a2
n)

as
n

=
1

ζ(s)

∑

n∈N

r5(a2
n)

as
n

,

with r5(k) the number of general integer representations of k. It is shown in [54] that this sum
simpli!es to

∑

n∈N

r5(a2
n)

as
n

=
10 ζ(s)ζ(s − 3)

ζ(s − 1)(1 − 21−s)
,

so that we obtain

ζL(s) =
10 ζ(s − 3)

ζ(s − 1)(1 − 21−s)
. (3.1)

The set of poles of the zeta function (3.1) is the union of the following sets

(a) He point s = 4, which is a pole of ζ(s − 3) with residue

Ress=4ζL =
80

7 ζ(3)
.

(b) The points sn = 1 + 2πin
log 2 , with n ∈ Z, which are poles of (1 − 21−s)−1, with residue

Ress=snζL =
10 ζ

(
2πin
log 2 − 2

)

ζ
(

2πin
log 2

)
log 2

.
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(c) The nontrivial zeros of the zeta function ζ(s − 1), given by the set {sρ = 1 + ρ | ρ ∈
Z(ζ)}, with Z(ζ) the set of non-trivial zeros of the Riemann zeta function, with residues

Ress=sρ ζL =
10 ζ(ρ− 2)

(1 − 2−ρ) ζ ′(ρ)
.

Note that the trivial zeros of ζ(s − 1), at the points sk = 1 − 2k with k ∈ N, do not contribute
poles because also ζ(−2(k + 1)) = 0 in the numerator of (3.1).

We see that, in the case of a packed Swiss cheese cosmology model based on an integral
Apollonian packing of three-spheres, the spectral action expansion will contain a series over
the non-trivial zeros of the Riemann zeta function, of the form

∑

ρ

5 fsρ ζDS3 (1 + ρ) ζ(ρ− 2)

(1 − 2−ρ) ζ ′(ρ)
Λ1+ρ.

The behavior of this series depends on delicate number theoretic properties of the Riemann
zeta function and on whether the Riemann hypothesis holds. For example, estimates on the
behavior of the derivative ζ ′(ρ) of the Riemann zeta function at non-trivial zeros are derived in
[23, 26]. In particular, series of the form

∑

ρ

ζ ′(ρ)Λρ and
∑

ρn

ζ ′(ρn)e2πinx

have been studied in [23, 26]. The series above, which arises naturally in our physical model,
appears to be of independent interest, though we will not pursue its analysis further in the
present paper.

3.2. Perturbation of sphere tangencies

The packed Swiss cheese cosmology model, as described in [45], uses Apollonian packings
of three-sphere as a convenient mathematical model for achieving a fractal arrangement that
can be seen as an iterative construction based on the original idea of Rees and Sciama [52]
on how to introduce inhomogeneities in a Robertson–Walker spacetime. There are however
some limitations to the Apollonian packing model. For example, the condition of tangency is
geometrically not an open condition, in the sense that small random perturbations of the data
will break this condition and will yield intersecting spheres. The latter is a generic condition
that is stable under small perturbations. Moreover, in a realistic physical model one would
not be working with exact self-similar fractals, but with random fractals as the latter provide
more realistic physical models. Thus, one should think of a physical or cosmological process
that generates fractality as a random process where bubbles randomly open up in the fabric
of Robertson–Walker spacetime, in such a way that what remains acquires a fractal geometry.
However, if the subtraction of bubbles of spacetime is achieved through a random process,
the resulting geometry will not look like a con!guration of tangent spheres like an Apollonian
packing, which is a deterministic fractal, but rather like a con!guration of intersecting spheres
with a sequence L = {an,k} of radii. Thus, we can imagine a model where one starts with
an Apollonian packing and maintains the same sequence of radii but introduces a random
perturbation of the positions of the centers of the spheres, which causes some of the spheres
to overlap with intersection along a hypersphere rather than only meeting at a tangent point
(!gure 10).
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Figure 10. Example of a random fractal created by cratering (removal of discs/balls). In
the example illustrated here the sequence of radii is simply taken as an,k = 3−n (from a
geophysical model of [62]).

We can also obtain simple models with intersecting spheres by considering Apollonian
packings in lower dimensions as the intersection with an equatorial hyperplane of a con!gura-
tion of spheres in higher dimension. While for some special choices of the lower dimensional
packing the higher dimensional spheres will also intersect only at the tangent points, in gen-
eral the higher dimensional spheres have a larger intersection. Such constructions where an
Apollonian packing of circles is used to construct a fractal arrangement of higher dimensional
spheres was considered already in [20] in the case of the Ford circles, which also have a nice
arithmetic structure.

We consider here another variant of this model, again by considering con!gurations of three-
spheres obtained starting from an Apollonian packing of circles, where we consider packings
with integer curvatures. We then take each circle and make it the equator of a two-sphere,
and repeat the process one more time by taking each two-sphere and making it the equator of a
three-sphere. The resulting con!guration of three-spheres is in general no longer an Apollonian
packing, as the three-spheres now can have intersections and not only tangency points. The
fractal string for this con!guration is the same as the S1 case for integer curvature, which gives

ζL(s) =
∑

n,k

as
n,k =

∑

n

r∗3(a2
n)

as
n

.

The evaluation of this series is similar to the case of integral packings of three-spheres discussed
above.

Let η(s) be the Dirichlet η-function

η(s) =
∑

n"1

(−1)n−1

ns = (1 − 21−s)ζ(s).
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Consider then the series

η̃(s) =
∑

n"1

(−1)n−1

(2n − 1)s =
∑

n"1

(
(−1)n−1

ns − (−1)n−1

(2n)s

)
= (1 − 2−s)η(s).

We obtain, as in [28, 54],

ζL(s) = 6
ζ(s − 1)(1 − 21−s)

η̃(s)

= 6
ζ(s − 1)(1 − 21−s)

(1 − 2−s)η(s)
= 6

ζ(s − 1)
(1 − 2−s)ζ(s)

.

Note that [54] uses the notation η(s) for our η̃(s). In this case again we have poles at sn = 2πin
log 2 ,

at s = 2, and at the zeros (in this case both the trivial and the nontrivial zeros) of the Riemann
zeta function. Again this means that the spectral action expansion for this con!guration of
three-spheres will contain a series with a sum over the nontrivial zeros of the same general
form we discussed above,

∑

ρ

3 fsρ ζDS3 (ρ)ζ(ρ− 1)

(1 − 2−ρ)ζ ′(ρ)
Λρ.

4. Gravitational waves in fractal models with intersecting spheres

In this section we discuss some aspects of the gravitational waves behavior in fractal cos-
mological models. We focus on the case discussed at the end of the previous section, where
instead of packings of spheres that only touch at tangent points, we allow for perturbations
of the geometry that introduce intersections between some of the three-spheres along some
two-spheres.

4.1. Transmission between spheres in perturbed packings

In this section, we discuss some consequences of being an observer in one of the positively
curved spaces in a fractal con!guration of three-spheres obtained as a perturbation of a sphere
packing con!guration. Speci!cally, we consider the intersections of the spheres as a trans-
mission site for gravitational waves going from one three-sphere to another and derive an
approximate form of the metric describing the gravitational wave in the receiving sphere. As
we will see, this calculation implies there exist directly observable phenomena that come from
having positively curved universes intersect each other.

We begin by considering the intersection of two three-spheres, S3
a and S3

b along a two-sphere
Σ ≡ S3

a
⋂

S3
b = S2

I . We write s for the distance between the poles of the two smaller spherical
caps subtended by the two-sphere of intersection, see !gure 11. We refer to s as the ‘separation
distance’ of S3

a and S3
b. An quick calculation yields the relation between the radii,

r2
I =

(2rb − s)(2ra − s)(2ra + 2rb − s)s
4(ra + rb − s)2 .

In the case of a Robertson–Walker cosmology, each three-sphere would be undergoing in"a-
tion, which would affect this calculation. For simplicity, we will consider only the static model,
where there is no time evolution in the shape of each sphere, so both the radii ra, rb and the
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Figure 11. Two three-spheres S3
a and S3

b with radii ra and rb, intersecting at a two-sphere,
Σ, with separation distance s.

relative position of the two three-spheres are constant. Thus, an observer in each sphere follows
the same spatial hypersurface-orthogonal timelike vector ηµ = (1, 0, 0, 0).

Also, for the purpose of the computations presented in this section, we work directly with
Lorentzian signature, unlike for the previous spectral action calculations, where we had to
Wick rotate to Euclidean signature.

Another assumption for this section is that rb ; ra. This makes it reasonable to assume that
the region surrounding Σ in S3

b can be approximated by Minkowski space R3,1, which we can
use to signi!cantly simplify the solution of the metric tensor under linearized GR conditions.

We discuss brie"y the boundary conditions in GR. Following [51], if xµ and x′µ are local
coordinates on the spheres S3

a and S3
b, respectively, and ya are the coordinates on Σ, then the

tangent curves and induced metric on Σ are given by

eµ
a =

∂xµ

∂ya ,

hab = gµνeµ
a eνb .

The extrinsic curvature tensor is given by

Kab :=∇νηµeµ
a eνb ,

where ηµ is the orthogonal vector to Σ in either S3
a or S3

b.
As above, let s be the separation distance of the two hypersurfaces and let . be a coordinate

in [−s/2, s/2]. Let Θ(.) be the Heaviside function. We consider a stress energy–momentum
tensor of the form

Tµν = Ta
µν Θ(−.) + Sµν δ(.) + Tb

µν Θ(.),
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where Sµν is the surface energy–momentum tensor (see [51]) given by

Sab = −ηµηµ

8π
([Kab] − [K]hab).

Here the jump of a quantity across Σ is given by

[Aµ1µ2...µn
ν1ν2...νk

] = Aµ1µ2...µn
ν1ν2 ...νk

|Σ+ − Aµ1µ2...µn
ν1ν2 ...νk

|Σ− ,

with +,− for the two hypersurfaces Σ± (here given by the spheres S3
a and S3

b).
The respective unperturbed metrics on S3

a, S3
b and Σ are given by

ds2
a = −dt2 + r2

a(dψ2
a + sin2 ψa (dθ2

a + sin2 θa dφ2
a)),

ds2
b = −dt2 + r2

b(dψ2
b + sin2 ψb (dθ2

b + sin2 θb dφ2
b)),

ds2
Σ = −dt2 + r2

I (dθ2
I + sin2 θI dφ2

I ).

We orient each sphere so that the two-sphere Σ is located at a constant value of the angle
coordinate φ for each three-sphere. The variation of the other two coordinates in each system
of local coordinates on a three-sphere maps out a two-sphere. With the correct choice of

φa = φa
o ≡ arcsin

(
rI

ra

)
and φb = φb

o ≡ arcsin
(

rI

rb

)
,

this gives the coordinate description of Σ in the respective coordinate systems. This implies
the vectors orthogonal to Σ are ηµ = (0, 0, 0, 1) in both spaces and the tangent curves are,
respectively, given by

ea
µ =





1 0 0
0

rI

ra
0

0 0
rI sin θI

ra sin ψa
0 0 0




,

eb
µ =





1 0 0
0

rI

rb
0

0 0
rI sin θI

rb sin ψb
0 0 0




.

Note that in a two-sphere, plane waves due to the spiralling of two objects in space-
time would be produced by distorting the θ-component of the metric while moving in the
φ-direction, see !gure 12. So, the wave perturbation to the metric looks like

Ψµν = diag(0, A sin(k(φ− t)), 0).

Thus, we can consider a perturbation to S3
a of the form

ga
µν → ga

µν + εΨµν , with |ε| = 1,
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Figure 12. Gravitational waves production on a two-sphere.

with Ψµν = diag(0, Aψ cos(k(φa − t)), 0, 0).
We then obtain the surface energy–momentum tensor induced by this perturbation, of the

form

Sab =





− Aψkε sin(k(φo − t))
16π(r2

a + Aψkε cos(k(φo − t)))
0 0

0 0 0

0 0
Aψr2

I sin2 θIkε sin(k(φo − t))
16π(r2

a + Aψkε cos(k(φo − t)))




.

We use the assumption that rb ; ra to approximate the space surrounding Σ in S3
b with a "at

space. Speci!cally, we can imagine sending the metric inside some open three-ball U ⊂ S3
b to

the limit

ds2
b|U →−dt2 + dr2 + r2(dθ2 + sin2 θdφ2).

In this limit, the metric component of the azimuth angle φb that we !xed becomes associated
with the r-component for R3,1

b , while the components for the other two angles stay the same,
since they still map out the same two-sphere in R3,1

b , see !gure 13.
Then the induced energy–momentum tensor on U, described in spherical coordinates, is

approximated by

Tµν ≈





− Aψkε sin(k(φa
o − t))

16π(r2
a + Aψkε cos(k(φa

o − t)))
δ(r − rI) 0 0 0

0 0 0 0
0 0 0 0

0 0 0
Aψr2

I sin2 θkε sin(k(φa
o − t))

16π(r2
a + Aψkε cos(k(φa

o − t)))
δ(r − rI)




.

Recall that, for a tensor γµν , we have γ = γµ
µ = ηµνγµν , with the "at Minkowski metric ηµν ,

and the trace-reverse of γµν is given by γ̄µν = γµν − 1
2ηµνγ. The equation for the trace-reversed

pertubation to the metric tensor, Ψ̄µν , in linearized gravity for the Lorenz gauge condition is
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Figure 13. As rb →∞, an open three-ball U on S3
b with Σ ⊂ U can be approximated by

some U′ ⊂ R3.

then given by

#Ψ̄µν = −16πGTµν .

Using the known Green function for Minkowski space,

G(xµ − x′µ) = − 1
4π|x − x′|δ(|x − x′| − (x0 − x′0))Θ(x0 − x′0),

we can write our solution in the form

Ψ̄µν = 4G
∫

d3x′
1

|x − x′|Tµν(t − |x − x′|, x′).

This integral is non-trivial for either Ψ̄φφ or Ψ̄tt. Since this calculation is meant to give us
an overall idea of what happens at this boundary, we have opted to approximate the result in
two cases:

(a) The solution for the metric inside Σ in U;
(b) The solution for the metric outside and far away from Σ.

4.1.1. First case: internal solution. We begin with the solution in the !rst case listed above. In
this case, to linear order in ε, Tφφ we have

Tφφ =
AΨkr2

I

16πr2
a

sin2 θ sin(k(φa
o − t))δ(r − rI)ε + O(ε2).

Thus, we obtain a solution for Ψ̄φφ given by the integral

4GAΨkr2
I ε

16πr2
a

∫

S2
dΩ′ sin2 θ′

sin(k(|x − x′| − t))
|x − x′| ,
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where we have suppressed the term φa
o, since it is simply a phase factor. The Euclidean distance

is given by

|x − x′| =
√

r2 + r2
I − 2rrIu · u′,

where u and u′ are the respective unit vectors on a sphere S2.
This integral can be solved exactly using the Funk–Hecke formula of harmonic analysis

(see for instance [55])
∫

f (x · y)Yk(x)σSn−1 (dx) = λkYk(y),

for any bounded measurable function f : Sn−1 → R, and any y ∈ Sn−1, where Yk are the
spherical harmonics on Sn−1 of degree k " 0 and the constant λk is given by

λk =
Γ(n/2)√

π Γ((n − 1)/2)

∫ 1

−1
f (t)Pk(t)(1 − t2)

(
n−3

2

)

,

with Pk the kth Gegenbauer polynomial.
Note that polynomials of sinusoids can be written in the basis of spherical harmonics on a

sphere, so we may write

sin2 θ′ = −1
3

(
4
√

π

5
Y0

2 (θ′,φ′) − 2
)

,

where

Y0
2 (θ′,φ′) =

1
4

√
5
π

(3 cos2 θ − 1).

We then de!ne

f (x) :=
eik

√
γ−βx

√
γ − βx

,

where γ = r2 + r2
I and β = 2rrI. The integral can then be solved as

Ψ̄φφ = Ae−ikt
(
−4

3

√
π

5

∫
dΩ′

S2Y0
2 (θ′,φ′) f (u · u′) +

2
3

∫
dΩ′

S2 f (u · u′)
)

= Ae−ikt
(√

π

5
8Λ2(γ, β)
β3k4 Y0

2 (θ,φ) +
2i
3β

(eik
√
γ−β − eik

√
γ+β)

)
,

where A =
4GAΨr2

I ε

16πr2
a

and Λ2(γ, β) is given by

Λ2 = eik
√
γ+β P+ + eik

√
γ−β P−,

with the P± given by

P+ = −(k3β − 6k)
√
γ + β − i

(
(2γ + 3β)k2 − β2k4

6
− 6

)
,
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Figure 14. The numerical solution to Ψ̄φφ, plotted in the emission plane (2nd row)
and the perpendicular plane (1st row) at times t = ( i·2π

5k )i=0,1,2,3,4 for the parameters
described. The most obvious consequence is the inward and outward radial emissions in
the θ = π/2 plane (as Tµν would suggest). The azimuthal symmetry in the solution is
also characteristic of plane waves.

P− = −(k3β + 6k)
√
γ − β + i

(
(2γ − 3β)k2 − β2k4

6
− 6

)
.

Getting the imaginary part of this expression for the metric is then trivial. This solution
is quite unwieldy without any approximations and one could easily take different limits to
analyze the consequences. Instead, here we opt to numerically graph the solutions. The results
are plotted in !gure 14 for different planes of the sphere intersection.

We choose an arbitrary system for numerical plotting, with

k = 5.0, rI = 1, AΨ =

(
4Gkr2

I ε

16πr2
a

)−1

,

where k = 5.0 is chosen to highlight the presence of oscillations in the solution. The solu-
tion to our theory has the property that the perturbation of the trace reversed metric tensor is
mainly located in the z = 0 plane, which can be somewhat expected of a plane wave centered at
θ = π/2, as our energy tensor indicates. It is clear the energy tensor induced by the transmis-
sion of gravitational waves between two positively curved spaces produces perturbations inside
of the intersection sphere that can directly in"uence the trajectory of particles passing through
it. Speci!cally, it is clear through the plots that the boundary itself sends waves inwards into
the three-ball region, as well as outwards.

4.1.2. Second case: external distant solution. Now, we discuss the second case listed above,
namely the far away case (r ; rI). We can use the quadrupole formula

Ψ̄i j ≈
2G
r

d2Ii j

dt2 (tr),

and one can easily check that the resulting trace-reversed metric in Cartesian coordinates is
then given by

Ψ̄µν ≈
AΨGεπk3r2

I

8r2
a

sin(k(r − t))
r





0 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1



.
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4.1.3. Summary of behavior. To summarize, we have considered the intersection of two pos-
itively curved spaces as a possible boundary for the transmission of gravitational waves. We
derived an expression for the stress-energy tensor on the receiving universe induced by the
gravitational waves from the emitting universe. We then considered a scenario where radius of
the receiving space is much larger than the one of the emitting space (rb ; ra) and we con-
sidered what the solution to the linearized gravity !eld equations would look like under such
stresses on the two-sphere boundary. We found that plane waves can be transmitted at this
boundary and create oscillations inside the sphere of intersection as well apparent emission far
way from the boundary using the quadruple formula.

The former result has signi!cant theoretical value, as it predicts the creation of observable
universe intersections. That is, if one considers the case where we have multiple gravitational
wave sources near the intersection on the emitting sphere, our results indicate this con!guration
would induce a three-ball of interfering gravity wave modes on the boundary between the two
universes. This three-ball will then cause the gravitational lensing of photons if they began their
path on a geodesic passing through the intersection and should thus be directly observable.

Our approximations and idealized circumstances should caution one to the exactness of our
results, but our result is an indication that this system would follow a behavior similar to that
of our solutions, and should still create modes inside the intersection as well as likely-not-
observable modes outside of it, falling at 1/r as they travel away from the intersection.

4.2. Green functions for the non-flat case

If we were looking for a solution in the non-"at case, we would have to use the Green function
for a three-sphere crossed with R (which gives a manifold locally homeomorphic to Minkowski

space). To do this, we can use a result derived from [3]. Using φ̂(‖x − x′‖) = G(x, x′), where
‖x − x′‖ is the Euclidean distance on Sn, we can write the Green function for an Sn sphere as

φ̂(x) =
2

n Vol(Sn)

∫ 1

x2/4
2F1

(
1, n,

n
2

+ 1, 1 − s
)

ds + C,

where 2F1 is the Gauss hypergeometric function. This directly implies that, for a three-sphere
S3

b with radius rb we have

φ̂(x) =
1

4π2r3
b

(
1 − 2(x2 − 2) arcsin(

√
1 − (x/2)2)√

x2(x2 − 4)

)
+ C

= − 1
4π2r3

b

2(x2 − 2) arcsin(
√

1 − (x/2)2)√
x2(x2 − 4)

+ O(1).

5. Gravitational waves and the spectral action with fractality

It was shown in [46] that, when considering the expansion of the spectral action functional on a
four-dimensional spacetime manifold, the Euler–Lagrange equations take the form (for trivial
cosmological constant)

−1
2κ

(
Rµν − 1

2
gµνR

)
+ 2α(2∇λ∇κCµκνλ + CµκνλRκλ),
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with Cµκνλ the Weyl curvature tensor. Thus, the variational equations with respect to a
perturbation of the metric gµν = ηµν + γµν , to !rst order in γµν are of the form

−1
2

∂κ∂
κγ̄µν +

1
2β2 ∂κ∂

κ

(
∂λ∂

λγ̄µν +
1
3

(ηµν∂λ∂
λ − ∂µ∂ν)γ

)
,

where γ̄µν is the trace-reversed perturbation as in the previous section and β2 = −1/(32πGα).
We refer the reader to [46] for a further discussion of the gauge !xing conditions.

In this derivation of the Euler–Lagrange equations of [46], one considers only the usual lead-
ing terms of the spectral action expansion on a four-manifold, which correspond to the order
0, order 2, and order 4 terms of the heat kernel expansion of the squared Dirac operator. As
classical action functionals these terms recover the usual Einstein–Hilbert action (with cosmo-
logical term) plus the Weyl curvature term and the non-dynamical topological Gauss–Bonnet
term, hence one obtains the variational equations of the form recalled above.

Here we consider the effect on these equations of the presence of fractality. We have seen
that there are two main effects of fractality on the spectral action. One effect corrects the coef-
!cients of these cosmological, Einstein–Hilbert, and Weyl curvature terms by special values of
the fractal packing zeta function ζL(s) at s = 4, s = 2, and s = 0, respectively, for the cosmo-
logical, the Einstein–Hilbert, and the Weyl term. This effect can be seen as altering the effecting
gravitational and effective cosmological constants, and the coupling constantα of the model. In
the variational equations above, this change will affect the value of the 1/2β2 coef!cient. The
second, more interesting effect, is the presence of the series of log-periodic terms coming from
the poles of the fractal packing zeta function ζL(s). We focus here on this second effect and we
show that one can interpret these terms as contributing an effecting energy–momentum tensor
to the equations of motion. Thus, through this second effect on the spectral action, the presence
of fractality is perceived in the gravitational equations as a presence of a type of matter that
only interacts gravitationally and is otherwise dark.

5.1. Fractality as an effective energy–momentum tensor

Consider the spectral action expansion for the fractal packings arising from the Robert-
son–Walker spacetimes for spherical forms or Bieberbach manifolds, as discussed in section 2.
We focus on the leading terms in the spectral action expansion including the !rst term (at s = s0

of the log-periodic series). These terms suf!ce to see the effect of fractality on the gravitational
waves equation. In the spherical case these terms are of the form

SΛ(DPΓ×R) ∼ 1
|Γ|

4∑

M=0

Λ4−2M f4−2M AM

(1 − fρ f 2M−4
σ )

+
Λs0 fs0 Γ(s0/2)

2|Γ| log fσ
ζDY×R (s0)

where s0 = log fρ
log fσ

= dimH LΓ, and

AM :=
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 − C−1/2,0

2M−2 )
)

D[α]
)

dt.

In the "at case they are of the form
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SΛ(DPGa×R) ∼ λGa

4∑

M=0

Λ4−2M f4−2M BM

(1 − fρ f 2M−4
σ )

+
Λs0 fs0 Γ(s0/2)λGa

2 log fσ
ζDYa×R(s0),

with

BM :=
∫ (∫ (

1
2

C−3/2,0
2M +

1
4

(C−5/2,2
2M−2 )

)
D[α]

)
dt.

As shown in [20], the terms AM, BM, for M = 0, 2, 4 give the cosmological, Einstein–Hilbert,
and Weyl term. Thus, we see that, when we consider a variation of the metric and the resulting
Euler–Lagrange equations, the !rst three terms, for M = 0, 2, 4, contribute the same varia-
tional equations as in [46] (including the cosmological term), with coef!cients scaled by the
(1 − fρ f 2M−4

σ )−1 factors that are an effect of the presence of fractality. On the other hand, the
last term contributes a variation of the form

K ·
δ ζDY×R (s0)

δγµν
,

where the factor K is either

K =
Λs0 fs0 Γ(s0/2)

2|Γ| log fσ
or K =

Λs0 fs0 Γ(s0/2)λGa

2 log fσ
,

for the spherical and "at case, respectively.
To analyze the variation

Tµν :=
δ ζDY×R (s0)

δγµν
(5.1)

we use the following general fact about the zeta function of the Dirac operator. Let D = DX,g

be the Dirac operator on a four-manifold (X, g), which for us will be a Robertson–Walker
spacetime Y × R with a candidate cosmic topology Y. We consider a smooth variation of the
metric gµν(u) = gµν + uγµν , in a one-parameter family with parameter u " 0. We write the
corresponding Dirac operator as Du = DY×R,gµν (u). We assume that, under this variation of the
metric, the eigenvalues λu of Du depend smoothly on the parameter u. We also assume for
simplicity that Ker(Du) = 0 for all u " 0. Consider the zeta function

ζDu (s) = Tr(|Du|−s) =
∑

λu∈Spec(Du)

|λu|−s.

We assume that this series converges for R(s) > R for some suf!ciently large constant R > 0,
for all u " 0. With the notation Qu = |Du| and Q̇u = d

du Qu, we then have

d
du

ζDu (s) = −s
∑

λu∈Spec(Qu)

λ̇uλ
−(s−1)
u = −sTr(Q̇u Q−(s−1)

u ).

We can then write the variation (5.1) as

Tµν = −s0 Tr
(

δQ
δγµν

Q−(s0−1)
)

.
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We can interpret the variations (5.1) of the zeta value as playing the role of an
energy–momentum tensor in the variational equations for the spectral action gravity
functional.

6. Conclusions

We considered cosmological models that simultaneously exhibit a non-trivial cosmic topology
(non-simply connected spatial hypersurfaces) and the presence of fractality in their spacetime
structure. We showed that the topology constrains the type of fractal structures that can arise
compatibly with the symmetries (that is, maintaining as much as possible of the isotropy and
homogeneity properties). The resulting fractal structures are described by Sierpinski construc-
tions based on the fundamental domains of spherical space forms (positively curved case) or
Bieberbach manifolds ("at cases). We also showed that only some of the possible cosmic
topologies, namely the "at Bieberbach manifolds G1, G2, G4 can give rise to a fractal struc-
ture with fractal dimension D = 2, which matches existing results on the statistical analysis of
the distribution of galaxy clusters.

Since fractal geometries are not smooth, they cannot be described in terms of ordinary Rie-
mannian geometry. However, methods originally introduced in the setting of noncommutative
geometry can be applied also to commutative but non-smooth geometries like fractals. In par-
ticular, using the setting of spectral triples, one obtains a natural action functional, the spectral
action, which provides a suitable model of gravity. In the case of an ordinary smooth spacetime,
this functional determines a modi!ed gravity model that includes the usual Einstein–Hilbert
action of GR with cosmological term, and additional conformal gravity and Gauss–Bonnet
gravity terms. Moreover, the spectral action functional, which is constructed using the Dirac
operator, incorporates a scalar !eld, obtained as a scalar perturbation of the operator. This
!eld determines an associated slow-roll in"ation scenario, through its slow-roll potential. One
can compute the resulting power spectra of the scalar and tensor "uctuations, which provide
detectable effects.

We showed that, in the presence of both non-trivial cosmic topology and fractality, the slow-
roll potential of the spectral action and the associated power spectra suf!ce to completely dis-
tinguish all the possible cosmic topologies. This improves on previous results obtained within
this gravity model. We also showed that the presence of fractality affects the spectral action
with a series of correction terms that manifest themselves in the form of an energy–momentum
tensor in the resulting !eld equations, so that the fractal geometry simulates the presence of a
type of matter that only interacts gravitationally and is otherwise dark.

We also analyzed the case of fractality that arises in spacetimes with simply connected
spatial hyperurfaces (three-dimensional spheres, the standard cosmic topology). In these fractal
structures (known as packed Swiss cheese cosmology models) the fractality is modeled by
Apollonian packings of spheres. In this case, we show that when the con!guration of spheres
have integer curvatures (number theoretic case) the spectral action has interesting arithmetic
properties related to the behavior of the derivative of the Riemann zeta function at the non-
trivial zeros.

We also argued that in such fractal arrangements of spheres, one should relax the tangency
condition to allow for intersecting spheres, as, unlike tangency, intersection is stable under
small random perturbations, which one expects to have to deal with when there is not exact
global symmetry (such as the exact self-similarity of the Sierpinski cases). The resulting frac-
tal arrangements of spheres would then be more similar to certain classes of random fractals
used as models of cratering. We then showed that, in such a fractal spacetime model, there are
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detectable effects of the fractal structures in the gravitational waves propagation. The intersec-
tions of spheres, act as boundaries of transmission for the gravitational waves, which create
oscillations inside the hypersphere of intersection and apparent emission far away from the
boundary. This behavior of the gravitational waves can then cause detectable effects such as
gravitational lensing.
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