Mechatronics Education- Current and Future Trends

Khalid Tantawi
Department of Engineering
Management and Technology
Universoty of Tennessee at
Chattanooga
Chattanooga, TN
khalid-tantawi@utc.edu

Nancy Wilson
Department of Career
Technical Education
Lawson State Community
College
Bessemer, AL

Ahad Nasab
Department of Engineering
Management and Technology
University of Tennessee at
Chattanooga
Chattanooga, TN

Alisa Henrie
Department of Engineering
Technology
University of Alabama in
Huntsville
Huntsville, AL

Lyn Potter

Departmentof Engineering and
Information Technologies
Chattanooga State Community
College
Chattanooga, TN

Arif Sirinterlikci School of Engineering, Mathematics, and Science Robert Morris University Moon TWP., PA Omar Tantawi Department of Career Readiness Motlow State Community College Smyrna, TN

Erkan Kaplanoglu
Department of Engineering
Management and Technology
University of Tennessee at
Chattanooga
Chattanooga, TN

Abstract—Mechatronics for Technologists and Technicians was recognized as an occupation by the U.S. Department of Labor in 2019 and was given the code 49-2094.00. In 2022 the occupation was migrated to the code 17-3024.00 and titled "Electro-Mechanical and Mechatronics Technologists and Technicians". Several organizations offer certifications in the mechatronics occupation that we list here. The major challenge that faces mechatronics education is the decline in the job market that is projected to stand at -2 % over the next decade for holders of bachelor's or lower degrees. This is attributed to the post-pandemic remote work trend and the hard-hit manufacturing industry during the pandemic. This decline is coupled with an aggressive growth in the job market for holders of graduate degrees (standing at over 11% growth) due to the growing demand in research and innovation and engineering training.

Keywords—Mechatronics, Education, Engineering Technology

I. INTRODUCTION

The term "Mechatronics" was first minted in the early 1970's by Tetsuro Mori at Yaskawa Electric Corporation to describe the synergy through integrating electrical and mechanical systems [1] [2]. In 1982, Yaskawa Electric claimed trademark rights to the name [3]. Nowadays, the term is used to point to systems in which electrical, mechanical, computer, and control systems are integrated together, and encompasses applications that range from micro-mechatronic sensors and actuators, also referred to as Micro-Electro-Mechanical Systems (MEMS) [4] to service and industrial robotics [5].

In the last decade, advanced manufacturing received a surge in educational institutions after the U.S. administration identified it as one of the areas needed for economic growth following the launch of the Advanced Manufacturing Partnership in 2011 [6] [7]. Only eight years later did the occupation "Mechatronics Technician" get approved as an occupation by the U.S. Department of Labor- Employment and Training Administration (DOL-ETA), in April 2019 [8], and was given the occupational code (O*NET-SOC Code 49-

2094.00) [9]. The DoL also referred to the Mechatronics Technician occupation as "Electrical and Electronic Repairer - Commercial and Industrial Equipment". In 2022, the "Mechatronics" occupation was migrated to the SOC code 17-3024.00 and was titled "Electro-Mechanical and Mechatronics Technologists and Technicians". The occupation Mechatronics Engineering was added a few years earlier and was given the SOC code 17-2199.05 [10].

Prior to that, in 2015, the DOL-ETA worked with community colleges and the Berks County, and Lancaster County, PA Investment Boards to define the career pathways and skill standards of mechatronics. The work was sponsored by the Packaging Machinery Manufacturing Institute (PMMI). The results of the work were published in the form of a competency model. The competencies start at the base with the general ones, and become occupationally-specific as we move up the model and make up a total of nine tiers [7]. The model was updated in 2017, to include safety-related competency skills. A redrawing of the DOL competency model is shown in Fig. 1.

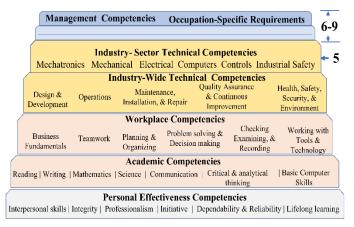


Fig. 1. The 2017 Department of Labor- Employment and Training Administration Mechatronics Competency Model with the recognized competencies.

The tier of interest is tier 5 "Industry-Wide Technical Competencies". Table I below shows the technical content area under each competency in tier 5 in the Mechatronics Competency Model of 2017.

TABLE I. MECHATRONICS TECHNICAL COMPETENCIES AS IDENTIFIED BY THE DOL-ETA:

Competency	Technical Content Areas under the competency		
1. Mechatronics	Project planning & execution; Codes and standards		
2. Mechanical	Mechanical components; Measurements; Complex Components; Lubrication; Pneumatics; Hydraulics; Advanced Techniques		
3. Electrical	AC/DC Circuitry: Circuits, transformers, protection, 3 phase; Electrical components: Transformers, circuit breakers, fuses, sensors, and others; logic Gates; Wiring: color coding, electrical panels, labeling; Input/ output devices; Power distribution, conductors, overcurrent protection; Electric Machines; Schematic symbols		
4. Computers	Installation and maintenance of hardware (Memory, Buses, using TCP/IP, internet connections); Programmable Logic Controllers;		
5. Controls	 a. Basic Process Controls b. Controllers: manual and PID, Tuning c. Batch Control d. Control System Type: process controller, PLC control, SCADA e. Control system documentation f. Control system documentation: P& ID, Process flow, standards g. Motion control: Servo and Stepper motors h. Robotics i. System Integration 		
6. Industrial Safety	a. Alarm management b. Reliability c. Machine and Process Guarding		

Although significant effort was put into developing very descriptive competencies of the occupation, the model left room for institutions to include other competencies that are tailored for local industries. For example, the Mechatronics Diploma programs at the Tennessee Colleges of Applied Technology include courses in welding and CNC milling and turning operations.

However, in some areas ambiguities could arise. For example, the DOL-ETA model did not point to any competencies in solid state devices, despite that the Mechatronics Technician occupation and the "Electrical and Electronic repairer- Commercial and Industrial Equipment" occupations shared the same number. In addition, it did not include any competencies in embedded systems nor milling operations. These competencies are considered core 2-year

educational competencies by the widely-adopted curriculum of the Siemens Professional Education in the Siemens Technik Akademie [11].

Furthermore, the DOL-ETA model left room for more advanced competencies in tiers 6-9, but the door was open for specifications. For example the model did not list knowledge of Manufacturing Processes as a competency, but it is a competency commonly adopted in 4-year mechatronics technology programs such as in Pennsylvania Western University (formerly known as California University of Pennsylvania) [12], Greenville Technical College, University of Tennessee at Chattanooga [13], and Austin Peay State University [14].

In addition to the DOL, many state and federal agencies contributed significantly in the development of mechatronics educational and training programs. Table II below lists some of the projects and institutions that were funded by the National Science Foundation that contributed to promoting mechatronics education in their respective communities.

TABLE II. SOME FEDERALLY-FUNDED PROJECTS THAT RESULTED IN THE PROMOTION OF MECHATRONICS EDUCATION IN THEIR RESPECTIVE COMMUNITIES.

NSF Award Number	Project Title	Sponsor Institution/State	Year
1204751	Florida's Advanced Technological Education (FLATE) Center of Excellence	Hillsborough Community College, FL	2012
1400571	Partnership for Advanced Career Education in Mechatronics Engineering	Virginia Western, VA	2014
1304835	Mechatronics Engineering Technology Distance Learning	South Central College, MN	2013
1501854	Advanced Manufacturing Technicians: Education for an Emerging Workforce	Hagerstown Community College, MD	2016
1601544	Mechatronics with Instrumentation and Controls	Central Community College, NE	2016
1601168	Central Virginia Advanced Manufacturing Initiative	Piedmont Virginia Community College	2016

II. CURRENTLY AVAILABLE CERTIFICATIONS THAT TARGET MECHATRONICS EDUCATION

There are several major certifications, that have become widely accepted in mechatronics (Siemens Mechatronic Systems Certification (SMSCP), the Packaging and Processing Technologies Association (PMMI), the National Coalition of Certification Centers (NC3), and the recently developed certifications of the Smart Automation Certification Alliance (SACA). Table III summarizes main strengths, features, and shortcomings of three of these certifications.

The Siemens Mechatronic Systems Technician certification is curricular-based with focus on system applications and offered in multi-levels upon successfully passing computer-based examinations. The main strength of this certification lies in its level 1 certification, which links academic courses, with onground skills and applications through a systems approach troubleshooting training. The PMMI certification is an occupation-based certification and offered upon completion of laboratory-based and paper-based examinations. In addition, both SACA and PMMI are non-profit organizations. The SACA certification started as a volunteer-based and is more oriented towards Industry 4.0 technologies, and certifications are offered upon successfully completing computer-based examinations in specialized areas such as Internet of Things (IoT) [15], Smart Manufacturing [16], and Industrial Robotics [5]. The National Coalition Certification Centers (NC3) administers a fourth mechatronics certification that is gaining market share in the Tier 5 competency area of the DOL model. NC3 offers individual certifications in three levels per subset of mechatronics, and climax into one overall certification. Table III compares three certifications in terms of competencies. Due to space limitation, only three certifications are listed in Table III.

Therefore, of the three certification organizations, SACA certifications are application-oriented and fit with tiers 6 to 9 of the DOL model, while the Siemens and PMMI certifications cover fundamental competency areas in Tier 5 of the DOL model of the occupation.

TABLE III. ALIGNMENT OF THE SMSCP, SACA, AND PMMI CERTIFICATIONS WITH THE MECHATRONICS COMPETENCIES RECOGNIZED BY THE U.S. DEPARTMENT OF LABOR.

Alignment to DOL-	Siemens	Smart	Packaging and
ETA Technical	Mechatronic	Automation	Processing Tech.
Competencies:	Systems	Certification	Association (PMMI)
•	Certification	Alliance	, ,
Mechatronics:			
Project Planning:	Yes	Not known	Not known
Symbols	Partially aligns	Not known	Partially aligns
Mechanical:			
- Mechanical	Yes	Not known	Yes
Components			
- Measurements	Yes	Not known	Yes
- Complex	Yes	Not known	Yes
Components			
 Lubrication 	Not known	Not known	Yes
- Pneumatics,	Yes	Yes	Yes
Hydraulics,			
Advanced			
techniques			
• Electrical:			-
- AC/DC,	Yes	Partially	Not known
electrical		aligns	
components,			
logic gates			
- Wiring	Not known	Not known	Not known
- Power	Not known	Not known	Not known
Distribution	37	NI 41	37
- Electric	Yes	Not known	Yes
machines, schematic			
symbols			
• Computers: PC,	Yes	Yes	Yes
• Computers: PC, PLCs	1 68	1 68	1 68
• Controls			
Process control:	Not known	Not known	Not known

System documentation:		Not known	Not known
Motion Control: Motors	Partial	Partial	Partial
Robotics	Not known	Advanced	Not known
Industrial Safety Alarm management, Dalich life.	Not known	Not known	Not known
Reliability - Machine Guarding	Not known	Not known	Not known
- Manufacturing Safety	Not known	Not known	Not known
- System Troubleshooting	Yes	Not known	Not known
Industry 4.0 competencies			
- Additive Manufacturing	Not known	Not known	Not known
- Machine Vision	Not known	Yes	Not known
- Internet of Things (IoT)	Not known	Yes	Not known
- Intelligent (Collaborative) Systems	Not known	Not known	Not known

The features of each of the three certification organizations are shown in Table IV.

TABLE IV. COMPARISON OF THE THREE MAIN MECHATRONICS-RELATED CERTIFICATIONS.

	Siemens Mechatronic Systems Certification	Smart Automation Certification Alliance (SACA)	Association for Packaging and Processing Technologies (PMMI)
Non/For- Profit	For-Profit	Non-Profit	Non-Profit
Features	Covers Tier 5 competencies in the DOL model Certification examinations are computer-based in three levels. Comprehensive Certification	Covers primarily Tiers 6-9 in the DOL model Certifications focus on latest Industry 4.0 technologies Application- oriented certifications	Covers core Tier 5 competencies Examinations map to clearly stated competencies Thorough examinations that include Laboratory-based assessments

III. JOB MARKET AND GROWTH TRENDS

According to the O*NET database system that is maintained by the U.S. Department of Labor- Employment and Training Administration, the occupation of Mechatronics Technologists and Technicians (17-3024.00) exhibited a median wage of \$60,360 annually, and the top industries at which job placement takes place are the Manufacturing industry and the Professional, Scientific, and Technical Services. The projected growth rate is -2 % or lower in the next decade, which coincides with other engineering and engineering technology occupations, particularly in the post-pandemic era. Table V

shows the job growth projections for the decade 2021-2031 for different occupations.

TABLE V. PROJECTED GROWTH RATES FOR DIFFERENT OCCUPATIONS.

Occupation	O*NET number	Projected Growth
Mechatronics Technician &	17-3024.00	-2 %
Specialist		
Mechatronics Engineers	17-2199.05	0 % (no change)
Mechanical Engineers	17-2141.00	2 % (Below Average)
Electrical Engineers	17-2071.00	2 % (Below Average)
Computer Network Support	15-1231.00	4 % to 7 % (Average)
Specialists		
Engineering Teachers,	25-1032.00	11 % or higher (Much
Postsecondary		faster than average)
Lawyers	23-1011.00	8 % to 10 %
Clinical Nurse Specialists	29-1141.04	4 % to 7 %

IV. RESULTS AND DISCUSSION

A. Mechatronics Future Growth:

From table V, the projected negative and lower than average growth rates are common across engineering and engineering technology occupations that require Bachelor's or lower degrees, but remarkably strong for occupations that require a postsecondary engineering education (the Engineering Teachers Occupation). This is attributed to two factors: the first one being the near saturation in the job market for Bachelor's or lower degrees, and the increased demand for research and innovation, and high-level engineering training. Historically, the United States job market depended on foreign talent to cover the gap in research and innovation and associated engineering training.

The second contributing factor is the post-pandemic "New Normal" trend of remote work that caused significant changes in occupational profiles. The recovery process from the CoVid-19 Pandemic has taken two diverging routes: the "Back to Normal" and the "New Normal" routes [17]. Due to their hands-on nature, the engineering and engineering technology fields had adapted conservatively to the "New Normal" trend. In addition to that, the hard-hit manufacturing industry due to the pandemic has a long-term effect on the job placement of technicians and engineers that is detailed in the next section.

The results also indicate that future trends will shift towards individuals with master's degrees or higher, and that young engineers and technologists will eventually have to pursue graduate degrees to secure spots in the highly competitive job market.

B. Impact of CoVid-19

The CoVid-19 pandemic affected almost every aspect of the human civilization. It resulted in severe supply chain disruptions and exposed the need to develop self-sufficiency on the regional and national levels [18] [19]. One of the results of the pandemic was the emergence of virtual classrooms,

scientific conferences and workshops, and even engineering labs that are controlled remotely [20]. While many fields may benefit from the increased demand for remote learning, in other fields of science, the trend in remote learning may be an impediment. Mechatronics education is one of the fields in which typically hands-on engineering and technology practices are required for meeting the learning outcomes [21]. One way to counter that is the use of micro-labs that can be sent to students, or web-connected equipment to microcontrollers, and advanced software such as NITM LabVIEW. In another approach, an onsite operator assists in carrying out the lab experiments that require specimen replacements, or part replacements, and data collections for each student [21]. However, in all these approaches, cost may be considerably higher due to the need of specialized equipment and the required number of physical stations that are needed to satisfy the number of students, or a dedicated lab operator over an extended period of time. Digital twinning stands out as the only method that can effectively assist in remote training with virtual hands-on practice that allows the user to interact with a virtual model in real time that is identical to the real physical system [22].

On the long term, the pandemic had its impact on the Mechatronics field as in other fields, with increased demand for technologies that can assist in contactless tasks [19] [23], such as the utilization of service robotics in contactless material handling in non-industrial settings, as well as the demand for additive manufacturing that skyrocketed during the pandemic to counter supply chain disruptions and increase self-sufficiency [24].

V. CONCLUSION

The Mechatronics Technologist and Technician occupation was formalized as an occupation by the DoL-ETA in 2019, and finalized in 2022 under the occupation number 17-3024.00 as "Electro-Mechanical and Mechatronics Technologists and Technicians". Multiple organizations offer certifications for Mechatronics graduates that range from occupation-based to curricular-based and that assess graduates in the competencies in tiers five and higher in the DoL Mechatronics occupation model. The major future challenge that faces mechatronics education is the decline in the job market that is projected to stand at -2 % over the next decade for holders of bachelor's or lower degrees. This decline is coupled with an aggressive growth in the job market for holders of graduate degrees (standing at over 11% growth). This significant difference is due to the growing gap between the demand for personnel in the research and development area, and associated engineering training, as well as the oversaturation of labor force at the process engineering and maintenance levels.

ACKNOWLEDGMENT

This project is funded by the National Science Foundation award numbers: 1801120, 2000776, 2000651, 2000682, and 2000685.

REFERENCES

- D. Bradley and D. W. Russell, Mechatronics in action Case Studies in Mechatronics - Applications and Education, Springer, 2010.
- [2] G. Marzano, A. Martinovs and S. Usca, "Mechatronics Education: Needs and Challenges," *Proceedings of the 12th International Scientific and Practical Conference*, vol. 11, pp. 214-217, 2019.
- [3] S. Stankovski, G. Ostojić, X. Zhang, I. Baranovski, S. Tegeltija and S. Horvat, "Mechatronics, Identification Tehnology, Industry 4.0 and Education," in 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 2019.
- [4] V. Bedekar and K. Tantawi, "MEMS Sensors and Actuators," in Advanced Mechatronics and MEMS Devices II, Springer, 2017, pp. 195-216
- [5] K. Tantawi, A. Sokolov and O. Tantawi, "Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration," in 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), Bangkok, Thailand, 2019.
- [6] W. H. O. o. t. P. Secretary, "President Obama Launches Advanced Manufacturing Partnership," The White House, Washington, DC, 2011.
- [7] V. M. Jovanovic, P. J. Katsioloudis, M. Tomovic and T. B. Stout, "Competencies Related to Marine Mechatronics Education," *Engineering Technology Faculty Publications*, vol. 82, 2016.
- [8] O. o. Apprenticeship, "Bulletin 2019-48 Revised Apprenticeable Occupation: Mechatronics," Department of Labor- Employment and Training Agency, Washington, DC, 2019.
- [9] U. D. o. Labor, "Available Occupations," Employment and Training Agency, 2020. [Online]. Available: https://www.dol.gov/agencies/eta/apprenticeship/occupations.
- [10] M. Barger and R. Gilbert, "Growth of 2-Year programs for Mechatronics," in ASEE Southeastern Section Conference, 2018.
- [11] Siemens Professional Education, "Education is the Future," Siemens Professional Education, 2013.
- [12] California University of Pennsylvania, "Mechatronics Engineering Technology -Curriculum," 2020. [Online]. Available: https://www.calu.edu/academics/undergraduate/bachelors/mechatronics-engineering-technology/index.aspx.
- [13] University of Tennessee at Chattanooga, "Mechatronics Engineering Technology B.A.S.," UTC Course Catalog, 2023.

- [14] Austin Peay State University, "Mechatronics Engineering Technology Course Catalog," 2020. [Online]. Available: http://catalog.apsu.edu/preview_program.php?catoid=32&poid=6587.
- [15] S. Terry, H. Lu, I. Fidan, Y. Zhang, K. Tantawi, T. Guo and B. Asiabanpour, "The Influence of Smart Manufacturing Towards Energy Conservation: A Review," *Technologies*, vol. 8, p. 31, 2020.
- [16] K. Tantawi, I. Fidan and A. Tantawy, "Status of Smart Manufacturing in the United States," in 2019 IEEE SoutheastCon, Huntsville, AL, 2019.
- [17] N. Bellini, ""Back to Normal" vs. "New Normal":the Post-Pandemic Recovery of Italian Tourism," SYMPHONYA Emerging Issues in Management, vol. 2, pp. 26-37, 2021.
- [18] K. Tantawi, J. Ashcroft, M. Cossette, G. Kepner and J. Friedman, "Investigation of the Post-Pandemic STEM Education (STEM 3.0)," *Journal of Advanced Technological Education*, vol. 1, no. 1, 2022.
- [19] N. Ayati, P. Saiyarsarai and S. Nikfar, "Short and long term impacts of COVID-19 on the pharmaceutical sector," DARU Journal of Pharmaceutical Sciences, 2020.
- [20] K. Tantawi, I. Fidan, G. Chitiyo and M. Cossette, "Offering Hands-on Manufacturing Workshops Through Distance Learning," in ASEE Annual Conference, Virtual, 2021.
- [21] S. Lopez, N. G. P. Pesci and D. Quintero, "Adapting through a Pandemic: Creating a Hands-On Mechatronics Laboratory with Team-Based Collaboration for Remote Learning," in ASEE 2022 Annual Conference, Minneapolis, Minnesota, 2022.
- [22] F. Guc, J. Viola and Y. Q. Chen, "Digital Twins Enabled Remote Laboratory Learning Experience for Mechatronics Education," in 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 2021.
- [23] K. Tantawi, "Literature Review: Rethinking BioMEMS in the aftermath of CoVid-19," *Biomedical Journal of Scientific & Technical Research*, vol. 31, no. 1, pp. 23944-23946, 2020.
- [24] Z. Zhang, K. G. Demir and G. X. Gu, "Developments in 4D-printing: a review on current smart materials, technologies, and applications," *International Journal of Smart and Nano Materials*, vol. 10, no. 3, pp. 205-224, 2019.