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1 INTRODUCTION

Due to the extensive development of artificial intelligence (AI), machine learning techniques have been embedded in

many safety-sensitive physical systems, including autonomous vehicles [79] and unmanned aircraft [77]. In autonomous

vehicles, for instance, machine learning predictors can be applied to many tasks including perception [34, 114], path

planning [50, 122], motion control [109], or end-to-end driving systems [35, 75, 87]. In these tasks, misprediction can

cause catastrophic impacts on public safety, as exemplified by the series of fatal accidents encountered by autonomous

driving systems due to the failures in detecting nearby vehicles or pedestrians (e.g. [21, 22]). To reduce the risk of such

catastrophe, machine learning models in these systems need to be carefully evaluated against safety, especially before

their mass deployment in public.

Recent research considers using probabilistic measures to quantify the risks of machine learning predictors or entire

intelligent physical systems. These measures can be defined in a variety of ways. In robustness evaluation, a prediction

model, with neural network as a dominant example, is considered more robust if it is more likely to make a consistent

prediction under small perturbations on the input [60]. When the perturbation is modeled via a random distribution,
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the robustness of neural networks is measured by the probability that the prediction value persists [118ś120]. In more

complex intelligent system evaluation, risks can be quantified by the occurrence probabilities of safety-critical events.

These events can be defined as the violation in terms of certain safety metrics (e.g., [48] listed seven potential safety

metrics for autonomous vehicles including crashes per driving hour and disengagements per scenario), and recent

studies use the probabilities of crash or injury in driving tasks as safety metrics [69, 91, 123, 124]. For AI-equipped

autonomous vehicles, the evaluation target would implicitly involve a probabilistic measurement on the embedded

machine learning model. Moreover, in [121], neural networks are further used to approximate sophisticated safety-

critical sets defined from complex system dynamics, and the target probabilities comprise hitting sets defined via these

neural network outputs.

Our study is motivated from the estimation of probabilistic risk measures described above. Due to the complexity

of machine learning predictors, these probabilities are typically unamenable to analytical formulas, even when the

underlying stochastic distribution is fully modeled. This thus calls for the use of Monte Carlo simulation. However,

the target probabilities, which signify the risks of dangerous yet unlikely events, are tiny. The problem thus falls into

the domain of rare-event simulation, in which it is widely known that crude Monte Carlo can be extremely inefficient

and variance reduction is necessarily employed. Traditionally, rare-event simulation techniques (e.g. [31, 74]) have

been applied in broad application areas including queueing systems [14, 15, 18, 45, 80, 98, 103, 110], communication

networks [33, 76, 94], finance [52, 55, 56], insurance [5, 8, 37], reliability [67, 89, 90, 99, 112], biological processes

[62, 105], dynamical systems [46, 116], and combinatorics [11, 13]. The evaluation of machine learning models and

intelligent physical systems that we focus on here is a new application that is propelled rapidly by the growth of AI.

Our goal is to provide a first step into building rare-event simulation algorithms in these applications, which integrate

tools from both the disciplines of machine learning and rare-event simulation, and which are statistically guaranteed in

terms of the classical efficiency notions in the rare-event literature.

More specifically, we study importance sampling (IS) [108] to design efficient estimators. In rare-event estimation,

the rarity nature of hitting set dictates that crude Monte Carlo samples have a low frequency of observing the hitting

occurrence, and this inefficiency exhibits statistically as a large relative error (i.e., ratio of standard deviation to mean)

in the estimation. To mitigate this issue, IS uses an alternate distribution to generate samples that can attain a higher

frequency in hitting the target event, and reweights the outputs to maintain unbiasedness via the likelihood ratios.

To achieve a small relative error, the new generating distribution (i.e., the IS distribution) is carefully selected, often

by analyzing the weights in interaction with the hitting set geometry and the underlying system dynamics [58, 104].

In this paper, we follow the above analysis path in the literature and use the common theoretical notion of efficiency

called asymptotic optimality or logarithmic efficiency [9, 67, 74] that we will detail in the sequel.

In terms of our scope of study, we focus on piecewise linear machine learning predictors, which include random

forests and neural networks with common activation functions such as rectified linear units (ReLU). The former is an

ensemble or weighted average of decision trees [30], and the latter is a network of neurons connected in multiple layers,

via the activation functions [59]. We also assume the underlying distribution is Gaussian or mixtures of such. Under

this setting, we design provably efficient IS schemes to estimate rare-event probabilities that the prediction outputs hit

above certain high thresholds. We will describe how our considered setup relates to the risk quantification of AI-driven

algorithms or intelligent physical systems presented earlier, where our proposed approach provides a rigorous first step

towards the resulting rare-event simulation problems (see Section 3).

Our main methodology integrates the classical notion of dominating points for rare-event sets with sequential

mixed integer programming (MIP) to attain an efficient estimator. The notion of dominating points, and the associated
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mixture-based IS scheme, is well-known in the literature [42, 104]. The MIP, while conceptually straightforward, requires

leveraging recent formulations catered for the considered machine learning models. Let us explain the roles of these

tools. Intuitively, a dominating point is the highest-density point in the rare-event set, so that using an IS distribution

that shifts the mean to this point (via exponential tilting) gives rise to a distribution that hits the rare-event set more

frequently, and the generated likelihood ratio contributes properly to the probability of interest, which are desirable for

controlling the relative error. However, this is only a local characterization, as the simulation randomness could cause

huge likelihood ratios for some generated samples. Controlling these ratios in turn requires a geometric property that,

in the Gaussian case, implies the dominating point to be on the boundary of the rare-event set, and that the latter lies

completely inside one of the half-spaces cut by the tangential hyperplane passing through the dominating point (e.g.,

these occur when the rare-event set is convex). When this geometric property does not hold, then one needs to divide

the rare-event set into a union of smaller sets each bearing its own dominating point, and an efficient IS scheme is

built via a mixture of exponential tiltings targeted at all these individual dominating points [104]. The sequential MIP

in our procedure serves to locate all these dominating points. It casts the search as a density maximization problem

constrained by hitting sets induced from the considered machine learning model. The involved feasible regions shrink

sequentially as we add more łcutting planes" to the constraints in order to remove the half-spaces that are already

considered by earlier dominating points. Our MIPs are derived from the reformulation techniques that appeared recently

in the machine learning literature, which leverage the geometric structures of ReLU neural networks [111] and random

forests [86]. We provide a step-by-step guide in formulating random forests and different neural network architectures

as suitable MIPs to be inserted into our sequential algorithm.

In terms of theoretical results, we show asymptotic optimality of our IS that targets at general piecewise polyhedrons,

which apply to our considered rare-event sets in particular. Towards this, we also derive large deviations results for the

associated probabilities of interest. Our results are developed under a different regime from the conventional one in the

literature. More specifically, the latter typically scales the input random vector that falls into a fixed set (e.g. [68, 104]),

while we let the exceedance threshold on the output of the machine learning model to scale. Our setting is more natural

since the threshold provides meaning in defining the level of risk (e.g., in vehicle safety test, the relative velocity at

the crash time can be used to compute a so-called Maximum Abbreviated Injury Score that predicts the severity of

injuries [83], and hence the probabilities of relative velocity at the crash time exceeding different thresholds are of

interest). To this end, the closest work that studies a similar regime is [64], but it only analyzes the tail probability that a

Gaussian random vector is componentwise larger than a threshold, which is a simplified version of our regime without

the machine learning transformation. While we leverage the results in [64], we also develop mathematical techniques

to make the generalization fit our setting.

The paper is organized as follows. Section 2 first provides a literature review. Section 3 describes and motivates our

problem setting. Section 4 presents our algorithm and theoretical guarantees. Section 5 provides the MIP formulations

for random forests and different neural network architectures. Section 6 shows numerical results. Section 7 contains the

proofs of theorems.

2 RELATEDWORK

A significant line of work studies the use of large deviations to invent efficient IS procedures, which mathematically

identifies the most likely path to trigger a rare event through minimizing the so-called rate function (see, e.g., the

surveys [9, 17, 31, 53, 74, 102]). This approach leads to the concept of dominating points and mixture IS [42, 104] which

our work follows. Despite this utilization, our work differs from the previous works. First is that our considered machine
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learning models, including random forests and neural networks, deem the rare-event boundaries to be only expressible

implicitly. This in turn necessitates the use of sequential MIP algorithm that can leverage such expressions in the search

of the dominating points. This distinguishes our approach from [3, 92] that similarly consider splitting rare-event sets

via dominating points, but constrain the rare-event sets to be unions of half-spaces that are explicitly given. Second,

we derive asymptotic results for the rare-event probability of interest and show efficiency of our algorithm, as the

exceedance threshold increases, a regime subtly different from the majority of literature yet more natural in our setting.

To this end, [64] appears closest to our work, with derived bounds and asymptotic results for the tail probability of

Gaussian random vectors. However, our setting is considerably more complex as it involves piecewise linear machine

learning predictor output, and correspondingly requires more intricate analysis coming from the geometry of the

rare-event set. Next, similar to our derivations, [68] represents the asymptotic of probability on convex sets using

dominating points, but they focus on a different scaling from ours. Specifically, like in standard large deviations theory,

they focus on the conventional regime where the scaled componentwise maximum of Gaussian random vectors lies in

a fixed convex set, while our target event is that the predictor output with Gaussian input (which is not scaled and

cannot be expressed as a componentwise maximum) exceeds an increasing threshold.

In the machine learning literature, some studies use probabilistic measures to evaluate the robustness of prediction

models. Since these measures can be extremely small, rare-event simulation techniques are considered. [119] discusses

an adaptive multilevel splitting approach to estimate the statistical robustness of machine learning models. [113]

considers the problem of estimating agent failure probabilities and proposes to learn a failure probability predictor to

approximate the minimum-variance IS distribution. [120] proposes an approach to compute the lower and upper bounds

for a probabilistic robustness measure. Our work is motivated by the topics studied in these works, and can be viewed

as a step towards the provision of rigorous guarantees for methodologies driven by the corresponding applications.

Another related line of research studies optimization problems with machine learning models in the objective. [86]

discusses the optimization of tree ensemble models and provides treatment for large scale problems. [111] formulates

the robustness verification of neural networks as MIP problems. These studies leverage the piecewise linear property of

these machine learning models to turn optimization on the prediction output into tractable MIPs. Our MIP formulations

for finding dominating points follow from these optimization studies.

We close this literature review by briefly discussing other IS schemes. The cross-entropy method [24, 38, 96, 100, 101]

uses sequential stochastic optimization to search for an optimal IS distribution in a parametric family. Adaptive IS

[2, 26, 41, 78] updates the IS distribution iteratively between simulated replications to approach the optimal (zero-

variance) IS distribution and generates non i.i.d samples for estimating the target expectation associated with finite-state

discrete Markov chains. Another line of studies use techniques such as Markov-chain Monte Carlo (MCMC) to sample

from the rare-event set of interest, or approximately from the conditional distribution given the occurrence of the rare

event [27, 28, 32, 61]. IS schemes have also been designed for heavy-tailed systems [16, 19, 20, 33, 44, 72, 88], in contrast

to the light-tailed settings considered in this paper. Besides IS, other competing methods for rare-event simulation

include conditional Monte Carlo [6, 7] and splitting [39, 51, 54, 84, 93].

3 PROBLEM SETTING

We state our problem setting. Consider a prediction model д(·), with input X ∈ Rd and output д(X ) ∈ R. Suppose that

the input follows a Gaussian distribution, i.e, X ∼ N (µ, Σ), where Σ is a d × d positive definite matrix. We want to

estimate the probability p = P(X ∈ S), where S = {x : д(x) ≥ γ } is a rare-event set with a threshold γ ∈ R that triggers
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the rare event. We note that the Gaussian assumption can be relaxed without much difficulty in our framework to, for

instance, mixtures of Gaussians, which we will discuss later and can expand our scope of applicability.

This problem setting is motivated from risk assessments involving machine learning models, as exemplified below.

Example 3.1 (Statistical Robustness Metric). Studies on robustness of machine learning models have become increas-

ingly prevalent in recent years. The topic was initiated in computer vision studies [60], where neural networks for

image classification were found to be vulnerable to tiny perturbation to the input. Such a perturbed input is considered

as an adversarial example. Studies have discussed how to find these adversarial examples [81] and to conduct adversarial

learning [82] in more general machine learning tasks. The vulnerability to perturbation has caused safety and security

concerns about using machine learning models in real-life applications. In order to evaluate how robust a prediction

model is under potential perturbations, robustness metrics are proposed as quantitative benchmarks.

For instance, we consider a classificationmodelд(·) that can correctly predict the input x0 as category c . Intuitively, the

model is łrobustž at x0 if the correct prediction remains for all x such that d(x ,x0) ≤ ϵ where d denotes a certain distance

and ϵ > 0 is a small real number. Based on this intuition, a statistical robustness metric considers p = P(д(X ) , c),

where X follows a distribution concentrated around x0 [119, 120]. Here p represents the probability that the output is

inconsistent with the baseline prediction at x0.

In particular, when д(·) predicts using łscore functionsž дi (·) with i = 1, ..,K where K denotes the number of

categories, the predicted output is the category that has the maximum score, i.e. the prediction at x is given by

argmaxi дi (x). Then we note that д(x) , c is equivalent to дc (x) ≤ maxi,c дi (x). Hence we can transform p into

P(д̃(X ) ≥ 0) by defining д̃(x) = maxi,c дi (x) − дc (x), which reduces to our problem statement presented earlier.

Example 3.2 (Risk Evaluation of Intelligent Physical Systems). Many intelligent physical systems (e.g. driver assistance

systems) are built in a modular structure, which divides the overall task into sub-tasks that are handled by different

modules. The perception module extracts information from the environment through various sensors (e.g. LIDAR

[49], camera, etc.), which provides input for the downstream tasks [43]. Nowadays, perception modules are usually

integrated with machine learning models, which play crucial roles in converting raw sensor data (e.g. images, point

clouds) into information that are readable by downstream modules (e.g. object class, bounding box) [97].

Consider an intelligent physical system that embeds a machine learning predictor д for perception (e.g. object

detection). We then represent the decision of the system given an input x as h(д(x)). The probability P(h(д(X )) ∈ S),

where S represents a risky region, can be used to measure the risk of the system decision. For instance, suppose we are

evaluating a collision avoidance system via the probability of a severe injury. Here, x can represent the sensor data of a

collision scenario, h(д(x)) the relative speed when collision happens, which proxies the severity of potential injuries,

and the evaluation is equivalent to estimating P(h(д(X )) ≥ γ ) for some speed threshold γ .

In most cases, h is random by itself and can have a different complexity structure than the function class д. Our setup,

which drops the general random h, can be viewed as a simplified probability P(д(X ) ≥ γ ) that provides a first step of

study along this direction.

Example 3.3 (Probability Evaluation for Learned Rare-Event Set). When the system that drives the rare event is a

black-box or too complicated to analyze [40], an approach to retain tractability is to approximate or learn the rare-event

set via machine learning tools [4, 121]. An example in operations research is the prediction of congestion risks in

sophisticated queueing systems arising in, e.g., healthcare applications [29], where the queue could have multiple classes

of customers and complex priority rules [63] and the event of interest could be a transient probability of high occupancy

level. In such settings, we can collect collect data or run simulations for {X ,Y }, where X denotes the random object
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in the considered system and Y ∈ {0, 1} denotes either the occurrence of the considered rare event or the numerical

outcome under input X . Then we train neural network д(·) to classify the rare-event region given X . The learned

rare-event set is then represented by {x : д(x) ≥ γ }, where γ is the threshold for classifying rare-event (e.g. γ = 0.5)

or the threshold for the outcome to trigger the event. As a result, p = P(д(X ) ≥ γ ) provides an approximation to the

rare-event probability.

Example 3.4 (Validating Classification Models With Rare Categories). In classification model validation tasks, estimating

the predictive performance of the test model can be costly if the test data requires human-annotation [107]. When we

are interested in the performance on a rare category, the estimation of predictive metrics, e.g. F-scores (or F-measures)

[115], becomes more challenging and hence requires more efficient approaches than naive sampling [95]. Consider that

the input of the test classification model, denoted by X , has a fixed probability distribution across the population of

samples. We use y(X ) ∈ {1, 0} to denote the correct annotation at the input X and д(X ) to denote the prediction given

by the test classifier. Suppose we are interested in the prediction accuracy of the rare category y(X ) = 1 (i.e. P(y(X ) = 1)

is extremely small). The Fα -measure of the classification model is defined by:

Fα =
P(y(X ) = 1,д(X ) = 1)

αP(д(X ) = 1) + (1 − α)P(y(X ) = 1)
, (1)

with α ∈ (0, 1). We observe that when y(X ) = 1 is a rare event and the classifier д is well trained, all three probabilities in

the Fα -measure can be extremely small. Therefore, accurately estimating the Fα -measure is closely related to estimating

the rare-event probabilities P(y(X ) = 1,д(X ) = 1) and P(д(X ) = 1), which are defined via the test prediction model д.

Our setup described in the beginning of this section thus relates to the four emerging examples above. Though

we could not resolve all the issues in these examples, notably with restrictions on the input distribution and model

complexity, we view our study as a first step towards a rigorous use of rare-event simulation techniques developed

among the stochastic simulation community in the surging domain of safety and risk evaluation of AI-driven systems.

4 EFFICIENT IMPORTANCE SAMPLING VIA SEQUENTIAL MIXED INTEGER PROGRAMMING

We present our IS methodology. Section 4.1 reviews IS basics. Section 4.2 describes how we integrate the notions of

dominating points and mixture IS with a sequential MIP algorithm. Section 4.3 presents our theoretical efficiency

guarantees. The reformulation and solution to the MIP algorithms, which utilize recent developments in machine

learning, are discussed in Section 5.

4.1 Basics of Importance Sampling

When p is small, estimation using crude Monte Carlo is challenging since, intuitively, the samples have a low frequency

of hitting the target set. This is statistically manifested as a large relative error. To be more specific, suppose that we

use the crude Monte Carlo estimator p̂N =
1
N

∑N
i=1 I (д(Xi ) ≥ γ ) to estimate p. Since the probability p is tiny, the error

of the estimator should be measured relative to the size of p. In other words, we would like the probability of having a

large relative error to be small, i.e., P(|p̂N − p | > εp) ≤ δ where δ is the confidence level and 0 < ε < 1. By Markov’s

inequality, a sufficient condition for this is

N ≥
Var (I (д(X ) ≥ γ ))

δε2E[I (д(X ) ≥ γ )]2
=

RE2

δϵ2
.
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where RE =
√
Var (I (д(X ) ≥ γ ))/E[I (д(X ) ≥ γ )] is the relative error. For the crude Monte Carlo estimator, the RE is

given by
√
(1 − p)/p. That is, the simulation size N has to be roughly proportional to 1/p in order to achieve a given

relative error. Under the settings that X has a Gaussian distribution and д is piecewise linear (see Corollary 4.3), p is

exponentially small in the threshold level γ , and hence the required simulation size would grow exponentially in γ .

A common approach to speed up simulation in such contexts is to use IS (see, e.g. the surveys [9, 17, 31, 53, 74, 102],

among others). Suppose X has a density f . The basic idea of IS is to change the sampling distribution to say f̃ , and

output

Z = I (д(X̃ ) ≥ γ )
f (X̃ )

f̃ (X̃ )
, (2)

where X̃ is sampled from f̃ . This output is unbiased if f is absolutely continuous with respect to f̃ over the rare-event

set {x : д(x) ≥ γ } since

Ẽ[Z ] =

∫
R

I (д(x) ≥ γ )
f (x)

f̃ (x)
f̃ (x)dx =

∫
R

I (д(x) ≥ γ )f (x)dx = E[I (д(X ) ≥ γ )] = P(д(X ) ≥ γ ).

By choosing f̃ appropriately, one can substantially reduce the simulation variance.

To measure the efficiency of an IS scheme, we introduce a rarity parameter, say γ , that parametrizes the rare-event

probability pγ such that pγ → 0 as γ →∞. As discussed before, since the probability of interest is small, one should

focus on the relative error of the Monte Carlo estimator with respect to the magnitude of this probability. To this end,

we call an IS estimator Zγ for pγ asymptotically optimal [9, 74] if

lim
γ→∞

log Ẽ[Z 2
γ ]

log Ẽ[Zγ ]
= 2, (3)

where Ẽ denotes the expectation with regard to f̃ . The notion (3) is equivalent to saying that Ẽ[Z 2
γ ] and Ẽ[Zγ ]

2 grow in

the same exponential rate in γ . This ensures that the second moment, or the variance, does not explode exponentially

relative to the probability of interest as γ increases, thus preventing an exponentially large number of simulation

replications to achieve a given relative accuracy. We will use asymptotic optimality as our efficiency criterion in this

paper. Moreover, in the large deviations settings where pγ = Ẽ[Zγ ] decays exponentially in γ , Ẽ[Z 2
γ ]/Ẽ[Zγ ]

2 at most

growing polynomially in γ is a sufficient condition for asymptotic optimality.

Another commonly used efficiency criterion is the bounded relative error, which is defined as

lim sup
γ→∞

Ẽ[Z 2
γ ]

Ẽ[Zγ ]2
< ∞.

This is a stronger condition than asymptotic optimality. More efficiency criteria can be found in [73, 85].

4.2 Dominating Points and Mixture Importance Samplers

In the case of Gaussian input distributions, finding a good f̃ is particularly handy and one approach to devise good

IS distributions uses the notion of so-called dominating point. As explained in the introduction, a dominating point

can be understood as the highest-density point in the rare-event set that satisfies some conditions. More precisely, the

collection of dominating points for a rare-event set with Gaussian distributed input is defined in Definition 4.1.

Definition 4.1. Suppose that S ⊂ Rd is a rare-event set. Suppose that a set A ⊂ Rd satisfies that S ⊂
⋃
a∈A{x :

(a − µ)T Σ−1(x − a) ≥ 0} and that a = argmin{(x − µ)T Σ−1(x − µ) : x ∈ S and (a − µ)T Σ−1(x − a) ≥ 0} for any a ∈ A.
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Moreover, suppose that the above conditions do not hold anymore if we remove any element from A. Then the points

in A are called the dominating points of S with input distribution N (µ, Σ).

Note that minimizing (x − µ)T Σ−1(x − µ) is equivalent to maximizing ϕ(x ; µ, Σ), the Gaussian density with mean µ

and covariance Σ. The condition 2(a − µ)T Σ−1(x − a) ≥ 0 is the first-order condition of optimality for the optimization

minx (x − µ)T Σ−1(x − µ) over a convex set for x . Thus, intuitively, each dominating point in the collection A can be

viewed as the highest-density point in a łlocal" region formed by S ∩ {x : (a − µ)T Σ−1(x − a) ≥ 0}. Figure 1 is an

illustration of the dominating points. In particular, if {x : д(x) ≥ γ } is a convex set, then there is only one dominating

point a. In this case, a well-known IS scheme is to use a Gaussian distribution N (a, Σ) as the IS distribution f̃ .

Fig. 1. Illustration of the dominating points. a1 is the globally highest-density point in the rare-event set S , but the halfspace

{x : (a1 − µ)
T
Σ
−1(x − a1) ≥ 0} does not fully cover S , so an additional point a2 is needed to comprise a dominating set.

We explain intuitively why we need more than one dominating point (the highest-density point over S) and the

pitfall if we omit the other ones in constructing efficient IS. Suppose that the rare-event set consists of two disconnected

convex components which are nearly equi-distant with respect to the origin, and we choose the IS distribution to be

centered at the dominating point of one component. Then, if a sample from the IS distribution hits the other component,

a scenario that could be unlikely but possible, the resulting likelihood ratio, which now contributes to the output as the

rare-event set is hit, could possibly be tremendous. This ultimately leads to an explosion of the relative error in the

IS estimator. [57] presents more counterexamples which show that it is essential to find all the dominating points in

constructing an efficient IS based on mixtures.

In view of the aforementioned discussions, we consider the following IS scheme. If we can split {x : д(x) ≥ γ } into

R1, ...,Rr , and for each Ri , i = 1, ..., r there exists a dominating point ai such that ai = argmin{(x − µ)T Σ−1(x − µ) :

x ∈ Ri } and Ri ⊆ {x : (ai − µ)
T
Σ
−1(x − ai ) ≥ 0}, then we use a Gaussian mixture distribution with r components as

the IS distribution f̃ , where the ith component has mean ai . This proposal guarantees the asymptotic optimality of the

IS (see Theorem 4.2).

In our task, because the machine learning predictor д(x) is nonlinear and x is high-dimensional in general, splitting

{x : д(x) ≥ γ } into R1, ...,Rr that have dominating points is challenging even with known parameters. This challenge

motivates us to use Algorithm 1 to obtain the dominating points a1, ...,ar that constructs an efficient IS distribution.

The procedure uses a sequential łcutting plane" approach to exhaustively look for all dominating points, by reducing

the search space at each iteration via taking away the regions covered by found dominating points. The set A in the
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procedure serves to store the dominating points we have located throughout the procedure. At the end of the procedure,

we obtain a set A that contains all the dominating points a1, ...,ar . Note that when д(x) ≥ γ is convex, the algorithm

solves a series of convex quadratic programming problems, and it is well known that such problems could be solved

efficiently in polynomial time (see [117] for more details on the complexity). In this paper, we focus on the problems

with piecewise linear д(x), which leads to mixed integer convex quadratic optimization problems as shown in later

discussion. Although a mixed integer quadratic optimization is NP-hard, we can solve it much more efficiently using

specialized algorithms than general nonlinear MIPs [25].

Algorithm 1: Procedure to find all dominating points for the set {x : д(x) ≥ γ }.

Input: Prediction model д(x), threshold γ , input distribution N (µ, Σ).
Output: dominating point set A.

1 Start with A = ∅;

2 While {x : д(x) ≥ γ , (ai − µ)
T
Σ
−1(x − ai ) < 0, ∀ai ∈ A} , ∅ do

3 Find a dominating point a by solving the optimization problem

a = argmin
x
(x − µ)T Σ−1(x − µ) (4)

s .t . д(x) ≥ γ

(ai − µ)
T
Σ
−1(x − ai ) < 0, ∀ai ∈ A

and update A← A ∪ {a};
4 End

Algorithm 1 gives A = {a1, . . . ,ar }. With this, we split {x : д(x) ≥ γ } into R1, . . . ,Rr where Ri = {x : д(x) ≥

γ , (ai − µ)
T
Σ
−1(x − ai ) ≥ 0, (aj − µ)

T
Σ
−1(x − aj ) ≤ 0,∀j < i}. Clearly ai = argmin{(x − µ)T Σ−1(x − µ) : x ∈ Ri } and

(a1 − µ)
T
Σ
−1(a1 − µ) ≤ · · · ≤ (ar − µ)

T
Σ
−1(ar − µ). Moreover, we note that (a1 − µ)T Σ−1(a1 − µ) = mini=1, ...,r {(ai −

µ)T Σ−1(ai − µ)}.

Given the dominating point set A, we use a mixture distribution with density

f̃ (x) =
1

r

r∑
i=1

ϕ(x ;ai , Σ)

as the IS distribution. That is, the IS estimator is

Z = I (д(X̃ ) ≥ γ )L(X̃ ) (5)

where X̃ ∼ f̃ and L, the likelihood ratio, is defined as

L(x) =
f (x)

f̃ (x)
=

re−
1
2 (x−µ)

T
Σ
−1(x−µ)

e−
1
2 (x−a1)

T Σ−1(x−a1)
+ · · · + e−

1
2 (x−ar )

T Σ−1(x−ar )
.

Note that we have used uniform mixture weights in our IS distribution depicted above. These weights could potentially

be tuned more carefully rather than simply equally assigned to further improve the efficiency, especially when an

asymptotic zero-variance distribution is available (as in, e.g., [1, 66]), though here we are contented with uniform

weights and do not refine further. To sum up, after computing the dominating points A = {a1, . . . ,ar } using Algorithm

1, we estimate the probability of interest via Algorithm 2.
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Algorithm 2: Construct the IS estimator with all the dominating points.

Input: Prediction model д(x), threshold γ , dominating points A = {a1, . . . ,ar }, simulation size N .
Output: Estimated rare-event probability p̂.

1 Generate X̃1, . . . , X̃N ∼ f̃ (x) = 1
r

∑r
i=1 ϕ(x ;ai , Σ);

2 Compute p̂ = 1
N

∑N
i=1 I (д(X̃i ) ≥ γ )L(X̃i ) where

L(x) =
re−

1
2 (x−µ)

T
Σ
−1(x−µ)

e−
1
2 (x−a1)

T Σ−1(x−a1)
+ · · · + e−

1
2 (x−ar )

T Σ−1(x−ar )
;

3 End

4.3 Efficiency Guarantees

The efficiency guarantee of the proposed IS estimator (5) is given by:

Theorem 4.2. Suppose that the input X ∼ N (µ, Σ) and the prediction model д(·) is a piecewise linear function (with

finite pieces) such that P(д(X ) ≥ γ ) > 0 for any γ ∈ R. The IS estimator Z is defined in (5). Then we have that Ẽ[Z 2]/Ẽ[Z ]2

is at most polynomially growing in γ . Moreover, Z is asymptotically optimal.

Theorem 4.2 is proved by constructing an upper bound for the relative error, which in turn depends on the asymptotic

approximation of probability on polytope sets using dominating points. Our proof leverages the results in [64] on the tail

exceedance asymptotic of P(N (0, Σn ) ≥ tn ) where ∥tn ∥ → ∞ as n →∞, but requires substantial generalization. Note

that Theorem 4.2 only makes the very general assumptions that д is piecewise linear and the probability P(д(X ) ≥ γ ) is

nondegenerate (i.e., non-zero) for any γ ∈ R. Our result applies to, for example, the probability P(AX ≥ t) where A is a

constant matrix and t − γe1 is a constant vector (here, e1 = (1, 0, . . . , 0)T ). If AAT is not invertible, then it is not easily

reducible to the setting studied in [64]. To achieve a general result, we carefully construct a superset and a subset of the

rare-event set to derive tight enough upper and lower bounds for the probability of interest, in which we analyze the

involved asymptotic integrals instead of using the conditional probability representation in [64] that is not directly

applicable in our setting. For the detailed proof, please refer to Section 7.

A by-product in deriving Theorem 4.2 is the large deviations probability asymptotic for P(д(X ) ≥ γ ):

Corollary 4.3. Suppose that the input X ∼ N (µ, Σ) and the prediction model д(·) is a piecewise linear function (with

finite pieces) such that P(д(X ) ≥ γ ) > 0 for any γ ∈ R. Denote a = argmin{(x − µ)T Σ−1(x − µ) : д(x) ≥ γ }. Then

− log P(д(X ) ≥ γ ) = (1 + o(1))(a − µ)T Σ−1(a − µ)/2 as γ →∞. In particular, P(д(X ) ≥ γ ) is exponentially small in γ .

The theoretical guarantee given by Theorem 4.2 justifies the sequential MIP algorithm for searching dominating

points. The resulting mixture IS distribution is asymptotically optimal. We point out some related works that use

mixture distributions that are related to our proposed method. In [3, 92], mixture IS distributions are constructed based

on separating rare-event set with half-spaces. However, in these works, the rare-event set is restricted to be a union of

half-spaces, and these half-spaces are assumed to be known. The use of Algorithm 1 allows us to deal with more general

rare-event sets. Moreover, in relation to Corollary 4.3, we also mention the work [68] that derives an asymptotic result

for Gaussian probabilities using dominating points. However, they focus on convex hitting sets where the entire set is

scaled with a rarity parameter, which is different from our settings. First, our rare-event set is not necessarily convex.

Second, even if we separate our rare-event set into the union of convex sets, their results still cannot be applied, since

in our settings some linear constraints are allowed to be fixed instead of scaling with γ .

10
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Finally, we close this section by noting that the proposed IS scheme can be extended to problems with Gaussian

mixture inputs. Suppose the Gaussian mixture hasm components, so that X ∼
∑m
j=1 πjϕ(x ; µ j , Σj ). For each component

j, we implement Algorithm 1 with input distribution N (µ j , Σj ) to obtain dominating point set Aj (with cardinality

r j ). The proposed IS distribution is given by f̃ (x) =
∑m
j=1

∑r j
i=1 πj/r jϕ(x ;aji , Σj ). We summarize the procedure as

Algorithm 3.

Algorithm 3: Procedure for Gaussian mixture distributed input.

Input: Prediction model д(x), threshold γ , input distribution
∑m
j=1 πjϕ(x ; µ j , Σj ), simulation size N .

Output: Estimated rare-event probability p̂.
1 Implement Algorithm 1 with input distribution N (µ j , Σj ) to get Aj = {aj1, . . . ,ajr j };

2 Generate X̃1, . . . , X̃N ∼ f̃ (x) =
∑m
j=1

∑r j
i=1 πj/r jϕ(x ;aji , Σj );

3 Compute p̂ = 1
N

∑N
i=1 I (д(X̃i ) ≥ γ )L(X̃i ) where

L(x) =

∑m
j=1 πj |Σj |

− 1
2 e
− 1

2 (x−µ j )
T
Σ
−1
j (x−µ j )

∑m
j=1

∑r j
i=1 πj/r j |Σj |

− 1
2 e
− 1

2 (x−aji )
T Σ
−1
j (x−aji )

; (6)

4 End

Similar to Algorithm 2, we have the efficiency guarantee for Algorithm 3:

Corollary 4.4. Suppose that the input X ∼
∑m
j=1 πjϕ(x ; µ j , Σj ) and the prediction model д(·) is a piecewise linear

function (with finite pieces) such that P(д(X ) ≥ γ ) > 0 for anyγ ∈ R. The IS estimatorZ is defined as I (д(X̃ ) ≥ γ )L(X̃ )where

X̃ ∼
∑m
j=1

∑r j
i=1 πj/r jϕ(x ;aji , Σj ) and L(x) is as defined in (6). Then we have that Ẽ[Z 2]/Ẽ[Z ]2 is at most polynomially

growing in γ . Moreovers, Z is asymptotically optimal.

When we apply Algorithm 1 to find all dominating points, the key is to be able to solve the optimization problems in

(4). We will investigate this in the next section.

5 TRACTABLE OPTIMIZATION FORMULATION FOR PREDICTION MODELS

We discuss how to formulate the optimization problems in Algorithm 1 as an MIP with quadratic objective function and

linear constraints, for random forest (Section 5.1) and neural network (5.2) structures.

5.1 Tractable Formulation for Random Forest

A random forest [30, 65] can be specified as follows. Given a set of T decision trees д1, ...,дT with d dimensional input

x , a random forest д ensembles these trees by weightedly averaging their outputs, namely д =
∑T
t=1 λtдt , where λt

denotes the weight of tree t (
∑T
t=1 λt = 1).

As illustrated in Figure 2, a decision tree consists of nodes and a branch structure. The nodes are categorized into

splits (triangle node), the nodes with two child nodes, and leaves (circle node), the nodes with no child node. At each

split, we execute a binary query defined by a dimension index and a split point, i.e., in the form of xi ≤ a, where xi

denotes the ith dimension of the input x and a ∈ R is the split point. Starting from the root node, a sequence of queries

leads the input down to a leaf node which corresponds to an output value.

To look for dominating points in a random forest, we follow the route in [86] that studies optimization over these

models. Following the notations therein, we use ai, j to summarize the split point information from all trees in д, which

11
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Fig. 2. An example of a decision tree.

denotes the jth unique split point for the ith dimension of the input x . Note that ai,1 < ai,2 < ... < ai,Ki , where Ki is

the number of unique split points for the ith dimension of x .

To represent the branch structure, we define leaves(t) as the set of leaves (terminal nodes) of tree t and splits(t) as

the set of splits (non-terminal nodes) of tree t . In each split s , we let left(s) be the set of leaves that are accessible from

the left branch (the query at s is true), and right(s) be the set of leaves that are accessible from the right branch (the

query at s is false). For each node s , we use V(s) ∈ {1, ...,d} to denote the dimension that participates in the node and

C(s) ∈ {1, ...,KV(s)} to denote the index of the split point on dimension i that participates in the query of s (V(s) = i

and C(s) = j indicate the query xi ≤ ai, j ). For each l ∈ leaves(t), pt,l denotes the output for the lth leaf in tree t .

To formulate the random forest optimization as an MIP, we introduce decision variables zi, j and yt,l . Firstly, we use

zi, j to locate the input x by linking its value to the split points ai, j ’s, where we have

zi, j = I (xi ≤ ai, j ), i = 1, ...,d, j = 1, ...,Ki . (7)

In order to convert (7) into mixed integer constraints, we introduce an arbitrary large number B ∈ R+ which serves as

the big-M coefficient [12] in our formulation. For any given problem, all dominating points must have finite coordinates.

This implies that for large enough B we have [−B,B]d contain all dominating points. Thus, assuming we use a large

enough B, we can let x ∈ [−B,B]d and |ai, j | ≤ B. Then (7) is represented by the following constraints:

xi ≤ ai, j + 2(1 − zi, j )B

xi > ai, j − 2zi, jB

zi, j = {0, 1}.

Next we use yt,l = 1 to denote that tree t outputs the prediction value pt,l on leaf l , and yt,l = 0 otherwise. This

allows us to represent the output of the random forest as

T∑
t=1

∑
l ∈leaves(t )

λtpt,lyt,l

with
∑
l ∈leaves(t ) yt,l = 1. We use z,y to represent the vectors of zi, j and yt,l respectively.
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Lastly, we formulate the binary queries in a decision tree with these intermediate variables. This is achieved by

forcing yt,l in the łunselectedž branches to be 0. At each split s , we have

xV(s) > aV(s),C(s) ⇒
∑

l ∈left(s)

yt,l = 0

xV(s) ≤ aV(s),C(s) ⇒
∑

l ∈right(s)

yt,l = 0,

which we reformulate with z into∑
l ∈left(s)

yt,l ≤ zV(s),C(s), ∀t ∈ {1, ...,T }, s ∈ splits(t)

∑
l ∈right(s)

yt,l ≤ 1 − zV(s),C(s), ∀t ∈ {1, ...,T }, s ∈ splits(t).

Now we formulate (4) with A = ∅ as the following MIP

min
x,y,z

(x − µ)T Σ−1(x − µ) (8)

s .t .

T∑
t=1

∑
l ∈leaves(t )

λtpt,lyt,l ≥ γ

∑
l ∈leaves(t )

yt,l = 1, ∀t ∈ {1, ...,T }

∑
l ∈left(s)

yt,l ≤ zV(s),C(s), ∀t ∈ {1, ...,T }, s ∈ splits(t)

∑
l ∈right(s)

yt,l ≤ 1 − zV(s),C(s), ∀t ∈ {1, ...,T }, s ∈ splits(t)

zi, j ≤ zi, j+1, ∀i ∈ {1, ...,d}, j ∈ {1, ...,Ki − 1}

zi, j ∈ {0, 1}, ∀i ∈ {1, ...,d}, j ∈ {1, ...,Ki }

yt,l ≥ 0, ∀t ∈ {1, ...,T }, l ∈ leaves(t)

xi ≤ ai, j + 2(1 − zi, j )B, ∀i ∈ {1, ...,d}, j ∈ {1, ...,Ki }

xi > ai, j − 2zi, jB, ∀i ∈ {1, ...,d}, j ∈ {1, ...,Ki }.

This formulation has a quadratic objective function and linear constraints. Similarly, we can formulate (4) with A , ∅

by adding linear constraints (ai − µ)T Σ−1(x − ai ) < 0, ∀ai ∈ A to (8). Note that both the number of decision variables

and the number of constraints are linearly dependent on the total number of nodes in the random forest.

5.2 Tractable Formulation for Neural Network

A neural network д(·) is a network that connects a large number of computational units known as neurons [36, 59].

Depending on the task, this network bears a specific architecture that usually involves multiple layers of neurons and

different operations over the neurons. For simplification, here we consider layers with consecutive architecture and

each layer of the neural network only contains one specific structure.

13
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The key part of the reformulation is to deal with the non-linearity brought by the maximum function. Our treatment

of the maximum function follows from [111], which rewrites neural network structures into linear equations with

binary variables.

In order to obtain tractable formulation for the constraint д(x) ≥ γ , we independently handle each single layer in

д(·). Assume we have l layers in д(·), where дi (·) denotes the ith layer. Given input x , the output of the neural network

can be represented as д(x) = дl (дl−1(...д1(x))). For convenience, we introduce xi to denote the output of the ith layer

(note that it is also the input for the i + 1th layer). In other words, for the ith layer we have xi = дi (xk−1). Using these

notations, we can transform the constraint д(x) ≥ γ into a sequence of constraints:

xl ≥ γ ,

xl = дl (xl−1),

xl−1 = дl−1(xl−2),

...,

x1 = д1(x).

This transformation makes clear that the constraints altogether are tractable if the constraint for each layer (i.e.

xi = дi (xi−1)) is tractable . Note that both the number of decision variables and the number of constraints are linearly

dependent on the total number of neurons in the neural network. In the rest of this section, we discuss the reformulation

of neural network layers concerning different structures.

5.2.1 Fully Connected Layer. In a fully connected layer, each neuron performs a linear transformation on the input. We

consider a layer with n neurons and the input for this layer is a vector x ∈ Rm . We usewi ∈ R
m and bi ∈ R to denote

the weight and bias respectively for the linear transformation in the ith neuron. Then the output of the ith neuron can

be represented by yi = wT
i x + bi . To summarize, the output of the layer, y = [y1;y2; ...;yn ] ∈ Rn , is given by

y =WT x + b,

whereW = [w1,w2, ...,wn ] and b = [b1;b2; ...;bn ].

5.2.2 ReLU Layer. In a rectified linear unit (ReLU) layer, negative elements in the input are replaced by 0’s. For the ith

input, the output is given by yi =max{xi , 0}. This can be represented by

yi ≤ xi − l(1 − zi ),

yi ≥ xi ,

yi ≤ uzi ,

yi ≥ 0,

zi ∈ {0, 1} ,

where zi ∈ {0, 1} is a binary variable, u and l are the upper and lower bounds of the input respectively.

5.2.3 Normalization Layer. In a normalization layer, the input is normalized and linearly transformed to make the

gradient descent algorithm more efficient. Again we assume the input is x ∈ Rm with a given normalization parameter

µ ∈ Rm and Σ ∈ Rm×m . Moreover, we have the transformation matrix γ ∈ Rm×m and bias vector β ∈ Rm . The output
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is given by

y = γ
(
Σ
−1/2(x − µ)

)
+ β .

5.2.4 Pooling Layer. In a pooling layer, a łfilterž that can be applied to adjacent elements in a vector or matrix goes

through the input with a certain stride. Such type of layer is used to summarize łlocalž information and reduce the

dimension of the input. Max pooling and average pooling are two types of commonly used filters.

Suppose the input is represented by matrix x ∈ Rm1×m2 , where xi j denotes the element in the ith row jth column.

The size of the filter is s1 × s2 with stride (s1, s2). The output has size y ∈ Rn1,n2 , where n1 = m1/s1 and n2 = m2/s2.

We assume that the value of s1, s2 are carefully chosen so that n1 and n2 are integers.

For average pooling layer, we have

yi j =

∑is1
r=(i−1)s1+1

∑js2
c=(j−1)s2+1

xrc

s1s2

for i = 1, ...,n1, j = 1, ...,n2.

For max pooling layer, we have yi j = max(r,c)∈Si j xrc for i = 1, ...,n1, j = 1, ...,n2, where Si j = {(r , c)|r =

(i − 1)s1 + 1, ..., is1, c = (j − 1)s2 + 1, ..., js2}. The tractable formulation is given by

yi j ≤ xrc − (u − l)(1 − zrc ), (r , c) ∈ Si j

yi j ≥ xrc , (r , c) ∈ Si j∑
(r,c)∈Si j

zrc = 1

zrc ∈ {0, 1}, (r , c) ∈ Si j .

5.2.5 Convolutional Layer. In a convolutional layer, several filters are used to extract features from the input. The

input of the layer is x ∈ Rm1,m2 . Suppose we have r filters and assume the filters have size s1 × s2 with stride (t1, t2).

We use wi ∈ R
t1t2 and bi ∈ Rt1t2 to denote the weight and bias for the ith filter. The output is y ∈ Rn1×n2×r , where

n1 = (m1 − s1)/t1 and n2 = (m2 − s2)/t2. Again we assume the numbers are carefully chosen so that n1,n2 are integers.

Then we have

yi jk = w
T
k
(x̃i j ) + bk ,

x̃i j = [x(i−1)t1+1,(j−1)t2+1;x(i−1)t1+2,(j−1)t2+1; ...;x(i−1)t1+1,(j−1)t2+2, ...;x(i−1)t1+s1,(j−1)t2+s2 ].

for integers 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 and 1 ≤ k ≤ r .

5.2.6 Reformulation in the Output Layer. Here we discuss the reformulation of the output layer, which also provides

us clues on how other more general problems in classification tasks are potentially transformable into the constraint

д(x) ≥ γ . Although the output layer is usually highly nonlinear, we show how to formulate it as linear mixed-integer

constraints.

In classification tasks, the neural network usually uses a softmax layer as the output layer for training purposes.

Suppose the classification problem has n categories in total, the last layer inputs x ∈ Rn and outputs y ∈ Rn with

yi =
exi∑n
j=1 e

xj . The prediction for classification is determined by the maximum value ofyi . Indeed, the result is equivalent

if we determine the categories by the maximum value of xi .
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When the constraint is д(X ) = i or д(X ) , i , we can use this equivalence to reformulate the last layer (and therefore

complete the formulation for the whole network). Specifically, д(X ) = i can be formulated as xi ≥ x j , f or j , i and

д(X ) , i can be formulated as xi ≤ maxj,i x j , where j , i denotes j is an element for the set that contains all possible

indexes except i . For tractable form, the latter formula can be further rewritten as:

xi ≤ x j + (1 − zj )(u − l), j , i .∑
j,i

zj ≥ 1,

zj ∈ {0, 1}, i , c .

6 EXPERIMENTS

This section presents several experimental results using our Algorithm 1 for neural network and random forest predictors.

In Section 6.1, we consider two simple toy examples. The first problem has one dominating point and the second problem

has multiple dominating points. To illustrate the efficiency of the proposed IS scheme, we compare it with a naive IS

scheme using uniform distribution. In Section 6.2, we consider a realistic problem generated from a classification data

set with a high-dimensional feature space.

6.1 Toy Problems

We consider the rare-event set {x : д(x) ≥ γ } and the inputX follows a Gaussian distribution N (0, Iσ 2), where I denotes

the identity matrix and σ 2 ∈ R+. The prediction model д is trained with a data set with uniformly designed inputs,

and labeled using a deterministic function denoted by y. In order to build a prediction model with reasonable quality,

the inputs of the training data are generated from a bounded region [l ,u]d , where the region is chosen sufficiently

large in terms of γ that setting д(x) to −∞ outside the region barely affects the target probability. As a result, whether

we impose this bound or not does not affect the probability materially, and we choose to impose it since this setting

provides a good and simple IS scheme (i.e., uniform distribution) for comparison.

Given the above setting, we consider a uniform IS scheme as a baseline method in our experiments. Consider a

problem where X follows a distribution f (x), and the set {x : д(x) ≥ γ } is known to lie inside [l ,u]d where d is the

dimension of the input variable X . The uniform IS estimator of P(д(x) ≥ γ ) is given by

Zunif orm = I (д(X ) ≥ γ )f (X )(u − l)d ,

where X is generated from a uniform distribution on [l ,u]d . This estimator has a polynomially growing relative

efficiency as the magnitude of the dominating points grows [71], but the efficiency also depends significantly on the

size of the bounded set, i.e., l ,u,d .

In the first example, we use the deterministic function

y(x) = (x1 − 5)
3
+ (x2 − 4.5)

3
+ (x1 − 1)

2
+ x22 + 500 (9)

to label the training samples. We generate 2,601 samples with input x = [x1,x2] using a uniform grid over the space with

a mesh of 0.1 on each coordinate over the bounded space [0, 5]2. The dataset we obtained is denoted as D = {(Xn ,Yn )}.

д(x) is trained using D. We note that the region [0, 5]2 is large enough in our experiments, so that д(x) can be thought

of as being set to −∞ outside this box. For instance, when σ 2
= 1, the ratio of the probability of falling outside [−5, 5]d
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Fig. 3. Rare-event set and dominating points

for the neural network (case 1).

Fig. 4. Rare-event set and dominating points

for the random forest (case 1).

(as [0, 5]d is almost equivalent to [−5, 5]d here) to the probability of interest (for the first example with γ = 500 or the

second example with γ = 8) is smaller than 0.05, the largest ratio among all considered settings.

We first train a neural network predictor as д(x). The neural network has 3 layers with 100 neurons in each of the 2

hidden layers, and all neurons are ReLU. To illustrate the rare-event set in the problem, we use γ = 500 in this example.

The defined rare-event set is presented in Figure 3. We observe that the set is roughly convex and should have a single

dominating point. We obtain the dominating point for the set at (3.3676, 2.6051).

In our experiments, we first vary the value of γ to verify the asymptotic performance of the proposed IS estimator as

γ increases. We then vary the value of σ 2 to create problems with different distribution setups, where a smaller σ 2

gives a rarer probability.

Figures 5 and 6 present the experimental results with fixed σ 2
= 0.3 and a varing γ based on 50,000 samples. Figure 5

shows that the proposed IS estimator provides similar estimates as the baseline estimator, while Figure 6 shows our

estimator provides a better confidence interval width and the advantage grows slightly as γ increases.

In Figures 7 and 8, we present the experimental results for different variance values with γ = 500. Again we observe

the proposed IS scheme provides smaller relative errors in all cases and the advantage increases with smaller variance

(the relative error increases from 2.5 to 10 for the proposed IS and 5 to 55 for the uniform IS in the considered range of

σ ).

Next, we investigate how the size of the predictor would affect the efficiency of our proposed estimator. We note

that a neural network with a larger size results in a larger number of linear pieces in the rare-event set formulation.

To obtain rare-event sets with different numbers of linear pieces, we use neural networks with different number of

neurons for training and subsequently building the rare-event sets. In particular, we vary the number of neurons in the

second layer and keep other parameters fixed.

Table 1 presents the computation time for solving the mixed integer optimization under different cases. Although the

numbers of constraints and variables increase by roughly 30% (from 150 total neurons to 200) as we increase the number

of second layer neurons, there is no significant increase in the computation time. In Figures 9 and 10, we present the

performances of our IS estimator. We observe that our IS estimator consistently outperforms the naive estimator as

evidenced by the similar estimates in Figure 9 and the smaller relative errors in Figure 10.
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Fig. 5. Probability estimation with different

γ . Neural network, case 1.

Fig. 6. 95% confidence interval half-width

with different γ . Neural network, case 1.

Fig. 7. Probability estimation with different

distribution setups. Neural network, case 1.

Fig. 8. Relative error with different distribu-

tion setups. Neural network, case 1.

Table 1. The computation time for solving the mixed integer optimization to obtain the first dominating point in the neural

network defined rare-event set in case 1.

Number of Layer 2 Neurons 50 55 60 65 70 75 80 85 90 95 100
Number of Total Neurons 150 155 160 165 170 175 180 185 190 195 200
Computation Time (sec) 0.323 0.390 0.217 0.218 0.205 0.379 0.384 0.436 0.357 0.235 0.425

Next, we train a random forest д(x), which ensembles three regression trees (see further training details in Appendix

A). The three regression trees are averaged and each of them has around 600 nodes. Again we illustrate the rare-event

set with γ = 500, which is presented in Figure 4. The dominating point is obtained by implementing Algorithm 1, which

is located at (3.05, 2.65).

Figures 11 and 12 show our results with random forest. In Figure 11, we observe that the estimates for the two IS

schemes are similar in all considered cases. On the other hand, Figure 12 shows the relative error for the proposed IS

is smaller in all considered σ . Moreover, as the rarity increases, the relative error of the proposed IS increases from

roughly 2.5 to 5, whereas the relative error of the uniform IS increases from 5 to 40. The slower increasing rate indicates

that the proposed IS scheme is more efficient and the outperformance is stronger for rarer problems.
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Fig. 9. Probability estimation with different

different neural network sizes, case 1.

Fig. 10. Relative error with different neural

network sizes, case 1.

Fig. 11. Probability estimation with differ-

ent distribution setups. Random forest, case

1.

Fig. 12. Relative error with different distri-

bution setups. Random forest, case 1.

We now consider true output values generated according to the function

y(x) = 10 × e
−
(
x1−5

3

)2
−
(
x2−5

4

)2
+ 10 × e−x1

2−(x2−4.5)
2

. (10)

Again we use a uniform grid over [0, 5]2 with a mesh of 0.1 on each coordinate to train the predictors. The random forest

ensembles three regression trees with around 600 nodes and the neural network with 2 hidden layers, 100 neurons in

the first hidden layer and 50 neurons in the second hidden layer. All neurons in the neural network are ReLU.

For γ = 8, the shapes of the rare-event sets are shown in Figures 13 and 14. We observe that the set now consists of

two disjoint regions and therefore we expect to obtain multiple dominating points. Using Algorithm 1, we obtain two

dominating points in each case: (0, 4.15) and (3.75, 3.55) for the random forest model; (0.113, 4.162) and (4.187, 3.587)

for the neural network model. Again we vary γ and σ 2 to obtain problems with different rarities and use 50,000 samples

for each case.

Figures 15 and 16 shows the experiment results with fixed σ 2
= 0.3 and a varying γ . As in the first example, we

observe that the IS estimator provides correct estimates with better confidence intervals through all considered cases.

The experimental results with fixed γ = 8 varying σ 2 for the random forest predictor are shown in Figures 17 and 18,
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Fig. 13. Rare-event set and dominating

point for the random forest (case 2).

Fig. 14. Rare-event set and dominating

point for the neural network (case 2).

Fig. 15. Probability estimation with differ-

ent γ . Neural network, case 2.

Fig. 16. 95% confidence interval half-width

with different γ . Neural network, case 2.

and the results for the neural network predictor are shown in Figures 19 and 20. Similar to the previous problem, both

IS schemes give similar estimates in all the cases, as observed in Figures 17 and 19. The relative errors shown in Figures

18 and 20 illustrate that, as the probability of interest decreases, the relative error ratio between the uniform IS and

the proposed IS increases from 2 to around 5-6. We can conclude that the proposed IS scheme again outperforms the

uniform IS and is more preferable as the rarity increases.

6.2 MAGIC Gamma Telescope Data Set

We study a rare-event probability estimation problem from a realistic classification task. The classification problem uses

the MAGIC Gamma Telescope data set in the UCI Machine Learning Repository [10]. The problem is to classify images

of electromagnetic showers collected by a ground-based atmospheric Cherenkov gamma telescope. The features of the

data are 10-dimensional characteristic parameters of the images and the data set contains 19020 data points in total. We

provide some descriptive statistics of the data set in Table 2. Studies [23, 47, 106] use machine learning predictors to

discriminate images caused by a łsignalž (primary gammas) from those initiated by the łbackgroundž (cosmic rays in

the upper atmosphere).
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Fig. 17. Probability estimation with differ-

ent distribution setups. Random forest, case

2.

Fig. 18. Relative error with different distri-

bution setups. Random forest, case 2.

Fig. 19. Probability estimation with differ-

ent distribution setups. Neural network, case

2.

Fig. 20. Relative error with different distri-

bution setups. Neural network, case 2.

Table 2. Descriptive statistics of the MAGIC Gamma Telescope Data Set. łStdž denotes the standard deviation and łCoVž

denotes the coefficient of variation (ratio of the standard deviation to the mean).

Coefficient Index 1 2 3 4 5 6 7 8 9 10
Mean 53.250 22.181 2.825 0.380 0.215 -4.332 10.546 0.250 27.646 193.818
Std 42.365 18.346 0.473 0.183 0.111 59.206 51.000 20.827 26.104 74.732
CoV 0.796 0.827 0.167 0.481 0.515 -13.668 4.836 83.401 0.944 0.386
Min 4.284 0.000 1.941 0.013 0.000 -457.916 -331.780 -205.895 0.000 1.283
Max 334.177 256.382 5.323 0.893 0.675 575.241 238.321 179.851 90.000 495.561
Median 37.148 17.140 2.740 0.354 0.197 4.013 15.314 0.666 17.680 191.851

To train the predictors, we allocate 15,000 data points as the training set and use the remaining 4,020 data points as

the testing set. All data were normalized to avoid scaling issues in training. We train a random forest that ensembles 10

random trees to achieve 85.6% testing set accuracy. For neural network, we use 2 hidden layers with 20 neurons and

achieved 87% testing set accuracy.
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Fig. 21. Probability estimation with dif-

ferent distribution setups. Random forest,

MAGIC.

Fig. 22. Probability estimation with dif-

ferent distribution setups. Neural network,

MAGIC.

The rare-event probability of interest is the statistical robustness metric (Example 3.1) of the two trained predictors.

Specifically, we consider a testing data point, say with input x and true label y, that is correctly predicted in both

predictors (the predicted valueд(x) is consistent withy). Thenwe perturb the input x with a Gaussian noise ϵ ∼ N (0, Iσ 2)

and estimate the probability of P(д(x + ϵ) , y), where we use uniform variance for each dimension because the input

space was normalized. In our experiment, we vary the value of σ 2 to construct rare-event with different rarities. Note

that, as discussed in Example 3.1, P(д(x + ϵ) , y) can be transformed into the format considered in this paper, i.e.

P(д(X ) > γ ).

First, we implement Algorithm 1 to obtain dominating points for the rare-event sets {д(x + ϵ) , y} with random

forest and neural network as д(·) respectively. We obtain 53 dominating points for the rare-event sets associated with

the random forest predictor and 217 dominating points in the neural network case. The IS distributions are constructed

using these dominating points. In both problems, σ 2 ranges from 0.03 to 0.1 and we use 50,000 samples to estimate each

target rare-event probabilities.

The experimental results for the random forest and neural network are presented in Figures 21 and 22 respectively.

We observe that the estimates are very accurate in all experiments (with different rarities), which are indicated by the

tight 95% confidence intervals. These results show that our proposed IS scheme performs well with large numbers of

dominating points and in relatively high-dimensional problems.

7 PROOFS OF THEOREMS

Throughout this section, we write f1(γ ) ∼ f2(γ ) if limγ→∞ f1(γ )/f2(γ ) = 1 and write f1(γ )
poly
∼ f2(γ ) if f1(γ )/f2(γ )

changes at most polynomially in γ . Unless otherwise defined, we use xi to denote the i-th component of a vector x .

For any vectors x ,y ∈ Rd , we write x ≥ y if xi ≥ yi for any i = 1, . . . ,d . For any index sets I , J ⊂ {1, . . . ,d} and any

x ∈ Rd ,A ∈ Rd×d , we use xI to denote the subvector (xi )i ∈I and use AI J to denote the submatrix (Ai j )i ∈I, j ∈J .

First of all, we adapt Theorem 4.1 in [64] to obtain the following lemma.

Lemma 7.1. Let Y be a d-dimensional Gaussian random vector with zero mean and positive definite covariance matrix Σ̃.

Suppose that s̃ = s̃(γ ) < [−∞, 0]d is a vector in [−∞,∞)d such that as γ →∞, at least one of its components goes to∞. Use

y∗ to denote argminy≥s̃ y
T
Σ̃
−1y. Then by Proposition 2.1 in [64], we know that there exists a unique set I ⊂ {1, · · · ,d}
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such that

1 ≤ |I | ≤ d ; (11a)

y∗I = s̃I , 0I ; (11b)

If J := {1, . . . ,d} \ I , ∅, then y∗J = −(Σ̃
−1)−1J J (Σ̃

−1)J I s̃I ≥ s̃ J ; (11c)

∀i ∈ I , eTi (Σ̃I I )
−1s̃I > 0; (11d)

min
y≥s̃

yT Σ̃−1y = (y∗)T Σ̃−1y∗ > 0. (11e)

We suppose that for sufficiently large γ , the set I does not change with γ and if J , ∅, limγ→∞(s̃ − y
∗)J = s̃

∗
J
where s̃∗ is a

constant vector in [−∞,∞) | J | . Suppose further that ∀i ∈ I , eTi (Σ̃I I )
−1s̃I either goes to∞ or is a positive constant. Then as

γ →∞, we have that

P(Y ≥ s̃) ∼ C
exp{−(y∗)T Σ̃−1y∗/2}∏

i ∈I e
T
i (Σ̃I I )

−1s̃I

where C is a positive constant in γ .

Before showing the proof, we provide a brief and intuitive explanation on the index set I as defined in the lemma. We

minimize yT Σ̃−1y subject to y ≥ s̃ . Among the constraints, yI ≥ s̃I is crucial while y J ≥ s̃ J could be removed without

affecting the optimal solution. Thus, the original optimization problem is equivalent to minimizing yT Σ̃−1y subject to

yI = s̃I ,y J ∈ R
| J | . For example, if d = 2, s̃ = (1, 0)T and Σ̃ is the identity matrix, then I = {1} and J = {2} since y1 ≥ 1

could not be removed while y2 ≥ 0 could. Now we prove the lemma:

Proof of Lemma 7.1. Givenx ∈ Rd , we define the transformation x̃ in the followingway: x̃i = (eTi (Σ̃I I )
−1s̃I )

−1xi ,∀i ∈

I ; x̃ J = x J . Using (3.4) in [64], we know that

(x + y∗)T Σ̃−1(x + y∗) = xT Σ̃−1x + 2xTI (Σ̃I I )
−1s̃I + (y

∗)T Σ̃−1y∗,

and thus

ϕ(x̃ + y∗; 0, Σ̃) = (2π )−
d
2 |Σ̃|−

1
2 exp

{
−
1

2

[
x̃T Σ̃−1x̃ + 2x̃TI (Σ̃I I )

−1s̃I + (y
∗)T Σ̃−1y∗

]}

= (2π )−
d
2 |Σ̃|−

1
2 exp

{
−
1

2

[
x̃T Σ̃−1x̃ + 2xTI 1I + (y

∗)T Σ̃−1y∗
]}

Then we get that

P(Y ≥ s̃)

=

∫
y≥s̃

ϕ(y; 0, Σ̃)dy

=

∫
x̃ ≥s̃−y∗

ϕ(x̃ + y∗; 0, Σ̃)dx̃

=

(∏
i ∈I

eTi (Σ̃I I )
−1s̃I

)−1 ∫
x ≥s̃−y∗

ϕ(x̃ + y∗; 0, Σ̃)dx (In the integrand, x̃ can be viewed as a function of x .)

=(2π )−
d
2 |Σ̃|−

1
2

(∏
i ∈I

eTi (Σ̃I I )
−1s̃I

)−1
exp{−(y∗)T Σ̃−1y∗/2}

∫
x ≥s̃−y∗

exp{−x̃T Σ̃−1x̃/2 − xTI 1I }dx .
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Apparent from the above, it suffices to show that
∫
x ≥s̃−y∗

exp{−x̃T Σ̃−1x̃/2−xT
I
1I }dx converges to a positive constant

as γ → ∞. We will prove this result via applying the dominated convergence theorem. We first need to derive an

integrable upper bound for the integrand. Indeed, using (3.6) in [64] we know that

x̃T Σ̃−1x̃ + 2x̃TI (Σ̃I I )
−1s̃I + (y

∗)T Σ̃−1y∗ ≥ x̃TJ (Σ̃J J )
−1x̃ J + 2x̃

T
I (Σ̃I I )

−1s̃I + (y
∗)T Σ̃−1y∗

and hence x̃T Σ̃−1x̃ ≥ x̃T
J
(Σ̃J J )

−1x̃ J = xT
J
(Σ̃J J )

−1x J . Thus

exp{−x̃T Σ̃−1x̃/2 − xTI 1I } ≤ exp{−xTJ (Σ̃J J )
−1x J /2 − x

T
I 1I }.

Moreover, we have that∫
x ≥s̃−y∗

exp{−xTJ (Σ̃J J )
−1x J /2 − x

T
I 1I }dx ≤

∫
xI ≥0I ,x J ∈R| J |

exp{−xTJ (Σ̃J J )
−1x J /2 − x

T
I 1I }dx

=

∫
R| J |

exp{−xTJ (Σ̃J J )
−1x J /2}dx J < ∞.

To investigate the limit of exp{−x̃T Σ̃−1x̃/2 − xT
I
1I }, we further partition I into I1 = {i ∈ I : eTi (Σ̃I I )

−1s̃I →∞} and

I2 = {i ∈ I : eTi (Σ̃I I )
−1s̃I is a positive constant}. By the definition, we know that for any given x ∈ Rd , x̃i → 0 for

i ∈ I1 and x̃i is a constant for i ∈ I2 or J . Then we get that for any x ,

lim
γ→∞

exp{−x̃T Σ̃−1x̃/2 − xTI 1I } = exp

{
−
1

2

[
x̃TI2 (Σ̃

−1)I2I2 x̃I2 + 2x̃
T
I2
(Σ̃−1)I2 J x̃ J + x̃

T
J (Σ̃
−1)J J x̃ J

]
− xTI 1I

}

= exp

{
−
1

2

[
x̃TI2 (Σ̃

−1)I2I2 x̃I2 + 2x̃
T
I2
(Σ̃−1)I2 J x J + x

T
J (Σ̃
−1)J J x J

]
− xTI 1I

}
.

By applying the dominated convergence theorem, we get that

lim
γ→∞

∫
x ≥s̃−y∗

exp{−x̃T Σ̃−1x̃/2 − xTI 1I }dx

=

∫ ∫
xI ≥0I ,x J ≥s̃

∗
J

exp

{
−
1

2

[
x̃TI2 (Σ̃

−1)I2I2 x̃I2 + 2x̃
T
I2
(Σ̃−1)I2 J x J + x

T
J (Σ̃
−1)J J x J

]
− xTI 1I

}
dxI dx J

=

∫ ∫
xI2 ≥0I2,x J ≥s̃

∗
J

exp

{
−
1

2

[
x̃TI2 (Σ̃

−1)I2I2 x̃I2 + 2x̃
T
I2
(Σ̃−1)I2 J x J + x

T
J (Σ̃
−1)J J x J

]
− xTI21I2

}
dxI2dx J .

This shows that
∫
x ≥s̃−y∗

exp{−x̃T Σ̃−1x̃/2 − xT
I
1I }dx converges to a positive constant as γ →∞, and hence we have

proved the theorem. □

Now we apply Lemma 7.1 and the techniques in its proof to derive the following result:

Lemma 7.2. Suppose that X ∼ N (µ, Σ) where µ ∈ Rd and Σ ∈ Rd×d is positive definite. Let A ∼ Rm×d be a constant

matrix and t ∈ Rm be a vector. In particular, t1 = γ + c for some constant c ∈ R and t2, . . . , tm are all constants in R.

Assume that P(AX ≥ t) > 0 for any γ ∈ R. Define x∗ = argmin{(x − µ)T Σ−1(x − µ) : Ax ≥ t}. Then

(i) Use Ai to denote the i-th row vector of A and defineA(x) = {1 ≤ i ≤ m : ATi x = ti } for x ∈ Rd . For sufficiently large

γ , A(x∗) does not change with γ .

(ii) For sufficiently large γ , each component of x∗ is affine in γ .

(iii) As γ →∞,

P(AX ≥ t)
poly
∼ exp{−(x∗ − µ)T Σ−1(x∗ − µ)/2}.
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Proof of Lemma 7.2. For simplicity, we denote the polyhedron {x ∈ Rd : Ax ≥ t} as P1.

(i&ii) Note that x∗ is the optimal solution to a quadratic programming problem. It is known that

x∗ = argmin{(x − µ)T Σ−1(x − µ) : ATi x = ti ,∀i ∈ A(x
∗)}. (12)

Moreover, as γ grows, actually only the first constraint AT1 x ≥ t1 = γ + c shifts with γ while the otherm − 1

constraints keep unchanged. Thus we must have 1 ∈ A(x∗) for sufficiently large γ . Indeed, if 1 < A(x∗), then

from (12), x∗ must belong to {argmin{(x − µ)T Σ−1(x − µ) : ATi x = ti ,∀i ∈ Ī } : Ī ⊂ {2, . . . ,m}}, which is a finite

set of constant vectors. However, we have that AT1 x
∗ ≥ t1 = γ + c , so when γ is large enough, x∗ cannot be one

of these constant vectors and hence 1 ∈ A(x∗).

We consider the łcandidate pointsž defined as follows. For any fixed index set Ĩ ⊂ {1, . . . ,m} such that 1 ∈ Ĩ ,

{x ∈ Rd : ATi x = ti , i ∈ Ĩ } , ∅ and the constraints ATi x = ti , i ∈ Ĩ are linearly independent for sufficiently large

γ (we call such Ĩ as valid), we solve x∗(Ĩ ) = argmin{(x − µ)T Σ−1(x − µ) : ATi x = ti ,∀i ∈ Ĩ }. If x∗(Ĩ ) is feasible

for the original problem, i.e. x∗(Ĩ ) ∈ P1, then we call x∗(Ĩ ) a candidate point.

We note that the total number of valid Ĩ is finite since Ĩ is always a subset of {1, . . . ,m}. Without loss of generality,

from now on we assume that γ is large enough such that 1 ∈ A(x∗) and for any valid Ĩ , {x ∈ Rd : ATi x = ti , i ∈

Ĩ } , ∅ and ATi x = ti , i ∈ Ĩ are linearly independent. In this case, x∗ is the candidate point which attains the

minimum objective value.

First, we show that for any valid Ĩ , each component of x∗(Ĩ ) is affine in γ . Suppose that Ĩ = {i1, . . . , i | Ĩ |} with

i1 < · · · < i
| Ĩ |
. We have that Ai j , j = 1, . . . , |Ĩ | are linearly independent. Let A(Ĩ ) ∈ Rd×d be a constant invertible

matrix whose j-th row vector is Ai j for j = 1, . . . , |Ĩ |. Consider the transformation y = A(Ĩ )(x − µ) and solve

y∗(Ĩ ) = argmin{yT (A(Ĩ )−1)T Σ−1A(Ĩ )−1y : yj = ti j −A
T
i j
µ, j = 1, . . . , |Ĩ |}. We have that x∗(Ĩ ) = A(Ĩ )−1y∗(Ĩ ) + µ.

To ease the notation, we denote Σ′ = A(Ĩ )T ΣA(Ĩ ), t ′ = t
Ĩ
− (Aµ)

Ĩ
, I ′ = {1, . . . , |Ĩ |} and J ′ = {1, . . . ,d} \ I ′. Then

y∗(Ĩ ) = argmin{yT Σ′−1y : yI ′ = t ′}

= argmin{yTI ′(Σ
′−1)I ′I ′yI ′ + 2y

T
I ′(Σ
′−1)I ′ J ′y J ′ + y

T
J ′(Σ
′−1)J ′ J ′y J ′ : yI ′ = t ′}.

By solving the above problem, we get that y∗(Ĩ )I ′ = t ′ and y∗(Ĩ )J ′ = −(Σ
′−1)−1

J ′ J ′
(Σ′−1)J ′I ′t

′. By the definition, for

fixed index set Ĩ , Σ′ is a constant matrix. Besides, t ′1 = t1−(Aµ)1 is an affine function in γ while other components

of t ′ are all constants. Hence, each component of y∗(Ĩ ) is affine in γ . As a result, each component of x∗(Ĩ ) is also

affine in γ .

To check whether x∗(Ĩ ) is feasible, it is equivalent to check whether ATi x
∗(Ĩ ) ≥ ti for any i < Ĩ . We know that for

i < Ĩ (which implies that i , 1), ATi x
∗(Ĩ ) is affine in γ while ti is a constant. Hence, for sufficiently large γ , it

is determined whether x∗(Ĩ ) is a candidate point or not. Again, the total number of valid Ĩ is finite. Therefore,

{Ĩ : x∗(Ĩ ) is a candidate point} does not change for large γ .

Finally, for each Ĩ such that x∗(Ĩ ) is a candidate point for sufficiently large γ , we have that the objective value

(x∗(Ĩ ) − µ)T Σ−1(x∗(Ĩ ) − µ) is a quadratic function of γ . Recall that x∗ is the candidate point with minimum

objective value. Thus, when γ is sufficiently large, {Ĩ : x∗ = x∗(Ĩ )} must be non-empty and fixed. We pick a

specific Ĩ such that x∗ = x∗(Ĩ ) for sufficiently large γ . Since we have proved that each component of x∗(Ĩ ) is

affine in γ , we get statement (ii). Then when γ is large enough, for each i , it is determined whether ATi x
∗
= ti , i.e.

i ∈ A(x∗), which completes the proof of (i).
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(iii) In this proof, we will construct a superset and a subset of P1, and hence develop an upper bound and a lower

bound for P(X ∈ P1). Then it suffices to show that both bounds are approximately exp{−(x∗ − µ)T Σ−1(x∗ − µ)/2}

up to polynomial factors.

First, we construct the superset of P1 by removing constraints. Following the above proof, we can find a maximal

valid index set Ĩ = {i1, . . . , im′} such that 1 = i1 < · · · < im′ and x∗ = x∗(Ĩ ) for sufficiently large γ . Intuitively,

{ATi j
x ≥ ti j , j = 1, . . . ,m′} is the maximal linearly independent subset of active constraints at x∗. Ifm′ < d ,

then we can add redundant constraints in the form of xkl ≥ −∞, l = 1, · · · ,d −m′ such that we get d linearly

independent constraints now. More specifically, let

B =

©­­­­­­­­­­­­­«

ATi1
.
.
.

ATim′

eT
k1
.
.
.

eT
kd−m′

ª®®®®®®®®®®®®®¬

, s =

©­­­­­­­­­­­­«

ti1
.
.
.

tim′

−∞

.

.

.

−∞

ª®®®®®®®®®®®®¬

.

By the construction, we get that B is a d × d constant invertible matrix. Denote P2 = {x ∈ Rd : Bx ≥ s}. Since P2

is obtained by removing constraints from P1, we have that P1 ⊂ P2 and thus P(X ∈ P1) ≤ P(X ∈ P2). Now we

develop the asymptotic result of P(X ∈ P2), where we directly apply Lemma 7.1.

We know that Y := B(X − µ) ∼ N (0, Σ̃) where Σ̃ = BΣBT is positive definite. We denote y∗ = argmin{yT Σ̃−1y :

y ≥ s̃} where s̃ = s − Bµ. It is easy to verify that y∗ = B(x∗ − µ) and (y∗)T Σ̃−1y∗ = (x∗ − µ)T Σ−1(x∗ − µ). From

(ii), we know that each component of y∗ is also affine in γ for large γ .

Now we verify the assumptions of Lemma 7.1. Recall that under our settings, s1 = γ + c for some constant c ∈ R

so s̃1 → ∞ as γ → ∞. We still use the symbol I to denote the set that satisfies (11). By the definition, clearly

{m′+1, . . . ,d} ⊂ J = {1, . . . ,d}\I . Basically, I is the minimal subset of {1, . . . ,m′} such that x∗ = x∗({i j : j ∈ I }).

Following the previous proof, we know that 1 ∈ I and I does not change for sufficiently large γ . Moreover, we

know that y∗ ≥ s̃ and each component of y∗ is affine in γ , then the limit limγ→∞(s̃ − y
∗)J exists in [−∞, 0]

| J | .

Indeed, for j ∈ J ∩ {2, . . . ,m′}, s̃j is a constant and then s̃j −y∗j converges to −∞ or a nonpositive constant while

for j ∈ {m′ + 1, . . . ,d}, s̃j − y∗j ≡ −∞. Finally, for any i ∈ I , we know that eTi (Σ̃I I )
−1s̃I > 0 and it is an affine

function of γ , and thus either it goes to∞ or it is a positive constant as γ →∞.

In conclusion, all the assumptions of Lemma 7.1 hold in this case. Therefore, we get that

P(X ∈ P2) ∼ C
exp{−(y∗)T Σ̃−1y∗/2}∏

i ∈I e
T
i (Σ̃I I )

−1s̃I
= C

exp{−(x∗ − µ)T Σ−1(x∗ − µ)/2}∏
i ∈I e

T
i (Σ̃I I )

−1s̃I

for some positive constant C , which implies that

P(X ∈ P2)
poly
∼ exp{−(x∗ − µ)T Σ−1(x∗ − µ)/2}.

Clearly, if P1 = P2, then we have proved statement (iii). From now on, we assume that P1 , P2. In this case, P2 is

a relaxation of P1 by removing inactive constraints at x∗. That is, for any x ∈ P2 \ P1, there exists i ∈ {1, . . . ,m}

such that ATi x ≤ ti while ATi x
∗
> ti . In particular, x∗ < P2 \ P1.
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Next, we construct the subset of P1 by selecting a small neighborhood around x∗. Denote x∗∗ = argmin{(x −

x∗)T Σ−1(x − x∗) : x ∈ P2 \ P1}. Note that P2 \ P1 can be expressed as the union of finite polyhedrons, each

of which is formed by a shifting constraint and some constant constraints like P1. Similar to the previous

arguments, we could derive that (x∗∗ − x∗)T Σ−1(x∗∗ − x∗) ≥ 0 is a quadratic function of γ for large γ . Thus we

know that (x∗∗ − x∗)T Σ−1(x∗∗ − x∗) either goes to ∞ or stays a nonnegative constant as γ → ∞. However, if

(x∗∗ − x∗)T Σ−1(x∗∗ − x∗) = 0 for sufficiently large γ , then we have that x∗∗ = x∗, which contradicts with x∗ <

P2 \ P1. Therefore, there exists a constant 0 < ε < 1 such that for sufficiently largeγ , (x∗∗−x∗)T Σ−1(x∗∗−x∗) > ε2,

and hence P2 \ P1 ⊂ {x ∈ Rd : (x − x∗)T Σ−1(x − x∗) > ε2}. Thus, {x ∈ Rd : (x − x∗)T Σ−1(x − x∗) ≤ ε2} ∩ P1 =

{x ∈ Rd : (x − x∗)T Σ−1(x − x∗) ≤ ε2} ∩ P2 for sufficiently large γ . Correspondingly, there exists ε ′ > 0 such that

{x ∈ Rd : ∥x ∥∞ ≤ ε ′} ⊆ {x ∈ Rd : xT Σ−1x ≤ ε2}.

Still we define Y = B(X − µ) ∼ N (0, Σ̃). Then we get that

P(X ∈ P1) ≥ P((X − x∗)T Σ−1(X − x∗) ≤ ε2,X ∈ P1)

= P((X − x∗)T Σ−1(X − x∗) ≤ ε2,X ∈ P2)

= P((Y + Bµ − Bx∗)T Σ̃−1(Y + Bµ − Bx∗) ≤ ε2,Y ≥ s̃).

Similar to the proof of Lemma 7.1, we have that

P((Y + Bµ − Bx∗)T Σ̃−1(Y + Bµ − Bx∗) ≤ ε2,Y ≥ s̃)

=

∫
(y+Bµ−Bx ∗)T Σ̃−1(y+Bµ−Bx ∗)≤ε2,y≥s̃

ϕ(y; 0, Σ̃)dy

=

∫
x̃T Σ̃−1x̃ ≤ε2, x̃ ≥s̃−y∗

ϕ(x̃ + y∗; 0, Σ̃)dx̃

=

(∏
i ∈I

eTi (Σ̃I I )
−1s̃I

)−1 ∫
x̃T Σ̃−1x̃ ≤ε2, x̃ ≥s̃−y∗

ϕ(x̃ + y∗; 0, Σ̃)dx (Similarly, x̃ is viewed as a function of x .)

=(2π )−
d
2 |Σ̃|−

1
2

(∏
i ∈I

eTi (Σ̃I I )
−1s̃I

)−1
exp{−(y∗)T Σ̃−1y∗/2}

∫
x̃T Σ̃−1x̃ ≤ε2, x̃ ≥s̃−y∗

exp{−x̃T Σ̃−1x̃/2 − xTI 1I }dx

≥(2π )−
d
2 |Σ̃|−

1
2

(∏
i ∈I

eTi (Σ̃I I )
−1s̃I

)−1
exp{−(y∗)T Σ̃−1y∗/2}(1 − ε2/2)

∫
x̃T Σ̃−1x̃ ≤ε2, x̃ ≥s̃−y∗

exp{−xTI 1I }dx

≥(2π )−
d
2 |Σ̃|−

1
2

(∏
i ∈I

eTi (Σ̃I I )
−1s̃I

)−1
exp{−(y∗)T Σ̃−1y∗/2}(1 − ε2/2)

∫
0≤x̃ ≤ε ′1

exp{−xTI 1I }dx

=(2π )−
d
2 |Σ̃|−

1
2 (1 − ε2/2)ε ′| J |

(∏
i ∈I

1 − exp{−eTi (Σ̃I I )
−1s̃I ε

′}

eTi (Σ̃I I )
−1s̃I

)
exp{−(y∗)T Σ̃−1y∗/2}

poly
∼ exp{−(y∗)T Σ̃−1y∗/2}

= exp{−(x∗ − µ)T Σ−1(x∗ − µ)/2}.

Combining the upper and lower bound for P(X ∈ P1), we finally get that

P(X ∈ P1)
poly
∼ exp{−(x∗ − µ)T Σ−1(x∗ − µ)/2}.

□
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Now we use the asymptotic result in Lemma 7.2 to prove Theorem 4.2.

Proof of Theorem 4.2. Suppose that д(x) = дi (x) for hi j (x) ≥ 0, j = 1, . . . ,mi , i = 1, . . . , r ′ where дi ’s and hi j ’s are

all affine functions. Then we can split {x ∈ Rd : д(x) ≥ γ } into R̃1, . . . , R̃r ′ where R̃i = {x ∈ Rd : дi (x) ≥ γ ,hi j (x) ≥

0, j = 1, . . . ,mi }. Without loss of generality, we assume that P(X ∈ R̃i ) > 0,∀i = 1, . . . , r ′ for any γ ∈ R. We denote

ãi = argmin{(x − µ)T Σ−1(x − µ) : x ∈ R̃i }. Applying Lemma 7.2, we get that for any i = 1, . . . , r ′,

P(X ∈ R̃i )
poly
∼ exp{−(ãi − µ)

T
Σ
−1(ãi − µ)/2}.

Then we get that

Ẽ[Z ] = P(д(X ) ≥ γ ) =

r ′∑
i=1

P(X ∈ R̃i )
poly
∼ exp{− min

i=1, ...,r ′
(ãi−µ)

T
Σ
−1(ãi−µ)/2} = exp{−(a1−µ)

T
Σ
−1(a1−µ)/2}. (13)

On the other hand, we have that for any i = 1, . . . , r and x ∈ Ri ⊂ {x ∈ Rd : (ai − µ)
T
Σ
−1(x − ai ) ≥ 0},

L(x) ≤
re−(x−µ)

T
Σ
−1(x−µ)/2

e−(x−ai )
T Σ−1(x−ai )/2

= r exp{−(ai − µ)
T
Σ
−1(ai − µ)/2 − (ai − µ)

T
Σ
−1(x − ai )}

≤ r exp{−(ai − µ)
T
Σ
−1(ai − µ)/2}

≤ r exp{−(a1 − µ)
T
Σ
−1(a1 − µ)/2}.

Then we get that

Ẽ[Z 2] = Ẽ[I (д(X̃ ) ≥ γ )L2(X̃ )] = E[I (д(X ) ≥ γ )L(X )] ≤ r exp{−(a1 − µ)
T
Σ
−1(a1 − µ)/2}P(д(X ) ≥ γ ). (14)

Combining (13) and (14), we finally get that Ẽ[Z 2]/Ẽ[Z ]2 grows at most polynomially growing in γ , and hence Z is

asymptotically optimal. □

Proof of Corollary 4.3. See (13) in the proof of Theorem 4.2. □

Proof of Corollary 4.4. Now we suppose that X ∼ f (x) =
∑m
j=1 πjϕ(x ; µ j , Σj ). We know that

Ẽ[Z ] = P(д(X ) ≥ γ ) =

m∑
j=1

πjP(д(X ) ≥ γ |X ∼ N (µ j , Σj ))

and thus from (13),

P(д(X ) ≥ γ )
poly
∼ exp{− min

j=1, ...,m
(aj1 − µ j )

T
Σ
−1
j (aj1 − µ j )/2}.
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Moreover, from (14),

Ẽ[Z 2] = E[I (д(X ) ≥ γ )L(X )]

=

m∑
j=1

πjE[I (д(X ) ≥ γ )L(X )|X ∼ N (µ j , Σj )]

≤

m∑
j=1

πjr j exp{−(aj1 − µ j )
T
Σ
−1
j (aj1 − µ j )/2}P(д(X ) ≥ γ |X ∼ N (µ j , Σj ))

≤ max
j=1, ...,m

{r j } exp{− min
j=1, ...,m

(aj1 − µ j )
T
Σ
−1
j (aj1 − µ j )/2}

m∑
j=1

πjP(д(X ) ≥ γ |X ∼ N (µ j , Σj ))

= max
j=1, ...,m

{r j } exp{− min
j=1, ...,m

(aj1 − µ j )
T
Σ
−1
j (aj1 − µ j )/2}P(д(X ) ≥ γ ).

Combining the results, we get that Ẽ[Z 2]/Ẽ[Z ]2 at most grows polynomially in γ and the IS estimator Z is asymptot-

ically optimal. □

8 CONCLUSION

In this paper, we study rare-event simulation problems motivated from robustness certification and safety-critical

applications of intelligent physical systems, which involve rare-event boundaries associated with the predictions from

machine learning models. We consider especially two common predictors, random forest and neural network, and the

probability of prediction exceeding a threshold that relates to or forms a building block for the motivating applications.

These problems amount to rare-event simulation with piecewise linear set boundaries that are implicitly defined. Our

approach merges IS schemes based on the dominating point machinery with sequential integer programming to search

for these points in a manner that caters to the geometry of these rare-event sets. We develop asymptotic optimality

guarantees, and demonstrate through numerical examples the efficiency of our proposed schemes. Our study can be

viewed as a first step to bridge rigorous efficiency-guaranteed rare-event simulation with the emerging applications

of AI and intelligent systems. Much warranted further studies include the generalization of our approach to more

sophisticated rare-event sets with intricate interaction behaviors, the handling of high-dimensional problems, and the

investigation on the impacts of model errors in affecting rare-event probability estimation.

A APPENDIX: TRAINING DETAILS FOR RANDOM FORESTS

In our experiments in Section 6, the random forests are trained using built-in functions in MATLAB. For the regression

tasks in Section 6.1, we use the łfitcensemle" function with default setting for training random forests. The function

uses bagging (also known as bootstrap aggregating) to train decision trees and ensembles them by averaging their

outputs. In particular, each time we train a decision tree, a subset of the input variables is randomly selected as the

inputs for prediction and a training set is resampled from the empirical distribution of the original dataset. We use mean

squared error as the criterion for branching in training a single decision tree. For the classification tasks in Section 6.2,

we use the łfitrensemle" function, which uses boosting to ensemble decision trees trained using the Gini impurity score

as a criterion for branching. The function starts with training a relatively small decision tree and then sequentially

reduces the prediction error by ensembling new trees that are trained to emphasize the misclassified samples. For more

details, please refer to [30, 65].
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