
Knowledge Guided Two-player Reinforcement
Learning for Cyber Attacks and Defenses

Aritran Piplai∗, Mike Anoruo∗, Kayode Fasaye∗, Anupam Joshi∗, Tim Finin∗, Ahmad Ridley†
∗Dept. of Computer Science & Electrical Engineering, University of Maryland, Baltimore County,

Email: {apiplai1, manoruo1, kfasaye1, joshi, finin}@umbc.edu
† Laboratory for Advanced Cybersecurity Research, National Security Agency

Email: adridle@uwe.nsa.gov

Abstract—Cyber defense exercises are an important avenue to
understand the technical capacity of organizations when faced
with cyber-threats. Information derived from these exercises often
leads to finding unseen methods to exploit vulnerabilities in an
organization. These often lead to better defense mechanisms that
can counter previously unknown exploits. With recent develop-
ments in cyber battle simulation platforms, we can generate a
defense exercise environment and train reinforcement learning
(RL) based autonomous agents to attack the system described
by the simulated environment. In this paper, we describe a two-
player game-based RL environment that simultaneously improves
the performance of both the attacker and defender agents. We
further accelerate the convergence of the RL agents by guiding
them with expert knowledge from Cybersecurity Knowledge
Graphs on attack and mitigation steps. We have implemented
and integrated our proposed approaches into the CyberBattleSim
system.

I. INTRODUCTION

Signature-based cybersecurity defense mechanisms under-
perform when faced with new challenges from sophisticated
adversaries[1]. Reliance on attack signatures and Indicators of
Compromise alone are not enough to mitigate a significant
number of current cyber-threats, especially those from state
actors or large transnational cybercriminal enterprises. For
instance, 99% of malware programs are used only once in
their current form before being modified for reuse [1]. Such
modifications can render signature-based defenses useless.
This a major reason why we see record numbers of zero-days
in recent years [2]. Another significant drawback of signature-
based methods is their inability to combat multi-vector cyber
attacks. For example, there can be multiple points of entry
into a machine’s network, either through vulnerabilities of
the machine itself or via vulnerabilities of other machines
that expose the first machine’s credentials. In order to defend
against these attacks, we need powerful simulation platforms
to test and evaluate our solutions.

An improvement over traditional rule-based or signature-
based detection techniques are systems that use supervised
machine learning (ML) models. However, they suffer from
many of the same shortcomings, since they are typically
trained on historical data and have limited ability to generalize.
This often makes them unable to detect zero days. We need an
improvement over supervised ML models to find more robust
solutions for unknown and multi-vector attacks [3]. Recently,
SR Labs analyzed Endpoint Detection and Response (EDR)

systems to find out that relying on specific ‘triggers’ to launch
malware defense mechanisms may not be helpful [4]. This
makes it very easy for skilled attackers to evade the system.
Simulating multiple attack scenarios and testing defenses will
lead to a more ‘generic’ defense against attackers. The authors
state that generic defenses are more difficult to evade than de-
fenses that work on ‘triggers’. With the help of reinforcement
learning, we simulate these attack scenarios to create defenses
that are more generic and do not rely on a specific trigger.

Recent advancements in Reinforcement Learning (RL) have
shown promising results for generating adversaries as well as
mitigating them with defense mechanisms. RL algorithms can
work particularly well for cybersecurity [5] because they can
leverage their exploration capabilities to discover previously
unknown attack and defense scenarios. Microsoft recently re-
leased an open-source cyber-battle simulation platform called
‘CyberBattleSim’ [6]. This helps practitioners generate sim-
ulated environments of cyber defense exercises (CDX) and
capture-the-flag (CTF) scenarios.

In this simulation-based approach, there is an RL agent that
tries to attack and take over a network, called the attacker
agent. The RL agent aims to explore different types of exploits
on vulnerabilities mentioned in the system. Although we have
provisions for generating cyber-battle scenarios, it needs a
significant amount of human effort to explicitly mention what
the results of a successful exploit will be at a given machine,
or node, in the network. An external knowledge source that
captures semantic information about different machine types,
vulnerabilities, and mitigation can greatly help in this regard.
Providing such a knowledge source as knowledge graphs is
one of our contributions in this paper.

CyberBattleSim also has naive defenders that take ran-
dom defensive actions, completely unaware of the attack-
ers’ actions. The attacker becomes more intelligent, but we
need to know how the attacker would perform under more
sophisticated defense mechanisms. The number of steps to
reach a particular goal can vary based on how well the
agents explore their corresponding environments. An external
knowledge source can also prove beneficial in this regard to
guide exploration to states that are more likely to yield better
results.

In this paper, we describe a knowledge-guided two-player
RL algorithm for cyber defenses and attacks that makes

the attacker more robust, while also greatly improving the
performance of the defender. We test this algorithm in the
CyberBattleSim environments under different scenarios. The
key contributions of this research are as follows.

• Knowledge generated CDX environments: We use
knowledge graphs to generate the environment for sim-
ulating CDXs. This greatly reduces the human effort
required to explicitly describe each vulnerability and the
effect of each exploit on them.

• Sophisticated defender: We use an RL-based defender
as opposed to a random defender and simultaneously train
the attacker and defender agents.

• Knowledge guided exploration: We use prior knowledge
to bias the exploration towards actions that are likely to
be more effective, reducing the time needed to reach a
pre-specified goal for both the attacker and defender.

We organize our paper as follows. We cover some of the
relevant work in the area in Section II. Section III describes
the key components of our system in more detail. We present
key research results in Section IV and conclude and discuss
the next steps in Section V.

II. RELATED WORK

In this section, we describe some of the relevant work in
this research area.

A. Knowledge Graphs for Cybersecurity

CKGs are widely used to represent Cyber Threat Intel-
ligence (CTI). There is a significant body of work that
concentrates on extracting CTI from open-source text and
representing them in CKGs. Usually, Natural Language Pro-
cessing methods are used to retrieve information from open-
source text such as Twitter feeds [7], Malware After Action
Reports [8, 9], and others [10]. A large number of CKG
schemas are based on STIX [11], an industry standard for
exchanging threat intelligence. Other varieties of CKGs exist
that have their own schema for representing CTI [12, 13].
CKGs have various applications for security analysts. They
have been used to detect malware activity [14], and also for
malware comparison [15]. A CKG that appropriately captures
vulnerabilities for specific machines, attack patterns used to
exploit these vulnerabilities, and the mitigation steps required
to thwart the attack is useful in this paper. Such Knowledge
graphs can also capture security-related policies[16, 17], and
even trust between different entities in the system that provide
knowledge[18, 19].

B. ML and RL in Cybersecurity

ML algorithms have been successful in the domain of
cybersecurity, and there has been considerable research in
this area. They have been particularly effective in Intrusion
Detection Systems [20], malware detection [21], and detecting
attacks in Cyber-Physical Systems [22]. However, with the
recent spike in the number of zero days in the cybersecurity
space, it has become more difficult for supervised machine
learning algorithms to detect them. Highly accurate supervised

AI models for Intrusion Detection systems are also susceptible
to adversarial attacks [23]. In order to detect unseen attacks,
there has been an increased interest in RL for cybersecurity
in recent years. RL and Deep RL have been used in other
domains, such as recommendation engines [24, 25] and sim-
ulating action games [26]. We also see applications of RL
in wireless security to prevent jamming attacks [27]. Xu et
al. [28] proposed a kernel-based RL approach using Least-
Squares Temporal-Difference (LS-TD) for intrusion detection
outperforming Hidden Markov Models. For autonomous cyber
defense generation, RL has been proven to be effective by
Ridley et al. [29]. There has also been an increased interest
in identifying zero days with RL. For example, Hu et al. [30]
proposed a method to use Attack Graphs for zero-day attack
simulation with RL. Prior knowledge has been used in RL to
find out appropriate reward functions for malware detection
[14]. However, for most cyberbattle simulations the reward
functions are straightforward. In our paper, we use a minimax
DQN [31] along with CKGs to simulate attacks and defenses.

C. Cyber Battle Simulation

A large number of cybersecurity simulation environments
currently exist for practitioners to understand cyber-attacks
and be better prepared to prevent them. A cybersecurity
simulation platform called ‘Insight’ has been proposed to
understand zero-day attacks [32]. Another simulation platform
called ‘DETERlab’ became very useful for simulating hosts
and networks [33]. Recently other simulation platforms have
also become popular, such as ‘GALAXY’ [34], ‘CANDLES’
[35], and ‘FARLAND’ [36]. ‘CANDLES’ has provisions for
simultaneously training the defender agent and the attacker
agent with genetic algorithms. Recently, another simulation
platform called ‘CybORG’ [37] claimed to have addressed
the shortcomings of other simulation platforms by adding
emulation capabilities and provisions for training a defender.
In our paper, we address the challenges of adding an adaptive
defender, and we leverage the capabilities of CKGs to generate
simulation environments easily.

III. METHODOLOGY

In this section, we describe the key components of our
system. We have a CKG that represents semantic information
about vulnerabilities and mitigation steps. This helps us gen-
erate the network graph in our simulation platform which in
turn, creates the environment for the RL agents to run. Figure
2 describes the components of our system. Next, we discuss
each component in detail.

A. Cybersecurity Knowledge Graphs

We use the schema of the CKGs that have been used to
represent STIX data[8, 9, 38]. These CKGs are populated with
information extracted from STIX [11] and contain semantic in-
formation about cyberattacks collected from multiple sources,
such as TAXII servers as well as from the CVE [39], and CWE
[40] datasets. Apart from the knowledge collected from these
semi-structured sources, we use a deep learning-based CKG

Fig. 1: Feeds are parsed to identify vulnerabilities and to
generate the network graph for the simulation.

construction pipeline [9] that collects data from unstructured
text. We further improve this CKG by parsing additional text
for vulnerabilities. We further enhance the knowledge in our
CKG by creating a function that queries the National Institute
of Standards and Technology (NIST) cybersecurity database
to obtain a list of CVEs. This function takes in a list of
operating systems and searches for known CVEs relating to a
given Operating system using NIST’s API. It compiles a list
of vulnerabilities for each operating system, stores it within a
dictionary, and returns it to the user for further use.

The entity classes are mapped to the classes in STIX
[11], which is an industry standard for exchanging threat
intelligence. Out of all the classes, we concentrate on four
specific classes: Exploit-Target, Attack-Pattern, Vulnerability,
and Course-of-Action.

Our CyberBattleSim simulation platform expects practi-
tioners to define the network, specifying each machine or
node. A few node properties are also required, along with
vulnerabilities associated with the node and the result of
a successful vulnerability exploit. The network graph also
requires information about the credentials that can be leaked
as a result of a successful exploit. The credentials can be of
a particular node or a remote node that can be accessed from
the current node.

We use the Common Vulnerability Scoring System (CVSS)
[41] to determine the amount of control an attacker may get
over a node if an exploit is successful. CVSS scores range from
1 to 10, with 10 being the highest access that can be guaranteed
by exploiting the vulnerabilities. If the CVSS score is greater
than nine, we assume that the attacker has total control over
the node, and the system-level files can reveal a remote node’s
credentials. We use this as guidance. However, the agent is not
limited by the vulnerabilities suggested by the CKG as there
may not be enough vulnerabilities to exploit with a CVSS
greater than 9. If a Linux node is accessed through ‘SSH’ from
another node, say Node X, it is discovered by the attacker if a
successful exploit of a vulnerability with a higher CVSS score
has taken course on Node X. These pieces of information are
parsed and asserted in the CKG that we use. Through simple
queries, we can retrieve this information about the network’s
nodes. We write simple rules to populate the properties of the
nodes that we define. For example, in Figure 1, we can see

how information relating to a vulnerability ‘CVE-2022-26923’
present in a particular version of Windows 10 is parsed and
asserted to the CKG. The same information is used to generate
the vulnerability properties of a node in the network. It should
be noted that these actions are suggested by the CKG to the
RL algorithm, but it does not limit the exploration of the RL
algorithm to these vulnerabilities.

B. RL Agents

The vanilla Deep Q-Network (DQN) [42] is based on a
Markov Decision Process (MDP) of the form (S,A, T ,R, γ),
where S is the state space, A is the action space, T is the
transition matrix that tells us the next state S ′ from a given
state S , R is the rewards received, and γ is the discount factor.
The Bellman equation for updating the Q values for a state
action pair (s, a) is as follows.

Q(s, a)︸ ︷︷ ︸
New Q-Value

= Q(s, a) +α∣∣∣
Learning Rate

[R(s, a)︸ ︷︷ ︸
Reward

+γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)]

In the equation above, Q values for state-action pairs
are updated with the help of the current Q values and the
discounted future rewards of the next states. The DQN for the
attacker agent is modeled based on the equation above. We
have a policy network Q(s) and a target network Tar(s). The
defender agent in CyberBattleSim performs actions randomly.
However, random actions are not sophisticated enough to
defend against an attacker agent being trained with the DQN.
These actions do not observe the state space, and they do not
have knowledge about the possible vulnerabilities that can be
exploited by the attacker. In order to train the attacker and the
defender jointly, we model a minimax-based two-player DQN
[31].

The categories of actions for the attacker are as follows.
• Local attack
• Remote attack
• Connect

We use the following action categories for the defender.
• Patch vulnerability
• Re-image machine
• Add firewall rule
• Remove firewall rule
• Shut down service/port
For the attacker, the action space is |Attacklocal| +
|Attackremote| + |Connect| + 1, where |A| represents
the cardinality. For defense, the action space is
|V ulnerabilitylocal|+ |V ulnerabilityremote|+ |Services|+
|Nodes| + 2 + 1. The actions of adding and removing
firewall rules are random, so we need to add two at the end
to represent those actions. In both cases, we add one that
symbolizes no action at a particular step.

Fig. 2: An architecture diagram specifying the different components of our model. CKG has information about vulnerabilities
of different nodes based on their operating systems and versions. This information is used to populate the node properties. This
collection of nodes and properties forms the environment. The two agents, the attacker and defender, also receive guidance
from the CKG. The joint reward is observed for both the attacker and defender from the environment after taking the actions
‘Exploit’ and ‘Defense’ respectively.

For a two-player minimax game the MDP is represented as
(S,A,B, T ,R, γ). The term B represents the defender action
space. Compared to vanilla DQN, the state transition takes
place as S′ = T (S, aattack, bdefend). The reward is observed
jointly after observing the state S′. The goal of the attacker
is to maximize the reward, and the goal of the defender is
to minimize the reward. The two-player game is successfully
able to learn two separate policies, one for the attacker π and
one for the defender ϕ, jointly.

Q(s, aattack, bdefend)←
(1− α) ·Q(s, aattack, bdefend) + α · {r(s, aattack, bdefend)

+ γ · max
π′∈P(A)

min
ϕ′∈P(B)

Ea′
attack∼π′,b′defend∼ϕ′

[Q
(
s′, a′attack, b

′
defend

)
(1)

In Equation 1, we see how Q-values are updated jointly, and
two separate policies are updated. At a particular timestep, we
sample attacker actions aattack and defender actions bdefend,
either through exploration or exploitation. We calculate the
discounted future rewards by taking the min-max of the
expected future rewards under the defender’s current policy
ϕ′ and the attacker’s current policy π′.

Tari ← {r(s, aattack, bdefend)
+ γ · max

π′∈P(A)
min

ϕ′∈P(B)
Ea′

attack∼π′,b′defend∼ϕ′

[Q
(
s′, a′attack, b

′
defend

)
(2)

The Minimax DQN has two neural networks: a policy
network Q and a target network Tar. The target value is

represented by Equation 2, whereas the policy network update
is shown in Equation 3.

Q̃k+1 ← min

n∑
i=1

[Tari −Q (Si, aattack, bdefend)]
2
. (3)

The number of actions, in this case, becomes:
|Attackeractions| · |Defenderactions|.

A sequence of features represents the state space. The
feature set has two segments: global features and node-specific
features. The global feature set indicates the attacker’s current
state and comprises counts of discovered nodes, discovered
ports, and discovered credentials. Node-specific features in-
clude the success and failure counts of attempted exploits at
each node. We also include three additional features. The first
is an array of services that are active at each node. This is very
important because the defender is able to shut down services,
and the attacker should be aware of it through the features
representing the state. The other features are also specific to
defender actions, such as the number of vulnerabilities active
in the state, and the number of firewall rules that allow traffic
to each node. These additional features are included so that
both the attacker and the defender are aware of each other’s
actions. The additional features manifest the actions of the
defender to ensure that the attacker is still at an advantage.

C. Guiding Agents

DQN algorithms create an experiential replay buffer with
a collection of sample points that are individual entries of
the MDP defined in Section III-B. Each data point of the
MDP (S,A,B, T ,R, γ) is achieved through exploring attacker

actions a ∈ A and defender actions b ∈ B. We use the
standard approach of ϵ-greedy action selection to generate
our experiential replay buffer that forms our training set for
training the DQN. In ϵ-greedy action selection, an agent
explores more at the beginning of an episode and begins to
exploit what it has learned more as the number of iterations
increases. The defender can use information from our CKGs
to guide its exploration of actions more favorable to defenders.

C ← KG(V uln = X,Node = N)
if C ̸= ∅ then
b∗ = minb D[b− C]
Generate(Pexp(b))

else
Generate uniform distribution

end if
Initialize(Q, S)
while done ̸= True do

if x < ϵ then
b∗ ← Sample(Pexp(b))
Shuffle(b)∀b ̸= b∗
b← b∗
Dilate(Pexp)
a← Explore(a)

else
b = minb maxa(Q(s, a, b))
a = maxa minb(Q(s, a, b))

end if
S′, R← (S, a, b)
Tari = R+ γ ∗maxa′ minb′ [Q(S′, a′, b′)]
loss = [Tari −Q(S, a, b)]2

Q∗ ← minQ(loss)
end while
return Q∗
In order to keep track of all relevant CVEs, we parsed a

relevant data set containing a large amount of them. The data
set contains valuable identifying information for CV, but what
we want for a given CVE is specific courses of action for it
and what each action mitigates. To parse this from a large
file of 813 megabytes, we had to construct an algorithm that
singles out courses of action and mitigation and stores them
in pairs. In the file, the course of action would often function
as a header with other identifying information about the CVE
stored below it. One part of this identifying information is the
other piece of information we are looking for, the mitigation
section. A word-matching algorithm was employed to pull out
the specific lines containing the course of action and mitigation
portion, they were stored in a python dictionary with the course
of action as the key and the mitigation as the value.

Once we parse the CKG to get the (Course-of-Action,
Attack-Pattern) pairs and we find the CVEs associated with
the Course-of-Action, we perform a simple word matching to
map the Course-of-Action with the defender actions of our
cyber battle environment.

Let us consider that the best-matched defender action is b∗.
Instead of randomly sampling from a uniform distribution of

all the action sequences, we use a normal distribution as shown
in Equation 4.

Pexp(b) =
1

σ
√
2π

exp

(
−1

2

(
b− b∗
σ

)2)
(4)

We first use an encoder to convert the defender actions to
integer values. We set the mean of those integer values as
b∗. Initially, we set a low value for σ, so that we aggressively
explore the favorable actions. As training progresses, we dilate
the distribution by increasing the value of σ so that other
actions are also explored. We also shuffle the ‘unfavored’
actions, to free them from the bias that can be imposed on
them if they are numerically close to b*. This leads to a
CKG-guided exploration, that helps in discovering valuable
states early in the training process. We summarize our entire
algorithm in III-C.

IV. EXPERIMENTAL RESULTS

In this section, we discuss our experimental settings and
findings. We perform two main types of experiments. We cre-
ate a knowledge-guided minimax DQN to model a two-player
game for cyber battle scenarios. Since CyberBattleSim already
has an inbuilt DQN, we want to compare the performance of
the vanilla DQN with our version. Secondly, we observe how
knowledge guidance affects the performance of the respective
algorithms.

In the first experiment, we created a baseline DQN model
and a CKG-guided minimax DQN. The baseline DQN has
a policy network and a target network. Each of these neural
networks is a five-layered neural network with ReLU acti-
vations. We generate the simulation networks using CKGs
as described in Section III-A. Our simulated network has 15
nodes, 7 of them having Windows operating systems of various
versions and 8 of them having different versions of Linux. We
run experiments for 12 episodes, and [700,800] iterations for
each episode. We observe the performance of the DQN model
with the CKG-guided minimax DQN model as represented in
Figure 3. The cumulative attacker reward reduces greatly in
the CKG-guided minimax DQN. The baseline DQN model
does not have a defender, so the attacker is able to reach
the attacker’s goal unencumbered by the defender’s actions.
Hence, in the first case, the baseline DQN receives a much
higher cumulative reward.

When we compare it with our algorithm, we see that the
attacker’s reward is reduced significantly. The attacker reward
also gets reduced in later episodes. This can be attributed to
the rules of the reward scores in CyberBattleSim. For example,
an unsuccessful attempt at an exploit carries a very high
negative reward (-50) for the attacker. In later episodes, with
significantly higher exploitation, the defender takes appropri-
ate reactive measures against an attacker’s exploit resulting in
the failure of the attack, which makes it even more difficult
for the attacker to obtain positive rewards. The cumulative
attacker rewards for all iteration ranges from 8.82 at iteration
0 to 1707.7 at iteration 700 in the DQN with the RL-based

Fig. 3: Comparison of the cumulative attacker rewards for two scenarios. On the left we see the cumulative attacker rewards
vs iterations for minimax DQN (DQN with RL defender) compared with a DQN with no defender. To the right we see the
cumulative attacker rewards of a minimax DQN compared with a Random Agent

Fig. 4: Diagram showing the number of steps required to reach
a goal at each episode with and without knowledge guidance

defender (minimax DQN), and it ranges from 12.2 to 3608.4
in the DQN with no defender.

However, our hypothesis was that with more effective de-
fensive measures the attacker would also learn innovative ways
to launch exploits. In order to check if the attacker agent has
improved its performance, we compare the cumulative attack
rewards of our CKG-guided minimax DQN with a Random
agent. Figure 3 shows that our model has better attack rewards
than the Random agent.

We also want to see how KG guidance has helped in
reducing the time required to reach the end of an episode.
An episode ends when either the attacker or the defender
has reached their respective goals. The defender’s goal is to
evict the attacker from the network, and the attacker’s goal
is to own a certain percentage of the network. In Figure 4,
we see that the DQN with CKG guidance reaches the goal
faster at the beginning and at the end of the episodes. This
can be attributed to our normal distribution based Exploration

Fig. 5: Diagram showing the percentage of network available
after defender agents perform actions

distribution Pexp(b) that helps in identifying favorable actions.
It should be noted that after a certain number of iterations

the normal distribution is relaxed, which makes other actions
more likely to be explored. We see in one of the iterations
(iteration 2) that the CKG guidance has helped the defender
reach its goal faster (∼720 iterations). Towards the end, we
see that in some iterations, DQN without CKG guidance has
reached its goal faster. This is due to the CKG guidance
only being used in the exploration phase. It does not carry
a significant advantage during the exploitation phase, making
it possible for DQNs without KG guidance to reach the goal
faster.

CyberBattleSim also comes with a Defender that performs
actions at random. We observe that the cumulative rewards
for the attacker with the RL-based defender (minimax DQN)
is similar to the cumulative attacker rewards of a DQN with
a random defender. However, the random defender performs

multiple actions in an iteration to bring down the attacker
reward which drastically brings down the available network.
We see the difference between the available network when a
DQN with RL defender (minimax DQN) is performing actions
and the available network when the DQN is against a random
defender in Figure 5. This shows that the minimax DQN with
CKG guidance takes accurate actions to bring down attacker
rewards while keeping the network availability high. This
is particularly important in the real-world scenario because
automated defense mechanisms can render the network useless
with the help of defensive actions. With the help of CKGs, we
are able to keep most of the available network in place, while
reducing the time required to train the RL algorithms.

V. CONCLUSION AND FUTURE WORK

Our system based on CyberBattleSim uses a Cybersecurity
Knowledge Graph (CKG) guided minimax Deep Q-Network
(DQN) designed explicitly for cyber defense exercise (CDX)
scenarios. The DQN reaches its goals faster and reduces the
cumulative reward for the attacker because of our more robust
defender. We also improve the system by including an RL-
based defender. CKGs further improve the system because we
include a method to incorporate their vulnerability informa-
tion in the network graph properties. This also significantly
reduces the human efforts required to describe a network for
simulation.

The trained DQN can launch exploits in order to bypass the
defender agent. The defender agent also gets simultaneously
trained by the actions of the attacker agent and generates
suitable actions for defense. With further improvement in
attack simulations, it will be possible to uncover novel or zero-
days through our model. In ongoing work, we are evaluating
the performance of our models on real CDX datasets. Our
knowledge graph-guided minimax DQN can predict how de-
fense and attack teams perform in a CDX event which can
then be compared to the actions of the human participants
of the respective events. We are also extending this work of
knowledge-guided exploration with more sophisticated meth-
ods to map CKG-suggested actions with RL actions.

ACKNOWLEDGEMENTS

This work was supported in part by funding from the
National Security Agency and by National Science Foundation
award number 2114892.

REFERENCES

[1] Cybersecurity News. Why signature-based detec-
tion struggles to keep up with the new attack land-
scape? http://cybersecuritynews.com/signature-based-
detection/, February 2022.

[2] Mandiant. Zero tolerance: More zero-
days exploited in 2021 than ever before.
http://mandiant.com/resources/zero-days-exploited-2021,
April 2022.

[3] Forbes. Comparing legacy rules-based cyber-
security platforms and AI-based platforms.

http://forbes.com/sites/forbestechcouncil/2022/02/14/
comparing-legacy-rules-based-cybersecurity-platforms-
and-ai-based-platforms, February 2022.

[4] Dan Goodin. Organizations are spending
billions on malware defense that’s easy to
bypass. https://arstechnica.com/information-
technology/2022/08/newfangled-edr-malware-detection-
generates-billions-but-is-easy-to-bypass/, August 2022.

[5] Thanh Thi Nguyen and Vijay Janapa Reddi. Deep rein-
forcement learning for cyber security. IEEE Transactions
on Neural Networks and Learning Systems, 2019.

[6] Microsoft. CyberBattleSim. https://github.com/micro-
soft/CyberBattleSim, April 2021.

[7] Sudip Mittal, Prajit Das, Varish Mulwad, Anupam Joshi,
and Tim Finin. Cybertwitter: Using twitter to generate
alerts for cybersecurity threats and vulnerabilities. In
Int. Conf. on Advances in Social Networks Analysis and
Mining. IEEE, 2016.

[8] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam
Joshi, James Holt, and Richard Zak. RelExt: Relation ex-
traction using deep learning approaches for cybersecurity
knowledge graph improvement. IEEE/ACM Int. Conf. on
Advances in Social Networks Analysis and Mining, 2019.

[9] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin,
James Holt, and Richard Zak. Creating cybersecurity
knowledge graphs from malware after action reports.
IEEE Access, 2020.

[10] Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking,
fast and slow: Combining vector spaces and knowledge
graphs. arXiv preprint arXiv:1708.03310, 2017.

[11] OASIS Open. Oasis cyber threat intelligence (CTI).
http://oasis-open.github.io/cti-documentation, 2021.

[12] Sharmishtha Dutta, Nidhi Rastogi, Destin Yee, Chuqiao
Gu, and Qicheng Ma. Malware knowledge graph gener-
ation. arXiv preprint arXiv:2102.05583, 2021.

[13] Nidhi Rastogi, Sharmishtha Dutta, Mohammed J Zaki,
Alex Gittens, and Charu Aggarwal. Malont: An on-
tology for malware threat intelligence. In International
Workshop on Deployable Machine Learning for Security
Defense, pages 28–44. Springer, 2020.

[14] Aritran Piplai, Priyanka Ranade, Anantaa Kotal, Sudip
Mittal, Sandeep Nair Narayanan, and Anupam Joshi.
Using knowledge graphs and reinforcement learning for
malware analysis. In International Conference on Big
Data, pages 2626–2633. IEEE, 2020.

[15] Jing Liu, Yuan Wang, and Yongjun Wang. The similarity
analysis of malicious software. In Int. Conf. on Data
Science in Cyberspace. IEEE, 2016.

[16] Anand Patwardhan, Vlad Korolev, Lalana Kagal, and
Anupam Joshi. Enforcing policies in pervasive environ-
ments. In Int. Conf. on Mobile and Ubiquitous Systems:
Networking and Services, pages 299–308. IEEE, 2004.

[17] Nitin Kumar Sharma and Anupam Joshi. Representing
attribute based access control policies in owl. In 2016
IEEE Tenth International Conference on Semantic Com-
puting (ICSC), pages 333–336. IEEE, 2016.

[18] Tim Finin and Anupam Joshi. Agents, trust, and informa-
tion access on the semantic web. ACM SIGMOD Record,
31(4):30–35, 2002.

[19] Sai Sree Laya Chukkapalli, Anupam Joshi, Tim Finin,
Robert F Erbacher, et al. Capd: A context-aware, policy-
driven framework for secure and resilient iobt operations.
Artificial Intelligence and Machine Learning for Multi-
Domain Operations Applications IV, SPIE Defense+
Commercial Sensing, 2022.

[20] Kelton AP da Costa, João P Papa, Celso O Lisboa,
Roberto Munoz, and Victor Hugo C de Albuquerque.
Internet of things: A survey on machine learning-based
intrusion detection approaches. Computer Networks,
151:147–157, 2019.

[21] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni.
Survey of machine learning techniques for malware anal-
ysis. Computers & Security, 81:123–147, 2019.

[22] Derui Ding, Qing-Long Han, Yang Xiang, Xiaohua Ge,
and Xian-Ming Zhang. A survey on security control and
attack detection for industrial cyber-physical systems.
Neurocomputing, 275:1674–1683, 2018.

[23] Aritran Piplai, Sai Sree Laya Chukkapalli, and Anupam
Joshi. Nattack! adversarial attacks to bypass a GAN
based classifier trained to detect network intrusion. In
Intl. Conf. on Big Data Security on Cloud, Intl. Conf. on
High Performance and Smart Computing, Intl. Conf. on
Intelligent Data and Security, pages 49–54. IEEE, 2020.

[24] Wenyi Xu, Xiaofeng Gao, Yin Sheng, and Guihai Chen.
Recommendation system with reasoning path based on
DQN and knowledge graph. In 15th International
Conference on Ubiquitous Information Management and
Communication. IEEE, 2021.

[25] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan
Qi, and Le Song. Generative adversarial user model for
reinforcement learning based recommendation system. In
Int. Conference on Machine Learning, pages 1052–1061.
PMLR, 2019.

[26] Patrick Phillips. Reinforcement learning in two player
zero sum simultaneous action games. arXiv preprint
arXiv:2110.04835, 2021.

[27] Liang Xiao, Xiaoyue Wan, Canhuang Dai, Xiaojiang Du,
Xiang Chen, and Mohsen Guizani. Security in mobile
edge caching with reinforcement learning. IEEE Wireless
Communications, 25(3):116–122, 2018.

[28] Xin Xu and Yirong Luo. A kernel-based reinforcement
learning approach to dynamic behavior modeling of in-
trusion detection. In International Symposium on Neural
Networks, pages 455–464. Springer, 2007.

[29] Ahmad Ridley. Machine learning for autonomous cyber
defense. The Next Wave, 22(1):7–14, 2018.

[30] Zhisheng Hu, Ping Chen, Minghui Zhu, and Peng
Liu. Reinforcement learning for adaptive cyber defense
against zero-day attacks. In Adversarial and Uncertain
Reasoning for Adaptive Cyber Defense, pages 54–93.
Springer, 2019.

[31] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran

Yang. A theoretical analysis of deep q-learning. In
Learning for Dynamics and Control, pages 486–489.
PMLR, 2020.

[32] Ariel Futoransky, Fernando Miranda, José Orlicki, and
Carlos Sarraute. Simulating cyber-attacks for fun and
profit. arXiv preprint arXiv:1006.1919, 2010.

[33] Jelena Mirkovic and Terry Benzel. Teaching cybersecu-
rity with deterlab. IEEE Security & Privacy, 10(1):73–76,
2012.

[34] Kevin Schoonover, Eric Michalak, Sean Harris, Adam
Gausmann, Hannah Reinbolt, Daniel R Tauritz, Chris
Rawlings, and Aaron Scott Pope. Galaxy: a network
emulation framework for cybersecurity. In 11th USENIX
Workshop on Cyber Security Experimentation and Test
(CSET 18), 2018.

[35] George Rush, Daniel R Tauritz, and Alexander D Kent.
Coevolutionary agent-based network defense lightweight
event system (candles). In Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pages 859–866, 2015.

[36] Andres Molina-Markham, Ransom K Winder, and Ah-
mad Ridley. Network defense is not a game. arXiv
preprint arXiv:2104.10262, 2021.

[37] Maxwell Standen, Martin Lucas, David Bowman, Toby J
Richer, Junae Kim, and Damian Marriott. Cyborg: A gym
for the development of autonomous cyber agents. arXiv
preprint arXiv:2108.09118, 2021.

[38] Zareen Syed, Ankur Padia, Tim Finin, Lisa Mathews, and
Anupam Joshi. UCO: A unified cybersecurity ontology.
In Artificial Intelligence for Cyber Security: Technical
Report WS-16-03. AAAI, 2016.

[39] MITRE. CVELIST project. http://cybersecuritynews.
com/signature-based-detection/, May 2013.

[40] Robert A. Martin and Sean Barnum. Common weak-
ness enumeration (CWE) status update. Ada Letters,
XXVIII(1):88–91, April 2008.

[41] NIST. Common vulnerability scoring system.
https://nvd.nist.gov/vuln-metrics/cvss.

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, and
Georg Ostrovski. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529–533, 2015.

