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Abstract—Cyber-defense systems are being developed to auto-
matically ingest Cyber Threat Intelligence (CTI) that contains
semi-structured data and/or text to populate knowledge graphs.
A potential risk is that fake CTI can be generated and spread
through Open-Source Intelligence (OSINT) communities or on
the Web to effect a data poisoning attack on these systems. Ad-
versaries can use fake CTI examples as training input to subvert
cyber defense systems, forcing the model to learn incorrect inputs
to serve their malicious needs.

In this paper, we automatically generate fake CTI text descrip-
tions using transformers. We show that given an initial prompt
sentence, a public language model like GPT-2 with fine-tuning,
can generate plausible CTI text with the ability of corrupting
cyber-defense systems. We utilize the generated fake CTI text
to perform a data poisoning attack on a Cybersecurity Knowl-
edge Graph (CKG) and a cybersecurity corpus. The poisoning
attack introduced adverse impacts such as returning incorrect
reasoning outputs, representation poisoning, and corruption of
other dependent Al-based cyber defense systems. We evaluate
with traditional approaches and conduct a human evaluation
study with cybersecurity professionals and threat hunters. Based
on the study, professional threat hunters were equally likely to
consider our fake generated CTI as true.

Index Terms—Cybersecurity, Cyber Threat Intelligence, Arti-
ficial Intelligence, Data Poisoning Attack

I. INTRODUCTION

Open-source platforms such as social media, the dark web,
security blogs, and news sources play a vital role in providing
the cybersecurity community with Cyber Threat Intelligence
(CTI). This OSINT based threat intelligence complements
sources collected by companies like IBM, Virtustotal or Man-
diant, by analyzing malware found in the wild, as well as that
obtained by the Intelligence community. CTI is information
about cybersecurity threats and threat actors that is shared
with analysts and systems to help detect and mitigate harmful
events. CTI can be shared as text or as semi-structured data
with some text fields using formats like Structured Threat
Information Expression (STIX) [1] and Malware Information
Sharing Platform (MISP) [2]. Recent research has shown how
text analysis approaches can be used to transform free text
threat information into more structured forms |[3]-[10], and
even be ingested into defensive systems to enable detection
[11].

Although there are many clear benefits to open-source threat
intelligence, addressing and handling misinformation across

these platforms is a growing concern. The misinformation risk
for the security community is the possible dissemination of
false CTI by threat actors in an attempt to poison systems that
ingest and use the information [12]. In January 2021, Google
Threat Analysis Group discovered an ongoing campaign that
targets security researchers. Various nation state government-
backed threat actors created fake accounts and blog posts with
textual cyberseucrity information on a variety of exploits in
an attempt to divert security researchers from credible CTI
sources [13]. There is also additional research that suggests
the possibility of future propagation of fake CTI. Maasberg
et al. [14] conducted a study of methods in propagating fake
cybersecurity news and developed components to categorize it.
They did not create fake cyber news, just studied its potential
propagation. The widespread generation of fake CTI itself is
heavily under-explored, and is a key contribution of this paper.

The widespread propagation of fake CTI primarily impacts
cyber analysts who rely on the information to keep up to
date with current attack vectors, as well as the cyber defense
systems that ingest the information to take correct mitigation
steps [11]. Next-generation cyber defense systems are now
being developed to automatically ingest and extract data from
open source CTI to populate knowledge graphs, that are then
used to detect potential attacks or as training data for machine
learning systems.

Adversaries can use fake CTI as training input to subvert
cyber defense systems. This type of attack is commonly known
as a data poisoning attack |15]. Many cyber defense systems
that rely on this data automatically collect streams of CTI data
from common sources. Adversaries can post fake CTI across
open sources, infiltrating the training corpus of Al-based cyber
defense systems with ease. This fake information will appear
legitimate to cyber analysts, but will in reality, have false
components that contradict the real data. As can be seen from
the examples in Table convincing fake CTI can be generated
that provides incorrect information about the vulnerabilities
exploited by an attack, or its consequences. This can cause
confusion in analysts on what steps to take to address a threat.
In an automated system cyber defense system that is ingesting
the CTI, this can also break the reasoning and learning process
altogether or force the model to learn incorrect inputs to serve
the adversaries’ malicious goals. Techniques demonstrated for



open-source CTI can also be applied for covert data, such as
proprietary information belonging to a particular company or
government entity. In this scenario, potential attack strategies
will more than likely be categorized as insider threats, and
adversaries will be employees looking to exploit internal
systems.

In this paper, we generate realistic fake CTI examples
by fine-tuning the public GPT-2 model. Transformer-based
methods are state-of-the art approaches that aid in detecting
and generating misinformation on a large scale with minimal
human effort [16].

Our generated fake CTI was successfully able to confuse
professional threat hunters and led them to label nearly all
of the fake CTT as true. We then also use the generated fake
CTI examples to demonstrate a data poisoning attack on a
Cybersecurity Knowledge Graph (CKG) and a cybersecurity
corpus.

Our work makes three main contributions:

o We produce a fine-tuned GPT-2 model that generates fake
CTI text (Section [III-B},

o We demonstrate a possible poisoning pipeline for infil-
trating a CKG (Section [IV), and

o« We present an evaluation and analysis of the fake and

real CTI text (Sections |III-C| and [I[II-D).

II. BACKGROUND AND RELATED WORK

In this section, we present a background of transformer
architectures and provide related work in the areas of text gen-
eration, misinformation, Al-Based cyber systems, knowledge
graphs, and adversarial machine learning.

A. Transformer Models

Encoder-decoder configurations inspired current state-of-the
art language models such as GPT [17] and BERT [/18]] which
utilize the transformer architecture [[19]. Similar to Recurrent
Neural Network (RNN) based sequence to sequence (Seq2Seq)
models, the transformer encoder maps an input sequence into
an abstract high dimensional space. The decoder transforms
the vector into an output sequence. Unlike its Seq2Seq pre-
cursor, the transformer does not utilize any RNN and relies
solely on the attention mechanism to generate sequences.

Seq2Seq architectures rely on LSTM cells to process an
input sequence one word at a time. In a transformer model,
all input words are processed in parallel. Due to this, the trans-
former introduces the concept of a positional encoding in order
to capture word ordering information in the n-dimensional
vector of each word. The encoder and decoder components of
the transformer also contain a multi-head attention mechanism.
This can be shown using the equation below:

Attention(Q, K, V') = softmax ( > V
) ) / lk
Queries,Keys, Values

Where @ represents queries, K represents keys, and V' repre-
sents values. The complete description of creating these values
has been presented by Vaswani et al. [19]. At the start of
the encoder, let y be the initial sentence representation. As it

travels through each layer of the encoder, y gets updated by
different encoder layers. The input y is utilized to calculate
@, K, and V in the above equation. Attention is calculated
by taking the transpose of the matrix dot product QK and
dividing by the square root of the dimension of the keys v/d.
Lastly, using the attention weights, we find the weighted sum
of values V. The decoder attention mechanism operates simi-
larly to the encoder, but employs masked multihead attention.
A linear and softmax layer are also added to produce the output
probabilities of each word. In this paper, we focus on the GPT-
2 model [20] which exclusively uses decoder blocks.

B. Transformer based Use-Cases

Generative transformer models have many use-cases such
as machine translation [21], question-answering [22] and text
summarization [23]]. A popular example of a generative trans-
former model is OpenAl GPT [17]. In recent years, GPT-2
[20] and GPT-3 [24], [25] models have also been developed
(At the time of writing this paper, GPT-3 is only accessible by
a paywall API, and the model along with its other components
are unavailable). GPT models across generations differ from
each other in the sizes of data-sets used and number of
parameters added. For example, the WebText dataset used to
train GPT-2 contains eight million documents.

In this paper, we utilize GPT-2 in our experiments. Unla-
beled data is used to pretrain an unsupervised GPT model for
a generic task. Fine-tuning the generic pre-trained models is
a common method of extending the architectures for more
specific tasks [17]. Lee et al. [26] produced patent claims
by fine-tuning the generic pretrained GPT-2 model with U.S.
utility patents claims data. Similarly, Feng et al. [27] fine-
tuned GPT-2 on a small set of yelp review data-set and used
it as a baseline model for various augmentation experiments.

Transformers have been utilized to both detect and generate
misinformation. Misinformation can be generally categorized
as lies, fabricated information, unsupported facts, misunder-
standings, and outdated facts and is often used to achieve
economic, political, or social gain [28]. Vijjali et al. [29] utilize
BERT-based transformers to detect false claims surrounding
the COVID-19 pandemic. Similarly, Zellers et al. [30] also
use a BERT-based model called Grover, which can detect
and generate neural fake news. Their evaluation shows that
human beings found machine-generated disinformation more
trustworthy than human-written information.

C. Al-Based Cyber Systems and Knowledge Graphs

Next-generation cyber defense systems use various knowl-
edge representation techniques such as word embeddings and
knowledge graphs in order to improve system inference on po-
tential attacks. The use of CTI is an integral component of such
systems. Knowledge graphs for cybersecurity have been used
before to represent various entities [31]-[33]. Open source
CTI has been used to build Cybersecurity Knowledge Graphs
(CKG) and other agents to aid cybersecurity analysts working
in an organization [3]-[10]. Mittal et al. created Cyber-All-
Intel and CyberTwitter [3], [5] which utilizes a variety of
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Fig. 1: We collected cybersecurity-related text from several OSINT sources and used it to fine-tune the public GPT-2 model,

which generated fake CTI descriptions.

knowledge representations such as a CKG to augment and
store CTIL.

The use of knowledge graphs for cyber-defense tasks has
also been used in malware analysis tasks [34]-[38]. Piplai et
al. [32], [|39] create a pipeline to extract information from mal-
ware after action reports and other unstructured CTI sources
and represent that in a CKG. They use this prior knowledge
stored in a CKG as input to agents in a reinforcement learning
environment [40]. We demonstrate the effects of the poisoning
attack, by ingesting fake CTI on CKG using a complete CTI
processing pipeline |31], [32].

D. Adversarial Machine Learning and Poisoning Attacks

Adversarial machine learning is a technique used to subvert
ML systems by providing deceptive inputs to the model.
Adversaries use these methods to manipulate Al-based sys-
tem learning in order to alter protected behavior and serve
their own malicious goals [41]]. There are several types of
adversarial techniques such as evasion, functional extraction,
inversion, and poisoning attacks [15]. In this paper, we focus
on data poisoning attack strategies. Data poisoning attacks are
examples of methods that directly compromise the integrity of
the learning process of an Al-based system by contaminating
the training data-set. These methods rely heavily on the use
of synthesized and/or incorrect input data. Al-based cyber
defense system can potentially include fake data into their
training corpus. The attacker dominates future output by
ensuring the system learns fake inputs and performs poorly
on actual data.

One example of such an attack is the VirusTotal poisoning
attack demonstrated by the McAfee Advanced Threat Research
team [42]. This attack compromised several intrusion detection
systems that ingest VirusTotal data. The attacker created
mutant variants of a ransomware family sample and uploaded

the mutants to the VirusTotal platform. Intrusion detection
systems that ingest VirusTotal data classified the mutant files
as the particular ransomware family. Similarly, Khurana et al.
perform credibility checks on incoming CTI. They develop
a reputation score that is used by systems and analysts to
evaluate the level of trust for input intelligence data [12].
Duddu et al. survey several methods of using machine learning
to model adversary behavior [43].

III. METHODOLOGY

In this section we describe our fake CTI generation pipeline.
Figure [1| presents the overall approach. We begin by creating
a cybersecurity corpus in Section The cybersecurity
corpus contains a collection of CTI from a variety of OSINT
sources. We then fine-tune the pre-trained GPT-2 model on
our cybersecurity corpus (Section[III-B). The fine-tuned model
allows us to automatically generate large collections of fake
CTI samples. We then evaluate our model and describe a
poisoning attack against a CTI extraction pipeline.

A. Creating a Cybersecurity Corpus

We categorize our CTI collection into three main sources,
as shown in Figure We collect security news articles,
vulnerability databases, and technical Advanced Persistent
Threat (APT) reports. The security news category contains
500 articles from Krebs on Security [44] and CyberWire Daily
[45]. The vulnerability reports contain 16,000 Common Vul-
nerability and Exposures (CVE) records provided by MITRE
Corporation and National Vulnerability Database (NVD) from
years 2019-2020 [46]. Lastly, we collect 500 technical reports
on APTs from the available APTNotes repository [47].

B. Fine-Tuning GPT-2 on Cyber Threat Intelligence Data

The original GPT-2 model was trained with the WebText
dataset [20]. While the WebText dataset contains some general



Generation Input Cyber Threat Intelligence True/Fake
APT41 is a state-sponsored espionage group which operates against higher education, travel
APT41 is a services, and news/media firms which provide some indication that the group also tracks True CTI
state-sponsored individuals and conducts surveillance.
espionage group APT41 is a state-sponsored espionage group. The Russian, Moscow-based group is responsible for
capturing and stealing computer network communications and intellectual property. APT41 Fake CTI
employs social engineering techniques to get around network defenses designed to last for (generated)
years, and is capable of compromising and stealing dozens of companies
Malicious Domain in SolarWinds Hack Turned into ‘Killswitch’. A key malicious domain name
used to control potentially thousands of computer systems compromised via the months-long
Malicious Domain | breach at network monitoring software vendor SolarWinds was commandeered by security True CTI
in SolarWinds experts and used as a “killswitch” designed to turn the sprawling cybercrime operation
Hack Turned against itself.
into ‘Killswitch’ Malicious Domain in SolarWinds Hack Turned into Killswitch Service. This attack took place F
L ake CTI
last year and affected hundreds of organizations. The attackers took advantage of the
vulnerability in Win32k framework to attack their targets through crafted code. (generated)
An issue was discovered in the Quiz and Survey Master plugin before 7.0.1 for WordPress.
An issue was It made it possible for unauthenticated attackers to upload arbitrary files and achieve True CTI
discovered in the remote code execution.
Quiz and Survey An issue was discovered in the Quiz and Survey Master plugin 1.2.1 for WordPress. By F
. . e ake CTI
Master plugin setting a CSRF token, an attacker can take advantage of a vulnerability in the survey.php
admin panel. (generated)

TABLE I: Fake CTI Samples produced by our fine-tuned GPT-2 model.

cybersecurity text, it greatly lacks fine-grained CTI informa-
tion useful to the security community. To address this problem,
we fine-tune the general model with the cybersecurity corpus
described above. The diverse CTI sources in our corpus gives
the GPT-2 model a variety of examples and the ability to
adapt to several aspects of the cybersecurity domain. Pre-
trained transformer-based language models like GPT-2 are
easily adaptable to new domains such as cybersecurity. Instead
of training from scratch and initializing with random weights,
we initialize the model with pre-trained parameters. We used
the publicly released pre-trained GPT-2 model with 117M
parameters. The model consists of 12 layers, 786 dimensional
states and 12 attention heads.

During our training, we divide the corpus in a 35% train and
test split. We set block size as 128, batch size as 64, and learn-
ing rate as 0.0001. We utilize the Gaussian Error Linear Unit
(GELU) activation function. The GPT-2 architecture shown in
Figur consists of normalization layers [48], attention layer,
a standard feed forward neural network, and a soft-max layer.
The feed forward neural network contains 786*4 dimensions.
We trained the model for twenty three hours (20 epochs) and
achieved a a perplexity value 35.9. Examples of the generated
CTI and more details on our experimentation are given in the
next section.

C. Generating Fake CTI

We use our fine-tuned GPT-2 model to generate fake CTI
examples, three of which are shown in Table The generation
process is initiated with a prompt that is fed as an input to
the fine-tuned GPT-2 model (the first column in Table [I). The
model uses the initial prompt to generate the fake CTI. The
generation process is shown in Figure The tokenized prompt
is passed through a normalization layer, then through the first
block of the attention layer. The block outputs are also passed
to a normalization layer and fed to a feed forward neural
network, which adds an activation function and dropout. Its
output is passed through a softmax layer, which obtains the

positional encoding of the highest probability word inside the
vocabulary.

The first sample in Table || provides information on APT
group APT41. Given the prompt, “APT41 is a state sponsored
espionage group”, the model was able to form a partially false
narrative about APT41. APT41 is a Chinese state-sponsored
espionage group, not a Russian group as indicated by the
model. Although this is a false fact, the later part of the
generated CTI is partially true. Despite some true information,
the incorrect nation-state information surrounding APT41 is
still present and adds conflicting intelligence if ingested by an
Al-based cyber defense system.

In the second example, we provide an input prompt from
a Krebs on Security article [49]. The model generated fake
CTI, which states kill switch as an actual service, when in
actuality, kill switch refers to the method of disconnecting
networks from the Internet. In addition, it relates the false
service to the Win32k framework. This gives the fake CTI
enough credibility and seems true to cyber analysts.

Lastly for the third example, we provide an input prompt
from a 2019 CVE record. The model generated the correct
product, but an incorrect associated version and attack type;
the true attack was a remote code execution while the gen-
erated attack was privilege escalation. While a remote code
execution attack can be related to a privilege escalation attack
in general, the specific context of using a Cross-Site Request
Forgery (CSRF) token to gain access to survey.php is incorrect
for this specific product.

D. Evaluating the generated CTI

We next show that the generated fake CTIs are credible. We
use two approaches to show this. First, we evaluate the ability
of the fine-tuned model to predict our test data by calculating
the perplexity score. Next, we conduct human evaluation stud-
ies. The study required a group of cybersecurity professionals
and threat hunters to label a collection of generated and actual
CTI samples as true or fake. The cybersecurity experience of



the participants range from 2-30 years (in operational settings),
with an average experience of 15 years. The idea is to see
if professionals in the field can separate real CTI from fake
instances generated by our system.

In the context of cybersecurity, human evaluation with
potential real-world users of the fake CTI is more indicative
than traditional methods such as perplexity scores. The main
objective of generating fake CTI is to mislead cyber analysts
and bypass intelligence pipelines that they frequently monitor.
If the generated CTI does not possess a high range of mal-
formed sentence structure, poor grammar, or incomprehensible
text (obvious mistakes indicating the text was produced by
a machine), we can assume it has fair potential to appear
real to analysts. Perplexity is a common method to determine
“uncertainty” in a language model, by assigning probabilities
to the test set. Perplexity is measured as the exponentiated
average logarithmic loss and ranges from 0-100. The lower the
perplexity score, the less uncertainty exists within the model.
The base 117M GPT-2 model we fine-tuned has a perplexity
score of 24 [|26]. We ensure the model is not evaluated on text
from the training set by calculating perplexity on a separate
test set and achieve a calculated perplexity score of 35.9,
showing strong ability of the model to generate plausible text.

In order to evaluate the potential implications of the gen-
erated fake CTI in a real world setting, we conduct a study
across a group of ten cybersecurity professionals and threat
hunter We provided the participants with an assessment
set of both true and fake CTI text samples. Using their own
expertise, participants labeled each text sample in the corpus as
either true or fake. We created the assessment set by collecting
112 text samples of true CTI drawn from various sources
described in Section We pre-process the text samples
by truncating them to the first 500 words and eliminating
partial last sentences. We select the first sentence of each
sample as an initial prompt to the fine-tuned GPT-2 model and
generate a fake CTI example of no more than 500 words. We
further divide the 112 samples (56 true CTI and their generated
fake counterparts) into two separate annotation sets to ensure
true CTI and direct fake counterparts are not part of the
same annotation task. Therefore, each annotation task included
28 samples of true text and 28 non-overlapping samples of
generated fake data. We randomize the data in each annotation
task assigned to the participants.

Participants worked individually, and labeled each of the
56 samples as either true or fake. Participants used their own
judgement in labeling each sample, and were prohibited to use
external sources like search engines during the assessment.
The results of the study are provided in the confusion matrix.

The confusion matrix shows the true positive, false negative,
false positive, and true negative rates for 560 CTI samples (in-
cluding both true and fake data). Of the total 560 samples that
were rated, the accuracy (36.8%) was less than chance. The
threat hunters predicted 52.5% incorrectly (74 true samples

'Our study protocol was evaluated by UMBC’s IRB and classfied as Not
Human Subjects Research

as false and 220 false statements as true) and 47.5% samples
correctly (206 true samples as true and 60 false statements as
false). Despite their expertise, the threat hunters were only able
to label 60/280 of the generated samples as fake and found the
a large majority (78.5%) of the fake samples as true. These
results demonstrate the ability of the generated CTI to confuse
security experts, and portends trouble if such techniques are
widely used.

Participant Labels

True False  Total
True |206 74 280
Samples | | Samples
EE:
2 & False 220 60 280
Samples | | Samples
Total 426 134

We further investigated the fake samples that were accu-
rately labeled as fake and observed more linguistic errors
in the text than in comparison to the fake samples that
were labeled as true. Although the majority of the fake CTI
contained entities (such as products and attack vectors) that
were unrelated to each other, we found if the sentence structure
displayed little or no linguistic deficiencies, the data was likely
labeled as true. We also noticed sources that lacked substantial
context were likely labeled as false.

The generated fake CTI not only has the ability to mislead
cybersecurity professionals, but also has the ability to infiltrate
cyber defense systems. In the next section, we describe how
the generated fake CTI examples can be used to launch a data
poisoning attack.

IV. DATA POISONING USING FAKE CTI

With the fake CTI examples in Table [I| we can easily
simulate a data poisoning attack where the fake CTI is used as
training input to subvert knowledge extraction pipelines such
as those described by Piplai et al. [32], Mittal et al. [3], [4],
Gao et al. |33]], [50], and Arnold et al. |10|]. Here an attacker
can skillfully position fake CTI on multiple OSINT sources
like Twitter, Stack Overflow, dark web forums, and blogs.

Many of the systems described above include native
crawlers along with cybersecurity concept extractors, entity re-
lationship extractors, and knowledge representation techniques
such as word embeddings, tensors, and knowledge graphs.
These either use keyword-based methodologies or depend
on Al tools to collect and process the CTI. Many of these
systems can be easily tricked into including the fake CTI data
in a cybersecurity corpus along with the true CTI. This is
especially possible if the attacker is able to craft the fake
CTI in such a way that it “appears very similar” to true CTIL.
This fake information will then be ingested by a knowledge
extraction pipeline utilized to create knowledge representations
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like, Cybersecurity Knowledge Graphs (CKG). Poisoning a
corpus with fake CTI can enable an attacker to contaminate
the training data of various Al systems in order to obtain a
desired outcome at inference time. With influence over the CTI
training data, an attacker can guide the creation of Al models,
where an arbitrary input will result in a particular output useful
to the attacker.

Next, we describe an attack on a popular knowledge rep-
resentation technique that involves a CKG [4], |31], [32].
As we already have access to a complete CTI processing

pipeline that outputs a CKG [32], we choose to demonstrate
the effects of the poisoning attack on the CKG. Once the fake
CTT has been represented in a knowledge representation it can
be used to influence other Al systems that depend on these
representations. We also discuss the effects of the poisoning
attack on the CKG in Section [[V-Bl

A. Processing fake CTI

A CTI ingestion pipeline described in Piplai et al. [32]
and similar systems [10], [33], [50] take a CTI source as an
input and produces a CKG as an output. The CKG contains
cyber entities and their existing relationships. The first stage
is a cybersecurity concept extractor that takes a CTI and
extracts various cyber entities. This is done by using a Named
Entity Recognizer (NER) trained on a cybersecurity corpus.
The second stage, is a deep-neural network based relationship
extractor that takes word embeddings of cyber entity pairs as
an input and identifies likely relationships. This results in an
entity-relationship set that can be asserted into the CKG. As a
running example, we use the following fake CTI text as input
to the extraction pipeline-

‘Malicious domain in SolarWinds hack turned into
killswitch service where the malicious user clicks an
icon (i.e., a cross-domain link) to connect the service
page to a specific target.’

When fake CTI is ingested by the pipeline, the cybersecurity
concept extractor will output classifications that serve the
adversaries’ goals. The concept extractor classifies ‘clicks
an icon’, ‘connect the service’ as ‘Attack-Pattern’. It also
classifies ‘SolarWinds hack’ as a ‘Campaign’. These entities
are extracted from the fake CTI potentially poisoning the
CKG.

The relationship extractor while processing the fake CTI
above, outputs the following relationships:

e ‘Solarwinds hack’ (Campaign)-uses- ‘clicks an icon’
(Attack-Pattern).
e ‘Solarwinds hack’ (Campaign)- uses - ‘connect the ser-

vice’ (Attack-Pattern).

The extracted entity relationship set can then be asserted in
the CKG. Figures [2] and [3] describe the state of the CKG
before and after asserting knowledge extracted from fake
CTI. Figure |2| contains entities and relationships extracted
from true CTI samples describing the campaign ‘SolarWinds
hack’. We can see entities like ‘Orion Software’, identified
as ‘Tool’, and ‘malicious code’ identified as ‘Attack-Pattern’.
These entities are used by the malware in the ‘SolarWinds
hack’ and are present in the true CTI. We also see ‘simple
password’ as a vulnerability. Figure contains additional
information extracted from fake CTI generated by our model.
These additional entities and relationships have been asserted
along with the entity ‘SolarWinds hack’, and are demarcated
by the red box. In this figure, we can see additional ‘Attack-
Patterns’ like, ‘connect the service page’ and ‘clicks an icon’
being captured in the CKG. These entities have been extracted
using the pipeline from the fake CTI and are an evidence of



how a poisoned corpus with fake CTI can be ingested and
represented in a CKG.

B. Effects of fake CTI ingestion

The objective of creating a structured knowledge graph
from the unstructured CTT text is to aid security professionals
in their research. The security professionals can look up
past knowledge about cyber incidents, perform reasoning, and
retrieve information with the help of queries. However, if
generated fake information is ingested by the CKG as part
of a data poisoning attack, it can have detrimental impacts
such as returning wrong reasoning outputs, bad security alert
generation, representation poisoning, model corruption, etc.

For example, if a security professional is interested in
knowing which attack campaigns have used ‘click-baits’, they
will be misled by the result ‘Solarwinds hack’. As the fake
CTI has been ingested and represented in the knowledge
representation (See Section [IV-A). The following SPARQL
[51] query when executed on the CKG,

SELECT ?x WHERE ({

?x a CKG:Campaign;
CKG:uses CKG:clicks_an_icon.}
will result in the following value:

Solarwinds_hack

If security professionals are interested to know more informa-
tion about ‘Solarwinds-hack’, they may also receive incorrect
information after executing appropriate SPARQL queries.
SELECT ?x WHERE {
?x a CKG:Attack-Pattern;
“CKG:uses CKG:Solarwinds-hack.}

This query results in the following values:
malicious_code, offloading_sensitive_tools,
connect_the_service_page, clicks_an_icon
Although we obtained some true results (sourced from true

CTI), the presence of fake CTI guided results like, ‘connect

the service page’ and ‘clicks an icon’ have the potential to

mislead security professionals. Security professionals model
cybersecurity attacks and generate network/system detection
rules using past available information on the same attacks
or similar attacks. They also use these representations to
generate alerts for future attacks. For example, a ‘supply chain
attack’ exploiting a ‘small password’ vulnerability ‘offloading
sensitive tools’ may mean that a new variant of the SolarWinds
hack has surfaced. However, if prior knowledge contains fake

CTTI about the same attack, incorrect alerts can be generated.
Once these knowledge representations are poisoned, addi-

tional defense systems can also be adversely impacted by fake
cybersecurity information. For example, many of the insights
generated by knowledge graphs are useful to other systems
like Al-based intrusion detection systems [35], [36], [52], or
alert-generators [3[, [33], reaching a larger breadth of linked
systems and cybersecurity professionals.

V. CONCLUSION & FUTURE WORK

In this paper, we automatically generated fake CTI text
descriptions by fine-tuning the GPT-2 transformer using a

cybersecurity corpus rich in CTI sources. By fine-tuning the
GPT-2 transformer with cybersecurity text, we were able to
adapt the general model to the cybersecurity domain. Given an
initial prompt, the fine-tuned model is able to generate realistic
fake CTI text examples. Our evaluation with cybersecurity
professionals shows that generated fake CTI could easily
mislead cybersecurity experts. We found that cybersecurity
professionals and threat hunters labeled the majority of the
fake CTI samples as true despite their expertise, showing that
they found the fake CTI samples believable.

We use the fake CTI generated by the fine-tuned GPT-2
model to demonstrate a data poisoning attack on a knowledge
extraction system that automatically ingests open sourced CTIL.
We exemplify the impacts of ingesting fake CTI, by comparing
the state of the CKG before and after the data poisoning attack.
The adverse impacts of these fake CTI sourced assertions
include wrong reasoning outputs, representation poisoning,
and model corruption.

In ongoing work, we are exploring defences against such
data poisoning attacks. One approach is to develop systems
that can detect linguistic errors and disfluencies that generative
transformers commonly produce, but humans rarely make.
A second approach to detecting fake CTI text can use a
combination of novelty, consistency, provenance, and trust.
CTI sources can be given a score that indicates how much
trust the user wants to put in their information.
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