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Abstract

Pathogen coexistence depends on ecological processes operating at both within
and between-host scales, making it difficult to quantify which processes
may promote or prevent coexistence. Here, we propose that adapting modern
coexistence theory—traditionally applied in plant communities—to pathogen
systems provides an exciting approach for examining mechanisms of coexistence
operating across different spatial scales. We first overview modern coexistence
theory and its mechanistic decomposition; we subsequently adapt the frame-
work to quantify how spatial variation in pathogen density, host resources and
immunity, and their interaction may promote pathogen coexistence. We apply
this derivation to an example two pathogen, multiscale model comparing two
scenarios with generalist and strain-specific immunity: one with demographic
equivalency among pathogens and one with demographic trade-offs among
pathogens. We then show how host-pathogen feedbacks generate spatial
heterogeneity that promote pathogen coexistence and decompose those
mechanisms to quantify how each spatial heterogeneity contributes to that
coexistence. Specifically, coexistence of demographically equivalent pathogens
occurs due to spatial variation in host resources, immune responses,
and pathogen aggregation. With a competition-colonization trade-off, the
superior colonizer requires spatial heterogeneity to coexist, whereas the superior
competitor does not. Finally, we suggest ways forward for linking theory and
empirical tests of coexistence in disease systems.

KEYWORDS
coexistence theory, ecosystem engineer, host immunity, metacommunity, pathogen
diversity, spatial heterogeneity, variation-dependent mechanisms

(Ferguson et al., 1999; Rohani et al., 1998), and pathogen
emergence (Alizon et al., 2013). In human epidemiology,

Pathogen communities consist of multiple pathogen
species, or even different genetic strains of the same
species, co-occurring both within individual hosts and
across host populations (Dobson et al., 2008). The diver-
sity of coexisting pathogens impacts dynamics such as
host pathology (Johnson & Hoverman, 2012; Katzelnick
et al., 2017; Thomas et al., 2003), pathogen transmission

understanding the mechanisms that facilitate strain
diversity has tangible implications for public health, such
as predicting the efficacy of vaccinations if strain replace-
ment occurs (Matthijnssens et al., 2009) or understanding
how pathogen competition may interact with vaccination
strategies (Zinder et al., 2013). Therefore, for decades
disease ecologists and epidemiologists have sought a
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better understanding of which ecological mechanisms
promote or hinder the coexistence of pathogens in plant,
wildlife, and human systems (Ferguson et al., 2003;
Takala & Plowe, 2009; Thompson et al., 2010). To do this,
epidemiologists often build competing mathematical
models that include different mechanisms. Comparing
the models’ predictions to observed patterns of pathogen
strain diversity can help reveal which mechanisms are
important (Lipsitch et al., 2009). Yet even with these
sophisticated methods, reliably quantifying the relative
contributions of multiple mechanisms to coexistence
dynamics has been frustratingly elusive.

Part of the problem is that pathogen coexistence
depends on a complex interplay of ecological processes
operating within individual hosts and across the host pop-
ulation, and we need methods that can quantify the main
and interactive effects of each mechanism. Within hosts,
pathogens interact with different components of a host’s
immune response; these immunological host-pathogen
interactions are considered the pathogen’s “immunological
niche” (Lloyd-Smith, 2013). The degree to which these
immunological niches overlap can alter outcomes of
pathogen coexistence. For example, pathogen infection
may compromise host immune responses, creating facilita-
tive effects that promote coinfection (Beldomenico &
Begon, 2010; Rynkiewicz et al., 2015). Intracellular
pathogens infecting vertebrates may elicit a specific
immune response profile called T-helper type 1 (Thl)
responses (Ezenwa & Jolles, 2011). Upregulation of
Thl immunity results in a decreased capacity to mount
Th2 immune profiles that target extracellular parasites,
thereby increasing host susceptibility to coinfection
(Pedersen & Fenton, 2007). Alternatively, pathogens may
elicit negative interactions with one another by competing
for limited resources within hosts (Cressler et al., 2014),
or by causing a general host immune response that
targets similar pathogens, a phenomenon referred to as
cross-immunity (Cobey & Lipsitch, 2013; Fenton & Perkins,
2010; Gog & Grenfell, 2002). Cross-immunity is predicted to
promote the differentiation of pathogens into distinct immu-
nological niches to minimize these negative interactions
(Cobey & Lipsitch, 2013; Gog & Grenfell, 2002), and has
been shown to promote competitive exclusion of antigeni-
cally similar strains in systems such as influenza (Ferguson
et al., 2003; Koelle et al., 2006) and dengue (Cummings
et al., 2009; Recker et al., 2009). Furthermore, spatial and
temporal heterogeneities in host behavior and contact
networks can modulate interactions between pathogens or
alter the number of hosts available for infection and patho-
gen spread (Buckee et al., 2004; Rohani et al., 1998). In addi-
tion, heterogeneity in host transmission rates has been
shown to promote long-term coexistence of different viral
strains in a baculovirus system (Fleming-Davies et al., 2015).

METACOMMUNITIES, MODERN
COEXISTENCE THEORY, AND
DISEASE SYSTEMS

Each of these processes in isolation may alter the mainte-
nance of pathogen diversity. However, multiple ecological
mechanisms at different spatial scales are likely to be
operating simultaneously, complicating efforts to identify
the most salient mechanisms that maintain pathogen
coexistence or promote exclusion. Furthermore, these
processes may interact in a manner that yields emergent
dynamics that cannot be predicted by studying each
process in isolation. Consequently, recent work empha-
sizes incorporating methods from community ecology—a
discipline with a wide breadth of conceptual and analytical
tools for investigating multiscale species interactions—to
study multipathogen assemblages, coexistence, and the
maintenance of diversity (Collinge & Ray, 2006; Johnson
et al., 2015; Lloyd-Smith, 2013).

Metacommunity theory in particular has received
significant attention in recent years due to parallel
processes that operate within metacommunities and
disease systems (Mihaljevic, 2012; Seabloom et al., 2015).
Metacommunity theory posits that species inhabit
environmental patches that are linked by migration (Leibold
et al., 2004). The community composition at both local
and regional levels depends on an interplay of niche-based
processes operating within patches and dispersal-based
processes operating between patches (Leibold et al., 2004;
Leibold & Chase, 2017). By treating hosts as patches, and
disease transmission as species dispersal, metacommunity
theory provides a conceptual framework that incorporates
both within- and between-host processes in regulating
pathogen coexistence or exclusion, dynamics of known
importance, but that are often considered separately
(Lloyd-Smith et al., 2005; VanderWaal & Ezenwa, 2016).

Moving forward, we argue that the integration of
metacommunity theory with modern coexistence theory
(MCT; Chesson, 2000b) provides a promising method of
quantifying how spatial structure across scales may promote
or hinder coexistence (Shoemaker & Melbourne, 2016),
regardless of underlying model assumptions or system
specifics. In MCT, species are said to stably coexist if each
species exhibits a positive growth rate when rare (GRWR)
in the system, a condition referred to as the mutual
invasibility criterion (Chesson, 2000b; Box 1). The
contribution of spatially or temporally fluctuating mech-
anisms to the GRWR can be quantified, or decomposed,
by analytically removing variation in the mechanism of
interest and comparing observed growth rates with and
without the variation present (Chesson, 2000b). Until
recently, MCT decompositions have primarily been used
to study a limited set of coexistence mechanisms in
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BOX1 Overview of mechanistic decomposition in pathogen model

In modern coexistence theory (MCT), stable coexistence occurs when each pathogen exhibits a positive growth
rate when rare (GRWR), while all other pathogens are at equilibrium in the system. To calculate the average
GRWR (7;) for each pathogen when rare (termed the invader), we simulate a disease system with only one path-
ogen (termed the resident) and let it reach equilibrium in abundance and spatial distribution (Figure 1a). We
then introduce the invader at low density and spatial equilibrium in each time step, # o, calculate its GRWR by
simulating the model one time step forward (# ;, Figure 1b), and average these GRWR over time steps, t,. We
alternate the roles of resident and invader, allowing us to calculate GRWR for both pathogens. In order for
coexistence to occur, 7; must be >0 for both pathogens (Figure 1c).

The overall GRWR for each pathogen as the invader can be partitioned into variation-independent and
dependent mechanisms. To do so, the GRWR calculation is repeated after removing variation in one or more
ecological mechanisms from the system. For each of these calculations, the invader GRWR, 7;, is compared
with the resident growth rate, ¥,. Although the resident’s overall growth rate is 0 (given it is at its equilibrium)
the invader-resident comparison is necessary, as a given mechanism can impact the growth rate of the invader,
resident, or both. For two sources of variation (here generically labeled A and B), the contribution to the overall
GRWR when all variation is removed from the system is represented by AJ. A’i“ represents the contribution
from variation in A, Af represents the contribution from variation in B, and A‘{‘B represents the interactive
effect from simultaneous variation in both A and B after accounting for each main effect (A and AP)

(Figure 1d,e). The sum total of these contributions is the overall GRWR:

Fi—Tr =AY AL L AR ASB, (1)

annual grassland communities (Barabas et al., 2018;
Hallett et al., 2019) as extending MCT to different
biological systems required deriving novel, complex
analytical solutions for each coexistence mechanism.
This was often impossible in more complex models,
such as those used to understand pathogen dynamics
(Ellner et al., 2019).

Therefore, applications of MCT to disease systems, and
even other free-living systems in community ecology, have
predominantly focused on using a broader, conceptual
MCT framework that circumvents the need for deriving
separate analytical solutions for each new coexistence
mechanism, but does not incorporate variation-dependent
mechanisms of coexistence. Under this conceptual
approach to MCT decompositions, mechanisms are catego-
rized as either stabilizing (i.e., increasing niche differentia-
tion) or equalizing (i.e., reducing fitness differences; Adler
et al., 2007; Chesson, 2000a; Levine et al., 2008; Mordecai
et al., 2015). For example, Cobey and Lipsitch (2012)
reproduced observed Streptococcus pneumoniae serotype
diversity by modeling both stabilizing and equalizing
components of host immune responses to S. pneumoniae
infection. Clay et al. (2019) used a zooplankton pathogen
system to examine how priority effects alter coexistence,
depending on whether the priority effects favored first- or
second-arrival pathogens, respectively. Additionally, using

the barley and cereal yellow dwarf virus system, Mordecai
et al. (2015) showed how pathogens’ abilities to coinfect
plant hosts stabilized coexistence, but ultimately required
vector generalist-specialist trade-offs to offset competitive
interactions. Both Clay et al. (2019) and Mordecai et al.
(2015) used phase diagrams to identify whether pathogens
subsisted individually or coexisted over a range of model
parameters, and subsequently inferred how different
ecological mechanisms promoted or inhibited coexistence
by comparing phase diagrams with and without that
mechanism present in the system (Clay et al., 2019;
Mordecai et al., 2015).

Such uses of the stabilizing/equalizing MCT frame-
work successfully highlight the crucial role different
ecological mechanisms have on pathogen coexistence.
However, applications of MCT to disease systems
have yet to incorporate a full, variation-dependent decom-
position of coexistence, which provides a quantitative
framework for understanding how spatial and temporal
heterogeneity can promote coexistence (Chesson, 2000a,
2000b). More comprehensive integration of MCT and its
decomposition framework with disease ecology will provide
insight into how heterogeneity scales to alter pathogen
coexistence or competitive exclusion.

Recent developments in MCT (Ellner et al., 2019) now
allow for more general decompositions of coexistence
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FIGURE 1 Decomposition workflow. (a) We allow a resident pathogen to reach steady-state equilibrium and introduce the invading

pathogen at low density for each time point, f;, in a time range, t,, that captures all steady-state dynamics. (b) For each ¢, we introduce the

invading pathogen into hosts (f ), simulate the model forward one time step (t ;), and calculate invader growth rate when rare (GRWR).
(c) If all pathogens exhibit a positive GRWR, stable coexistence occurs, whereas a negative GRWR indicates competitive exclusion. (d, e) We
decompose the GRWR, 7; — 7, for each pathogen into its mechanistic components, where A° represents GRWR without variation in either
mechanism, A” represents GRWR with variation in mechanism A, A® represents GRWR with variation in mechanism B, and A5 represents
the interactive effect from variation in both A and B. Each mechanism can promote either coexistence (positive values) or exclusion

(negative values).

(or exclusion) mechanisms across model formalizations
and do not require complex analytical derivations for each
new mechanism, relying instead on simulation methods to
decompose GRWR. By incorporating the approach initially
developed by Ellner et al. (2019) with pathogen models,
MCT can move beyond the stabilizing/equalizing frame-
work previously applied in pathogen systems and provide
simultaneous information on how variation-dependent
and independent mechanisms contribute to pathogen
coexistence, facilitating comparisons between free-living
and pathogen systems.

Here, we argue for and provide a case-study analysis
extending these recent developments in MCT to pathogen

communities, introducing a method with which to evalu-
ate the relative importance of metacommunity stability
structure for pathogen coexistence. We provide an
overview of the mechanistic decomposition process in
the context of a pathogenic, nonfree-living system
and decompose the spatial mechanisms of pathogen
coexistence and diversity maintenance. Using a general
disease model with both within- and between-host
components (outlined in Box 2), we highlight the unique,
quantitative insights gained from applying MCT’s
decomposition methods to nonfree-living systems that
exhibit host-pathogen (or species-environment) feed-
backs. Our decomposition analysis and its revelations of
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BOX 2 Overview of disease model

Within-host dynamics, generalist immunity

Within-host infection dynamics are based on a series of Lotka—Volterra predator-prey models modified for
pathogen systems; the model includes resource competition and immune system memory (Cressler et al., 2014;
Fenton et al., 2006; Fenton & Perkins, 2010). Pathogens consume a common resource within hosts and are
removed from the system via immune cells that respond identically to each pathogen, regardless of which path-
ogen elicited the production of the immune cells (i.e., generalist immunity). Pathogen abundance also stimu-
lates the production of memory cells that provide long-lasting protection to pathogen recolonization by
decaying at a significantly lower rate than immune cells. These within-host dynamics for focal pathogen x and
secondary pathogen y are modeled by the following equations. Note that we have not included the equations
for pathogen y for brevity, as they are derived by switching the notation for the focal x and secondary
y pathogens:

dR R

= (1 - —> —8,P,R—5,P,R (2)

dt max

dp

d—;‘ = 8 PxR — B, P — B, I,Px (3)
dI,

azeﬁxlxpx‘FSﬁylny"!‘q)(Mx “I‘My)Px_YIx (4)
dM,
4 = Pl TPl — hMx. (5)

Equation (2) describes the resource dynamics, R within each host. The host’s resource replenishes at rate 0 to
its carrying capacity, Rpyax. Host resource is consumed by each pathogen population at the rate of 5, and §,.
Pathogen population dynamics, P,, depend on the rate of resource consumption and a resource conversion fac-
tor, a,, which represents the number of pathogens produced for each unit of resource consumed. P, is removed
from the host via an immune response, I, at rate p, and I,, at rate §,. The immune response, I, (Equation 4),
depends on the conversion factor e, which models the number of immune cells produced for each pathogen
removed. Immune cells decay at rate y. The immune response is further stimulated via M, and M, memory cells
originating from previous infections at rate ¢. Memory cell M, dynamics are described by Equation (5), where p
represents the rate of production and p is the decay rate, with p < y. We allow pathogen clearance to occur by
computationally setting pathogen abundance to 0 when abundances fall below 0.01.

Strain-specific immunity
The above equations are modified such that:

dr R

—=0(1-——) —8P.R—5,P,R 6
dt ( Rmax) T Oply (6)

dp

d—" = 0,8, Py R — P, I Py (7)
t

dI,

s eP Iy Py + 6xMy Py +TMyPy — I, (8)
= = pl+pM,. )

dt
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The immune response is stimulated via memory cells at rate o, originating from previous P, infections (referred
to as strain-specific immunity) and rate T by memory cells originating from previous P, infections (referred to
as cross-immunity). The value of ¢ relative to t represents the degree of cross-immunity between P, and P,
where ¢ = t signifies complete cross-immunity and T = 0 represents no cross-immunity. Additionally, in this
case, memory cell production M, only depends on immune cells .

Between-host dynamics

Between-host transmission is determined using an individual-based model that describes host contact,
pathogen transmission, and host demographics (Grimm et al., 2006). Model simulations were conducted with
1000 hosts and run for 2000 time steps. Abundance of R, Py, P, I, I,, M,, and M,, are tracked for each host, with
initial conditions set at R = Rmay, Iy =1, [, =1, M, =0, and M, = 0. We seed the system by inoculating
100 pathogens per strain into 10 individual hosts. The model then proceeds in four stages that occur at each
time step:

First, we determine host contacts. We calculate the number of contacts in a time step for each host via a
Poisson distribution defined by an expected number of contacts k. The identity of each contact is determined by
sampling without replacement from all hosts, regardless of infection status, and is unidirectional. Therefore, k
represents the average total number of individual contacts, regardless of host identity. Second, we determine
pathogen transmission for each host during each contact event, depending on pathogen load. We used a logit
function to determine the probability a transmission event occurs based on that respective pathogen’s load in
the contacting host (e.g., for P,, the probability of transmission would be determined by the inverse logit of
®; + o.Py). Upon successful transmission, the amount of pathogen transmitted from an infected host to a
contacted host is calculated using a binomial distribution with trials equal to the successfully invading
pathogen’s load and probability v. The abundance of pathogen transmitted to the new host is subtracted from
the infecting host. Third, within-host dynamics are resolved for each host following Equations (2-5) or (6-9),
where each time step in the individual-based model corresponds to one time step in the within-host
Lotka-Volterra model. Fourth, we simulate host demography (e.g., births and deaths) by selecting individuals
from a Bernoulli distribution with mortality probability n that is independent of host pathogen or immune load.
Hosts that are lost due to mortality are immediately replaced by the same number of new hosts with no
pathogen load or immune memory, thereby keeping the total host population constant through time
(Keeling & Rohani, 2011). Newly introduced hosts are immediately susceptible to infection. An overview of the
infection model is in Appendix S1: Figure S1, parameters are in Tables S1 and S2, and a sensitivity analysis is
shown in Figure S3.

the mechanisms that facilitate pathogen coexistence
illustrate that MCT is a powerful analytical framework
under which to study the role of temporal and spatial
heterogeneities on the structuring of pathogen commu-
nities (Figure 1).

PERFORMING MECHANISTIC
DECOMPOSITIONS IN A DISEASE
SYSTEM

Pathogens coexist if they meet the mutual invasibility cri-
terion, requiring that each pathogen in the system
exhibits positive GRWR (Box 1; Chesson, 2000b). To cal-
culate the average GRWR for each pathogen (Tg-, where
here the overbar denotes the spatial average for pathogen
species j), we follow simulation approaches from MCT.

We first simulate dynamics of only one pathogen (termed
the resident) and let it reach its steady-state equilibrium
(Figure 1). Over a given duration of the resident’s spatio-
temporal steady-state equilibrium, ¢,, we then reintroduce
the other pathogen (termed the invader) into the system at
each time step at a low density such that the steady-state
dynamics of the resident pathogen are not altered. We
introduce this invader over enough time steps to capture all
steady-state dynamics (i.e., during the last 100 time steps of
our model simulation).

Following previous spatial MCT methods, the invad-
ing pathogen is introduced into the host metacommunity
at its observed spatial equilibrium (Chesson, 2000a;
Shoemaker & Melbourne, 2016). To calculate invader
spatial equilibrium, for each given time f, during t,, we
introduce the invading pathogen at low abundance (0.5%
of average pathogen abundance across the last 100 time
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steps) into all hosts () and run the model forward one
time step (¢1), where k denotes the time step for GR cal-
culations. We then divide the invading pathogen abun-
dance in each host by the overall invading pathogen
abundance in the population and then multiply that pro-
portion by the total initial invader abundance; this
ensures that total invader abundance is constant but
density across hosts is updated. We reset all variables to
their original states at f;,. We then reintroduce the
invading pathogen using the updated invader abun-
dances and continue this process until the invader’s spa-
tial equilibrium is reached. Next, the infection model is
then run one more step and the growth rates for both
the invader and resident are calculated to determine
GRWR. This entire process is then repeated for f;,,,
ti+2, - tn. The average GRWR, 7, over t, is therefore
given by:

N .
100 W(1)) = ln%,j:x,y (10)
F= > 1Mt W) 1)
k=1

where A and v are varying pathogen fitness and
density, respectively, N is the total number of hosts,
n is the total number of time steps over which the
resident is at steady-state equilibrium and the decomposi-
tions are calculated, and j denotes pathogens x or y,
respectively.

After calculating 7;, we partition growth rates into
mutually exclusive variation-independent and depen-
dent mechanisms. These mechanisms parse why coexis-
tence versus competitive exclusion occurs, examining
components that are inherently linked and have cascad-
ing effects in ecological systems. For example, one could
ask how important are average differences in growth
rates between species versus how important is heteroge-
neity in pathogen spatial distributions across hosts. To
decompose these mechanisms for coexistence, we simu-
late the infection model while removing variation in
one or more mechanisms, and then recalculating popu-
lation growth rates. Here, we focus on spatial variation;
we define variation-dependent mechanisms to include
two spatial coexistence mechanisms and their interac-
tion: (1) spatial variation in pathogen fitness (i.e., host
resources, immune cells, and memory cells, represented
by A), (2) spatial variation in pathogen density
(i.e., variation in density across hosts, represented by v),
and (3) the interactive effect of the variation-dependent
mechanisms, analogous to the fitness-density covariance
term from Chesson’s traditional spatial decomposition

(Chesson, 2000a; Shoemaker & Melbourne, 2016; Snyder
et al., 2005). To determine each mechanism’s contribution
to ¥; in our model, we first remove all variation in patho-
gen fitness and density by equally distributing host
resources (R), resident pathogen abundance (P), immune
cells (I), and memory cells (M) across all hosts for
each time step, f;, and calculating GRWR with no
variation-dependent mechanisms:

g =r;(Lv). (12)

We then reintroduce spatial variation in either patho-
gen fitness, A (R, I, M; Equation 13) or density, v
(P; Equation 14) and subtract out the contribution of e]‘-’
to determine each mechanism’s main effect:

e1(0) =r(A, V) — €” (13)

8; (v)=r; (X, v) - ej(-) (14)

Finally, we calculate the interaction of A and v, which
represents the additional contribution to the GRWR
when both fitness and abundance are allowed to vary
simultaneously:

ejm(h, v)=rj(Av)— [ejg’—i—ej}-‘—f—eﬂ (15)

We rearrange Equation (15), calculating the decom-
position for each timestep # in t,. Averaging over each
time step yields:

Fi=8 +& +&+8" (16)

where the overbar denotes the average strength of each
mechanism. However, to fully capture the effect of a
given mechanism on coexistence, we must assess
growth rates for both the resident, 7,, and the invader,
7;. As the resident pathogen is at steady-state equilibrium
and the invader is at a sufficiently low density to not alter
the resident’s overall growth rate, 7, is ~0. However, the
invader-resident comparison is still necessary as the
importance of each mechanism for the resident (the epsi-
lon terms) may not be zero; rather their total contribu-
tion will sum to zero (Ellner et al, 2019; Hallett
et al., 2019). Therefore, we make invader-resident com-
parisons for Equations (10-15) and coexistence is calcu-
lated as:

F=Ti—Fr=A)+ Al + A+ A} (17)
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where A¥ =¢X — X for each mechanism X. Each compo-

nent of the decomposition can be interpreted as follows:

1. AY: growth rate when pathogen fitness (as defined by
the abundance of host resources, R, and host immune
components, I and M) and pathogen abundance, P,
are evenly distributed across all hosts. This term
represents the growth rate with no variation, i.e., when
all spatial variation in pathogen fitness and abundance
is removed.

2. A} growth rate when pathogen fitness is allowed to
spatially vary while pathogen abundance is evenly dis-
tributed across all hosts. Different sources of spatial
variation in pathogen fitness could be evaluated by
this term, such as variation in host contacts or nutri-
tional status. In our model, this term represents the
growth rate when the invading pathogen encounters
a host population in which another pathogen is
endemic and produces long-lasting host immunity,
with spatially varying resources available for the
invader’s growth.

3. A{: growth rate when pathogen abundance is allowed
to spatially vary while pathogen fitness is evenly
distributed across all hosts. In our model, this term
represents the growth rate when the invading pathogen
encounters a host community in which long-lasting
immunity elicited by an endemic pathogen is evenly
distributed across all hosts, but the endemic pathogen
abundance varies spatially.

4. AM: interactive effect of spatially varying pathogen
fitness and pathogen abundance. This term represents
the contribution of spatial variation in pathogen
fitness and abundance to the growth rate beyond their
separate effects.

MECHANISMS OF PATHOGEN
COEXISTENCE

Following the method of decomposition outlined
above, we assessed the impact of spatial variation in
pathogen fitness and density under two classic infec-
tion scenarios, highlighting the utility of MCT for
interpreting disease dynamics: (1) a scenario in which
both pathogens are demographically equivalent, and
(2) a competition—colonization (virulence-transmission)
trade-off scenario. For both scenarios, we examine pathogen
coexistence under general immunity versus strain-specific
immunity (Box 2). In the demographically equivalent
scenario, both pathogens are parameterized identically
(Appendix S1: Tables S1 and S2; Hubbell, 2001; Leibold
et al, 2004). Matching classic competition—-colonization
models (May & Nowak, 1994; Tilman, 1994), in Scenario 2,

all hosts (i.e., patches) are identical and the superior
competitor (Py) outcompetes the superior colonizer (P,),
while the superior colonizer has a baseline transmission
probability (w;,) greater than that of the superior competi-
tor (Appendix S1: Tables S1 and S2). However, deviating
from the classic model and following recent extensions
of the competition—colonization trade-off (Shoemaker &
Melbourne, 2016; Strauss et al.,, 2019), the superior
competitor exhibits a host resource consumption (§) greater
than that of the superior colonizer, causing competitive
exclusion to not be instantaneous in our model, but rather
a transient period occurs in which the superior colonizer
decreases in abundance until competitive exclusion is
reached. These two scenarios highlight insights gained by
adapting MCT decompositions to disease ecology, focusing
on classic disease models with analogs in the community
ecology literature (Leibold et al., 2004; Shoemaker &
Melbourne, 2016).

All pathogens exhibited positive GRWR in both
demographically equivalent and competition—colonization
trade-off scenarios (Figures 2 and 3), resulting in coexis-
tence of both pathogens. However, by decomposing
coexistence into its constitutive variation-independent
and -dependent mechanisms, we observe that the
relative contribution of different mechanisms strongly
varied between the infection scenarios, highlighting the
different aspects of spatial variation that can promote
coexistence in disease communities.

Scenario 1: Demographic equivalence

In the demographically equivalent scenario with general-
ist immunity (Figure 2a,b), both pathogens were able to
coexist due to spatial variation in pathogen fitness (A™),
density (A"), and the interactive effect from simultaneous
variation in fitness and density (A™). Pathogens could not
invade under averaged, variation-independent conditions
(A®), indicating that coexistence only occurs via the spatial
(i.e., among-host) variation present in the disease system.
Both pathogens exhibited identical GRWR, as expected
given their identical parameter values (Hubbell, 2001).

A decomposition of the disease model allows us to
break down the mechanisms that produce coexistence of
demographically equivalent pathogens under generalist
immunity. In our case study, current or previous infec-
tions by the resident pathogen elicits long-lasting, gener-
alist immunity in hosts, thereby decreasing the number
of hosts with favorable growth conditions for the invader.
This spatial variation in host quality yields spatial hetero-
geneity in the invader’s spatial equilibrium, causing the
invader to aggregate in hosts with the lowest abundances
(or complete absence) of the resident pathogen
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FIGURE 2 Partitioning the contributions of spatial variation in pathogen fitness (A) and density (v) on growth rate when rare (GRWR)

for demographically equivalent pathogens P, (first column) and P, (second column) encountering (a, b) a generalist immune response and

(c, d) strain-specific immunity. The dark gray bar (7; —7,) is the sum total of all light gray bars (A;

9, A}, AY, AM). Error bars represent the

standard deviation derived from 500 simulations. (e) Visual depiction why GRWR is positive in the demographically equivalent scenario.

The invader has a negative GRWR in currently infected and convalescent hosts. However, host demography yields a fraction of hosts

uninfected with the resident pathogen, where GRWR is positive. Additionally, invasion can occur in newly infected hosts or hosts with

waning immunity.

(Figure 2e). More specifically, the strong positive effects
of A*, AY, and A™ on the invader’s GRWR indicate that
the invader can coexist by aggregating in hosts with high
resource levels, low competition (i.e., few resident patho-
gens), and low immune response (i.e., either because the
resident was only recently infected or because the host
has not had recent exposure). Despite pathogens being

demographically equivalent and all hosts responding
identically to each pathogen, the introduction of host
immune memory via infection means that pathogens
“engineer” their host/patch environment through time,
thereby introducing inherent heterogeneity in host quality
for pathogen growth that promotes long-term coexistence.
This pattern points to the potential impact of pathogen
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FIGURE 3

Partitioning the contributions of spatial variation in pathogen fitness (A) and density (v) on growth rate when rare (GRWR)

for pathogens exhibiting a competition-colonization trade-off encountering (a, b) a generalist immune response and (c, d) strain-specific
immunity. P, (first column) is the superior competitor, whereas P, (second column) is the superior colonizer. The dark gray bar (¥; —7,) is
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the sum total of all light gray bars (A

aggregation during epidemic emergence of novel pathogens
in a host population when there is strong cross-immunity
to currently circulating pathogen(s) and suggest that
host-pathogen feedbacks that are central to disease ecology
can dramatically alter the long-term trajectories of demo-
graphically equivalent species.

With strain-specific immunity and demographically
equivalent pathogens (Figure 2c,d), both pathogens
exhibited positive growth rates under averaged condi-
tions (A?), highlighting that strain-specific immunity can
yield coexistence, even without the contribution of spatial
variation. Variation in pathogen fitness (A*) had negative
effects on coexistence, whereas variation in density (A")
and simultaneous variation in fitness and density (A™)
had positive effects on coexistence. More generally,
variation-dependent mechanisms contributed less to
overall GRWR relative to variation-independent mecha-
nisms (A°). The invading pathogen’s positive growth rate
under nonvarying conditions is due to the strain-specific
immunity targeting the resident species, providing the
invader with a competitive advantage and leading to a
positive growth rate.

, A}, A?, A™). Error bars represent standard deviation derived from 500 simulations.

Scenario 2: Competition-colonization
trade-off

The competition-colonization (virulence-transmission)
trade-off is a classic trait trade-off that promotes coexis-
tence (May & Nowak, 1994; Tilman, 1994). Congruent
with the results of previous work, we found that, under
specific parameter conditions, pathogens with differing
competitive and colonizing abilities maintained coexis-
tence (Figure 3a,b, please refer to Appendix S1: Figure S2
for decomposition with the superior competitor excluding
the superior colonizer).

Our decomposition highlights why coexistence
occurs, even under generalist immunity; spatial varia-
tion created by host demography and immune
responses was required for the superior colonizer to
coexist with the superior competitor. In other words,
the competition-colonization trade-off relies on spatial
variability for coexistence of the superior colonizer
with the superior competitor. While the superior
competitor (P,) exhibited a positive growth rate
from variation-independent mechanisms (A°), the
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superior colonizer (P,) exhibited a strongly negative
variation-independent growth rate. Therefore, in the
absence of variation, the superior colonizer is driven
toward extinction by the superior competitor under
generalist immunity. Only via spatial variation in path-
ogen fitness (A"), density (AY), and their interaction
(A™) could the superior colonizer’s negative growth
rate in the absence of variation be offset, yielding coex-
istence. Host demography and immunity yielded spa-
tial variation in the superior colonizer’s abundances
across hosts, including novel hosts not previously
infected, allowing the superior colonizer to maintain a
positive  GRWR (Shoemaker & Melbourne, 2016).
Similarly, spatial variation still promotes coexistence
of the superior colonizer when it is competitively
excluded, but not enough to overcome the strong nega-
tive effects of variation-independent mechanisms (A%
Appendix S1: Figure S2). In contrast, spatial variation
in pathogen fitness and density had positive impacts
on the overall GRWR for the superior competitor, but
spatial variation was not necessary, as the superior
competitor can competitively exclude the superior
colonizer regardless of spatial heterogeneity. In other
words, the strong positive effect of A° is sufficient for
the superior competitor to invade from rarity under
generalist immunity.

In the competition-colonization trade-off scenario
with strain-specific immunity (Figure 3c,d), both the
superior competitor (P,) and superior colonizer (P,)
generally exhibited similar decomposition patterns
to the demographically equivalent scenario when
encountering strain-specific immunity (Figure 2c,d).
Strain-specific immunity overwhelms the impact of
spatial coexistence mechanisms in both demographically
equivalent and competition-colonization trade-off sce-
narios. In this case, host immunity drives dynamics
while differences in pathogen demography are masked;
as such, spatial structure is no longer required for the
superior colonizer to coexist (Figure 3d). This result
emphasizes that, depending on underlying pathogen
and host dynamics, spatial variation can play critical
or inconsequential roles in sustaining pathogen
coexistence.

INSIGHTS FOR PATHOGEN
COMMUNITIES FROM MCT
DECOMPOSITIONS

Identifying the ecological mechanisms responsible for
pathogen coexistence or competitive exclusion presents
unique challenges to disease ecologists due, in large
part, to processes simultaneously operating at multiple

spatial scales. Application of MCT to disease systems
offers a powerful, quantitative framework with which to
investigate the role of both within- and between-host
variation for pathogen coexistence. Indeed, close
parallels between disease and community ecology have
yielded advances across fields when tools from one field
are adapted for the other, such as metacommunity
theory (Mihaljevic, 2012) and the virulence-transmission
(competition-colonization) trade-off framework (May &
Nowak, 1994; Tilman, 1994). Extending MCT decompo-
sitions from their historical focus on free-living systems
(Chesson, 2000b; Hallett et al., 2019) and recent exten-
sions that incorporate plant-soil feedbacks for plant
coexistence (Kandlikar et al., 2021; Ke & Wan, 2020) to
disease systems and pathogen coexistence can provide
unique insights into the critical mechanisms underpin-
ning pathogen community structure. For example,
our case study highlights how, in two different patho-
gen systems (e.g., demographically equivalent and
competition—colonization scenarios), the general signa-
tures of pathogen community dynamics might be similar
(namely, both pathogens coexist), yet a mechanistic
decomposition reveals that internal host dynamics
alter the ecological processes responsible for promoting
coexistence.

Decomposing GRWR into its constitutive elements
provides a common, quantitative metric with which to
compare underlying mechanisms of coexistence between
disease scenarios, allowing disease ecologists to explore
how heterogeneity modulates pathogen dynamics. In our
case study, we focus on demographic differences (or lack
thereof) between pathogens. However, the applications
can be extended to other scenarios to investigate how
multiple types and scales of heterogeneities may alter
coexistence, including differences across host species,
underlying the contact network structure between host
individuals, and strain-specific versus generalist immu-
nity. Comparing strain-specific and generalist immunity
shows that spatial coexistence mechanisms were critical
for promoting coexistence under general immunity, but
that strain-specific immunity overwhelmed the impact of
spatial coexistence mechanisms. Such strong differences
in decompositions highlight how the application of MCT
to disease ecology provides a flexible, exciting avenue
for future research investigating the role of cross-scale
disease dynamics on pathogen communities that could
not otherwise be detected.

We generated these observations using a relatively gen-
eral disease model that incorporates basic elements of an
infectious disease system, including immune memory,
varying host contacts, and resource competition between
pathogens. However, concurrent work in community
ecology shows how MCT decompositions can be applied to
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more complex systems and can be tested empirically
(Ellner et al., 2019; Hallett et al., 2019; please refer to
Supplemental Methods for a discussion of empirical
applications). For example, the application of MCT in
community ecology often focuses on the role of environ-
mental variation on species coexistence. Disease ecolo-
gists can use similar approaches to simultaneously
investigate the variation in both biotic and abiotic
mechanisms, such as seasonal temperature fluctuations
or species trade-offs in abiotically varying environments
(Altizer et al., 2006; Mordecai et al., 2016). Furthermore,
these decomposition methods can be applied to patho-
gen communities with more than two species (Ellner
et al., 2019), albeit with the same potential limitations
when applying MCT to free-living communities. As
ecological communities become larger, higher order
and intransitive interactions between species may
violate assumptions of the mutual invasibility criterion
(e.g., resident communities must stably exist without the
invader species). However, recent advances in coexistence
theory more easily allow for extensions to higher diversity
communities (Saavedra et al., 2017; Spaak & De Laender,
2020). As such, the flexibility of MCT has the potential to
contribute to our understanding of how multiple types of
variation—such as host heterogeneities in infection suscep-
tibility, vaccination status, and evolving contact networks—
alter pathogen community diversity and coexistence.

CONCLUSIONS

Learning how best to leverage knowledge of underlying
pathogen coexistence mechanisms will be an area for
active investigation, and recent applications of MCT in
free-living communities suggest the applied utility of
mechanistic decompositions. For example, in grassland
communities, variation in competitive environments,
mediated via precipitation patterns, can have a stronger
effect on coexistence than direct effects (Hallett
et al., 2019). By identifying the impact of variation in
different climate conditions on speciess GRWR using
mechanistic decompositions, conservationists can focus
efforts on sustaining low abundance species that are most
susceptible to climate variation. We see parallel insights
for disease ecology. For example, understanding the
importance of temperature variation on vectored-pathogen
coexistence might help to predict how pathogen commu-
nity structures will be altered under changing climate
conditions, or how different vaccination strategies might
alter spatial variation in pathogen density, and therefore,
pathogen coexistence (Dobson & Roberts, 1994; May &
Anderson, 1978). Partitioning GRWR has the strong
potential to inform these intervention efforts.
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