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We prove a version of the weight part of Serre’s conjecture for mod p Galois representations attached to
automorphic forms on rank 2 unitary groups which are nonsplit at p. More precisely, let F/F+ denote a
CM extension of a totally real field such that every place of F+ above p is unramified and inert in F , and
let r̄ : Gal(F+/F+)! C

U2(Fp) be a Galois parameter valued in the C-group of a rank 2 unitary group
attached to F/F+. We assume that r̄ is semisimple and sufficiently generic at all places above p. Using
base change techniques and (a strengthened version of) the Taylor–Wiles–Kisin conditions, we prove
that the set of Serre weights in which r̄ is modular agrees with the set of Serre weights predicted by Gee,
Herzig and Savitt.
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1. Introduction

Let p be a prime number. The mod p local Langlands program (see [Breuil 2010; Berger 2011; Breuil and
Mézard 2002]) predicts a correspondence between continuous Galois representations ⇢ : Gal(Qp/Qp)!

GLn(Fp) and smooth admissible GLn(Qp)-representations on Fp-vector spaces. It is expected to be
compatible with the classical local Langlands correspondence over C, its geometric realization in the
torsion cohomology of Shimura varieties, and classical local/global compatibility.

The case when n = 2 has been most extensively studied, and such a correspondence has now been
established; see [Colmez 2010; Colmez et al. 2014; Emerton 2011]. However, the picture for n >2 (or more
general p-adic fields) still remains highly conjectural, and evidence suggests that such a correspondence
will be much more intricate; see, for example, [Breuil and Herzig 2015]. Despite this deficiency, there
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has been substantial progress on several expected consequences of this conjecture: the weight part of
Serre’s conjecture, the Breuil–Mézard conjecture, and Breuil’s lattice conjecture [Buzzard et al. 2010;
Gee et al. 2014; Breuil and Mézard 2002; Gee and Kisin 2014; Breuil 2014; Emerton et al. 2013; 2015].

In a different direction, one is also interested in the possibility of enlarging the conjectural corre-
spondence to include more general groups. The works [Abdellatif 2014] and [Kozioł 2016] give some
preliminary indication that a Langlands-type correspondence might be expected to hold for the groups
SL2(Qp) and U2(Qp), and reveal some new phenomena (e.g., the existence of L-packets in the mod p
setting). In general, the work of Buzzard and Gee [2014] lays out precise statements of Langlands-type
conjectures for general reductive groups by making use of an enhancement of the Langlands dual group
(this will figure prominently in our considerations below). This framework reconciles the classical local
Langlands correspondence with its geometric realization. These developments are also related to recent
work of Gee, Herzig and Savitt: the article [Gee et al. 2018] gives a formulation of the weight part of
Serre’s modularity conjectures for a large class of nonclassical reductive groups.

Classical Langlands correspondences (i.e., with C-coefficients) for various reductive groups, and
the relations among them, are at the core of the Langlands functoriality principle. In the specific
example of unitary groups, this principle predicts that a correspondence between (packets of) automorphic
representations of unitary groups on the one side and L-group valued Galois parameters on the other side
is obtained from a correspondence on general linear groups. When the unitary group has low rank, this is
studied in [Rogawski 1990, Section 15.1].

The goal of the present work is to give evidence for a mod p Langlands correspondence for rank 2
unitary groups. Specifically, given a Galois parameter r̄ with values in the C-dual of our unitary group, we
prove that the Serre weights for r̄ predicted in [Gee et al. 2018] (which are representations of finite unitary
groups) are exactly equal to the Serre weights in which r̄ is modular (we give a precise statement below).
In order to do this, we use known instances of functoriality (in the form of classical base change results)
and local/global compatibility. Thus, our methods hint at a mod p principle of unitary base change.

We now introduce some notation and setup in order to state our main result. Let K2/K/Qp be unramified
extensions, with K2/K quadratic. We let U2 denote the unramified unitary group in two variables defined
over the ring of integers OK of K . Note that U2 splits over K2. We let C

U2 denote the C-group of U2, in
the terminology of [Buzzard and Gee 2014] (C

U2 is the usual Langlands L-group of a canonical central
extension of U2). An L-parameter is a continuous homomorphism ⇢ :Gal(Qp/K )! C

U2(Fp), compatible
with the projection C

U2(Fp) ⇣ Gal(K2/K ). The C-group also comes equipped with a canonical map
C
U2! Gm , and we assume that the composite character Gal(Qp/K )

⇢
�! C

U2(Fp)! F⇥p (called the
multiplier of ⇢) is equal to the mod p cyclotomic character.

Inspired by the conjectures of Buzzard and Gee [2014] and the prospect of a mod p Langlands program
for unitary groups, we would like to infer that the L-parameter ⇢ is associated to an L-packet of smooth
representations of U2(K ) over Fp. Unfortunately, such representations are poorly understood beyond
the case K = Qp; see [Kozioł 2016]. A possible first step in understanding such a correspondence
would be to study this question in a global context, that is, to study local/global compatibility for an
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L-parameter r̄ : Gal(Q/F+)! C
U2(Fp), where F+/Q is a totally real field. We assume furthermore

that r̄ is associated to a nonzero Hecke eigenclass in the mod p cohomology with infinite level at p of a
definite unitary group G/OF+ which is nonsplit at places of F+ above p. We would like to stress that
our setting differs quite markedly from the body of work related to Serre weights for unitary groups
(e.g., [Gee et al. 2014; Barnet-Lamb et al. 2013]), wherein the group G is split at places above p. In
particular, our Serre weights are representations of finite unitary groups, not general linear groups. We
define Wmod (r̄) to be the set consisting of the

Q
v | p U2(OF+

v
)-representations appearing in the socle of

the Hecke isotypic component attached to r̄ of the mod p cohomology of G.
According to the conjectures of [Gee et al. 2018], the set Wmod (r̄) should be described in an explicit

way by (r̄ |Gal(Qp/F+
v ))v | p using purely representation-theoretic constructions. Let us denote W?(r̄)

def
=N

v | p W?(r̄ |Gal(Qp/F+
v )), where W?(r̄ |Gal(Qp/F+

v )) is the set described combinatorially in [Gee et al. 2018]
(thus W?(r̄) is again a set of representations of the group

Q
v | p U2(OF+

v
)).

The main theorem of this paper is the following (we refer the reader to the bulk of the paper for any
unfamiliar terminology).

Theorem 1.1 (Corollary 7.5). Let F/F+ be a CM field extension of F+ which is unramified at all finite
places, suppose that p is unramified in F+ and that every place of F+ above p is inert in F. Let
r̄ : Gal(Q/F+)! C

U2(Fp) be an L-parameter with cyclotomic multiplier. Assume that:

• r̄�1(C
U
�

2 (Fp)) = Gal(Q/F).

• r̄ is modular.

• r̄ is unramified outside p.

• r̄ is semisimple and 4-generic at places above p.

• Qker(ad0(r̄)) does not contain F(⇣p).

• BC(r̄)(Gal(Q/F))◆ GL2(F
0) for some subfield F0 ✓ Fp with |F0| > 6.

Then

W?(r̄) = Wmod (r̄).

In the GL2 setting, the results of [Breuil and Paškūnas 2012] and [Emerton et al. 2015] imply that, for a
GL2(Fp)-valued Galois representation ⇢ 0, the set W?(⇢ 0) of modular Serre weights should be equal to the
set of representations appearing in the GL2(OK )-socle of the GL2(K )-representation associated to ⇢ 0 via
some sort of mod p local Langlands correspondence. For U2, the supersingular representations of U2(Qp)

constructed in [Kozioł 2016] all have simple U2(Zp)-socle, while the set W?(⇢) (for generic semisimple ⇢)
has size 2[K :Qp]. Thus, in the K = Qp case, the global evidence provided by Theorem 1.1 suggests
that W?(⇢) (for appropriate ⇢) takes into account the U2(Zp)-socles of all U2(Qp)-representations in a
supersingular L-packet.
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We obtain Theorem 1.1 by following the strategy of [Gee and Kisin 2014]. We first prove the
containment W?(r̄) ◆Wmod (r̄) by using a global base change argument and applying results of [Gee
2011]. The opposite containment follows by using a modified version of the patching functor constructed
in [Caraiani et al. 2016] and the explicit description of C

U2-valued local deformation rings. We explain
these arguments with more details presently.

The main novelty in the unitary group setting is that for both inclusions we make use of the analogous
results for GL2/K2 . Firstly, we establish a compatibility between classical local base change of automorphic
types (as may be deduced from work of Rogawski [1990]) and the set of predicted Serre weights W?(⇢)

(for which we introduce a notion of base change of weights). In this direction our results give the following
proposition, which may be thought of as evidence towards a notion of mod p base change. Recall that a
tame U2(OK )-type is the inflation of an irreducible U2(Fq)-representation over Qp, where Fq denotes the
residue field of K .

Proposition 1.2 (Lemma 3.26, Theorem 4.9). Let � denote a 1-generic tame type for U2(OK ), and let V
denote a Serre weight for U2(OK ). Let BC(� ) denote the base change of � (as defined in Section 3C).
Then

V 2 JH(� )() BC(V ) 2 JH(BC(� )),

where BC(V ) is the base change of the Serre weight V (as defined in Section 3E) and JH(W ) denotes the
set of Jordan–Hölder factors of the mod p reduction of a Zp-lattice in W .

In particular, if ⇢ :Gal(Qp/K )! C
U2(Fp) is a 1-generic tame L-parameter with cyclotomic multiplier,

then the set of predicted local Serre weights W?(⇢) is of the form JH(� ), and we obtain

V 2W?(⇢)() BC(V ) 2W?(BC(⇢)).

Here BC(⇢) : Gal(Qp/K2)! GL2(Fp) denotes the Galois representation obtained by restricting ⇢ to the
absolute Galois group of K2 and projecting onto the GL2 factor.

The tame GL2(OK2)-type BC(� ) of the proposition is characterized by the property that BC(� )⌦C ,!

BC(⇡), where ⇡ is any smooth irreducible complex representation of U2(K ) containing �⌦C, and where
BC(⇡) denotes the stable base change of the L-packet containing ⇡ [Rogawski 1990, Section 11]. Using
the above proposition, we prove in Theorem 6.7 the inclusion W?(r̄) ◆Wmod (r̄) by base changing to
GL2, and using results of Gee [2011] on the set W?(BC(⇢)).

In order to prove the inclusion W?(r̄) ✓Wmod (r̄), we would like to employ a patching argument,
which requires information regarding certain deformation rings. More precisely, let us suppose that
⇢ : Gal(Qp/K )! C

U2(F) is an L-parameter with F a finite extension of Fp, and let O denote the ring of
integers in some sufficiently large finite extension of Qp with residue field F. We let R(1,0,1),⌧ 0

⇢ denote
the deformation ring parametrizing potentially crystalline framed deformations of ⇢ to O-algebras with
(parallel) p-adic Hodge type (1, 0, 1), inertial type ⌧ 0, and cyclotomic multiplier. In order to study the ring
R(1,0,1),⌧ 0

⇢ , we introduce the notion of Frobenius twist self-dual Kisin modules. Given this, we are able to
describe the structure of R(1,0,1),⌧ 0

⇢ in terms of the “base changed” deformation ring R(1,0),⌧ 0

BC(⇢) . Combining
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these calculations with Proposition 1.2, along with the analogous results of [Gee and Kisin 2014] for GL2,
we obtain the following result, which may be viewed as a “Breuil–Mézard-type” result for unitary groups.

Proposition 1.3. Let ⇢ : Gal(Qp/K ) ! C
U2(F) be a 3-generic tame L-parameter with cyclotomic

multiplier. Let ⌧ 0 be a C
U2-valued, 2-generic inertial type for IK and � (⌧ 0) the tame U2(OK )-type

associated to ⌧ 0 via the inertial local Langlands correspondence of Theorem 4.11. Then

|W?(⇢)\ JH(� (⌧ 0))| = e(R(1,0,1),⌧ 0

⇢ ⌦O F),

where e(�) denotes the Hilbert–Samuel multiplicity.

To conclude, we employ a variant of the construction of [Caraiani et al. 2016] in order to produce
a patching functor M1(�) on the category of O-modules with an action of

Q
v | p U2(OF+

v
). Using the

explicit structure of the rings R(1,0,1),⌧ 0

⇢ (namely their integrality), the properties of the patching functor
M1(�), and Proposition 1.3, we obtain the inclusion W?(r̄)✓Wmod (r̄) in Theorem 7.4. This is enough
to prove the main Theorem 1.1.

Our results on the geometry of R(1,0,1),⌧ 0

⇢ in Section 5C can also be used to deduce new cases of
automorphy lifting phenomena for unitary groups which are nonsplit at p. Indeed, the integrality of
R(1,0,1),⌧ 0

⇢ (see Section 5C10 and Table 3) together standard Taylor–Wiles–Kisin arguments give the
following theorem (again, we refer the reader to the bulk of the paper for unfamiliar terminology):

Theorem 1.4. Let F/F+ be a CM field extension of F+ which is unramified at all finite places, suppose
that p is unramified in F+ and that every place of F+ above p is inert in F.

Let r 0 :Gal(Q/F)!GL2(Zp) be a continuous Galois representation, and let r̄ 0 :Gal(Q/F)!GL2(Fp)

denote the associated residual representation. Assume that:

• r 0 is unramified at all but finitely many places.

• We have r 0c ⇠= r 0_ ⌦ "�1, where c 2 Gal(F/F+) is the complex conjugation.

• For all places v of F above p, the local representation r 0|Gal(Qp/Fv)
is potentially crystalline, with

parallel Hodge type (�1, 0) and 4-generic tame inertial type ⌧ 0v.

• For all places v of F above p, the local representation r̄ 0|Gal(Qp/Fv)
is semisimple and 4-generic.

• r̄ 0 is unramified outside places above p.

• r̄ 0 ⇠= r̄ı (⇡) where ⇡ is a cuspidal automorphic representation of G(AF+), such that ⇡1 is trivial and
for all places v of F+ above p, the local component ⇡v contains the tame U2(OF+

v
)-representation

associated to ⌧ 0v by the inertial local Langlands correspondence; see Theorem 4.11.

• Qker(ad(r̄ 0)) does not contain F(⇣p).

• r̄ 0(Gal(Q/F))◆ GL2(F
0) for some subfield F0 ✓ Fp with |F0| > 6.

Then r 0 is automorphic.
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(Recall that r 0 is automorphic if r 0 ⌦Zp
Qp is isomorphic to rı (⇡

0) for some cuspidal automorphic
representation ⇡ 0 of G(AF+), where rı (⇡

0) is the continuous Galois representation associated to ⇡ 0 as in
Theorem 6.1.)

We conclude this introduction with a few remarks on natural questions which arise from the results in
this paper.

In Theorems 1.1 and 1.4, the assumption that r̄ is unramified outside p is used to simplify our arguments,
and it should be possible to remove it. On the other hand removing the condition that the L-parameter is
residually tame at places above p requires further analysis of the possible set of modular weights

Wmod (r̄ |Gal(Qp/F+
v ))✓W?(r̄ |

ss
Gal(Qp/F+

v )
),

and will depend in a subtle way on the geometry of R(1,0,1),⌧ 0

r̄ |Gal(Qp/F+
v )

.

In the case where r̄ |Gal(Qp/F+
v ) is semisimple, the combinatorics of the set W?(r̄ |Gal(Qp/F+

v )) and the set
of Jordan–Hölder constituents of tame types for U2(OF+

v
) suggest that tame U2(OF+

v
)-representations will

play the role of Breuil–Paškūnas diagrams for nonsplit unitary groups. We expect these representations
to be useful in constructing, by a purely local procedure, some mod-p representations of U2(K ) which
naturally appear in the cohomology of Shimura curves with tame level at p. We hope to come back to
these questions in future work.

The paper is organized as follows. In Section 2, we discuss the unitary groups over OK which are
relevant for this paper, namely the unramified unitary group in two variables U2/OK . In fact, in order to
speak about Serre weight conjectures, we must work with a certain central extension eU2 of U2 constructed
by Buzzard and Gee [2014]. We also define the C-group C

U2, which is the “classical” Langlands L-group
of eU2. We give explicit descriptions of the Galois actions on these groups, their character groups, and
their Fp-structures. Since the groups appearing are slightly nonstandard, we have attempted to give a
detailed account.

Section 3 is devoted to the theory of types, that is, absolutely irreducible U2(Fq)-representations over
Frac(O), and their reductions over F. In Section 3C, we recall the notion of base change for types and
compare it with local automorphic base change of smooth U2(K )-representations over C. Then, in
Sections 3D and 3E, we analyze the Jordan–Hölder constituents of the mod p reductions of types vis-à-vis
the constituents of the mod p reductions of their base changes. This allows us to establish several useful
properties of base change of Serre weights.

In Section 4A we study L-parameters of the form ⇢ :Gal(Qp/K )! C
U2(F). We relate these parameters

to U2(OK )-representations to produce the set of (local) predicted weights W?(⇢), as defined in [Gee
et al. 2018]. The core of this section is Section 4C, which examines the compatibility between Serre
weights of L-parameters and their base changes. To conclude, we establish Theorem 4.9, which figures
in subsequent base change results.

Section 5 deals with local deformation theory of C-group valued L-parameters. We introduce the
notion of Frobenius twist self-dual Kisin modules over SR = (OK2 ⌦Zp R)[[u]] in Section 5B, which are
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Kisin modules equipped with an isomorphism between their Frobenius pullback and their dual. Using
this definition, we deduce the deformation theory of Frobenius twist self-dual Kisin modules from that of
Kisin modules over SR by means of base change; as in [Le et al. 2018]. The precise relation between
deformation theory of Frobenius twist self-dual Kisin modules and C-group valued L-parameters is
achieved in Section 5C. In particular, we obtain an explicit presentation for the deformation rings R(1,0,1),⌧ 0

⇢ .
Sections 6 and 7 contain the main global applications, and the proof of the main theorem. In Sections

6A–6C, we provide the background on algebraic automorphic forms on unitary groups which are quasisplit
(but not split) at p, and the Galois representations associated to them, by generalizing the usual results in
the literature for groups which are split at p (see Theorem 6.2). We remark that the compatibility of base
change of types as recalled in 3C and classical base change are integral to these generalizations. The
main result of Section 6 is Theorem 6.7, which is the “weight elimination” statement.

In Sections 7A–7C we generalize the patching construction of [Caraiani et al. 2016] to our unitary
groups; see Proposition 7.3. The modifications are largely formal, using as input the results from
Section 6C. The main result on “weight existence” is then obtained in Section 7D, following the patching
techniques of [Gee and Kisin 2014]. The main result on automorphy lifting follows in Section 7E.

1A. Notation. Let p denote an odd prime number, and fix an algebraic closure Qp of Qp. We denote
its ring of integers by Zp and its residue field by Fp, and we assume that all field extensions of Qp are
contained in Qp. Given a p-adic field F and an element x in its residue field, we define x̃ to be its
Teichmüller lift. Throughout we will work with a finite extension E of Qp which will serve as our field
of coefficients. We let O denote the ring of integers of E , $ its uniformizer, and F its residue field. We
will assume E and F are sufficiently large as necessary.

For any field F , we let 0F
def
= Gal(F/F) denote the absolute Galois group of F , where F is a fixed

separable closure of F . If F is a number field and v is a place of F , we let Fv denote the completion of
F at v, and use the notation Frobv to denote a geometric Frobenius element of 0Fv . If F is a p-adic field,
we let IF denote the inertia subgroup of 0F .

For F either a number field or a p-adic field, we let " : 0F ! Z⇥p denote the p-adic cyclotomic
character, and let " or ! denote its reduction mod p.

If F is a p-adic field, V a de Rham representation of 0F over E , and  : F ,! E an embedding, then
we define HT(V ) to be the multiset of Hodge–Tate weights with respect to  . Thus, HT(V ) contains i
with multiplicity dimE(V ⌦F,

bF(i))0F . In particular, HT(") = {�1}. Further, we let WD(V ) denote
the Weil–Deligne representation associated to V , normalized so that V 7!WD(V ) is a covariant functor.

Let F be a p-adic field. We let ArtF : F⇥ ! 0ab
F denote the Artin map, which sends uniformizers

to geometric Frobenius elements. Let recC denote the local Langlands correspondence of [Harris and
Taylor 2001], from isomorphism classes of smooth irreducible representations of GLn(F) over C to
isomorphism classes of n-dimensional, Frobenius-semisimple Weil–Deligne representations of the Weil
group of F (normalized to agree ArtF in dimension 1). For a choice of isomorphism ı : E ⇠�! C, we
define recE

def
= ı�1 � recC �ı to be the local Langlands correspondence over E .
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All representations will live on vector spaces over E or F, or on O-modules, unless otherwise indicated.
By abuse of notation, we will generally not distinguish between a representation and its isomorphism
class. If G is a group, H E G a normal subgroup, ⇢ an H -representation and g 2 G, we write ⇢g to
denote the H -representation given by h 7! ⇢(ghg�1).

Given a finite length representation V of some group, we let JH(V ) denote its set of Jordan–Hölder
factors. If V denotes a representation of a (pro)finite group G on a finite-dimensional E-vector space,
then we may choose a G-stable O-lattice V � inside V , and we write V � for its reduction mod $ . By
[Serre 1977, Theorem 32], the set of Jordan–Hölder factors of V � is independent of the choice of lattice
V �. We write JH(V ) for JH(V �). We denote by V 7! V_ the duality functor defined on the category of
finite dimensional E-vector spaces (resp. finite dimensional F-vector spaces).

We write matrix transposes on the right, so that A> denotes the transpose of a matrix A. Given
an (anti)automorphism ✓ of GLn(R) which commutes with the transpose, we write A✓> for (A✓ )>; in
particular, we write A�> for (A�1)>.

2. Group-theoretic constructions

Our first task will be to introduce the groups which will be relevant to arithmetic applications. After
defining unitary groups and certain central extensions in Sections 2A and 2B, we construct the dual
groups with which we will be working in Section 2C. For the sake of thoroughness, we also give explicit
descriptions of the Galois actions and Fp-structures. We mostly follow [Buzzard and Gee 2014] and [Gee
et al. 2018, Section 9].

2A. Unitary groups over p-adic fields.

2A1. Let f � 1, and let K denote the unramified extension of Qp of degree f . We let OK denote its ring
of integers, with canonical uniformizer p, and identify its residue field with Fq = Fp f . We let ' 2 0Qp

denote a fixed lift of ArtQp(p) 2 0ab
Qp

; in particular, ' is a geometric Frobenius element and we have
"(') = 1. The group 0K is topologically generated by ' f and IK ( = IQp ).

We let K2 denote the unique unramified quadratic extension of K , and OK2 its ring of integers. The
group U1(K )✓ O

⇥

K2
is defined as the kernel of the norm map K⇥2 ! K⇥.

Fix a choice of root ⇡ def
= (�p)1/(p2 f�1) 2Qp. We define a character !̃⇡ : 0K2 ! O

⇥

K2
by

� 7!
⇡�

⇡
.

We fix once and for all an embedding &0 : K2 ,! E , and define

!̃2 f
def
= &0 � !̃⇡ : 0K2 ! O

⇥.

We denote by !2 f the mod p reduction of !̃2 f . Note that !(p2 f�1)/(p�1)
2 f = !.
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2A2. Let U2 denote the algebraic group over OK given by

U2(R) = {g 2 GL2(OK2 ⌦OK R) : g(' f⌦1)>82g =82},
1

where R is an OK -algebra, and 82
def
=

� 0
�1

1
0

�
.

Recall that the field K2 is considered as a subfield of Qp. The projection OK2 ⌦OK Qp!Qp defined
by x ⌦ y 7! xy induces an isomorphism U2(Qp)

⇠�! GL2(Qp), and via this isomorphism GL2(Qp)

obtains a 0K -action given by

� · g =

⇢
g� if � 2 0K2,

(82g�>8�1
2 )� if � 2 0K \0K2 .

2A3. Following [Buzzard and Gee 2014, Section 5.3], we set H
def
= eU2, so that H is a canonical central

extension

1! Gm! H! U2! 1

of algebraic groups over OK . (To be precise, the construction of [Buzzard and Gee 2014] which we
outline below is done over K . The integral model for U2 above gives rise to a hyperspecial point in the
semisimple Bruhat–Tits building of U2(K ), which is identified with the semisimple Bruhat–Tits building
of H(K ), since the extension defining H is central. We therefore obtain a hyperspecial point and the
desired integral model for H .) We will often abuse notation and conflate algebraic groups over OK with
their generic fibers. The group H possesses a twisting element, in the terminology of [loc. cit.]. We now
recall the explicit construction of H .

We proceed as follows. The group H is defined as a pushout followed by a pullback:

1 µ2 SL2 PGL2 1

1 Gm GL2 PGL2 1

1 Gm H U2 1

⇤

⇤
ı

Concretely, H is the set of all pairs (h, h0), with h 2 U2, h0 2 GL2, subject to the condition that h and
h0 have the same image in PGL2. The maps H ! U2 and H ! GL2 are the projections onto the
corresponding factors, and the map ı : Gm! H is � 7!

�
1,

�
�
0

0
�

��
.

Note that the Qp-points of the top two rows of the diagram above carry the standard (i.e., split) action
of 0K . In particular, the action of 0K on the first factor of H(Qp) is the one induced from U2(Qp), while
the action on the second factor is the standard one.

1This group is quasisplit, and is customarily denoted U1,1 in the literature.
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2A4. Let TU denote the diagonal maximal torus of U2, and TH its preimage in H . Furthermore, let
TG, TS, and TP denote the diagonal maximal tori of GL2, SL2 and PGL2, respectively. The character
groups of these tori fit into a diagram:

0 X⇤(TP)⇠= Z X⇤(TS)⇠= Z X⇤(µ2)
⇠= Z/2Z 0

0 X⇤(TP)⇠= Z X⇤(TG)⇠= Z2 X⇤(Gm)⇠= Z 0

0 X⇤(TU )⇠= Z2 X⇤(TH) X⇤(Gm)⇠= Z 0

a 7!2a

⇤
a 7!(a,�a)

a 7!(a,�a) ⇤

(a,b) 7!a�b

(a,b) 7!a+b

The isomorphisms appearing are the canonical ones. (The notation X⇤(T•), for • 2 {P, S, U, G, H},
stands for the character group of the torus T• over Qp.)

We describe the remaining character group. The group X⇤(TH) is a pushout, so we may identify it as

X⇤(TH) =

⇢✓ a
b
c
d

◆
2 X⇤(TU )� X⇤(TG)⇠= Z4

� �
⇠

where ✓ a
b
c
d

◆
⇠

✓ a+z
b�z
c�z
d+z

◆

for z 2 Z. The maps X⇤(TU )! X⇤(TH), X⇤(TG)! X⇤(TH) are the inclusions into the corresponding
factors, and the projection X⇤(TH)! X⇤(Gm)⇠= Z is

✓ a
b
c
d

◆
7! c + d.

2A5. We now consider cocharacter groups. The bottom two rows of the diagram above give the following
commutative diagram:

0 X⇤(Gm)⇠= Z X⇤(TG)⇠= Z2 X⇤(TP)⇠= Z 0

0 X⇤(Gm)⇠= Z X⇤(TH) X⇤(TU )⇠= Z2 0

a0 7!(a0,a0) (a0,b0) 7!a0�b0

⇤ (a0,b0)7!a0�b0

The isomorphisms are again the canonical ones, and we again consider the cocharacter groups of the tori
over Qp.

We describe the remaining cocharacter group. The group X⇤(TH) is a pullback, so we may identify it
as

X⇤(TH) =

⇢✓ a0
b0
c0
d 0

◆
2 X⇤(TU )� X⇤(TG)⇠= Z4

: a0 � b0 = c0 � d 0
�
.
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The maps X⇤(TH)! X⇤(TU ), X⇤(TH)! X⇤(TG) are the projections onto the corresponding factors,
and the map X⇤(Gm)⇠= Z! X⇤(TH) is

a0 7!
✓ 0

0
a0
a0

◆
.

2A6. The actions of 0K on X⇤(TH) and X⇤(TH) are the ones induced from X⇤(TU ) and X⇤(TU ): they
are both unramified, and we have

' f
·

✓ a
b
c
d

◆
=

✓
�b
�a
c
d

◆

for
✓ a

b
c
d

◆
2 X⇤(TH) and

' f
·

✓ a0
b0
c0
d 0

◆
=

✓
�b0
�a0
c0
d 0

◆

for
✓ a0

b0
c0
d 0

◆
2 X⇤(TH).

The pairing h�,�i : X⇤(TH)⇥ X⇤(TH)! Z between characters and cocharacters is given by
⌧✓ a

b
c
d

◆
,

✓ a0
b0
c0
d 0

◆�
= aa0+ bb0+ cc0+ dd 0;

this is well-defined and Galois-invariant. The roots 8H ✓ X⇤(TH) are given by {±↵H}, where

↵H

def
=

✓ 1
�1

0
0

◆
.

Likewise, the coroots 8_
H
✓ X⇤(TH) are given by {±↵_

H
} where

↵_
H

def
=

✓ 1
�1

1
�1

◆
.

We define the set of simple roots as 1H

def
= {↵H}, and let BH denote the corresponding Borel subgroup

of H . We therefore have 1_
H

= {↵_
H

}.
The group H has a twisting element, in the sense of [Buzzard and Gee 2014]: tracing through the

construction in [loc. cit.], we obtain

⌘H

def
=

✓ 0
0
1
0

◆
2 X⇤(TH).

This element is Galois-invariant, and h⌘H ,↵_
H
i= 1.

The Weyl group of H with respect to TH is denoted WH ; it is a cyclic group of order 2. We denote by
s the unique simple reflection, which generates WH .
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2B. Unitary groups over Q p.

2B1. We now consider unitary groups over Qp. We set

(G, B, T )
def
= ResOK /Zp(H, BH , TH),

all group schemes over Zp. We have

G(Qp)⇠= Ind
0Qp
0K

(H(Qp))

as 0Qp -groups, and via the evaluation maps, we have

(ev1, ev', . . . , ev' f�1) : G(Qp)
⇠�!

f�1Y

i=0

H(Qp)

f 7�! ( f ('i ))0i f�1.

Recall that ' f acts on H(Qp) by

' f
· (h1, h2) = ((82h�>1 8�1

2 )'
f
, h'

f

2 ).

Tracing through the isomorphisms above, the action of 0Qp on the right-hand-side product is given as
follows:

' · ((h0,1, h0,2), h1, . . . , h f�1) = (h1, . . . , h f�1, (82h�>0,18
�1
2 , h0,2)

' f
)

with inertia acting in the standard, diagonal way. In particular,

ev1 : G(Qp) = G(Qp)
0Qp ⇠�! H(Qp)

0K = H(K )⇠= eU2(K ).

2B2. The character and cocharacter groups of the torus T are given by

X⇤(T )⇠= Ind
0Qp
0K

(X⇤(TH)), X⇤(T )⇠= Ind
0Qp
0K

(X⇤(TH));

see [Gee et al. 2018, Section 9.4]. Using the evaluation maps as above (with the same ordering), we
identify

X⇤(T )⇠=

f�1M

i=0

X⇤(TH), X⇤(T )⇠=

f�1M

i=0

X⇤(TH).

We will write elements of X⇤(T ) as

µ =

✓ a
b
c
d

◆
=

✓ a0
b0
c0
d0

◆✓ a1
b1
c1
d1

◆
· · ·

✓ a f�1
b f�1
c f�1
d f�1

◆

(and similarly for X⇤(T )).
The perfect pairing h�,�i : X⇤(T )⇥ X⇤(T )! Z is given by

*0

@
a
b
c
d

1

A ,

0

@
a0

b0

c0

d 0

1

A
+

=

f�1X

i=0

ai a0i + bi b0i + ci c0i + di d 0i ,
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and the action of 0Qp on X⇤(T ) is given by

' ·

✓ a0
b0
c0
d0

◆✓ a1
b1
c1
d1

◆
· · ·

✓ a f�1
b f�1
c f�1
d f�1

◆
=

✓ a1
b1
c1
d1

◆
· · ·

✓ a f�1
b f�1
c f�1
d f�1

◆✓
�b0
�a0
c0
d0

◆
.

An analogous action (i.e., with a “shift left”) holds for X⇤(T ).

2B3. We define the simple roots 1 as those functions f in Ind
0Qp
0K

(X⇤(TH)) with image in {0}[1H ,
and such that f (� ) = 0 for all but a single coset. Explicitly, we have 1= {↵i }0i f�1, where

↵i
def
=

✓ 0
0
0
0

◆
· · ·

✓ 1
�1

0
0

◆

| {z }
i-th entry

· · ·

✓ 0
0
0
0

◆
2 X⇤(T ).

We define 1_ analogously, and obtain 1_ = {↵_i }0i f�1, where

↵_i
def
=

✓ 0
0
0
0

◆
· · ·

✓ 1
�1

1
�1

◆

| {z }
i-th entry

· · ·

✓ 0
0
0
0

◆
2 X⇤(T ).

The Weyl group W of G with respect to T is equal to W f
H

. We shall write elements of W as
w = (w0, w1, . . . , w f�1). The group W has a nontrivial Galois action given by

' · (w0, w1, . . . w f�1) = (w1, . . . w f�1, w0).

Finally, we define 1 def
= (1, 1, . . . , 1) and s def

= (s, s, . . . , s).
The map ev1 induces a bijection X⇤(T )0Qp ⇠�! X⇤(TH)0K . In particular, the twisting element

⌘H 2 X⇤(TH)0K corresponds to the twisting element

⌘
def
=

 0
0
1
0

!

=

✓ 0
0
1
0

◆✓ 0
0
1
0

◆
· · ·

✓ 0
0
1
0

◆
2 X⇤(T )0Qp .

2C. Dual groups. We now define the relevant Langlands dual groups.

2C1. The based root datum of U2 (with respect to the upper-triangular Borel subgroup) is given by

(X⇤(TU )⇠= Z2, {(1,�1)}, X⇤(TU )⇠= Z2, {(1,�1)}).

Therefore, we may take bU2
def
= GL2 as the dual group, which we consider as a split group scheme over

Zp, along with its diagonal maximal torus, upper-triangular Borel subgroup, and the fixed isomorphism
between Ga and the unipotent radical of the Borel given by x 7!

� 1
0

x
1

�
. We equip this data with the

canonical isomorphism between the based root datum of bU2 and the dual based root datum of U2. In
choosing this isomorphism, we obtain an induced action of 0K on bU2 given by

� · ĝ =

(
ĝ if � 2 0K2,

82ĝ�>8�1
2 =

⇣
det(ĝ)�1 0

0 det(ĝ)�1

⌘
ĝ if � 2 0K \0K2 .
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2C2. Consider now the group H = eU2. The based root datum of H is given by

9H

def
= (X⇤(TH),1H , X⇤(TH),1_

H
),

and therefore the dual based root datum is

9_
H

= (X⇤(TH),1_
H

, X⇤(TH),1H).

We let bH denote the dual group of H , with maximal torus bTH and Borel bBH which contains bTH . By
[Buzzard and Gee 2014, Proposition 5.39], we have

bH ⇠= (bU2⇥ Gm)
. ⌧✓✓

�1 0
0 �1

◆
,�1

◆�
= GL2⇥

µ2 Gm,

where the Galois action on bH is the one induced from bU2. We have an isomorphism

bH = GL2⇥
µ2 Gm

⇠�! GL2⇥Gm

[ĥ, a] 7�!

✓✓
a 0
0 a

◆
ĥ, a2

◆

and we will identify bH with GL2⇥Gm via this isomorphism. The Galois action is then given by

� · (ĥ, a) =

8
<

:

(ĥ, a) if � 2 0K2,✓✓
a 0
0 a

◆
82ĥ�>8�1

2 , a
◆

=

✓✓
a det(ĥ)�1 0

0 a det(ĥ)�1

◆
ĥ, a

◆
if � 2 0K \0K2,

for (ĥ, a) 2 GL2⇥Gm .
Thus, we obtain the based root datum for bH

9bH
def
= (X⇤(bTH), 1̂, X⇤(bTH), 1̂_) = (Z3, {(1,�1, 0)}, Z3, {(1,�1, 0)}),

equipped with an action of 0K . Moreover, we obtain an isomorphism of based root data � :9_
H

⇠�!9bH :

� : X⇤(TH) ⇠�! X⇤(bTH).

(a0, b0, c0, d 0) 7�! (a0, b0, c0 � a0).

(�_)�1
: X⇤(TH) ⇠�! X⇤(bTH).

(a, b, c, d) 7�! (a + c, b + d, c + d).

Where the last coordinate in the character (resp. cocharacter) group of bTH corresponds to the Gm factor
of bH . Note that this exchanges the roots and coroots. We use this isomorphism to identify the Weyl group
of bT H with WH .

2C3. Finally, we define

C
U2

def
=

L
H = bH oGal(K2/K ) = (GL2⇥Gm)oGal(K2/K ),
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with the Galois group acting on bH as above. The injection ı : Gm! H induces a dual map ı̂ : L
H! Gm ,

which is given by (ĥ, a)o � 7! a.

Remark 2.1. We will need to make use of the above construction in a global setting as follows. Suppose
F/F+ is a quadratic extension of global fields, and let v denote a place of F+ which is unramified and
inert in F , and such that F+

v
⇠= K and Fv

⇠= K2. We then identify C
U2 with

bH oGal(F/F+)

via the isomorphism Gal(F/F+)⇠= Gal(Fv/F+
v )⇠= Gal(K2/K ).

2C4. We set

(bG, bB, bT )
def
= Ind

0Qp
0K

( bH, bBH , bTH),

all group schemes over Zp, equipped with the induced 0Qp -action. Using the (induced versions of the)
isomorphisms above, we consider bG as the dual group of G, and set

L
G

def
= bG oGal(K2/Qp).

2D. An isomorphism. We briefly digress to recall a construction of C
U2 from [Clozel et al. 2008]; see

also [Buzzard and Gee 2014, Section 8.3].
Let G2 denote the group scheme over Zp which is a semidirect product of GL2⇥Gm by Gal(K2/K ),

with ' f 2 Gal(K2/K ) acting by

' f
· (ĥ, a) =

✓✓
a 0
0 a

◆
ĥ�>, a

◆
.

There is an isomorphism between our model C
U2 and G2 given as follows:

C
U2

⇠�! G2.

(ĥ, a)o 1 7�!
✓✓

a�1 0
0 a�1

◆
ĥ, a�1

◆
o 1.

(ĥ, a)o' f
7�!

✓✓
a�1 0

0 a�1

◆
ĥ82,�a�1

◆
o' f .

✓✓
a�1 0

0 a�1

◆
ĥ, a�1

◆
o 1 7�!(ĥ, a)o 1.

✓✓
a�1 0

0 a�1

◆
ĥ82,�a�1

◆
o' f

7�!(ĥ, a)o' f .

The group G2 also possesses a map ⌫ : G2 ! Gm , given by (ĥ, a) o (' f )i 7! (�1)i a. Under the
isomorphism above, this corresponds to the map (�)�1 � ı̂ : C

U2! Gm .
As in Remark 2.1, we will often identify G2 with (GL2⇥Gm)oGal(F/F+).
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2E. F p-structures.

2E1. Viewing G and bG as group schemes over Zp, we can form the Fp-group schemes

(G, B, T )
def
= (G, B, T )⇥Zp Fp, (G

⇤, B
⇤, T

⇤)
def
= (bG, bB, bT )⇥Zp Fp.

We denote by F the relative Frobenius on G, and denote by F
⇤ the composite Fr �', where Fr is the

relative Frobenius on the split group G
⇤. In particular, we have G

F = G(Fp) = H(Fq).
The action of F on X⇤(T ) is defined by F(�) = � � F, so that F = p' on X⇤(T ). Identifying

X⇤(T )⇠= X⇤(T ) with
L f�1

i=0 X⇤(TH) as in Section 2B2, this action is explicitly given by

F

✓ a0
b0
c0
d0

◆✓ a1
b1
c1
d1

◆
· · ·

✓ a f�1
b f�1
c f�1
d f�1

◆
=

✓ pa1
pb1
pc1
pd1

◆
· · ·

✓ pa f�1
pb f�1
pc f�1
pd f�1

◆✓�pb0
�pa0

pc0
pd0

◆

Similarly, the action of F
⇤ on X⇤(T

⇤) is given by F
⇤(�) = F

⇤
� �, so that F

⇤
= p' on X⇤(T

⇤).
Therefore, after chasing through the isomorphisms of root data of Section 2C2 and using the identification
X⇤(T

⇤)⇠= X⇤(bT )⇠=
L f�1

i=0 X⇤(bTH) similar to above, this map is explicitly given by

F
⇤

⇣ a0
b0
c0

⌘⇣ a1
b1
c1

⌘
· · ·

⇣ a f�1
b f�1
c f�1

⌘
=

⇣ pa1
pb1
pc1

⌘
· · ·

⇣ pa f�1
pb f�1
pc f�1

⌘⇣ p(c0�b0)
p(c0�a0)

pc0

⌘
.

3. Representation theory

We now collect various results we will use regarding types and weights for the groups eU2(Fq) and GL2(Fq2).
We give definitions of base change for both types and weights in Sections 3C and 3E, respectively, and
relate the former to automorphic base change. Section 3D discusses various compatibilities between
types and weights, and contains useful combinatorial properties which will be employed extensively in
the applications which follow.

3A. The group G.

3A1. Let X+(T ), X1(T ) and X0(T ) denote respectively the subsets of X⇤(T ) consisting of dominant,
p-restricted, and inner-product-zero elements:

X+(T )
def
= {µ 2 X⇤(T ) : 0 hµ,↵_i i for all 0 i  f � 1}.

X1(T )
def
= {µ 2 X⇤(T ) : 0 hµ,↵_i i  p� 1 for all 0 i  f � 1}.

X0(T )
def
= {µ 2 X⇤(T ) : hµ,↵_i i= 0 for all 0 i  f � 1}.

3A2. Recall that a Serre weight of G(Fp) is an irreducible representation of G(Fp) on an Fp-vector space.
Given µ 2 X+(T ), we let F(µ) denote the restriction to G(Fp) of the algebraic G-representation of
highest weight µ. We then have the following result.

Proposition 3.1 [Gee et al. 2018, Lemma 9.2.4]. The map
X1(T )

(F� 1)X0(T )
! {Serre weights of G(Fp)}/⇠=

µ 7! F(µ)

is a well-defined bijection.
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We will always assume that the coefficient field F is large enough so that the representations F(µ)

may be realized over F.

Definition 3.2. Given a character µ 2 X⇤(T ), we say µ lies n-deep in the fundamental alcove if we have

n < hµ + ⌘,↵_i i< p� n

for all 0  i  f � 1. We say a Serre weight F is n-deep if we can write F ⇠= F(µ) for some n-deep
character µ. (Note that this notion is independent of the choice of µ.)

3A3. We likewise consider Deligne–Lusztig representations for the group G(Fp), as in [Gee et al. 2018,
Section 9.2]. In particular, for w 2 W and µ 2 X⇤(T ) such that (Tw, ✓w,µ) is maximally split, we let
Rw(µ) denote the associated Deligne–Lusztig representation, a representation of G(Fp) over Qp. Note
that if µ� ⌘ is 0-deep, then (Tw, ✓w,µ) is maximally split for any choice of w 2W ; see [Le et al. 2019,
Lemma 2.2.3]. We again assume the coefficient field E is large enough so that Rw(µ) may be realized over
E . Using the surjection G(Zp) ⇣ G(Fp), we will occasionally view Serre weights and Deligne–Lusztig
representations as representations of the compact group G(Zp)⇠= eU2(OK ).

By [Herzig 2009, Section 4.1], if (w, µ) 2 W ⇥ X⇤(T ) with µ� ⌘ being 0-deep, and if (⌫, v) 2

X⇤(T )o W , then we have an isomorphism

Rw(µ)⇠= RvwF(v)�1(v(µ) + F(⌫)� vwF(v)�1(⌫)). (3A.1)

Moreover, by [Herzig 2009, Lemma 4.2], if (w, µ), (w0, µ0) 2W ⇥ X⇤(T ) are two pairs with µ� ⌘ and
µ0 � ⌘ being 0-deep, and we have an isomorphism Rw(µ)⇠= Rw0(µ

0), then (w, µ) and (w0, µ0) lie in the
same X⇤(T )o W -orbit.

Definition 3.3. Let � denote a Deligne–Lusztig representation. We say � is n-generic if there is an
isomorphism � ⇠= Rw(µ + ⌘), where µ lies n-deep in the fundamental alcove.

3A4. We shall also need to know how the representations Rw(µ) decompose upon reduction mod p. To
this end, we define the following elements of X⇤(T ). Fix w = (w0, w1, . . . , w f�1) 2W , and set

⇢w
def
= · · ·

✓ 0
0
0
0

◆

|{z}
wi =1

· · ·

✓ 1
0
0
0

◆

|{z}
wi =s

· · ·, "w
def
= · · ·

✓ 0
0
0
0

◆

|{z}
wi =1

· · ·

✓ 0
1
0
0

◆

|{z}
wi =s

· · ·, �w
def
= · · ·

✓ 1
1
0
0

◆

|{z}
wi =1

· · ·

✓ 0
0
0
0

◆

|{z}
wi =s

· · ·, ⇢
def
=

✓ 1
0
0
0

◆
.

Suppose that µ 2 X⇤(T ) is such that µ�⌘ is 1-deep. By the main theorem in the appendix of [Herzig
2009], we have

JH(Rw(µ)) = {Fw0(Rw(µ))}w02W , (3A.2)

where
Fw0(Rw(µ))

def
= F(p�w0 + w0(µ�w⇡("sw0)) + p⇢w0 �⇡(⇢)), (3A.3)

and where ⇡ denotes the action of '�1 on X⇤(T ).
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Definition 3.4. Let � be a 1-generic Deligne–Lusztig representation and fix a presentation � ⇠= Rw(µ)

with w 2W and µ� ⌘ being 1-deep. We define the Deligne–Lusztig representation �(� ) by

�(� )
def
= Rsw(s(µ� ⌘) + (p� 1)⌘).

By [Le et al. 2019, Proposition 2.2.15] and (3A.1) one easily checks that �(� ) does not depend on the
choice of presentation � ⇠= Rw(µ). Moreover, note that if n < hµ,↵_i i< p�n, then s(µ�⌘)+ (p�1)⌘

will satisfy the same set of inequalities. Therefore if Rw(µ) is n-generic, then �(Rw(µ)) will also be
n-generic.

3A5. Finally, suppose µ 2 X⇤(T ) is a character of the form

µ =

✓ a0
b0
0
0

◆✓ a1
b1
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆

(that is, suppose µ is in the image of X⇤(ResOK /Zp(TU )) ,! X⇤(T )). Then Rw(µ) is a representation
of G(Zp) = eU2(OK ) on which ı(O⇥K ) acts trivially, and therefore we view it as a representation of
eU2(OK )/ ı(O⇥K ) = U2(OK ). Conversely, if Rw(µ) is a representation of G(Zp) on which ı(O⇥K ) acts
trivially, then µ is a character of the form

µ =

✓ a0
b0
c0
0

◆✓ a1
b1
c1
0

◆
· · ·

✓ a f�1
b f�1
c f�1

0

◆

with
P f�1

i=0 ci pi ⌘ 0 (mod p f � 1). By applying the equivalence Rw(µ) ⇠= Rw(µ + (F�w)µ0) for an
appropriately defined element µ0 2 X⇤(T ) and using the equivalence relation on X⇤(TH), we may assume
µ is of the form

µ =

✓ a00
b00
0
0

◆✓ a01
b01
0
0

◆
· · ·

✓ a0f�1
b0f�1

0
0

◆

(one can even take µ0 2 X0(T )).

3B. The group GL2.

3B1. Set
(G
0, T
0)

def
= ResOK2/Zp(GL2/OK2

, TG/OK2
),

so that G
0(Fp) = GL2(Fq2). We identify the maximal torus TG/OK2

of GL2/OK2
with TU ⇥OK OK2 . This

gives isomorphisms

T
0
⇥Zp Qp ⇠=

2 f�1Y

i=0

(TU ⇥OK OK2)⇥OK2 ,'i Qp

⇠=

✓ f�1Y

i=0

TU ⇥OK ,'i Qp

◆
⇥

✓2 f�1Y

i= f

TU ⇥OK ,'i Qp

◆

⇠= (ResOK /Zp(TU )⇥Zp Qp)⇥ (ResOK /Zp(TU )⇥Zp Qp),
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where we conflate Gal(K2/Qp) with the set of embeddings of K2 into Qp. In this way, we identify
X⇤(T

0) with two copies of X⇤(ResOK /Zp(TU )). We write elements of X⇤(T
0) as (µ, µ0) with µ, µ0 2

X⇤(ResOK /Zp(TU )). In particular, if µ is an element of X⇤(T ) of the form

µ =

✓ a0
b0
0
0

◆✓ a1
b1
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆
,

we will identify it with
� a0

b0

�� a1
b1

�
· · ·

� a f�1
b f�1

�
2 X⇤(ResOK /Zp(TU )),

and consider expressions such as (µ, µ) or (µ,�s(µ)) in X⇤(T
0).

Given some object (homomorphism, character, etc.) associated to G, we will denote by a prime the
analogous object associated to G

0. For example, the notation F
0 will be used to denote the Frobenius map

on G
0 ⇥Zp Fp, and on the character lattice X⇤(T

0):

F
0
� a0

b0

�� a1
b1

�
· · ·

� a2 f�1
b2 f�1

�
=

� pa1
pb1

�
· · ·

� pa2 f�1
pb2 f�1

�� pa0
pb0

�

We identify the Weyl group W 0 of T
0 with two copies of W , and we will sometimes write elements of

W 0 as (w, w0) where w, w0 2W .

3B2. We define the subsets X+(T
0), X1(T

0) and X0(T
0) as above, and denote by F 0(µ) the restriction to

G
0(Fp)⇠= GL2(Fq2) of the algebraic G

0-representation of highest weight µ 2 X+(T
0). In particular, we

have the following classification result.

Proposition 3.5 [Gee et al. 2018, Lemma 9.2.4]. The map

X1(T
0)

(F0 � 1)X0(T 0)
! {Serre weights of GL2(Fq2)}/⇠=

µ 7! F 0(µ)

is a well-defined bijection.

Once again, we will assume that F is large enough so that F 0(µ) may be realized over F.

3B3. We define Deligne–Lusztig representations R0w(µ) for w 2 W 0, µ 2 X⇤(T
0) analogously to the

above. We again assume that R0w(µ) may be realized over E . Furthermore, an analog of (3A.1) holds.
We will often view F 0(µ) and R0w(µ) as representations of G

0(Zp)⇠= GL2(OK2) by inflation.

3B4. Given w = (w0, w1, . . . , w2 f�1) 2W 0, we define the following elements of X⇤(T
0):

⇢ 0w
def
= · · ·

�
0
0
�

|{z}
wi =1

· · ·
�

1
0
�

|{z}
wi =s

· · · . "0w
def
= · · ·

�
0
0
�

|{z}
wi =1

· · ·
�

0
1
�

|{z}
wi =s

· · · . � 0w
def
= · · ·

�
1
1
�

|{z}
wi =1

· · ·
�

0
0
�

|{z}
wi =s

· · · . ⇢ 0
def
=

� 1
0
�
.

Suppose µ 2 X⇤(T
0) is such that µ� ⇢ 0 is 1-deep. The analog of (3A.2) takes the following form:

JH(R0w(µ)) = {F 0w0(R0w(µ))}w02W 0, (3B.1)
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where

F 0w0(R0w(µ))
def
= F 0(p� 0w0 + w0(µ�w⇡ 0("0(s,s)w0)) + p⇢ 0w0 � ⇢

0),

and where ⇡ 0 is the automorphism of X⇤(T
0) such that F

0
= p⇡ 0�1.

Definition 3.6. Let � 0 be a 1-generic Deligne–Lusztig representation and fix a presentation � ⇠= R0w(µ)

with w 2W 0 and µ� ⇢ 0 being 1-deep. We define the Deligne–Lusztig representation � 0(� 0) by

� 0(� 0)
def
= R0(s,s)w((s, s)(µ� ⇢ 0) + (p� 1)⇢ 0).

As above for the map �, the above expression is well-defined, and if R0w(µ) is n-generic, then � 0(R0w(µ))

will also be n-generic.

3C. Base change of types. Our next task will be to define a notion of base change for tame types of
U2(OK ). We note that this is essentially the Shintani lifting considered in [Kawanaka 1977].

3C1. We first recall the classification of irreducible representations of U2(Fq) in characteristic zero; see
[Ennola 1963].

Fix a character

 : F⇥q2 ! O
⇥,

which we also view as a character of BU (Fq) via

 

✓✓
x y
0 x�q

◆◆
=  (x),

where x 2 F⇥q2, y 2 Fq2 , and xyq = yxq . (Here BU denotes the upper triangular Borel subgroup of U2.) We
let IndU2(Fq )

BU (Fq )( ) denote the induced representation. If  �q 6= , then IndU2(Fq )

BU (Fq )( ) is irreducible. On the
other hand, if  �q =  , then  extends to a character of U2(Fq), and we have

IndU2(Fq )

BU (Fq )( )⇠=  � ( ⌦E St),

where St denotes the irreducible representation IndU2(Fq )

BU (Fq )(1)/1.
Consider now the group Jend

def
= U1⇥U1 over OK , which is the unique elliptic endoscopic group of U2.

Fix a character
✓ = ✓1⌦ ✓2 : Jend(Fq) = U1(Fq)⇥U1(Fq)! O

⇥

(x, y) 7! ✓1(x)✓2(y).

We suppose that ✓1 6= ✓2, and let � (✓) denote the associated irreducible cuspidal representation of U2(Fq),
as in [Blasco 2010, Section 3.1(b)].

We have the following classification theorem.
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Theorem 3.7 [Ennola 1963]. Any irreducible representation of U2(Fq) over E is isomorphic to one of the
following:

•  , where  is a character of U2(Fq).

•  ⌦E St, where  is a character of U2(Fq).

• IndU2(Fq )

BU (Fq )( ), where  is a character of F⇥q2 which satisfies  �q 6=  .

• � (✓), where ✓ = ✓1⌦ ✓2 is a character of U1(Fq)⇥U1(Fq) with ✓1 6= ✓2.

The only isomorphisms among these representations are IndU2(Fq )

BU (Fq )( )⇠= IndU2(Fq )

BU (Fq )( 
�q) and � (✓1⌦✓2)⇠=

� (✓2⌦ ✓1).

Definition 3.8. We define a tame type � to be an irreducible U2(OK )-representation over E which arises
by inflation from an irreducible U2(Fq)-representation over E . Likewise, we define a tame type over O to
be a representation � of U2(OK ) on a finite-free O-module, such that � ⌦O E is a tame type over E . We
make similar definitions for the group GL2(OK2).

3C2. The principal series case. Consider again a character

 : F⇥q2 ! O
⇥

which satisfies  �q 6=  , and let IndU2(Fq )

BU (Fq )( ) denote the (irreducible) principal series representation.
We may extend the character  to a character  ⌦ �q of BU (Fq2) as follows:

 ⌦ �q
: BU (Fq2)! O

⇥

✓
x y
0 z

◆
7!  (x) (z)�q ,

where x, z 2 F⇥q2, y 2 Fq2 . We consider the (irreducible) induced representation Ind
GL2(Fq2 )

BU (Fq2 ) ( ⌦ �q) of
U2(Fq2) = GL2(Fq2), and view it as a tame type of GL2(OK2) by inflation.

Definition 3.9. Let  : F⇥q2 ! O
⇥ be a character such that  �q 6=  . We define the base change of

IndU2(Fq )

BU (Fq )( ) to be the GL2(OK2)-type given by

BC(IndU2(Fq )

BU (Fq )( ))
def
= Ind

GL2(Fq2 )

BU (Fq2 ) ( ⌦ �q).

There is a compatibility of this definition with automorphic base change, as follows. Let � =

IndU2(Fq )

BU (Fq )( ), and suppose ⇡ is a smooth irreducible representation of U2(K ) over C such that � ⌦E C✓

⇡ |U2(OK ) (for some choice of morphism E ,! C). This implies that ⇡ Iw1 6= 0, where Iw1 denotes the
upper-triangular pro-p-Iwahori subgroup of U2(OK ). Consequently, ⇡ cannot be supercuspidal, and
is therefore a subquotient of a principal series representation. Since the character  is regular, this
subquotient must in fact be an irreducible principal series; see [Rogawski 1990, Section 11.1] for a
classification of nonsupercuspidal representations of U2(K )). We let BC(⇡) denote the stable base change
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of ⇡ to a representation of GL2(K2); see [Rogawski 1990, Section 11.4]. Then BC(⇡) contains a unique
tame type, which is isomorphic to BC(� )⌦E C.

3C3. We now wish to compute the base change map on Deligne — Lusztig representations. Let µ2 X⇤(T )

be such that

µ =

✓ a0
b0
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆
,

and suppose
f�1X

i=0

ai pi
� p f

f�1X

i=0

bi pi
6⌘

f�1X

i=0

bi pi
� p f

f�1X

i=0

ai pi (mod p2 f
� 1).

By [Deligne and Lusztig 1976, Propostion 8.2] we have an isomorphism of U2(OK )-representations

R1(µ)⇠= IndU2(Fq )

BU (Fq )(✓µ),

where

✓µ

✓✓
x y
0 x�q

◆◆
= &0(x̃

P f�1
i=0 ai pi�p f P f�1

i=0 bi pi
)

(recall that we identify representations of eU2(OK ) trivial on ı(O⇥K ) and representations of U2(OK )).
Further, the assumption on µ and [loc. cit., Propostion 7.4] imply that R1(µ) is irreducible. Consequently,
the base change map becomes

BC(R1(µ)) = R0(1,1)(µ,�s(µ)).

Now let w2W be an element in the F-conjugacy class of 1, and choose w0 2W such that w0wF(w0)�1 =

1. Applying first the equivalence (3A.1) for the element v = w0 (and ⌫ = 0), then the above equation,
then the equivalence induced by (w0�1, w0�1), we obtain

BC(Rw(µ))⇠= R0(w,w)(µ,�s(µ)). (3C.1)

3C4. The cuspidal case. Consider again the character ✓ = ✓1⌦ ✓2 of Jend(Fq) which satisfies ✓1 6= ✓2.
By base change we obtain the character

✓̃ : Jend(Fq2) = F⇥q2 ⇥ F⇥q2 ! O
⇥

(x, y) 7! ✓1(x1�q)✓2(y1�q).

By inflation, we view this as a character of upper triangular Borel subgroup BU (Fq2) of U2(Fq2) ⇠=

GL2(Fq2), and view the (irreducible) induced representation Ind
GL2(Fq2 )

BU (Fq2 ) (✓̃) as a tame type of GL2(OK2).

Definition 3.10. Let ✓ = ✓1⌦ ✓2 : Jend(Fq)! O
⇥ be a character such that ✓1 6= ✓2. We define the base

change of � (✓) to be the GL2(OK2)-type given by

BC(� (✓))
def
= Ind

GL2(Fq2 )

BU (Fq2 ) (✓̃).
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We again have a compatibility of this definition with automorphic base change. Let � = � (✓), and
suppose ⇡ is a smooth irreducible representation of U2(K ) over C such that � ⌦E C ✓ ⇡ |U2(OK ) (for
some choice of morphism E ,! C). This implies that ⇡ is a level 0 supercuspidal representation, and we
let BC(⇡) denote the stable base change of (the L-packet containing) ⇡ . Then BC(⇡) contains a unique
tame type, which is isomorphic to BC(� )⌦E C; see [Blasco 2010, Corollary 3.6].

3C5. We now wish to compute the base change map on cuspidal Deligne–Lusztig representations. Let
µ 2 X⇤(T ) be such that

µ =

✓ a0
b0
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆
,

and suppose that
P f�1

i=0 ai pi 6⌘
P f�1

i=0 bi pi (mod p f + 1). By [Deligne and Lusztig 1976, Theorem 8.3],
this assumption guarantees that R(s,1,...,1)(µ) is an irreducible, cuspidal U2(OK )-representation. Then a
straightforward character computation using [Ennola 1963, Section 6] and [Deligne and Lusztig 1976,
Corollary 7.2] gives

R(s,1,...,1)(µ)⇠= � (✓µ),

where
✓µ(x, y) = &0(x̃

P f�1
i=0 ai pi

ỹ
P f�1

i=0 bi pi
).

Consequently, the base change map becomes

BC(R(s,1,...,1)(µ)) = R0(1,1)(µ,�µ).

Now let w 2W be an element in the F-conjugacy class of (s, 1, . . . , 1), and choose w0 2W such that
w0wF(w0)�1 = (s, 1, . . . , 1). Applying first the equivalence (3A.1) for the element v = w0 (and ⌫ = 0),
then the above equation, then the equivalence induced by (w0�1, sw0�1), we obtain

BC(Rw(µ))⇠= R0(w,w)(µ,�s(µ)). (3C.2)

3C6. We define a base change map on the remaining irreducible representations of U2(Fq). Given a
character  0 : U1(Fq)! O

⇥, we let  ̃0 denote the character

 ̃0 : F⇥q2 ! O
⇥

x 7!  0(x1�q).

Definition 3.11. Let  0 : U1(Fq)! O
⇥ denote a character of U1(Fq). We define

BC( 0 � det) def
=  ̃0 � det,

BC( 0 � det⌦E St) def
=  ̃0 � det⌦E St0,

where St0 denotes the Steinberg representation of GL2(Fq2), inflated to GL2(OK2).

Taken together, these definitions give a base change map on isomorphism classes of tame types. One
further checks that the association � 7! BC(� ) is injective on isomorphism classes.
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3C7. We define an involution ✏ on (isomorphism classes of) representations of GL2(Fq2) by twisting a
representation by the automorphism

g 7! (82g�>8�1
2 )(q)

(note that the fixed points in GL2(Fq2) of this automorphism are exactly U2(Fq)). On Deligne–Lusztig
representations, this becomes

✏(R0(w,w0)(µ, µ0)) = R0(w0,w)(�s(µ0),�s(µ)).

The above can be checked using the equivalences of Sections 3C3 and 3C5, and character tables for
GL2(Fq2); see, e.g., [Diamond 2007, Section 1]. Note that by dimension reasons ✏(R0(w,w0)(µ, µ0)) is an
irreducible principal series, resp. an irreducible cuspidal representation, if and only if R0(w,w0)(µ, µ0) is
such a representation.

The following lemma is one of the main results of [Kawanaka 1977].

Lemma 3.12. Let � 0 denote a tame GL2(OK2)-type over E. Then we have ✏(� 0)⇠= � 0 if and only if � 0 is
of the form BC(� ) for a tame U2(OK )-type � .

3D. Combinatorics of types and weights. For future applications to weight elimination and weight
existence results, we now analyze the combinatorial properties of the set JH(� ) for a tame type � .

3D1. Before proceeding, we make some definitions to simplify the discussion below.

Definition 3.13. (i) We define eW def
= X⇤(T )oW to be the extended affine Weyl group. It acts on X⇤(T )

in the natural way, and we write elements of eW as tµw, with µ 2 X⇤(T ), w 2W , to underscore this
action.

(ii) An alcove is a connected component of

X⇤(T )⌦Z R�

✓[

↵,n

{hµ + ⌘,↵_i= np}

◆
.

We let C0 denote the dominant base alcove

{µ 2 X⇤(T )⌦Z R : 0 < hµ + ⌘,↵_i i< p for all 0 i  f � 1}.

(iii) The group pX⇤(T )o W ✓ eW acts on the set of alcoves via the dot action • centered at �⌘. We
define

�
def
= {w̃ 2 pX⇤(T )o W : w̃ • C0 = C0}.

Remark 3.14. One easily checks that if w̃ = wt�p⌫ = (wi t�p⌫i )i 2�, then we must have

(wi , ⌫i ) 2 {1}⇥ X0(TH) or (wi , ⌫i ) 2 {s}⇥ (⌘H + X0(TH))

for all 0 i  f � 1.
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Lemma 3.15. Let Rw(µ + ⌘) denote a Deligne–Lusztig representation of G(Zp), and suppose µ is a
1-deep character. Let � 2 X1(T ). Then F(�) 2 JH(Rw(µ + ⌘)) if and only if there exists zt�p⌫ 2� such
that

zt�p⌫ • (µ + w⇡(⌫)) = s • (�� p⌘).

Moreover, the element z 2W is unique, and every choice of z arises. Consequently |JH(Rw(µ + ⌘))| = 2 f .
(Compare with (3A.2).)

Proof. First, note that by our depth assumption on µ, we may apply [Gee et al. 2018, Prop. 10.1.2] (which
is based on [Jantzen 1981, Satz 4.3]) and [Gee et al. 2018, Proposition 10.1.8].

Suppose F(�) 2 JH(Rw(µ + ⌘)) for some � 2 X1(T ). By [Gee et al. 2018, Proposition 10.1.8], this
holds if and only if there exists ⌫ 2 X⇤(T ) such that

z0 • (µ + (w⇡ � p)⌫) " s • (�� p⌘)

for all z0 2W . (We refer to [Jantzen 1987, II.6.4] for the definition of "; since the root system is of type
A1⇥ · · ·⇥ A1, the condition µ0 " �0 is equivalent to µ0  �0 and µ0 2 (p3R oW ) •�0, where 3R denotes
the root lattice of G.) Select z 2W such that

z(µ + (w⇡ � p)⌫+ ⌘) 2 X+(T ).

Since z • (µ + (w⇡ � p)⌫) lies below s • (�� p⌘) in the " ordering, since z(µ + (w⇡ � p)⌫ + ⌘) is
dominant, and since s(�� (p� 1)⌘) is p-restricted, we must have

z • (µ + (w⇡ � p)⌫) = s • (�� p⌘).

The proof of [Le et al. 2019, Proposition 4.1.3] shows that |h⌫,↵_i i|  1 for every i , from which we
deduce zt�p⌫ 2�. Furthermore, we deduce a posteriori that the choice of z is unique.

Conversely, if z•(µ+(w⇡�p)⌫)= s•(��p⌘) for some zt�p⌫ 2�, then z(µ+(w⇡�p)⌫+⌘)2 X+(T ),
and [Jantzen 1987, II.6.4(5)] implies

(z0z) • (µ + (w⇡ � p)⌫) " z • (µ + (w⇡ � p)⌫) = s • (�� p⌘)

for all z0 2W , so that F(�) 2 JH(Rw(µ + ⌘)) by [Gee et al. 2018, Proposition 10.1.8].
To show that every choice of z arises, choose any ⌫ 2 X⇤(T ) such that zt�p⌫ 2�, and define

�z
def
= sz(µ + (w⇡ � p)⌫+ ⌘) + (p� 1)⌘.

The depth assumption on µ implies that �z 2 X1(T ), and by definition we have

zt�p⌫ • (µ + w⇡(⌫)) = s • (�z � p⌘),

so F(�z) 2 JH(Rw(µ + ⌘)). Finally, we note that different choices of ⌫ will alter �z by an element of
(p�⇡)X0(T ), which will give an isomorphic Serre weight. ⇤
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Proposition 3.16. Let �1 = Rw1(µ1 + ⌘), �2 = Rw2(µ2 + ⌘) be two Deligne–Lusztig representation
of G(Zp). Suppose that µ1 is 3-deep and µ2 is 1-deep:

(i) We have JH(�1)\ JH(�2) 6= ? if and only if there exists a pair (w02, µ
0

2) 2 W ⇥ X⇤(T ) such that
Rw2(µ2 + ⌘)⇠= Rw02

(µ02 + ⌘) and
tµ02w

0

2 = tµ1w1w̃

in eW , where w̃i 2 {1, s, t↵H
s} for all 0 i  f � 1.

(ii) Suppose JH(�1) \ JH(�2) 6= ?, and let (w02, µ
0

2) and w̃ = (w̃i )i be as in item (i). Let � 2 X1(T ).
Then F(�) 2 JH(�1)\ JH(�2) if and only if

s • (�� p⌘) = w̃� • (µ1 + w1⇡(⌫)) = w̃� • (µ02 + w02⇡(⌫))

for an element w̃� = wt�p⌫ 2� satisfying the following conditions:

(a) If w̃i = s then (w̃�)i�1 ⌘ 1 mod X0(TH).
(b) If w̃i = t↵H

s then (w̃�)i�1 ⌘ st�p⌘H
mod X0(TH).

In particular, since adding (p � ⇡)X0(T ) to � does not affect the isomorphism class of a Serre
weight, we obtain

|JH(�1)\ JH(�2)| = 2|{i :w̃i =1}|.

Proof. We begin with item (i).
Assume JH(�1)\ JH(�2) 6= ?; by Lemma 3.15 we have

µ2 + (w2⇡ � p)⌫(2)
+ ⌘ = (z(2))�1z(1)(µ1 + (w1⇡ � p)⌫(1)

+ ⌘) (3D.1)

where z( j)t�p⌫( j) 2�. This gives

Rw2(µ2 + ⌘)⇠= Rw2(µ2 + ⌘+ (w2⇡ � p)⌫(2))

⇠= Rw2((z
(2))�1z(1)(µ1 + (w1⇡ � p)⌫(1)

+ ⌘))

⇠= R(z(1))�1z(2)w2F((z(1))�1z(2))�1(µ1 + (w1⇡ � p)⌫(1)
+ ⌘)

⇠= R(z(1))�1z(2)w2F((z(1))�1z(2))�1(µ1 + w1⇡(⌫(1))�w02⇡(⌫(1)) + ⌘)

⇠= Rw02
(µ02 + ⌘)

where the first isomorphism comes from (3A.1) by adding (w2⇡� p)⌫(2), the second from (3D.1), the third
from (3A.1) by conjugation by (z(1))�1z(2), and the fourth again from (3A.1) by adding (p�w02⇡)⌫(1).
Here, we define w02

def
= (z(1))�1z(2)w2F((z(1))�1z(2))�1 and µ02

def
= µ1 + w1⇡(⌫(1))�w02⇡(⌫(1)).

We now proceed entrywise:

• If w02,i = w1,i , then by definition we have µ02,i = µ1,i .

• If w02,i = w1,i s, then µ02,i = µ1,i + w1,i (⇡(⌫(1))i � s⇡(⌫(1))i ). Since ⇡(⌫(1))i 2 {0, ⌘H} + X0(TH),
we have ⇡(⌫(1))i � s⇡(⌫(1))i 2 {0,↵H}.
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This means exactly that tµ02w
0

2 = tµ1w1w̃ in eW , with w̃i 2 {1, s, t↵H
s}.

For the converse, suppose that (w02, µ
0

2) satisfies �2 = Rw2(µ2 + ⌘)⇠= Rw02
(µ02 + ⌘) and

tµ02w
0

2 = tµ1w1w̃

with w̃i 2 {1, s, t↵H
s}. In particular, this implies µ02 is 1-deep. Let w̃� = wt�p⌫ 2� be any element which

satisfies conditions (a), (b) in the statement of the lemma:

• If w̃i = s, then w02,i = w1,i s and

µ02,i = µ1,i = µ1,i + w1,i (⌫i�1� s(⌫i�1)) = µ1,i + w1,i⇡(⌫)i �w02,i⇡(⌫)i .

• If w̃i = t↵H
s, then w02,i = w1,i s and

µ02,i = µ1,i + w1,i (↵H) = µ1,i + w1,i (⌫i�1� s(⌫i�1)) = µ1,i + w1,i⇡(⌫)i �w02,i⇡(⌫)i .

• Finally, if w̃i = 1, then w02,i = w1,i and

µ02,i = µ1,i = µ1,i + w1,i (⌫i�1)�w02,i (⌫i�1) = µ1,i + w1,i⇡(⌫)i �w02,i⇡(⌫)i .

Collecting these, we obtain µ1 + w1⇡(⌫) = µ02 + w02⇡(⌫), i.e.,

w̃� • (µ1 + w1⇡(⌫)) = w̃� • (µ02 + w02⇡(⌫)).

By Lemma 3.15, we conclude that F(�) 2 JH(�1)\ JH(�2), where � is defined by

s • (�� p⌘) = w̃� • (µ1 + w1⇡(⌫)) = w̃� • (µ02 + w02⇡(⌫)).

This completes the proof of item (i) and of the “if” direction in item (ii), and shows that

|JH(�1)\ JH(�2)|� 2|{i :w̃i =1}|.

We now conclude the proof of item (ii).
Suppose there exists some F(�) 2 JH(�1)\ JH(�2), and let (w02, µ

0

2) be as in item (i). By Lemma 3.15
there exist z( j)t�p⌫( j) 2� such that

s • (�� p⌘) = z(1)t�p⌫(1) • (µ1 + w1⇡(⌫(1))) = z(2)t�p⌫(2) • (µ02 + w02⇡(⌫(2))). (3D.2)

Pairing the middle expression with ↵_i and reducing modulo 2 gives

hz(1)t�p⌫(1) • (µ1 + w1⇡(⌫(1))),↵_i i= hz
(1)(µ1 + (w1⇡ � p)⌫(1)

+ ⌘),↵_i i� 1

= (�1)
�

z(1)
i ,s
hµ1 + (w1⇡ � p)⌫(1)

+ ⌘,↵_i i� 1

⌘ hµ1 + (w1⇡ � p)⌫(1)
+ ⌘,↵_i i� 1

⌘ hµ1,↵
_

i i+ (�1)�w1,i ,s h⇡(⌫(1)),↵_i i� ph⌫(1),↵_i i

⌘ hµ1,↵
_

i i+ h⇡(⌫(1)),↵_i i+ h⌫
(1),↵_i i

⌘ hµ1,↵
_

i i+ �z(1)
i�1,s

+ �z(1)
i ,s (mod 2).
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We have a similar calculation for the rightmost expression. Recalling how µ02 and µ1 are related (see
item (i)), we see that hµ02,↵

_

i i ⌘ hµ1,↵
_

i i (mod 2). Consequently, the last equality in (3D.2) gives

�z(1)
i ,s + �z(2)

i ,s ⌘ �z(1)
i�1,s

+ �z(2)
i�1,s

(mod 2).

Suppose by contradiction that z(1) 6= z(2), so that z(1)
i 6= z(2)

i for some i . The above equation implies that
this inequality holds for all i , i.e., z(2) = sz(1) and ⌫(1) + ⌫(2) = ⌘+� for some � 2 X0(T ). Substituting
this into (3D.2) and canceling z(1) yields

µ1 + (w1⇡ � p)⌫(1)
+ ⌘ = s(µ02 + (w02⇡ � p)(⌘+� � ⌫(1)) + ⌘). (3D.3)

Recalling how (µ1, w1) is related to (µ02, w
0

2) via w̄ (see item (i)), by pairing the above equation with ↵_i
we see that

hµ1,↵
_

i i=

8
><

>:

p�1
2 � �w1,i ,1 if w̄i = 1,

p�1
2 � �w1,i ,sz(1)

i�1
if w̄i = s,

p�1
2 � �w1,i ,sz(1)

i�1
+ (�1)�w1,i ,1 if w̄i = t↵H

s.
(3D.4)

To proceed further, let us write w02 = w1v and µ02 = µ1 + w1(⇠), where v 2 W and ⇠ =
P f�1

i=0 ai↵i

with ai 2 {0, 1} and ai = 1 only if vi = s. We wish to evaluate the expression

�sw1(⇠)+

f�1X

i=0

(hµ1,↵
_

i i+1)↵i +(w1⇡(⌫(1))�((1)))+(�sw1v⇡(⌘)+s⇡(⌘))+(sw1v⇡(⌫(1))�s⇡(⌫(1))),

(3D.5)
which lies in 3R . By working entrywise and considering all possibilities for w1,i , z(1)

i�1, vi and ai , and
using (3D.4), we see that (3D.5) is equal to

f�1X

i=0

p� 1
2

↵i .

On the other hand, rearranging the expression (3D.5) gives

(µ1� s(µ1)� sw1(⇠)+⌘� s(⌘)+w1⇡(⌫(1))� sw1v⇡(⌘)+ sw1v⇡(⌫(1)))�⇡(⌫(1))+ s⇡(⌘)� s⇡(⌫(1)),

and using (3D.3) to further simplify the parenthesized term above, we get

(p⌫(1)
+⇡(�)�ps(⌘)�p�+ps(⌫(1)))�⇡(⌫(1))+s⇡(⌘)�s⇡(⌫(1)) = (p�⇡)(⌫(1)

���s(⌘)+s(⌫(1))).

Combining these two calculations, we see that
P f�1

i=0
p�1

2 ↵i lies in 3R \ (p�⇡)X⇤(T ) = (p�⇡)3R ,
which yields the desired contradiction.

The above argument shows we must have z(2) = z(1) and ⌫(2) = ⌫(1) +� for some � 2 X0(T ). Thus,
(3D.2) reduces to

µ1 + w1⇡(⌫(1)) = µ02 + w02⇡(⌫(1)) + (⇡ � p)�.
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Writing µ02 = µ1 + w1(⇠) and w02 = w1v as above, this equation becomes

µ1 + w1⇡(⌫(1)) = µ1 + w1(⇠) + w1v⇡(⌫(1)) + (⇡ � p)�.

Canceling µ1 and applying w�1
1 gives the equation

⇠ + v⇡(⌫(1))�⇡(⌫(1)) = (p�⇡)�;

since the intersection 3R \ X0(T ) is trivial, we conclude that � = 0 and

⇡(⌫(1))� v⇡(⌫(1)) = ⇠ .

This equation and the condition that z(1)t�p⌫(1) 2� determines ⌫(1) up to an element in X0(T ), so that
z(1)t�p⌫(1) must exactly be one of the w̃� of the statement of the lemma. This shows |JH(�1)\ JH(�2)| =

2|{i :w̃i =1}|. ⇤

Remark 3.17. The above results hold mutatis mutandis for the group G
0 = ResOK2/Zp(GL2/OK2

). More
precisely:

(i) The statement of Lemma 3.15 holds with G (and related objects, e.g., T , W, Rw(µ + ⌘), etc.)
replaced by G

0 (resp., the relevant primed objects). Moreover, the quantity 2 f is replaced by 22 f , and
the element ⌘ 2 X⇤(T ) is replaced by the character ⇢ 0 2 X⇤(T

0) (corresponding to
� 1

0
�
2 (Z2)�2 f ⇠=

X⇤(T
0)).

(ii) The statement of Proposition 3.16(i) holds with G (and related objects) replaced by G
0 (resp.,

the relevant primed objects), and the element ↵H 2 X⇤(TH) replaced by the character of GL2

corresponding to
� 1
�1

�
2 Z2 ⇠= X⇤(TG) (recall from Section 2A4 that TG is the diagonal maximal

torus of GL2).

3D2. We are now in a position to compare how intersection of Jordan–Hölder factors behaves under base
change.

Proposition 3.18. Let �1, �2 be two 3-generic Deligne–Lusztig representations of G(Zp) on which ı(O⇥K )

acts trivially. Then
|JH(BC(�1))\ JH(BC(�2))| = |JH(�1)\ JH(�2)|

2.

Proof. Let us write � j ⇠= Rw j (µ j ) for j = 1, 2, with µ j�⌘ being 3-deep. By the discussion in Section 3A5,
we may assume that the last two entries of µ j in each embedding are equal to 0.

Suppose first that JH(�1) \ JH(�2) 6= ?. Let w̃ = t⇠v 2 eW be as in Proposition 3.16, so that �2 ⇠=

Rw1v(µ1 + w1(⇠)) and |JH(�1)\ JH(�2)| = 2|{i :vi =1}|. Using (3C.1) or (3C.2), we get

BC(�1)⇠= R0(w1,w1)
(µ1,�s(µ1)),

and

BC(�2)⇠= R0(w1v,w1v)(µ1 + w1(⇠),�s(µ1)� sw1(⇠))⇠= R0(w1v,w1v)((µ1,�s(µ1)) + (w1(⇠), w1(⇠)))
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(note that ⇠i 2 {0,↵H} for each 0 i  f � 1, so �s(⇠) = ⇠ ). By the GL2 analog of Proposition 3.16(i),
we may obtain BC(�2) from BC(�1) via the element t(⇠,⇠)(v, v) 2 eW 0, and therefore

|JH(BC(�1))\ JH(BC(�2))| = 2|{i :(v,v)i =1}|
= 22|{i :vi =1}|

= |JH(�1)\ JH(�2)|
2.

(We write eW 0 for the affine Weyl group of G
0 = ResOK2/Zp(GL2/OK2

), and use similar primed notation
below for the automorphism ⇡ 0 acting on the character lattice of G

0 (see Section 3B4).)
To conclude, it suffices to prove that JH(BC(�1))\JH(BC(�2)) 6=? implies JH(�1)\JH(�2) 6=?. As-

sume the former. By Remark 3.17(ii) we may obtain BC(�2) from BC(�1) via an element t(⇠,⇠ 0)(v, v0)2 eW 0

with t⇠i vi , t⇠ 0i v
0

i 2 {1, s, t↵H
s}. That is, we have

BC(�2)⇠= R0(w2,w2)
(µ2,�s(µ2))⇠= R0(w1v,w1v0)

((µ1,�s(µ1)) + (w1, w1)(⇠, ⇠
0)).

By Lemma 3.12, the isomorphism class of the representation on the right is invariant under ✏, which
implies

R0(w1v,w1v0)
((µ1,�s(µ1)) + (w1, w1)(⇠, ⇠

0))⇠= R0(w1v0,w1v)((µ1,�s(µ1)) + (w1, w1)(⇠
0, ⇠)).

By [Le et al. 2019, Proposition 2.2.15] (which can be used by the depth assumption on µ1� ⌘, µ2� ⌘

and the fact that ⇠i , ⇠
0

i 2 {0,↵H} for all i) there exists zt�p⌫ 2 eW 0 such that:

• If zi = 1, then ⌫i 2 X0(TG).

• If zi = s, then ⌫i 2
�

1
0
�
+ X0(TG).

• We have (w1v
0, w1v) = z(w1v, w1v

0)⇡ 0(z)�1.

• We have

(µ1,�s(µ1))+ (w1, w1)(⇠
0, ⇠) = z(µ1,�s(µ1))+ z(w1, w1)(⇠, ⇠

0)+ (p� z(w1v, w1v
0)⇡ 0(z)�1)⇡ 0(⌫).

Rearranging the equation in the last item, we obtain

(p� z(w1v, w1v
0)⇡ 0(z)�1)⇡ 0(⌫) = (µ1,�s(µ1))� z(µ1,�s(µ1))+ (w1, w1)(⇠

0, ⇠)� z(w1, w1)(⇠, ⇠
0),

and the right-hand term lies in the root lattice of G
0; consequently, the same is true for the element ⌫.

Combining this with the first two items implies that ⌫ = 0, and thus z = 1. Finally, the third and fourth
items imply v0 = v and ⇠ 0 = ⇠ .

The above argument shows

BC(�2)⇠= R0(w1v,w1v)((µ1,�s(µ1)) + (w1, w1)(⇠, ⇠))⇠= BC(Rw1v(µ1 + w1(⇠))).

Since the base change map is injective on isomorphism classes of tame types, we get

�2 ⇠= Rw1v(µ1 + w1(⇠))

and consequently JH(�1)\ JH(�2) 6= ? by Proposition 3.16. ⇤
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3D3. We introduce a metric on the set of Serre weights contained in a sufficiently generic tame type.
This will turn out to be useful in the proof of Theorem 7.4.

Definition 3.19. Let Rw(µ) denote a Deligne–Lusztig representation of G(Zp), and suppose µ� ⌘ is
1-deep. Let F(�) 2 JH(Rw(µ)). By Lemma 3.15, there exists an element zt�p⌫ 2� defined by

s • (�� p⌘) = zt�p⌫ • (µ� ⌘+ w⇡(⌫)).

We say z 2W is the label of F(�) with respect to (w, µ).

Remark 3.20. Maintain the setting of Definition 3.19. If (w0, µ0) is another pair such that Rw(µ) ⇠=

Rw0(µ
0) with µ0 � ⌘ being 1-deep, then by (3A.1) we have

(w0, µ0) = (vwF(v)�1, v(µ)+ F(⌫)� vwF(v)�1(⌫))

for some pair (⌫, v) 2 X⇤(T )o W . It is easily checked that if the label of F(�) with respect to (w, µ)

is z, then the label of F(�) with respect to (w0, µ0) is given by zv�1.

Definition 3.21. Let � denote a 1-generic Deligne–Lusztig representation of G(Zp), and let F, F 0 2 JH(� ).
Choose an isomorphism � ⇠= Rw(µ), with µ� ⌘ being 1-deep, and suppose that the labels of F and F 0

with respect to (w, µ) are z and z0, respectively. We define the graph distance dgr(F, F 0) as the number
of i for which zi 6= z0i (i.e., dgr(F, F 0) is the length `(z0z�1) of z0z�1). By Remark 3.20 the graph distance
is well-defined.

Remark 3.22. Suppose that �1 and �2 are two 3-generic Deligne–Lusztig representations of G(Zp),
and suppose F, F 0 2 JH(�1)\ JH(�2). Then the graph distance between F and F 0, computed using �1,
agrees with the graph distance between F and F 0, computed using �2 (this follows from Lemma 3.15 and
Proposition 3.16).

Lemma 3.23. Let � be a 4-generic Deligne–Lusztig representation of G(Zp), and let F, F 0 2 JH(� ).
Then there exists a tame type � 0 such that:

• F, F 0 2 JH(� 0).

• For any F 00 2 JH(� )\ JH(� 0) satisfying F 00 6= F 0, we have

dgr(F, F 00) < dgr(F, F 0).

Specifically, � and � 0 can be written so that � ⇠= Rw(µ), � 0 ⇠= Rw0(µ
0) with µ� ⌘ being 3-deep, and

tµ0�⌘w0= tµ�⌘wt↵F(z)F(z) for an element z 2W which satisfies `(sz) = dgr(F, F 0). (For v 2W we denote
↵v

def
=

P
i :vi =s

↵i .) In this case,

|JH(� )\ JH(� 0)| = 2`(sz)
= 2dgr(F,F 0).

Proof. Let us write � ⇠= Rw(µ) with µ� ⌘ being 4-deep. By applying the equivalence (3A.1), we may
assume that the label of F with respect to (w, µ) is s at the cost of assuming µ� ⌘ is only 3-deep.
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Suppose that the label of F 0 with respect to (w, µ) is z. By definition, we have

F ⇠= F(µ + w(⌘)� ⌘) = F(µ�↵w)

F 0 ⇠= F(sz(µ + (w⇡ � p)⌫) + (p� 1)⌘),

where zt�p⌫ 2�.
We define � 0 def

= RwF(z)(µ + w⇡(↵z)). We easily see that F and F 0 are Jordan–Hölder factors of � 0,
whose labels with respect to (wF(z), µ + w⇡(↵z)) are s and z, respectively. Moreover, by the explicit
description of JH(� )\JH(� 0) of Proposition 3.16(ii), we see that any element F 00 6= F 0 of the intersection
satisfies dgr(F, F 00) < dgr(F, F 0). The final part of the aforementioned proposition gives the size of the
intersection. ⇤

3E. Base change of weights. We now define a notion of base change for weights, and show that it is
compatible with the notion of base change of types defined above.

3E1.

Definition 3.24. Let µ 2 X1(T ) and let F(µ) denote a Serre weight of G(Zp) on which ı(O⇥K ) acts
trivially. As in Section 3A5, we may assume µ is of the form

µ =

✓ a0
b0
0
0

◆✓ a1
b1
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆
.

We define the base change of F(µ) as

BC(F(µ))
def
= F 0(µ,�s(µ)).

One easily checks that the map F 7! BC(F) is well-defined and injective on isomorphism classes of
Serre weights.

3E2. Recall the automorphism ✏ of G
0(Fp)⇠= GL2(Fq2) defined in Section 3C7. On Serre weights, this

automorphism gives
✏(F 0(µ, µ0)) = F 0(�s(µ0),�s(µ)).

We have the following result:

Lemma 3.25. Let F 0 denote a Serre weight of GL2(Fq2). Then we have ✏(F 0)⇠= F 0 if and only if F 0 is of
the form BC(F) for a Serre weight F of U2(Fq).

Proof. The backwards implication is clear. We prove the forward implication. Thus, suppose µ, µ0 2 X1(T )

are as in Definition 3.24, and suppose we have an isomorphism

F 0(µ, µ0)⇠= F 0(�s(µ0),�s(µ)).

By Proposition 3.5, there exists � 0 2 X0(T
0) such that

(µ + s(µ0), µ0+ s(µ)) = (F0 � 1)� 0. (3E.1)
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Since the right-hand side of (3E.1) is fixed by (s, s), the same is true of the left-hand side. This implies
that the left-hand side is also fixed by ⇡ 0 f , from which we obtain

(F0 � 1)⇡ 0 f (� 0) = (F0 � 1)� 0.

Since F
0
�1 is injective on X0(T

0), we see that � 0 lies in ker(⇡ 0 f �1), which in turn is equal to im(⇡ 0 f +1).
Therefore, we can write � 0 = (�,�) with � 2 X0(ResOK /Zp(TU )), and (3E.1) becomes

(µ + s(µ0), µ0+ s(µ)) = (F0 � 1)(�,�). (3E.2)

Applying Proposition 3.5 again, we get an isomorphism

F 0(µ, µ0)⇠= F 0((µ, µ0) + (F0 � 1)(��, 0)).

Equation (3E.2) then implies that the term on the right-hand side above is of the form F 0(µ00,�s(µ00)),
and the result follows. ⇤

3E3. We now wish to relate base change of types with base change of weights. The relevant result is the
following.

Lemma 3.26. Let � denote a 1-generic Deligne–Lusztig representation of G(Zp) on which ı(O⇥K ) acts
trivially, and let F denote a Serre weight on which ı(O⇥K ) acts trivially. We then have

F 2 JH(� )() BC(F) 2 JH(BC(� )).

Proof. Let us write � ⇠= Rw(µ) where µ is of the form

µ =

✓ a0
b0
0
0

◆✓ a1
b1
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆

and µ� ⌘ is 1-deep. Thus BC(� )⇠= R0(w,w)(µ,�s(µ)).
Suppose first that F 2 JH(� ). By (3A.2), F is of the form

F ⇠= Fw0(Rw(µ)) = F(p�w0 + w0(µ�w⇡("sw0)) + p⇢w0 �⇡(⇢))

for some w0 2 W . Note that the parenthesized character has its last two entries equal to 0 in each
embedding. Thus, we have

BC(F)⇠= F 0(p(�w0,��w0) + (w0, w0)((µ,�s(µ))� (w, w)(⇡("sw0),�s⇡("sw0)))

+ p(⇢w0,�s(⇢w0))� (⇡(⇢),�s⇡(⇢))).

A straightforward calculation shows that adding (p�⇡ 0)(0, 2�w0 + ⇢w0 + s(⇢w0)) 2 (F0 � 1)X0(T
0) to

the parenthesized character gives

BC(F)⇠= F 0(p� 0(w0,w0) + (w0, w0)((µ,�s(µ))� (w, w)⇡ 0("0(sw0,sw0))) + p⇢ 0(w0,w0)� ⇢
0).

Hence, we obtain

BC(F)⇠= F 0(w0,w0)(R0(w,w)(µ,�s(µ))) 2 JH(R0(w,w)(µ,�s(µ))) = JH(BC(� )).
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To prove the converse we begin with an observation. Let F 0(v,v0)(BC(� )) be a Jordan–Hölder factor
of BC(� ) = R0(w,w)(µ,�s(µ)) as in (3B.1). (Note that F 0(v,v0)(BC(� )) depends on the pair (w, µ). For
readability, we fix the presentation (w, µ) and omit this dependence from the notation.) Since ✏(BC(� ))⇠=

BC(� ) by Lemma 3.12, we obtain ✏(F 0(v,v0)(BC(� ))) 2 JH(BC(� )). A similar argument to the one above
shows that

✏(F 0(v,v0)(BC(� )))⇠= F 0(v0,v)(BC(� )).

Suppose that BC(F) 2 JH(BC(� )). Then there exists (v, v0) 2W 0 such that BC(F)⇠= F 0(v,v0)(BC(� )).
Since BC(F) is a base change, Lemma 3.25 and the above equation imply

F 0(v0,v)(BC(� ))⇠= ✏(F 0(v,v0)(BC(� )))

⇠= ✏(BC(F))

⇠= BC(F)

⇠= F 0(v,v0)(BC(� )).

Since µ� ⌘ is 1-deep, (3B.1) and Remark 3.17(i) implies that we have a bijection between W 0 and the
(all distinct) Jordan–Hölder factors of BC(� ). We obtain v0 = v, and thus

BC(F)⇠= F 0(v,v)(BC(� ))⇠= BC(Fv(Rw(µ))).

Since the base change map is injective on Serre weights, we conclude that

F ⇠= Fv(Rw(µ)) 2 JH(Rw(µ)) = JH(� ). ⇤

3E4. The following lemma will be useful in the proof of Theorem 6.7.

Lemma 3.27. Let � be a 2-generic Deligne–Lusztig representation of G(Zp) on which ı(O⇥K ) acts trivially,
and let F denote a 3-deep Serre weight with trivial action of ı(O⇥K ) such that F 62 JH(� ). Then there exists
another Deligne–Lusztig representation � 0 of G(Zp) such that F 2 JH(� 0) and JH(� )\ JH(� 0) = ?.

Proof. If � and F have different central characters, then any � 0 for which F 2 JH(� 0) works. We may
therefore assume that � and F have the same central character. The remainder of the proof will be based
on the combinatorics of the extension graph for Serre weights for GL2, as defined in [Le et al. 2022,
Section 2]. We recall some of the definitions and constructions of [loc. cit.] (and use similar notation for
convenience of comparison).

Define 30W to be the weight lattice for G
0 der, the derived subgroup of G

0, and let 30R denote the
root lattice, so that 30R ✓ 3

0

W . Note that 30W ⇠= Z f ⇥ Z f and we fix such an identification in what
follows. Recall from Section 3B1 that X⇤(T

0) denotes the weight lattice for the group G
0; we have

30R ✓ X⇤(T
0) and X⇤(T

0) ⇣3W . We further write ew0a (resp. ew0) for the affine (resp. extended affine)
Weyl group of G

0, which admits a factorization ew0a ⇠= W 0n30R (resp. ew0 ⇠= W 0n X⇤(T
0)). The group eW 0a

(resp. eW 0) is canonically isomorphic to two copies of W n3R (resp. W n X⇤(ResOK /Zp(TU ))) (compare
with Section 3B1).
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We let �0 denote the set of elements of eW 0 which stabilize the fundamental alcove C 00 of G
0 under the

p-dilated dot action •p:

w0t�0 •p µ0 = w0(µ0+ ⇢ 0+ p�0)� ⇢ 0,

where w0t�0 2 eW 0 and µ0 2 X⇤(T
0). Thus, �0 is the analog of � of Section 3D, except that translations

have been scaled by a factor of p�1. (We apologize for this inconsistency of notation.)
Let µ0 2 X⇤(T

0) satisfy 0  hµ0,↵0_i < p � 1 for every positive coroot ↵0_ of T
0. We call such

characters p-regular. We then define the map Tr0µ0 by

Tr0µ0 :3
0

W !
X⇤(T

0)

(F0 � 1)X0(T 0)

!0 7! ˆ̃w0 •p (µ0+ !̂0 � ⇢ 0)

where !̂0 2 X⇤(T
0) is a lift of !0 230W , and ˆ̃w0 is the unique element in�0 such that the class of�⇡ 0�1(!̂0)

corresponds to the class of ˆ̃w0 via the isomorphism X⇤(T
0)/30R

⇠�! ew0/ew0a . Note that this is well defined.
Define furthermore

30
µ0

W
def
= {!0 230W : !0+ µ0 � ⇢ 0 2 C 00} (3E.3)

(where we consider the image of µ0 � ⇢ 0 and C 00 in 30W ), and let Trµ0 be the restriction of Tr0µ0 to 30µ
0

W .
Then, as in [Le et al. 2020, Section 2.1], one checks that:

(i) The image of Trµ0 is contained in the set of p-regular characters. Further, the map !0 7! F 0(Trµ0(!0))
defines a bijection between 30µ

0

W and the set of p-regular Serre weights with the same central character as
F 0(µ0 � ⇢ 0) (see the discussion preceding [Le et al. 2022, Proposition 2.9]).

(ii) Suppose µ0 2 X⇤(T
0) is such that µ0 � ⇢ 0 is 2-deep, and consider the Deligne–Lusztig representation

R0w0(µ
0). Applying the analog of (3A.1) for G

0(Zp), we obtain an isomorphism

R0w0(µ
0)⇠= R0w0((s, s)(µ0) + p⇢ 0 �w0(⇢ 0)),

where the character (s, s)(µ0) + p⇢ 0 �w0(⇢ 0)� ⇢ 0 is 1-deep. Combining this isomorphism with [Le et al.
2022, Propositions 2.5 and 2.11], Proposition 4.6 and Remark 4.7 below, we obtain

JH(R0w0(µ0)) = {F 0(Trµ0+⇢0(t�↵w0
(s, s)w0(60)))},

where60 ✓30W is the subset consisting of (images of) elements of the form
�

1
0
�

or
�

0
0
�

in each embedding.
(That is, 60 is the image in 30W of {⇢ 0w0}w02W 0 .)

(iii) Let µ 2 X⇤(ResOK /Zp(TU ))✓ X⇤(T ) satisfy 0 hµ+ ⇢,↵_i< p� 1 for every positive coroot ↵_

of T . We let3W denote the weight lattice of G
der (which is a quotient of X⇤(ResOK /Zp(TU )) ), and define

3
µ+⇢
W

def
= {! 23W : !+ µ 2 Cder

0 }
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where Cder
0 is the fundamental alcove of G

der. Consider the map

TrG

µ+⇢ :3
µ+⇢
W !

X1(T
0)

(F0 � 1)X0(T 0)

! 7! Tr(µ+⇢,�s(µ)+⇢)(!,�s(!)).

Using Lemma 3.25 and item (i), one checks that ! 7! F 0(TrG

µ+⇢(!)) defines a bijection between 3µ+⇢
W

and p-regular Serre weights of G
0(Zp) which are in the image of the base change map and have the same

central character as F 0(µ,�s(µ)).

We now proceed with the proof. Let us write � = Rw(µ), with µ chosen as in Lemma 3.26 and µ�⇢

being 2-deep. By assumption and Lemma 3.26, we have

BC(F) 62 JH(BC(� )) = JH(R0(w,w)(µ,�s(µ))).

Since the character (µ,�s(µ))� ⇢ 0 is 2-deep, item (ii) above implies

BC(F) 62 {F 0(Tr(µ,�s(µ))+⇢0(t�↵(w,w)(sw, sw)(60)))}.

Therefore, since F and � have the same central character, item (iii) implies that BC(F) = F 0(TrG

µ+⇢(!))

for some ! 23µ+⇢
W \ t�↵wsw(6). (Here, 6 is the image in 3W of {⇢w}w2W .) Since 60 is a fundamental

domain for the translation action of 30R on 30W , there exists an element t(⌫,�s(⌫)) 23
0

R ✓ ew0 such that

(!,�s(!)) 2 t(⌫,�s(⌫))t�↵(w,w)(sw, sw)(60). (3E.4)

(Since the left-hand side of the above containment is fixed by ✏, the translation element of 30R must be of
the form t(⌫,�s(⌫)).) Note that this implies ⌫ 6= 0 and consequently

t�↵(w,w)(sw, sw)(60)\ t(⌫,�s(⌫))(t�↵(w,w)(sw, sw)(60)) = ?. (3E.5)

Recall that we have assumed F is 3-deep. Therefore the same is true of BC(F). Using the relation
BC(F) = F 0(TrG

µ+⇢(!)), and the fact that �0 preserves C 00 under •p, we get that the character µ+! is
3-deep. On the other hand, the relation (3E.4) implies that we have

! = ⌫�↵w + sw(⇢v)

for some v 2W . Since 0 h↵w � sw(⇢v),↵
_

i i  2 for all 0 i  f � 1, the relation

µ +!+↵w � sw(⇢v) = µ + ⌫

implies that 2< hµ+⌫,↵_i i< p�2 for all 0 i  f �1. That is, we have that (µ,�s(µ))+(⌫,�s(⌫))�⇢ 0

is 2-deep.



Serre weight conjectures for p-adic unitary groups of rank 2 2041

Now set � 0 def
= Rw(µ + ⌫). By the previous paragraph and item (ii), we have

JH(BC(� 0)) = JH(R0(w,w)(µ + ⌫,�s(µ + ⌫)))

= {F 0(Tr(µ,�s(µ))+(⌫,�s(⌫))+⇢0(t�↵(w,w)(sw, sw)(60)))}

= {F 0(Tr(µ,�s(µ))+⇢0(t(⌫,�s(⌫))t�↵(w,w)(sw, sw)(60)))},

where the last equality follows from the definition of Trµ0 and the fact that (⌫,�s(⌫)) 2 30R . Thus,
the relation BC(F) = F 0(TrG

µ+⇢(!)) and (3E.4) imply that BC(F) 2 JH(BC(� 0)), and the injectivity
of Trµ0 and (3E.5) imply JH(BC(� )) \ JH(BC(� 0)) = ?. We conclude by using Lemma 3.26 and
Proposition 3.18. ⇤

4. Predicted Serre weights

In this section we discuss the conjectural set of weights attached to Galois parameters and their relation
with base change. We give the relevant definitions in Section 4A, along with a classification of mod p
tamely ramified L-parameters. We then define the set W?(⇢) in Section 4B. The main result is Theorem 4.9,
which relates the sets W?(⇢) and W?(BC(⇢)). Finally, we state in Section 4D a version of the inertial
local Langlands correspondence that we will require for local/global compatibility. Our discussion is
based on [Gee et al. 2018, Section 9].

4A. L-parameters.

4A1. We first define the Galois representations we shall consider.

Definition 4.1. Let R be a topological Zp-algebra. An L-parameter (with R-coefficients) is a continuous
homomorphism 0Qp !

L
G(R), which is compatible with the projection to Gal(K2/Qp). Likewise, we

define an inertial L-parameter (or an inertial type) to be a continuous homomorphism IQp !
bG(R)

which admits an extension to an L-parameter 0Qp !
L

G(R). We say two (inertial) L-parameters are
equivalent if they are bG(R)-conjugate.

We make similar definitions for homomorphisms valued in G2(R).

By [Gee et al. 2018, Lemma 9.4.1], the bG(R)-conjugacy classes of L-parameters 0Qp!
L

G(R) are in
bijection with bH(R)-conjugacy classes of L-parameters 0K !

L
H(R) = C

U2(R). A similar statement
holds for inertial L-parameters; see [loc. cit., Lemma 9.4.5].

We make similar definitions of L-parameters 0F+ ! C
U2(R) if F+ is a global field with a place v

satisfying F+
v
⇠= K (cf. Remark 2.1).

4A2. The following lemma is easily checked.

Lemma 4.2. Let ⇢ :0K !
C
U2(F) denote an L-parameter such that ⇢|0K2

is semisimple (or, equivalently,
tamely ramified). Then, up to equivalence, ⇢ is of one of the following two forms:
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(i) There exist 0 r < q2� 1, 0 s < q � 1 and �, ⌫ 2 F⇥ such that

⇢(h) =

  
!r

2 f nr2 f,⌫�1�(h) 0
0 !

�qr+(q+1)s
2 f nr2 f,⌫�(h)

!

,!s
f nr2 f,�2(h)

!

o 1,

⇢('� f ) =

✓✓
1 0
0 ⌫

◆
, �

◆
o'� f .

for all h 2 0K2 .

(ii) There exist 0 k, `< q + 1, 0 s < q � 1 and � 2 F⇥ such that

⇢(h) =

  
!

s+(1�q)k
2 f nr2 f,��(h) 0

0 !
s+(1�q)`
2 f nr2 f,��(h)

!

,!s
f nr2 f,�2(h)

!

o 1,

⇢('� f ) =

✓✓
0 �1
1 0

◆
, �

◆
o'� f ,

for all h 2 0K2 .

In both cases nr2 f,x denotes the unramified character of 0K2 sending '�2 f to x.

4A3.

Definition 4.3. Let R denote a topological Zp-algebra:

(i) Let ⇢ : 0K !
C
U2(R) denote an L-parameter, and write ⇢|0K2

= ⇢2 � ⇢1, where ⇢2 : 0K2 !

GL2(R), ⇢1 : 0K2 ! Gm(R) = R⇥. We define the base change of ⇢ to be

BC(⇢)
def
= ⇢2.

(ii) Let ⇢ : 0K ! G2(R) denote an L-parameter valued in G2, and write ⇢|0K2
= ⇢2 � ⇢1, where

⇢2 : 0K2 ! GL2(R), ⇢1 : 0K2 ! Gm(R) = R⇥. We define the base change of ⇢ to be

BC0(⇢)
def
= ⇢2.

We make similar definitions if F+ is a global field with a place v satisfying F+
v
⇠= K ; see Remark 2.1.

The two notions of base change are related as follows. Let ⇢ : 0K !
C
U2(R) denote an L-parameter,

and let ✓ denote the continuous character ı̂ �⇢ : 0K ! R⇥. Using the isomorphism of Section 2D, we get
an isomorphism of GL2(R)-valued Galois representations

BC0(⇢)⇠= BC(⇢)⌦ ✓�1. (4A.1)

4A4. Recall from Section 2C2 that we have a map (�_)�1 : X⇤(TH) ⇠�! X⇤(bTH), which induces an
isomorphism X⇤(T ) ⇠�! X⇤(bT ). Given µ 2 X⇤(T ) (viewed as an element of X⇤(bT )) and w 2 W , we
define a tamely ramified inertial L-parameter ⌧ (w, µ) : IK ! bH(F) by

⌧ (w, µ)
def
=

2 f�1Y

i=0

(F⇤ �w�1)i (µ(!2 f ))

(compare with [Gee et al. 2018, Section 9.2] and note that (F⇤ �w�1)2 f = p2 f ).
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We define BC(�) to be the canonical identification of the dual root datum of the split group GL2/OK2

with the root datum of its dual group. Given this, we make an analogous definition of tamely ramified
inertial L-parameters ⌧ 0((w, w0), (µ,µ0)) : IK2 ! GL2(F).

Lemma 4.4. Suppose ⇢ : 0K !
C
U2(F) is a tamely ramified L-parameter which satisfies ı̂ � ⇢ = !. Via

the identification of [Gee et al. 2018, Lemma 9.4.5] we have

⇢|IK
⇠= ⌧ (w, µ+ ⌘)

with w 2W and µ 2 X⇤(T ) of the form

µ =

✓ a0
b0
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆
.

Furthermore, we have

BC(⇢)|IK2
⇠= ⌧ 0((w, w), (µ,�s(µ)) + ⇢ 0).

Proof. The proof is a straightforward exercise using the definitions. ⇤

4A5. We will also need a definition of genericity to study the relation between L-parameters, the set of
conjectural associated weights and local deformations.

Definition 4.5. Suppose ⇢ : 0K !
C
U2(F) is a tamely ramified L-parameter. We say ⇢ is n-generic if,

via the identification of [Gee et al. 2018, Lemma 9.4.5], we can write

⇢|IK
⇠= ⌧ (w, µ+ ⌘)

where w 2W and µ 2 X⇤(T ) is n-deep.

4B. The set W?
. We now give a description of the set W?. We refer to [Gee et al. 2018, Section 9] for

the definition, and to [loc. cit., Proposition 9.2.1] for the definition of V� .

Proposition 4.6. Let ⇢ : 0K !
C

U2(F) be a 1-generic tamely ramified L-parameter, and write ⇢|IK
⇠=

⌧ (w, µ + ⌘) as in Definition 4.5, with µ being 1-deep. Let V�(⇢) = Rw(µ + ⌘) be the associated
Deligne–Lusztig representation of G(Fp) as in [Gee et al. 2018, Propositions 9.2.1 and 9.2.2]. Then

W?(⇢) = JH(�(Rw(µ + ⌘))).

Proof. By definition of W?(⇢), we must prove that

R(JH(Rw(µ + ⌘))) = JH(�(Rw(µ + ⌘))),

where R is the reflection operator defined in [Gee et al. 2018, Section 9.2]. We use (3A.2). We claim that

R(Fw0(Rw(µ + ⌘)))⇠= Fw0(�(Rw(µ + ⌘))) (4B.1)
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for all w0 2W . Note first that ⇡ and s commute as operators on X⇤(T ), and the group W is commutative.
Therefore, in order to prove (4B.1), it suffices to show

ps(�w0) + sw0(µ + ⌘)� sw0w⇡("sw0) + ps(⇢w0)�⇡(s(⇢)) + s(⇢)� ps(⌘)� ⇢

⌘ p�w0 + w0(s(µ + ⌘)� s(⌘) + (p� 1)⌘� sw⇡("sw0)) + p⇢w0 �⇡(⇢),

the equivalence being taken modulo (F� 1)X0(T ).
One easily checks that s(�w0) = �w0 and �⇡(s(⇢)) + s(⇢)� ⇢ = �⇡(⇢), and hence (4B.1) will be

satisfied if we show that

ps(⇢w0)� ps(⌘)⌘�w0s(⌘) + (p� 1)w0(⌘) + p⇢w0 (4B.2)

modulo (F� 1)X0(T ).
Expanding the left-hand side gives

ps(⇢w0)� ps(⌘) = · · ·

✓ 0
0
0
�p

◆

| {z }
w0i =1

· · ·

✓ 0
p
0
�p

◆

| {z }
w0i =s

· · · ,

while expanding the right-hand side gives

�w0s(⌘) + (p� 1)w0(⌘) + p⇢w0 = · · ·

✓ 0
0

p�1
�1

◆

| {z }
w0i =1

· · ·

✓ p
0
�1
p�1

◆

| {z }
w0i =s

· · · .

In particular, adding

(F� 1)

✓ 0
0
1
1

◆
=

 0
0

p�1
p�1

!

to the left-hand side of (4B.2) gives

· · ·

✓ 0
0

p�1
�1

◆

| {z }
w0i =1

· · ·

✓ 0
p

p�1
�1

◆

| {z }
w0i =s

· · · = · · ·

✓ 0
0

p�1
�1

◆

| {z }
w0i =1

· · ·

✓ p
0
�1
p�1

◆

| {z }
w0i =s

· · · ,

where the equality follows form the equivalence relation on X⇤(T ). This gives the claim. ⇤

Remark 4.7. The above proposition and its proof carry over mutatis mutandis to the group GL2(OK2)

and a tamely ramified Galois parameter 0K2 ! GL2(F); see [Diamond 2007].

4C. Base change and W?
. This section contains the main result on compatibility between the set W?

and base change of L-parameters (Theorem 4.9).
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4C1.

Proposition 4.8. Let ⇢ : 0K !
C

U2(F) be a 1-generic tamely ramified L-parameter which satisfies
ı̂ � ⇢ = !. Then the subgroup ı(O⇥K ) acts trivially on �(V�(⇢)), and

� 0(VBC(�)(BC(⇢)))⇠= BC(�(V�(⇢))).

Proof. By Lemma 4.4, we may write

⇢|IK
⇠= ⌧ (w, µ+ ⌘),

with µ being 1-deep and of the form

µ =

✓ a0
b0
0
0

◆
· · ·

✓ a f�1
b f�1

0
0

◆
.

Applying the map � to V�(⇢)⇠= Rw(µ + ⌘) gives

�(V�(⇢))⇠= Rsw(s(µ) + (p� 1)⌘).

Notice that ı(O⇥K ) acts trivially on this representation. In order to apply the base change map, the character
appearing inside the Deligne–Lusztig representation must have its last two entries equal to zero. Using
the equivalence given by adding the element �(F� sw)(⌘), we get

�(V�(⇢))⇠= Rsw(s(µ)� ⌘+ sw(⌘)) = Rsw

✓
s(µ)�

X

wi =1

↵i

◆
,

and by (3C.1) or (3C.2), we obtain

BC(�(V�(⇢)))⇠= R0(sw,sw)

✓
s(µ)�

X

wi =1

↵i ,�µ�
X

wi =1

↵i

◆
.

On the other hand, Lemma 4.4 gives

BC(⇢)|IK2
⇠= ⌧ 0((w, w), (µ,�s(µ)) + ⇢ 0),

and therefore
VBC(�)(BC(⇢))⇠= R0(w,w)((µ,�s(µ)) + ⇢ 0).

Applying the map � 0 gives

� 0(VBC(�)(BC(⇢)))⇠= R0(sw,sw)((s(µ),�µ) + (p� 1)⇢ 0).

Finally, using the equivalence given by adding �(F0 � (sw, sw))(⇢ 0) we obtain

� 0(VBC(�)(BC(⇢)))⇠= R0(sw,sw)((s(µ),�µ)� ⇢ 0+ (sw, sw)(⇢ 0))

⇠= R0(sw,sw)

✓
s(µ)�

X

wi =1

↵i ,�µ�
X

wi =1

↵i

◆
. ⇤
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4C2. The main result of this section concerns local functoriality of predicted Serre weights.

Theorem 4.9. Let ⇢ :0K !
C

U2(F) be a 1-generic tamely ramified L-parameter which satisfies ı̂ �⇢ =!,
and let F denote a Serre weight of G(Zp) on which ı(O⇥K ) acts trivially. Then

F 2W?(⇢)() BC(F) 2W?(BC(⇢)).

Proof. This follows by combining Lemma 3.26 and Propositions 4.6 and 4.8. ⇤

4D. Inertial local Langlands. In this section we discuss the inertial local Langlands correspondence
which will be used in the rest of the paper. Recall that a tame inertial type ⌧ 0 is a homomorphism
⌧ 0 : IK2!GL2(O) with open kernel, which is tamely ramified, and such that ⌧ 0 extends to a representation
of the Weil group of K2.

We set L def
= K2((�p)1/(p2 f�1)). As ⌧ 0 is tame, it factors as

⌧ 0 : IK2 ⇣ Gal(L/K2)! GL2(O).

This implies that ⌧ 0 is of the form
⌧ 0 ⇠= !̃a

2 f � !̃
b
2 f .

If a 6⌘ b (mod p2 f �1), we call such a type a principal series tame (inertial) type. By Henniart’s appendix
to [Breuil and Mézard 2002], the inertial type ⌧ 0 is associated to the tame type

� 0(⌧ 0)
def
= Ind

GL2(Fq2 )

BU (Fq2 ) (✓a ⌦ ✓b)

if a 6⌘ b (mod p2 f � 1), and
� 0(⌧ 0)

def
= ✓a � det

if a ⌘ b (mod p2 f �1), where we use the notation ✓z(x) = &0(x̃ z). We view � 0(⌧ 0) as a representation of
GL2(OK2) by inflation. (According to the appendix of [Breuil and Mézard 2002], the a⌘ b (mod p2 f �1)

case corresponds to a twist of the Bernstein component denoted s0 in [loc. cit.], and consequently we
have two options for � 0(⌧ 0). We choose � 0(⌧ 0) to be one-dimensional in order to guarantee that we are in
the N = 0 case in Theorem 4.11 below.)

Suppose now that (⌧ 0)'
� f ⇠= ⌧ 0_, where ⌧ 0_ denotes the dual type, i.e., the type !̃�a

2 f � !̃
�b
2 f if ⌧ 0 ⇠=

!̃a
2 f �!̃

b
2 f . (Note that the condition (⌧ 0)'

� f ⇠= ⌧ 0_ means exactly that ⌧ 0 extends to a map ⇢ :0K!
C
U2(O)

such that BC(⇢)|IK2
⇠= ⌧ 0 and (ı̂ � ⇢)|IK is the trivial character.) In this case ⌧ 0 is of the form

!̃c
2 f � !̃

�qc
2 f or !̃

(1�q)a
2 f � !̃

(1�q)b
2 f ,

so that � 0(⌧ 0) is of the form

Ind
GL2(Fq2 )

BU (Fq2 ) (✓c⌦ ✓�qc), Ind
GL2(Fq2 )

BU (Fq2 ) (✓(1�q)a ⌦ ✓(1�q)b) or ✓(1�q)a � det .

In particular, these tame types come via base change from tame types of U2(OK ). We therefore make the
following definition.
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Definition 4.10. Let ⌧ 0: IK2 ! GL2(O) denote a tame inertial type which factors through Gal(L/K2),
and suppose furthermore that (⌧ 0)'

� f ⇠= ⌧ 0_:

(i) If ⌧ 0 ⇠= !̃c
2 f � !̃

�qc
2 f with c 6⌘ �qc (mod p2 f � 1), we set

� (⌧ 0)
def
= IndU2(Fq )

BU (Fq )(✓c),

which we view as a representation of U2(OK ) via inflation.

(ii) If ⌧ 0 ⇠= !̃
(1�q)a
2 f � !̃

(1�q)b
2 f with a 6⌘ b (mod p2 f � 1), we set

� (⌧ 0)
def
= � (✓a ⌦ ✓b),

where we view ✓a and ✓b as characters of U1(Fq) by restriction, and where we view � (⌧ 0) as a
representation of U2(OK ) via inflation.

(iii) If ⌧ 0 ⇠= !̃
(1�q)a
2 f � !̃

(1�q)a
2 f , we set

� (⌧ 0)
def
= ✓a � det,

where we view ✓a as a character of U1(Fq) by restriction, and where we view � (⌧ 0) as a representation
of U2(OK ) via inflation.

Note that the representations � (⌧ 0) are all irreducible by Theorem 3.7, and by construction we have
BC(� (⌧ 0))⇠= � 0(⌧ 0).

We may now state a version of the inertial local Langlands correspondence.

Theorem 4.11. Let ⌧ 0 : IK2 ! GL2(O) be a tame inertial type as in Definition 4.10, so that in particular
(⌧ 0)'

� f ⇠= ⌧ 0_. Let ⇡ denote a smooth irreducible representation of U2(K ) over E , and let ⇡� denote the
direct sum of all representations appearing in the L-packet containing ⇡ . Let BC(⇡) denote the stable base
change of the L-packet containing ⇡ . Then ⇡�|U2(OK ) contains � (⌧ 0) if and only if recE(BC(⇡))|IK2

⇠= ⌧ 0

and N = 0 on recE(BC(⇡)). In this case, we have dimE HomU2(OK )(� (⌧ 0),⇡�|U2(OK )) = 1.

Proof. This follows from Henniart’s inertial local Langlands correspondence ([Breuil and Mézard 2002];
see also [Caraiani et al. 2016, 3.7 Theorem]) and the properties of the stable base change map; [Rogawski
1990, Section 11.4].

To verify the claim about multiplicities, suppose that HomU2(OK )(� (⌧ 0),⇡�|U2(OK )) 6= 0, so that
in particular ⇡� has an irreducible summand of depth zero. By the classification of depth zero L-
packets (see [Rogawski 1990, Section 11.1] and [Blasco 2010, Proposition 2.1(ii)], or [Adler and
Lansky 2005, Section 3.1]), the (semisimple) representation ⇡�|U2(OK ) is either a subrepresentation of
IndU2(K )

BU (K )(�)|U2(OK ), or a direct sum (⇡1�⇡2)|U2(OK ), where � : BU (K )! E⇥ is a smooth tame character,
and where ⇡1,⇡2 are irreducible supercuspidal representations of U2(K ) which are conjugate under the
action of GU2(K ).

Suppose that ⇡�|U2(OK ) is a subrepresentation of IndU2(K )
BU (K )(�)|U2(OK ), and let U2(OK )1 denote the

principal congruence subgroup of U2(OK ). Using the Mackey formula and the Iwasawa decomposition,
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we have
HomU2(OK )(� (⌧ 0),⇡�|U2(OK ))✓ HomU2(OK )(� (⌧ 0), IndU2(K )

BU (K )(�)|U2(OK ))

= HomU2(OK )(� (⌧ 0), IndU2(K )
BU (K )(�)U2(OK )1)

⇠= HomU2(OK )(� (⌧ 0), IndU2(Fq )

BU (Fq )(� |BU (Fq ))).

Since � (⌧ 0) is irreducible and IndU2(Fq )

BU (Fq )(� |BU (Fq )) is multiplicity-free (see [Ennola 1963, Section 6]), the
result follows in this case.

Suppose now that ⇡�|U2(OK ) = (⇡1�⇡2)|U2(OK ). We may label the supercuspidal representations such
that ⇡U2(OK )1

1 6= 0 and ⇡U2(OK )1
2 = 0. This gives

HomU2(OK )(� (⌧ 0),⇡�|U2(OK )) = HomU2(OK )(� (⌧ 0), (⇡1�⇡2)|U2(OK ))

= HomU2(OK )(� (⌧ 0),⇡
U2(OK )1
1 ).

As in [Adler and Lansky 2005, Section 3.1], we may write ⇡1 ⇠= c- IndU2(K )
U2(OK )(� ), where � denotes an

irreducible cuspidal representation of U2(Fq), inflated to U2(OK ). Applying the Mackey formula and the
Cartan decomposition, and using cuspidality of � , we obtain ⇡U2(OK )1

1
⇠= � . Again using the irreducibility

of � (⌧ 0), we obtain the desired multiplicity result. ⇤

5. Local deformations

In this section we compute potentially crystalline deformation rings for certain L-parameters ⇢ : 0K !
C

U2(F). The main result is Corollary 5.25 which relates Hilbert–Samuel multiplicities of such rings with
the set W?(⇢). This will be used to prove the “weight existence” direction of Corollary 7.5.

We follow [Le et al. 2018, Section 6], adapting the base change techniques to our setting; see also
[Caruso et al. 2018]. Section 5A contains the background on Kisin modules for GL2, together with their
classification by shapes. In Section 5B we introduce the notion of polarized (or Frobenius twist self-dual)
Kisin modules and use a base change technique to compute their deformations. We then relate the
deformation problems of polarized Kisin modules and of L-parameters to obtain the desired description
of the potentially crystalline deformations rings.

5A. Kisin modules. Throughout this section, we let R denote a complete local Noetherian O-algebra
with residue field F. We start by defining the relevant categories of Kisin modules with tame descent data
Y µ,⌧ 0(R)✓ Y [0,1],⌧ 0(R); [Caraiani and Levin 2018, Section 5], see also [Le 2019, Section 3].

5A1. The ring SR
def
= (OK2 ⌦Zp R)[[u]] is equipped with a Frobenius map ' : SR ! SR which is the

arithmetic Frobenius on OK2 (i.e., ' = '�1 on OK2 ), which is trivial on R, and which sends u to u p.

Definition 5.1. A Kisin module with height in [0,1] over R is a finitely generated projective SR-module
M together with an SR-linear map �M : '⇤M

def
= SR ⌦',SR M!M such that

E(u)M✓ �M('⇤M)✓M,

where E(u) denotes the Eisenstein polynomial of (�p)1/(p2 f�1) over K2, i.e., E(u) = u p2 f�1 + p.
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We often write M for a Kisin module, the Frobenius map �M being implicit.

5A2. Recall that ⇡ = (�p)1/(p2 f�1) 2Qp, and set L def
= K2(⇡). For g 2 Gal(L/K2), we have defined

!̃⇡ (g) =
⇡ g

⇡
2 O
⇥

K2
.

(Note that reducing !̃⇡ mod p induces an isomorphism Gal(L/K2)
⇠�! F⇥p2 f .) Given g 2 Gal(L/K2),

we let ĝ denote the OK2 ⌦Zp R-linear automorphism of SR given by u 7! (!̃⇡ (g)⌦ 1)u. Note that
' � ĝ = ĝ �'.

Definition 5.2. Let M denote a Kisin module over R:

(i) A semilinear action of Gal(L/K2) on M is a collection {ĝ}g2Gal(L/K2) of ĝ-semilinear additive
bijections ĝ : M!M such that ĝ � ĥ = ĝh for all g, h 2 Gal(L/K2).

(ii) A Kisin module with descent datum over R is a Kisin module together with a semilinear action of
Gal(L/K2) given by {ĝ}g2Gal(L/K2) which commutes with �M, i.e., we have

ĝ ��M = �M �'
⇤ĝ

for all g 2 Gal(L/K2).

5A3. Any Kisin module M admits a decomposition

M =

2 f�1M

i=0

M(i),

where M(i) is the R[[u]]-submodule of M such that (x ⌦ 1)m = (1⌦ &0 � '
i (x))m for m 2M(i) and

x 2 OK2 .
We let

⌧ 0 : IK2 ⇣ Gal(L/K2)! GL2(O)

denote a tamely ramified inertial type which factors through Gal(L/K2). Recall that this implies ⌧ 0 can
be written ⌧ 0 = !̃a

2 f � !̃
b
2 f .

Definition 5.3. Suppose M is a Kisin module with descent datum over R. We say the descent datum is
of type ⌧ 0 if we have M(i)/uM(i) ⇠= ⌧ 0_ ⌦O R as representations of Gal(L/K2) for every 0 i  2 f � 1,
where ⌧ 0_ denotes the dual type.2

2We impose the condition M(i)/uM(i) ⇠= ⌧ 0_ ⌦O R because our functors to Galois representations in later sections are
contravariant. In particular, if M is a Kisin module over O with height in [0, 1] and descent datum of type ⌧ 0 (as defined in
Definition 5.3), then the 0K2 -representation T ⇤dd(M)[1/p] will have inertial type ⌧ 0. (See below for undefined notation and
terminology.)
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5A4. We now define the categories of Kisin modules that will be relevant for us. Let µ
def
=

� 1
0
�

denote the
standard minuscule cocharacter of G

0 = ResOK2/Zp GL2/OK2
.

Definition 5.4. Fix a principal series tame type ⌧ 0:

(i) We define Y [0,1],⌧ 0(R) to be the groupoid of Kisin modules over R of rank 2, with height in [0,1],
and descent datum of type ⌧ 0.

(ii) We define Y µ,⌧ 0(R) to be the (full) subgroupoid of Y [0,1],⌧ 0(R) consisting of Kisin modules such that

E(u) detM = �M('⇤(detM)). (5A.1)

Note that the definition of Y µ,⌧ 0(R) above is consistent with the construction of [Caraiani and Levin
2018, Section 5], thanks to Theorem 5.13 and Corollary 5.12 of [loc. cit.]. See also [Le et al. 2018,
Theorem 4.18].

5A5. We fix some notation, following [Le et al. 2018, Section 2.1]. Let ⌧ 0 be a principal series tame type
of IK2 . We may write

⌧ 0_ = ⌘1� ⌘2 = !̃
�
P2 f�1

i=0 a1,i pi

2 f � !̃
�
P2 f�1

i=0 a2,i pi

2 f ,

with 0  ak,i  p� 1 for all i . By Remark 5.5 below, we may assume without loss of generality that
neither ⌘1 nor ⌘2 are trivial, i.e., (ak,i )i /2 {(p� 1, . . . , p� 1), (0 . . . , 0)} for k = 1, 2.

Remark 5.5. The goal of Section 5 is to compute the deformation rings R⌧
0

⇢ (described in Section 5C3
below), where ⇢ : 0K !

C
U2(F) is a tamely ramified L-parameter. Given an integer 0 k < p f + 1, we

define ⇢⌦!(1�p f )k
2 f , the twist of ⇢ by !(1�p f )k

2 f , by the rules

(⇢⌦!
(1�p f )k
2 f )(h) = ⇢(h) ·

  
!

(1�p f )k
2 f (h) 0

0 !
(1�p f )k
2 f (h)

!

, 1

!

o 1

(⇢⌦!
(1�p f )k
2 f )('� f ) = ⇢('� f )

where h 2 0K2 . One checks that these rules give a well-defined tamely ramified L-parameter which
satisfies ı̂ � (⇢ ⌦ !

(1�p f )k
2 f ) = ı̂ � ⇢. Using this twisting procedure, the proof of [Gee and Kisin 2014,

Lemma 2.1.2] shows that we have an isomorphism of deformation rings

R⌧
0

⇢
⇠= R

⌧ 0⌦!̃
(1�p f )k
2 f

⇢⌦!
(1�p f )k
2 f

.

Consequently, we may assume that ⌧ 0 does not contain the trivial character.

Set a1
def
= (a1,i )i , a2

def
= (a2,i )i , and given 0 j  2 f � 1, define the shifted sums

a
( j)
1

def
=

2 f�1X

i=0

a1,i� j pi , a
( j)
2

def
=

2 f�1X

i=0

a2,i� j pi ,

so that, in particular, ⌘1 = !̃
�a

(0)
1

2 f , ⌘2 = !̃
�a

(0)
2

2 f .
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Definition 5.6. Let n � 0. We say the pair (a1, a2) is n-generic if

n < |a1,i � a2,i | < p� n

for every 0  i  2 f � 1. If ⌧ 0 is associated to (a1, a2) as above, we say ⌧ 0 is n-generic if the pair
(a1, a2) is.

This agrees with the notion of genericity given in Definition 4.5.

5A6.

Definition 5.7. Let ⌧ 0 denote a principal series tame type of IK2 , and let (a1, a2) denote the associated
pair. Suppose ⌧ 0 is 2-generic. An orientation of ⌧ 0 is an element w = (wi )i 2 S2 f

2 such that

a
(i)
wi (1) � a

(i)
wi (2)

for all 0 i  2 f � 1.

(We view S2 as a subgroup of GL2(Z) via the standard embedding as permutation matrices. Since
S2 f

2
⇠= W 0, we also view orientations as elements of W 0 when convenient.) We note that an orientation

depends on the ordering of the characters ⌘1, ⌘2. Since we take ⌧ 0 to be 2-generic, the orientation is
unique, and wi depends only on the pair (a1,2 f�1�i , a2,2 f�1�i ).

5A7. In what follows, we use the notation v
def
= u p2 f�1.

Definition 5.8. Let ⌧ 0 denote a 2-generic principal series tame type, and write ⌧ 0_ = ⌘1 � ⌘2. Let
M 2 Y [0,1],⌧ 0(R), and let M =

L2 f�1
i=0 M(i) be the decomposition of M as in Section 5A3:

(i) We let M(i)
1 (resp. M(i)

2 ) denote the R[[v]]-submodule of M(i) on which Gal(L/K2) acts by ⌘1

(resp. ⌘2).

(ii) We define 'M(i)
1 (resp. 'M(i)

2 ) to be the R[[v]]-submodule of '⇤(M(i)) = ('⇤M)(i+1) on which
Gal(L/K2) acts by ⌘1 (resp. ⌘2).

(iii) We define an eigenbasis � def
= {�(i)}i of M to be a collection of ordered bases �(i) = ( f (i)

1 , f (i)
2 ) of

each M(i) such that f (i)
1 2M

(i)
1 and f (i)

2 2M
(i)
2 .

Now let ⌧ 0 be a 2-generic principal series tame type, with orientation w = (wi )i . We have a commutative
diagram:

'M(i�1)
wi (2)

'M(i�1)
wi (1)

'M(i�1)
wi (2)

M(i)
wi (2) M(i)

wi (1) M(i)
wi (2)

u
p2 f �1�(a

(i)
wi (1)

�a
(i)
wi (2)

)

�
(i�1)
M,wi (2)

u
a
(i)
wi (1)

�a
(i)
wi (2)

�
(i�1)
M,wi (1) �

(i�1)
M,wi (2)

u
p2 f �1�(a

(i)
wi (1)

�a
(i)
wi (2)

)
u

a
(i)
wi (1)

�a
(i)
wi (2)

Here, �(i�1)
M,k denotes the restriction of �M to 'M(i�1)

k .
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5A8. Fix a principal series 2-generic tame type ⌧ 0 and M 2 Y [0,1],⌧ 0(R). Let w = (wi )i denote the
orientation of ⌧ 0, and let � = {�(i)}i denote an eigenbasis for M. We define

�
(i)
wi (2)

def
= (ua

(i)
wi (1)�a

(i)
wi (2) f (i)

wi (1), f (i)
wi (2)),

'�
(i�1)
wi (2)

def
= (ua

(i)
wi (1)�a

(i)
wi (2) ⌦ f (i�1)

wi (1) , 1⌦ f (i�1)
wi (2) );

the first is an R[[v]]-basis for M(i)
wi (2), the second is an R[[v]]-basis for 'M(i�1)

wi (2) . We then define the matrix
A(i) 2Mat2⇥2(R[[v]]) by the condition

�
(i)
M,wi+1(2)(

'�
(i)
wi+1(2)) = �

(i+1)
wi+1(2) A(i). (5A.2)

We say that A(i) is the matrix of the partial Frobenius of M (at embedding i , with respect to �).

5A9. We now find a more convenient expression for the data of the matrices (A(i))i .
We define the extended affine Weyl group of GL2 as

eW def
= NGL2(bTG)(F((v)))/bTG(F[[v]]),

where bTG denotes the torus dual to TG/OK2
. We have an exact sequence

0! X⇤(bTG)! eW! S2! 0,

where the first nontrivial map sends a cocharacter to its value on v. Furthermore, we have a Bruhat
decomposition

GL2(F((v))) =

G

w̃2eW

Iw̃I,

where I denotes the standard Iwahori subgroup of GL2(F[[v]]), that is, the set of matrices which are upper
triangular mod v.

Using the canonical identification X⇤(bTG)⇠= X⇤(TG/OK2
), we identify eW2 f with the extended affine

Weyl group eW 0 of G
0.

Definition 5.9. Let w̃ = (w̃i )i 2 eW 0, let ⌧ 0 be a principal series 2-generic tame type, and let w = (wi )i 2W 0

denote the orientation of ⌧ 0. Let M 2 Y [0,1],⌧ 0(F):

(i) We say M has shape w̃ if for some eigenbasis �, the matrices (A(i))i (defined by (5A.2), with respect
to �) have the property that A(i) 2 Iw̃iI.

(ii) As in the discussion following [Le et al. 2018, Definition 2.17], the notion of shape does not depend
on the choice of eigenbasis. We define Y µ,⌧ 0

w̃ (F) to be the full subcategory of Y µ,⌧ 0(F) consisting of
Kisin modules of shape w̃.
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w̃i t t0 w

A(i)
✓

vc̄⇤1,1 0
vc̄2,1 c̄⇤2,2

◆ ✓
c̄⇤1,1 c̄1,2

0 vc̄⇤2,2

◆ ✓
0 c̄⇤1,2

vc̄⇤2,1 0

◆

Table 1. Shapes of Kisin modules over F. Here we have c̄ j,k 2 F and c̄⇤j,k 2 F⇥.

5A10. Upon choosing the dominant chamber corresponding to I in X⇤(bTG)⌦Z R, we obtain a Bruhat
order  on eW. Given a cocharacter � 2 X⇤(bTG), we define the �-admissible set as

Adm(�)
def
= {w̃ 2 eW : w̃  tw(�) for some w 2 S2}.

In particular, we have

Adm
��

1
0
��

=

⇢✓
v 0
0 1

◆
,

✓
1 0
0 v

◆
,

✓
0 1
v 0

◆�
.

We denote these elements by t, t0 and w, respectively. Given µ =
� 1

0
�
, we define

Adm(µ)
def
=

2 f�1Y

i=0

Adm(
�

1
0
�
),

which we call the µ-admissible set. As in [Le et al. 2018, Corollary 2.19], we have that Y µ,⌧ 0

w̃ (F) is
nonempty if and only if w̃ 2 Adm(µ).

We now have the analog of [Le et al. 2018, Theorem 2.21], using [loc. cit., Lemma 2.20].

Lemma/Definition 5.10. Suppose w̃ = (w̃i )i 2 eW 0 is µ-admissible and ⌧ 0 is a 2-generic principal series
tame type. Let M2Y µ,⌧ 0

w̃ (F). Then there is an eigenbasis � for M such that the matrix of partial Frobenius
A(i) has the form given in Table 1. We call such an eigenbasis a gauge basis.

5A11. Now fix M 2 Y µ,⌧ 0

w̃ (F), and fix a gauge basis � for M. We denote by Y µ,⌧ 0

M
(R) the category of

pairs (M, |), where M 2 Y µ,⌧ 0(R) and | is an isomorphism | : M⌦R F ⇠�!M.

Definition 5.11. Let (M, |) 2 Y µ,⌧ 0

M
(R). A gauge basis of (M, |) is an eigenbasis � lifting � via | such

that the matrix of partial Frobenius A(i) satisfies the degree conditions given in Table 2.

Note that a gauge basis for (M, |) 2 YMµ,⌧ 0(R) exists by the analog of [Le et al. 2018, Theorem 4.1],
and the set of gauge bases for (M, |) is in bijection with the set of eigenbases of M/uM lifting � mod u
by the analog of [Le et al. 2018, Theorem 4.16]. (See also the cases A1, A2 of [Le 2019, Theorem 3.3],
where a detailed proof of the cases t and w above is given.)

5B. Duality. We introduce the notion of Frobenius twist self-dual Kisin modules over K and study their
relation with usual Kisin modules over K2 via the theory of base change; as in [Le et al. 2018, Section 6].
The main result of this section (Lemma 5.18) describes the matrix of partial Frobenius on Frobenius twist
self-dual Kisin modules.
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w̃i t t0 w

deg(A(i))

✓
1⇤ �1

v( 0) 0⇤

◆ ✓
0⇤  0
�1 1⇤

◆ ✓
 0 0⇤

v(0⇤)  0

◆

A(i)
✓

(v + p)c⇤1,1 0
vc2,1 c⇤2,2

◆ ✓
c⇤1,1 c1,2

0 c⇤2,2(v + p)

◆ ✓
c1,1 c⇤1,2
vc⇤2,1 c2,2

◆

c1,1c2,2 =�pc⇤1,2c⇤2,1

Table 2. Deforming Kisin modules by shape. Here, deg(A(i)) denotes the degree of the
polynomial in each entry. We write n⇤ to denote a polynomial entry of degree n whose
leading coefficient is a unit. We have c j,k 2 R and c⇤j,k 2 R⇥. Row 3 is deduced from
row 2 by imposing condition (5A.1).

5B1. We now collect the relevant properties of Cartier duality which we will need.

Definition 5.12 [Broshi 2008, Section 3.4.1]. Suppose ⌧ 0 is a tame principal series type, R is a local
Artinian O-algebra with residue field F, and let M 2 Y µ,⌧ 0(R). We define the Cartier dual of M to be

M_
def
= HomSR (M,SR),

which we equip with a Frobenius map by

1⌦ f 7! �SR � (1⌦ f ) ���1
M � E(u),

where 1⌦ f 2 '⇤HomSR (M,SR)⇠= HomSR ('⇤M,'⇤SR). (Note that the map �M is injective by [Kisin
2009, Lem. 1.2.2(1)].) We also equip M_ with a descent datum, given by

ĝ : M_ !M_

f 7! ĝ � f �dg�1

(the right-hand dg�1 denotes the semilinear action of Gal(L/K2) on M, while the left-hand ĝ denotes the
semilinear action on SR). With this definition, one easily checks that the descent datum of M_ is of type
⌧ 0_, where ⌧ 0_ is the type dual to ⌧ 0, so that M_ 2 Y µ,⌧ 0_(R).

Before proceeding with the proof of the proposition below, we introduce some notation. We define
{pn}n�0 to be a sequence of elements of Qp which satisfy p p

n+1 = pn and p0 =�p, and define K1
def
=S

n�0 K (pn) and K2,1
def
=

S
n�0 K2(pn). Note that Gal(K2,1/K1)⇠= Gal(K2/K ).

Proposition 5.13. Suppose R is a local Artinian O-algebra with residue field F. Let ⌧ 0 : IK2 ! GL2(O)

be a principal series tame type. Then M 7!M_ defines an involutive functor Y µ,⌧ 0(R)! Y µ,⌧ 0_(R),
which enjoys the following properties:
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• We have T ⇤dd(M
_)⇠= T ⇤dd(M)_ ⌦ " as 0K2,1-representations, where the functor T ⇤dd is as defined in

[Le et al. 2018, Section 2.3].

• Let � = {�(i)}i be an eigenbasis of M as in Definition 5.8. Let C (i) def
= Mat�(�

(i)
M ) 2Mat2⇥2(R[[u]])

denote the matrix of the Frobenius on '⇤(M(i)), defined by

�
(i)
M (1⌦ f (i)

1 , 1⌦ f (i)
2 ) = ( f (i+1)

1 , f (i+1)
2 )C (i).

Then the matrix of Frobenius on M_,(i) with respect to the dual basis �_ is given by

Mat�_(�
(i)
M_) = E(u)(C (i))�>. (5B.1)

Proof. The first point follows from [Broshi 2008, Proposition 3.4.1.7], while the second point follows
from an explicit calculation. ⇤

5B2. We explain how orientations and shapes change under duality. Suppose ⌧ 0 is a 2-generic principal
series tame type, and write ⌧ 0_ = ⌘1 � ⌘2. We then have the associated pair (a1, a2) and orientation
w = (wi )i 2 S2 f

2 . We fix an ordering on the characters of ⌧ 0 so that ⌧ 0 = ⌘�1
1 � ⌘

�1
2 is associated to the

pair (p� 1� a1, p� 1� a2) and orientation (s, s)w (recall that we view elements of S2 f
2
⇠= W 0 as pairs

of elements of S f
2
⇠= W as in Section 3B1). Note that ⌧ 0 is n-generic if and only if ⌧ 0_ is n-generic.

Assume that R is a local Artinian O-algebra with residue field F, M 2 Y µ,⌧ 0(R), and let � denote an
eigenbasis of M. The matrix C (i) of Frobenius on '⇤(M(i)) (as in the above proposition) and the matrix
A(i) of the partial Frobenius (as in Section 5A8) are related by the equation

C (i)
= wi+1

0

@ua
(i+1)
wi+1(1) 0

0 ua
(i+1)
wi+1(2)

1

A A(i)

0

@u�a
(i+1)
wi+1(1) 0

0 u�a
(i+1)
wi+1(2)

1

Aw�1
i+1;

for the proof, see [Le et al. 2018, Proposition 2.13]. Using this relation for the dual Kisin module M_

and dual type ⌧ 0_ (ordered as in the previous paragraph), along with Proposition 5.13, we conclude that
the matrix of partial Frobenius on M_, with respect to �_ at embedding i , is equal to

E(u)s(A(i))�>s =

✓
v + p 0

0 v + p

◆
s(A(i))�>s.

Now suppose M 2 Y µ,⌧ 0(F). The above relation shows that M has shape w̃i at embedding i if and
only if M_ has shape

�
v
0

0
v

�
sw̃�>i s at embedding i . In particular this involution on eW 0 fixes Adm(µ)

pointwise, and thus Cartier duality induces an involutive functor

Y µ,⌧ 0

w̃ (F)! Y µ,⌧ 0_

w̃ (F).

Furthermore, (5B.1) shows that � is a gauge basis for M if and only if �_ is a gauge basis for M_.
Similarly, if (M, |) 2 Y µ,⌧ 0

M
(R), then � is a gauge basis for (M, |) if and only if �_ is a gauge basis for

(M_, (|_)�1).
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5B3. In the following, we use the notation � to denote the automorphism of SR which is the arithmetic
Frobenius on OK2 and which acts trivially on R and the variable u. Thus, given a Kisin module M, we
may form the pullback � ⇤M def

= SR ⌦�,SR M along � , equipped with Frobenius �� ⇤M
def
= � ⇤�M. One

easily checks that (� ⇤M)(i) = � ⇤(M(i�1)). If M comes equipped with a descent datum, � ⇤M obtains a
descent datum via the canonical identification

cg p⇤(� ⇤M) ⇠�! � ⇤(ĝ⇤M)

(here ĝ⇤M denotes the pullback of M along the automorphism ĝ of SR , and similarly for cg p). We note
that if M has type ⌧ 0 and ⌧ 0_ = ⌘1�⌘2, then � ⇤M has type (⌧ 0)' , where (⌧ 0)',_ = (⌧ 0)_,' = ⌘

p�1

1 �⌘
p�1

2 .
Thus, Frobenius twisting gives a functor

� ⇤ : Y µ,⌧ 0(R)! Y µ,(⌧ 0)' (R).

We make similar definitions for iterates of � .
We briefly describe how the Frobenius twist transforms certain objects associated to Kisin modules.

Twisting changes the principal series tame type ⌧ 0 into (⌧ 0)' . Thus, it also transforms the associated pair

(a1, a2) = ((a1,0, a1,1, . . . , a1,2 f�1), (a2,0, a2,1, . . . , a2,2 f�1))

into

((a1,1, a1,2, . . . , a1,2 f�1, a1,0), (a2,1, a2,2, . . . , a2,2 f�1, a2,0)),

and transforms the orientation w = (w0, w1, . . . , w2 f�1) into (w2 f�1, w0, . . . , w2 f�2). Further, given an
eigenbasis �={( f (i)

1 , f (i)
2 )}i for M, the elements � ⇤� def

={(1⌦ f (i)
1 , 1⌦ f (i)

2 )}i form an eigenbasis of � ⇤M.
Therefore, by their definition, the Frobenius twist transforms the matrices (A(0), A(1), . . . , A(2 f�1)) of
partial Frobenius (with respect to �) into (A(2 f�1), A(0), . . . , A(2 f�2)), and if M 2 Y µ,⌧ 0(F) has shape
w̄ = (w̄0, w̄1, . . . , w̄2 f�1), then � ⇤M 2 Y µ,(⌧ 0)' (F) will have shape (w̄2 f�1, w̄0, . . . , w̄2 f�2). Finally, we
obtain an isomorphism on the associated 0K2,1-representation

T ⇤dd(�
⇤M)⇠= T ⇤dd(M)',

where we recall that the superscript ' denotes the twist of the representation by '.

5B4. Suppose now that ⌧ 0 is a 2-generic principal series tame type which satisfies (⌧ 0)'
� f ⇠= ⌧ 0_ (and

note that (⌧ 0)'
� f

= (⌧ 0)'
f ). As in Section 4D, this implies that ⌧ 0 is of the form

⌧ 0 = !̃�c
2 f � !̃

p f c
2 f or ⌧ 0 = !̃

(�1+p f )a
2 f � !̃

(�1+p f )b
2 f .

If ⌧ 0 is 2-generic, the orientation on ⌧ 0 has the form (z, z) for z 2W in the first case, while in the second
case the orientation has the form (z, zs) for z 2W .

The discussion above gives the following:
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Lemma 5.14. Assume ⌧ 0 is a 2-generic principal series tame type, write ⌧ 0_ = ⌘1 � ⌘2, and let w =

(wi )i 2W 0 denote its orientation. Suppose that (⌧ 0)'
� f ⇠= ⌧ 0_. Then

⌘
p f

wi+ f (2) = ⌘�1
wi s(2)

for every 0 i  2 f � 1.

Proof. This may be proved case-wise, using the possible orientations on ⌧ 0. ⇤

5B5. As in [Le et al. 2018, Section 6.1], we define Kisin modules which are Frobenius-twist self-dual.

Definition 5.15. Let R denote a local Artinian O-algebra with residue field F, and let ⌧ 0 denote a principal
series tame type which satisfies (⌧ 0)'

� f ⇠= ⌧ 0_. We define

Y µ,⌧ 0

pol (R)
def
= {(M, ◆) : M 2 Y µ,⌧ 0(R), ◆ : (� f )⇤M ⇠�!M_},

where ◆ is a map of Kisin modules with descent data, such that the composite morphism

M
can
�! (� f )⇤((� f )⇤M)

(� f )⇤◆
��! (� f )⇤(M_)

can
�! ((� f )⇤M)_

(◆_)�1
��!M

is �1 on M. We call ◆ a polarization of M. A morphism (M1, ◆1)! (M2, ◆2) in Y µ,⌧ 0

pol (R) is a morphism
↵ : M1!M2 in Y µ,⌧ 0(R) such that the following diagram commutes:

(� f )⇤M1 (� f )⇤M2

M_1 M_2

◆1

(� f )⇤↵

◆2

↵_

Definition 5.16. Let R be a local Artinian O-algebra with residue field F, suppose ⌧ 0 is a 2-generic
principal series tame type, and let (M, ◆) 2 Y µ,⌧ 0

pol (R). A gauge basis of (M, ◆) is a gauge basis � of
M 2 Y µ,⌧ 0(R) which is compatible with ◆, meaning ◆((� f )⇤�) = (1,�1)�_.

We now discuss the effect of adding a gauge basis.

Proposition 5.17. Let R be a local Artinian O-algebra with residue field F, and let ⌧ 0 be a 2-generic
principal series tame type. Let (M, ◆) 2 Y µ,⌧ 0

pol (R). Then the set of gauge bases of (M, ◆) is a torsor for
bTG(OK2 ⌦Zp R)�

f =inv, where inv denotes the homomorphism t 7! t�1.

Proof. The proof follows the argument of [Le et al. 2018, Proposition 6.12]. Let � be a gauge basis
of M 2 Y µ,⌧ 0(R). Then ◆((� f )⇤�) is a gauge basis of M_ and by [loc. cit., Theorem 4.16], the set of
gauge bases of M_ are uniquely determined up to scaling and are exactly bTG(OK2 ⌦Zp R)�_. Thus
◆((� f )⇤�) = c�_ for a unique c 2 bTG(OK2⌦Zp R), and the cocycle condition satisfied by ◆ is equivalent to
c�1� f (c)=�1. Further, given t 2bTG(OK2⌦Zp R), we have ◆((� f )⇤(t�))=� f (t)◆((� f )⇤�)=� f (t)c�_.
Since the basis on M_ dual to t� is t�1�_, we conclude that the set of gauge bases of (M, ◆) is exactly
the set of solutions t 2 bTG(OK2 ⌦Zp R) to the equation (1,�1)t�1 = � f (t)c. The conclusion follows
as in [loc. cit., Proposition 6.12]: using that ResOK2/Zp splits over O, we have that the equation has a
solution, and the solution set is a bTG(OK2 ⌦Zp R)�

f =inv-torsor. ⇤
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5B6.

Lemma 5.18. Let R be a local Artinian O-algebra with residue field F, and ⌧ 0 a 2-generic principal series
tame type which satisfies (⌧ 0)'

� f ⇠= ⌧ 0_. Let w = (wi )i 2W 0 denote the orientation of ⌧ 0:

(i) Let (M, ◆) 2 Y µ,⌧ 0

pol (R) and let � denote a gauge basis for (M, ◆). Let A(i) be the matrix of partial
Frobenius of M 2 Y µ,⌧ 0(R) with respect to �. We then have

A(i� f )
=

⇢
E(u)s(A(i))�>s if i 6= f � 1, 2 f � 1,

�E(u)s(A(i))�>s if i = f � 1, 2 f � 1.
(5B.2)

In particular, if R = F, (M, ◆) 2 Y µ,⌧ 0

pol (F), and M has shape w̃ = (w̃i )i 2 eW 0, then

w̃i� f = w̃i .

(ii) Conversely if M 2 Y µ,⌧ 0(R) and the matrices A(i) of partial Frobenius satisfy the condition (5B.2)
for a gauge basis � of M, then there exists a polarization ◆ on M such that (M, ◆) 2 Y µ,⌧ 0

pol (R), and
such that � is a gauge basis for (M, ◆).

Proof. (i) We follow [Le et al. 2018, Sections 2.1 and 6.1]. Let | : (� f )⇤M!M denote the �� f -
semilinear bijection sending s⌦m to �� f (s)m. We have a commutative diagram of R[[v]]-modules:

'M(i� f )
⌘wi� f +1(2)

'((� f )⇤M)
(i)

⌘
p f
wi� f +1(2)

'((� f )⇤M)
(i)
⌘�1

wi+1s(2)

'(M_)(i)
⌘�1

wi+1s(2)

M(i� f +1)
⌘wi� f +1(2) ((� f )⇤M)

(i+1)

⌘
p f
wi� f +1(2)

((� f )⇤M)
(i+1)

⌘�1
wi+1s(2)

(M_)(i+1)

⌘�1
wi+1s(2)

�
(i� f )
M

'⇤|

⇠

�
(i)
(� f )⇤M

'⇤◆

⇠

�
(i)
(� f )⇤M

�
(i)
M_

|

⇠

◆
⇠

(here the subscripts denote isotypic components). The left square commutes by [loc. cit., Lemma 6.2], the
center square commutes by Lemma 5.14, and the right square commutes by definition of polarization. By
Section 5B2, we see that the matrix of partial Frobenius on M_ at embedding i is E(u)s(A(i))�>s. Since
� is a gauge basis which is compatible with the polarization, the above commutative diagram implies that
A(i� f ) is of the form stated above.

(ii) We may define ◆ : (� f )⇤M ⇠�!M_ by the condition

◆(1⌦ f (i)
wi (k)) =

(
� f (i� f ),_

wi� f s(k) if 0 i  f � 1,

f (i� f ),_
wi� f s(k) if f  i  2 f � 1,

where k = 1, 2, and where f (i� f ),_
wi� f s(k) denotes the basis vector of M_ dual to f (i� f )

wi� f s(k). The relation (5B.2)
guarantees that ◆ is a morphism of Kisin modules. ⇤
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w̃i t t0 w

Rexpl
w̄i

O[[c2,1, x⇤1,1, x⇤2,2]] O[[c1,2, x⇤1,1, x⇤2,2]] O[[x1,1, y2,2, x⇤1,2, x⇤2,1]]/(x1,1 y2,2 + p)

Table 3. Deformation rings by shape. The variables x⇤i, j appearing in the power series
rings below correspond to the coefficients c⇤i, j � [c̄⇤i, j ] of the universal matrices appearing
in Tables 1 and 2.

5C. Deformations. In this section we describe deformations of Frobenius twist self-dual Kisin modules
and relate them to deformations of local L-parameters. The main result is Corollary 5.25, giving a
description of the special fiber of the Galois deformation ring in terms of Serre weights.

Throughout the discussion, we fix a tamely ramified L-parameter ⇢ : 0K !
C
U2(F) such that ı̂ �⇢ = ",

and let ⌧ 0 : IK2 ! GL2(O) be a principal series tame type satisfying (⌧ 0)'
� f ⇠= ⌧ 0_.

5C1. We begin with Kisin modules. Fix (M, ◆) 2 Y µ,⌧ 0

pol (F) and let w̃ = (w̃i )i 2 eW 0 denote the shape
of M. We also fix a compatible gauge basis �, and assume that ⌧ 0 is 2-generic. Given a local Artinian
O-algebra R with residue field F, we let

Y µ,⌧ 0

M,pol
(R)

def
=

8
><

>:
(MR, ◆R, |R) :

⇧ (MR, ◆R) 2 Y µ,⌧ 0

pol (R)

⇧ |R : MR ⌦R F ⇠�!M
⇧ (|_R )�1 � (◆R ⌦R F) = ◆ � (� f )⇤|R

9
>=

>;

and

D⌧ 0,�

M,pol
(R)

def
=

⇢
(MR, ◆R, |R,�R) :

⇧ (MR, ◆R, |R) 2 Y µ,⌧ 0

M,pol
(R),

⇧ �R is a gauge basis of (MR, ◆R) lifting �

�
.

Using [Le et al. 2018, Theorems 4.16 and 4.17] along with Lemma 5.18 and Proposition 5.17, we see that
D⌧ 0,�

M,pol
! Y µ,⌧ 0

M,pol
is a bG2 f

m -torsor, and in particular is representable by a formal Artin stack, since Y µ,⌧ 0

M,pol
is.

As D⌧ 0,�

M,pol
has no nontrivial automorphisms we conclude that D⌧ 0,�

M,pol
is representable by a complete local

Noetherian O-algebra R⌧
0,�

M,pol
. The act of deforming a polarized Kisin module (M, ◆) with M 2 Y µ,⌧ 0

w̃ (F)

and a gauge basis on it is equivalent to deforming the collection of associated matrices (A(i))0i2 f�1

subject to the degree conditions of Table 2 and (5B.2). We conclude that:

Theorem 5.19. Let ⌧ 0 be a 2-generic principal series tame type which satisfies (⌧ 0)'
� f ⇠= ⌧ 0_, and let M,

w̃, ◆, and � be as above. Then

R⌧
0,�

M,pol
⇠=

dO
i2{0,..., f�1}

Rexpl
w̃i

where Rexpl
w̃i

is as in Table 3, and the completed tensor product is taken over O. In particular R⌧
0,�

M,pol
is an

integral domain.

5C2. We now discuss deformations of L-parameters.
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We recall a result from [Clozel et al. 2008] in a language more suited for our purposes. Let R be a
topological Zp-algebra. By [loc. cit., Lemma 2.1.1], there is a bijection between

• L-parameters ⇢ : 0K !
C
U2(R); and

• triples (⇢ 0, ✓,↵), where ⇢ 0 : 0K2 ! GL2(R) is a continuous homomorphism, ✓ : 0K ! R⇥ is a
continuous character, and ↵ is a compatible polarization, that is, ↵ : (⇢ 0)'

� f ⇠�! ⇢ 0_ ⌦ ✓ such that
the composite map

⇢ 0
v 7!⇢0('�2 f )v
������! (⇢ 0)'

�2 f ↵'
� f

��! (⇢ 0_ ⌦ ✓)'
� f can
�! (⇢ 0 ⌦ ✓�1)'

� f ,_ (↵_)�1
��! ⇢ 0

is equal to multiplication by �✓('� f ).

The correspondence is given by sending ⇢ : 0K !
C
U2(R) to (BC(⇢), ı̂ � ⇢,↵), where ⇢('� f ) =

(A, ✓('� f ))o'� f and ↵(v) =8�1
2 A�1v.

In what follows, we will usually fix ✓ = " (hence �✓('� f ) = �1), so that L-parameters ⇢ : 0K !
C
U2(R) with ı̂ � ⇢ = " correspond bijectively to pairs (⇢ 0,↵) where ⇢ 0 : 0K2 ! GL2(R) is a continuous

homomorphism and ↵ is a compatible polarization. In particular, our fixed ⇢ is associated to (BC(⇢),↵).

5C3. We introduce several deformation problems for Galois representations. Let R⇤
⇢ denote the universal

framed deformation ring of ⇢. By [Bellovin and Gee 2019, Sections 3.2–3.3], there exists a unique O-flat
quotient R⌧

0

⇢ of R⇤
⇢ with the property that if B is a finite local E-algebra, then a morphism x : R⇤

⇢ ! B
factors through R⌧

0

⇢ if and only if the corresponding L-parameter ⇢x : 0K !
C
U2(B) is potentially

crystalline with p-adic Hodge type (1, 0, 1) 2 X⇤(bT ), inertial type ⌧ 0 and cyclotomic multiplier ı̂ �⇢x = ".
We recall the terminology used above:

• An L-parameter 0K !
C
U2(B) is potentially crystalline if and only if it is so after composition with

any faithful algebraic representation C
U2 ,! GLn .

• Suppose the L-parameter ⇢ : 0K !
C
U2(B) has cyclotomic multiplier ı̂ � ⇢ = ". Then ⇢ has p-adic

Hodge type (1, 0, 1) if and only if BC(⇢) has p-adic Hodge type µ =
� 1

0
�
, that is, if BC(⇢) has

Hodge–Tate weights {�1, 0}.

• An L-parameter ⇢ : 0K !
C
U2(B) has inertial type ⌧ 0 if WD(⇢)|IK

⇠= (⌧ 0 � 1IK )⌦E E (by WD(⇢)

we mean the E-points of the C
U2-torsor whose construction is contained in [Bellovin and Gee 2019,

Section 2.8, Lemma 2.6.6, and Definition 2.1.1]). Assuming ⇢ has cyclotomic multiplier, this is
equivalent to WD(BC(⇢))|IK2

⇠= ⌧ 0.

(In this section, we will be working with framed deformations with p-adic Hodge type (1, 0, 1) and
cyclotomic multiplier, so we omit (1, 0, 1), " and ⇤ from the notation.) We write D⌧ 0

⇢ = Spf R⌧
0

⇢ .
Similarly, we let R⌧

0

BC(⇢) be the framed potentially crystalline deformation ring parametrizing lifts of
BC(⇢) with p-adic Hodge type µ and inertial type ⌧ 0. We write D⌧ 0

BC(⇢) = Spf R⌧
0

BC(⇢).
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5C4. Let R denote a local Artinian O-algebra with residue field F. We define

D⌧ 0

BC(⇢),pol(R)
def
=

⇢
(⇢ 0R,↵R) :

⇧ ⇢ 0R 2 D⌧ 0

BC(⇢)(R)

⇧ ↵R is a compatible polarization of ⇢ 0R lifting ↵

�

We have natural maps
D⌧ 0

⇢
⇠�! D⌧ 0

BC(⇢),pol! D⌧ 0

BC(⇢)

where the first isomorphism follows from Section 5C2.

5C5. Our next task will be to relate deformations of L-parameters to deformations of Kisin modules.
Before considering further deformation problems we record the following result.

Lemma 5.20. Let ⇢ : 0K !
C
U2(F) be a tamely ramified L-parameter satisfying ı̂ � ⇢ = " and ⌧ 0 a

2-generic principal series tame type satisfying (⌧ 0)'
� f ⇠= ⌧ 0_. Then there exists at most one Kisin module

M 2 Y µ,⌧ 0(F) such that T ⇤dd(M)⇠= BC(⇢)|0K2,1
. If such an M exists, then there is a unique polarization ◆

on M such that (M, ◆) 2 Y µ,⌧ 0

pol (F), and such that ◆ is compatible with the polarization ↵ on BC(⇢)|0K2,1

via T ⇤dd.

Proof. The first part of the lemma is [Le et al. 2018, Theorem 3.2]. Assume that M 2 Y µ,⌧ 0(F)

satisfies T ⇤dd(M)⇠= BC(⇢)|0K2,1
, and let M def

= M⌦SF
OE,F denote the associated étale '-module (where

OE,F
def
= OE ⌦Zp F and OE is the p-adic completion of OK2[[u]][1/u]). Since the category of 0K2,1-

representations is equivalent to the category of étale '-modules, and since BC(⇢) is essentially conjugate
self dual, we have an isomorphism

◆ : (� f )⇤M ⇠�!M
_

(see [Broshi 2008, Section 3] for the definition and properties of M_). By [Le et al. 2018, Theorem 3.2]
the Kisin varieties of both (� f )⇤M and M

_ are trivial. Since (� f )⇤M and M_ are SF-lattices in
(� f )⇤M and M

_, respectively, we conclude that the map ◆ def
= ◆|(� f )⇤M factors through an isomorphism

(� f )⇤M ⇠�!M_, giving a polarization on M.
We now claim that if ◆1, ◆2 are polarizations on M which are compatible with the polarization ↵ on

BC(⇢)|0K2,1
then ◆1 = ◆2. Since T ⇤dd(◆1) = T ⇤dd(◆2) we deduce that (◆1 � ◆2)⌦SF

OE,F = 0 and hence
im(◆1� ◆2) is a u-torsion SF-submodule of M_. Since M_ is a projective SF-submodule we conclude
that ◆1� ◆2 = 0. ⇤

We may now introduce the following definition:

Definition 5.21. Let ⇢ : 0K !
C
U2(F) be a tamely ramified L-parameter such that ı̂ �⇢ = " and let ⌧ 0 be

a 2-generic principal series tame type satisfying (⌧ 0)'
� f ⇠= ⌧ 0_. Assume that there exists (M, ◆)2 Y µ,⌧ 0

pol (F)

together with an isomorphism T ⇤dd(M) ⇠�! BC(⇢)|0K2,1
compatible with the polarizations on both sides.

We define the shape of ⇢ with respect to ⌧ 0 to be the shape of M, and denote it by w̃(⇢, ⌧ 0).

Whenever we invoke the shape of an L-parameter with respect to a 2-generic type ⌧ 0 (with ⇢ and
⌧ 0 as above), we implicitly assume that there exists a (necessarily unique) polarized Kisin module
(M, ◆) 2 Y µ,⌧ 0

pol (F) such that T ⇤dd(M) ⇠�! BC(⇢)|0K2,1
compatibly with the polarizations on both sides.
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5C6. In what follows, we fix a polarized Kisin module (M, ◆) 2 Y µ,⌧ 0

pol (F) and an isomorphism � :

T ⇤dd(M) ⇠�! BC(⇢)|0K2,1
, which is compatible with the polarizations on both sides (with ⇢ and ⌧ 0 as

above). (The existence of such a (M, ◆) is a necessary condition for the ring R⌧
0

⇢ to be nonzero, since a
nonzero morphism x : R⌧

0

⇢ ! O gives rise to an element of Y µ,⌧ 0

pol (O) which reduces to (M, ◆) modulo $ ,
by the analog of [Kisin 2006, Theorem (0.1)] with coefficients and descent data.)

Let R denote a local Artinian O-algebra with residue field F. We define

D⌧ 0,⇤
M,BC(⇢)

(R)
def
=

8
><

>:
(MR, |R, ⇢ 0R, �R) :

⇧ (MR, |R) 2 Y µ,⌧ 0

M
(R)

⇧ ⇢ 0R 2 D⌧ 0

BC(⇢)(R)

⇧ �R : T ⇤dd(MR) ⇠�! ⇢ 0R|0K2,1
lifts �

9
>=

>;

D⌧ 0,⇤
M,pol;⇢

(R)
def
=

8
>>><

>>>:
(MR, ◆R, |R, ⇢R, �R) :

⇧ (MR, ◆R, |R) 2 Y µ,⌧ 0

M,pol
(R)

⇧ ⇢R 2 D⌧ 0

⇢ (R)

⇧ �R : T ⇤dd(MR) ⇠�! BC(⇢R)|0K2,1
lifts �,

compatibly with the polarizations

9
>>>=

>>>;

The forgetful functor (MR, ◆R) 7!MR along with the base change map ⇢R 7!BC(⇢R) induces a morphism
D⌧ 0,⇤
M,pol;⇢

! D⌧ 0,⇤
M,BC(⇢)

which is compatible with T ⇤dd.

Lemma 5.22. Let ⇢ and ⌧ 0 be as above, so that in particular ⌧ 0 is 2-generic and satisfies (⌧ 0)'
� f ⇠= ⌧ 0_.

Then the natural map D⌧ 0,⇤
M,pol;⇢

! D⌧ 0

⇢ is an isomorphism.

Proof. Let R be a local Artinian O-algebra with residue field F, and let ⇢R 2 D⌧ 0

⇢ (R). Recall that the
data of ⇢R is equivalent to the data of (BC(⇢R),↵R), with ↵R a compatible polarization. By [Le et al.
2018, Corollary 3.6], the representing rings R⌧

0,⇤
M,BC(⇢)

and R⌧
0

BC(⇢) are isomorphic, and hence there exists a

unique pair (MR, �R), where MR 2 Y µ,⌧ 0

M
(R) and �R : T ⇤dd(MR) ⇠�! BC(⇢R)|0K2,1

lifts �. It remains to
construct a unique polarization on MR compatible with ↵R . By the equivalence of categories between étale
'-modules and 0K2,1-representations, the polarization ↵R induces a polarization ◆R : (� f )⇤MR

⇠�!M
_

R ,
where MR denotes the étale '-module associated to MR . The uniqueness of MR implies that ◆R carries
(� f )⇤MR to M_R . Finally, the fact that ◆R is unique follows exactly as in the proof of Lemma 5.20. ⇤

5C7. We now fix a gauge basis � on (M, ◆). For a local Artinian O-algebra R with residue field F, we
define

D⌧ 0,�,⇤
M,pol;⇢

(R)
def
=

⇢
(MR, ◆R, |R,�R, ⇢R, �R) :

⇧ (MR, ◆R, |R, ⇢R, �R) 2 D⌧ 0,⇤
M,pol;⇢

(R)

⇧ �R is a gauge basis for (MR, ◆R) lifting �

�
.

We see by Proposition 5.17 that the forgetful map D⌧ 0,�,⇤
M,pol;⇢

! D⌧ 0,⇤
M,pol;⇢

is a representable formal torus
torsor of relative dimension 2 f . We denote by R⌧

0,⇤
M,pol;⇢

! R⌧,�,⇤
M,pol;⇢

the corresponding map of deformation
rings. It is a formally smooth morphism of relative dimension 2 f between complete local Noetherian
O-algebras.
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Finally, we define the deformation problem

D⌧ 0,�,⇤
M,pol

(R)
def
=

8
><

>:
(MR, ◆R, |R,�R, eR) :

⇧ (MR, ◆R, |R,�R) 2 D⌧ 0,�

M,pol
(R)

⇧ eR is a basis for T ⇤dd(MR) lifting the (pullback via � of the)
standard basis on BC(⇢)|0K2,1

9
>=

>;

In particular, if (MR, ◆R, |R,�R, eR) 2 D⌧ 0,�,⇤
M,pol

(R), then (T ⇤dd(MR), eR) is a framed deformation of
BC(⇢)|0K2,1

. We let R⌧
0,�,⇤

M,pol
denote the deformation ring corresponding to the above deformation problem.

5C8. The relationships between the various deformation problems are summarized in the following
diagram, where “f.s.” stands for formally smooth.

Spf R⌧
0

⇢
⇠ � Spf R⌧

0,⇤
M,pol;⇢

f.s.
 � Spf R⌧

0,�,⇤
M,pol;⇢

�! Spf R⌧
0,�,⇤

M,pol
f.s.
�! Spf R⌧

0,�

M,pol
(5C.1)

The maps which are formally smooth correspond to forgetting either a gauge basis on the (polarized)
Kisin module or a framing on the Galois representation. The former is formally smooth of relative
dimension 2 f while the latter is formally smooth of relative dimension 4. The isomorphism follows from
Lemma 5.22.

Our next goal will be to show that the remaining map Spf R⌧
0,�,⇤

M,pol;⇢
! Spf R⌧

0,�,⇤
M,pol

is an isomorphism.
This will follow from some calculations with Galois cohomology.

5C9. Given the tamely ramified L-parameter ⇢ : 0K !
C
U2(F) with ı̂ � ⇢ = ", we set ad0(⇢)

def
= gl2(F).

It is a direct summand of the Lie algebra of C
U2 endowed with the adjoint action of 0K via ⇢. Explicitly

the action of 0K on the direct summand ad0(⇢) is given as follows: 0K2 acts by the adjoint action (via
BC(⇢)), and ⇢('� f ) = (A, 1)o'� f acts by

X 7! �A82 X>8�1
2 A�1.

Lemma 5.23. Suppose ⇢ is 1-generic. Then the restriction map on cocycles

Z1(0K , ad0(⇢))! Z1(0K1, ad0(⇢))

is injective.

Proof. Lemma 4.2 implies that ad0(⇢)|0K2
is a direct sum of four characters, and the condition of 1-

genericity implies that none are equal to the mod p cyclotomic character. Thus, ad0(⇢) is cyclotomic
free, in the terminology of [Le et al. 2018, Definition 3.8]. The result now follows from [loc. cit.,
Proposition 3.12]. ⇤

Proposition 5.24. Suppose ⇢ is 1-generic. Then the natural map Spf R⌧
0,�,⇤

M,pol;⇢
! Spf R⌧

0,�,⇤
M,pol

is an
isomorphism.

Proof. By considering tangent spaces and using the above lemma, the map in question is a closed
immersion; compare [Le et al. 2018, Proposition 5.11]. Therefore it suffices to prove it is surjective
on R-points. This is obtained following the argument of the proof of [loc. cit., Theorem 5.12], noting
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that in our situation, the monodromy condition in [loc. cit.] is empty and the p-adic Hodge type is
(1, 0) in all embeddings. (Alternatively, one can invoke [Caruso et al. 2018, Theorem 2.1.12]: the cited
theorem implies that if (MR, ◆R, |R,�R, eR) 2 D⌧ 0,�,⇤

M,pol
(R), then we may extend the framed deformation

(T ⇤dd(MR), eR) of BC(⇢)|0K2,1
to a framed deformation of BC(⇢); the claim about functoriality in

[loc. cit.] implies that the polarization T ⇤dd(◆R) also extends.) ⇤

5C10. By Theorem 5.19, Proposition 5.24 and (5C.1), we finally conclude that:

R⌧
0

⇢ [[S1, . . . , S2 f ]]⇠= R⌧
0,�,⇤

M,pol;⇢
⇠= R⌧

0,�

M,pol
[[T1, . . . , T4]]⇠=

✓
dO

i2{0,..., f�1}
Rexpl

w̃i

◆
[[T1, . . . , T4]] (5C.2)

where w̃ = (w̃i )i = w̃(⇢, ⌧ 0) 2 eW 0 is the shape of ⇢ with respect to ⌧ 0.

5C11. The following corollary is the main result on the local Galois side.

Corollary 5.25. Let ⇢ :0K!
C
U2(F) be a 3-generic tamely ramified L-parameter which satisfies ı̂ �⇢= ".

Let ⌧ 0 denote a 3-generic principal series tame type which satisfies (⌧ 0)'
� f ⇠= ⌧ 0_, and let � (⌧ 0) denote the

tame type associated to ⌧ 0 via Theorem 4.11. We view � (⌧ 0) as a Deligne–Lusztig representation of G(Zp)

on which ı(O⇥K ) acts trivially. Assume that there exists (M, ◆) 2 Y µ,⌧ 0

pol (F) together with an isomorphism
T ⇤dd(M) ⇠�! BC(⇢)|0K2,1

compatible with the polarizations on both sides.
We then have

|W?(⇢)\ JH(� (⌧ 0))| = e(R⌧
0

⇢ ⌦O F),

where e(�) denotes the Hilbert–Samuel multiplicity.

Proof. Let (M, ◆) 2 Y µ,⌧ 0

pol (F) correspond to ⇢, let � denote a gauge basis for (M, ◆), and let w̃ = (w̃i )i =

w̃(⇢, ⌧ 0) 2 eW 0 denote the shape of ⇢ with respect to ⌧ 0. The isomorphism (5C.2) above implies that

e(R⌧
0

⇢ ⌦O F) = e(R⌧
0,�

M,pol
⌦O F) = 2|{0i f�1:w̃i =w}|,

where the last equality follows from Table 3.
By the GL2-analog of the discussion in [Le et al. 2018, Section 5.2], we see that R⌧

0

BC(⇢) is a formally
smooth modification of R⌧

0,�

M
, where the latter ring represents the functor sending a local Artinian O-

algebra R with residue field F to the set of triples (MR, |R,�R), where (MR, |R) 2 Y µ,⌧ 0

M
(R) and �R is a

gauge basis of (MR, |R) lifting �. Further, the structure of R⌧
0,�

M
is obtained by removing the restriction

“i 2 {0, . . . , f � 1}” in the right-hand side of Theorem 5.19 (this is the GL2-analog of [Le et al. 2018,
Theorem 4.17]). Thus, Lemma 5.18(i) implies

e(R⌧
0

BC(⇢)⌦O F) = e(R⌧
0,�

M
⌦O F)

= 2|{i :w̃i =w}|

= 22|{0i f�1:w̃i =w}|

= e(R⌧
0

⇢ ⌦O F)2.
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After unwinding definitions and conventions regarding duals and Hodge–Tate weights, [Gee and Kisin
2014, Theorem A] gives

|W?(BC(⇢))\ JH(BC(� (⌧ 0)))| = e(R⌧
0

BC(⇢)⌦O F).

Hence, it is enough to prove that

|W?(BC(⇢))\ JH(BC(� (⌧ 0)))| = |W?(⇢)\ JH(� (⌧ 0))|2.

This follows from Propositions 3.18 (applied to �(V�(⇢)) and � (⌧ 0)), 4.6 and 4.8. ⇤

6. Global applications I

In this section we apply the results of Sections 3 and 4 in a global context. Our main references will be
[Clozel et al. 2008] and [Caraiani et al. 2016]; as such, we will be considering Galois representations
valued in the group G2. (We will translate these results back to the group C

U2 at the end of Section 7.)
After preliminaries on automorphic forms on unitary groups and their associated Galois representations
(Theorem 6.2), we give the main result on weight elimination in Theorem 6.7, building on the compatibility
of base change of tame types and L-parameters.

We caution the reader that some of the notation below differs from previous sections.

6A. Unitary groups.

6A1. Let F be an imaginary CM field with maximal totally real subfield F+. We suppose:

• F+/Q is unramified at p.

• F/F+ is unramified at all finite places.

• every place of F+ above p is inert in F .

This implies that [F+ : Q] is even (see [Gee and Kisin 2014, Section 3.1]), and there exists a reductive
group G/OF+ , which is a totally definite unitary group, quasisplit at all finite places. More precisely we
take

G(R) = {g 2 GL2(OF ⌦OF+ R) : g(c⌦1)>g = 12},

where R is an OF+-algebra, and where we write c 2 Gal(F/F+) for the complex conjugation.
Note that this group is different from the group G from Section 2B1.
The group G is equipped with an isomorphism

◆ : G⇥OF+ OF
⇠�! GL2/OF

which satisfies ◆� (1⌦c)� ◆�1(g) = g�c>. For all places v of F+ which split in F as v = wwc, we obtain
an induced isomorphism

◆w : G(OF+
v
) ⇠�! GL2(OFw)
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such that ◆w � ◆�1
wc (g) = g�c>. If v is a place of F+ which is inert in F , then we have an isomorphism

◆v : G(OF+
v
) ⇠�! U2(OF+

v
)✓ GL2(OFv ),

where U2 is the quasisplit unitary group over OF+
v

defined Section 2A. This isomorphism is given by
g 7!

� 1
b

b
�1

�
g
� 1

b
b
�1

��1, where b 2 O
⇥

Fv
is an element which satisfies bbc = �1 and b 62 O

⇥

F+
v

. Finally,
for an embedding + : F+ ,! R, the group G(F+

+) is compact, and isomorphic to the compact unitary
group U2(R).

(We note that the running hypothesis in [Gee and Kisin 2014] that v splits in F for v a place of F+

above p is irrelevant for the construction and the basic properties of the group G.)

6A2. Set F+
p

def
= F+⌦Q Qp and OF+,p

def
= OF+ ⌦Z Zp. Recall that E is our coefficient field, with ring of

integers O, uniformizer $ , and residue field F. We assume E is sufficiently large; in particular, we will
assume that the image of every embedding F ,!Qp is contained in E .

We write 6+
p (resp. 6p) for the set of places of F+ (resp. F) lying above p. Restriction from F to

F+ gives a bijection between 6p and 6+
p , and we will often identify these two sets. Similarly, we let

I +
p (resp. Ip) denote the set of embeddings + : F+ ,! E (resp.  : F ,! E). We fix a subset Ĩ p ✓ Ip

such that Ip = Ĩ p t Ĩ c
p. Then restriction from F to F+ gives a bijection between Ĩ p and I +

p . Further,
composing + 2 I +

p (resp.  2 Ĩ p) with the valuation on E gives an element of 6+
p (resp. 6p), and we let

v(+) (resp. v()) denote the place induced from the embedding + 2 I +
p (resp.  2 Ĩ p). This gives the

following diagram:
Ip Ĩ p 6p

I +
p 6+

p

 7!v()

res res

+ 7!v(+)

(6A.1)

For a finite place v of F+ (resp. F), we let F+
v (resp. Fv) denote the residue field of v. We have

G(F+
v )⇠= U2(F

+
v ) for all v 26+

p by construction.

6B. Algebraic automorphic forms on unitary groups.

6B1. Let K =
Q

v Kv be a compact open subgroup of G(A1F+). We set

K p
def
=

Y

v26+
p

Kv, K p def
=

Y

v 626+
p

Kv,

and if k 2 K , we write kp for the projection of k to K p. We say that the level K is sufficiently small if for
all t 2 G(A1F+), the finite group t�1

G(F+)t \ K does not contain an element of order p.

6B2. Let K =
Q

v Kv ✓ G(A
1,p
F+ )⇥ G(OF+,p) be a compact open subgroup, and suppose W is an

O-module endowed with an action of G(OF+,p). The space of algebraic automorphic forms on G(A1F+)

of level K and coefficients in W is defined as the O-module

SG(K , W )
def
= { f : G(F+)\G(A1F+)!W : f (gk) = k�1

p f (g)8g 2 G(A1F+), k 2 K }.
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Given a compact open subgroup K as above, we have

G(A1F+) =

G

i

G(F+)ti K

for some finite set {ti }i . This induces an isomorphism of O-modules

SG(K , W ) ⇠�!
M

i

W K\t�1
i G(F+)ti

f 7�! ( f (ti ))i

In particular we have inclusions SG(K , W )✓ SG(K 0, W ) for K 0 ✓ K . If we assume that K is sufficiently
small or A is a flat O-algebra, we further have

SG(K , W )⌦O A ⇠= SG(K , W ⌦O A). (6B.1)

6B3. Suppose that J =
Q

v Jv ✓ G(A
1,p
F+ )⇥ G(OF+,p) is a compact subgroup. We define

SG(J, W )
def
= lim
��!
K◆J

SG(K , W ),

where K runs over compact open subgroups containing J , for which K p ✓ G(OF+,p). If g 2 G(A1F+) is
such that gp 2 G(OF+,p) then

(g. f )(h) = gp. f (hg)

defines an element g. f of SG(g Jg�1, W ). Hence, we obtain an action of g on SG(J, W ) as soon the
relation J ✓ g Jg�1 is satisfied. In particular, if J =

Q
v Jv ✓ G(A

1,p
F+ )⇥ G(OF+,p) is any compact

subgroup, then J acts on SG({1}, W ), and we have

SG({1}, W )J
= SG(J, W ). (6B.2)

6B4. Recall the map Ip ⇣6p defined by  7! v(). This gives a bijection Ip
⇠�!

F
v26p

Hom(Fv, E)

and we identify embeddings Fv ,! E with elements in Ip without further comment. Let v 2 6p. We
define gHom(Fv, E)✓ Hom(Fv, E) by the condition

Ĩ p
⇠�!

G

v26p

gHom(Fv, E)

where the map is given as restriction of the map Ip
⇠�!

F
v26p

Hom(Fv, E). Note that  7!  �c defines
a nontrivial involution on Hom(Fv, E) and hence | gHom(Fv, E)| =

1
2 |Hom(Fv, E)|.

6B5. Let Z2
+

denote the set of all pairs of integers (�1, �2) such that �1 � �2. (Thus, for v 26+
p , we may

identify (Z2
+
)Hom(F+

v ,E) with X+(ResOF+
v

/Zp(TU )), where TU denotes the torus of the group U2 defined in
Section 2A4 with K = F+

v . Note that the discussion in Section 3A works equally well for the group U2

and its restriction of scalars.) Given �v = (�) 2 (Z2
+
)
gHom(Fv,E), we let W�v denote the free O-module

W�v

def
=

O

2gHom(Fv,E)

det �,2 ⌦OFv
Sym�,1��,2(O2

Fv
)⌦OFv , O,
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which, by restriction and using the isomorphism ◆v, has an action of G(OF+
v
). Given an element � =

(�) 2 (Z2
+
) Ĩ p =

L
v26p

(Z2
+
)
gHom(Fv,E), we set

W�
def
=

O

v26p

W�v ,

which is a free O-module with an action of
Q

v26+
p

G(OF+
v
) = G(OF+,p).

Since F+
v is unramified over Qp for every v 26+

p , restriction and reduction mod p give bijections

gHom(Fv, E) ⇠�! Hom(F+

v , E) ⇠�! Hom(F+

v , F).

For an element � = (�v)v26p 2 (Z2
+
) Ĩ p =

L
v26p

(Z2
+
)
gHom(Fv,E), we let � = (�v)v26p denote its image

in
L

v26p
(Z2

+
)Hom(F+

v ,F). Let Z2
+,p denote the subset of Z2

+
consisting of elements (�1, �2) satisfying

�1 � �2  p � 1. Then the image of (Z2
+,p)

Ĩ p in
L

v26p
(Z2

+
)Hom(F+

v ,F) gives rise to the irreducible
mod p representations of G(OF+,p), in a manner similar to Proposition 3.1. (More precisely, under
the identification of (Z2

+
)Hom(F+

v ,E) with X+(ResOF+
v

/Zp(TU )), the set (Z2
+,p)

Hom(F+
v ,E) is identified with

X1(ResOF+
v

/Zp(TU )).) In particular, if �= (�v)v26p 2 (Z2
+,p)

Ĩ p =
L

v26p
(Z2

+,p)
gHom(Fv,E), we have

W�⌦O F⇠=
O

v26p

F(�v)

as mod p representations of G(OF+,p).

6B6. We now relate the spaces SG(K , W ) to spaces of classical automorphic forms.
We let A denote the space of automorphic forms on G(AF+); see, e.g., [Grbac and Schwermer 2011,

Sections 1.5–1.8]). Since G is totally definite, A decomposes as a G(AF+)-representation as

A⇠=

M

⇡

m(⇡)⇡ (6B.3)

where ⇡ runs through the isomorphism classes of irreducible admissible representations of G(AF+) and
m(⇡) is the (finite) multiplicity of ⇡ in A [Guerberoff 2011, Section 2.2; Bellaïche and Chenevier 2009,
Section 6.2.3].

Fix an isomorphism ı : E ⇠�! C. This gives an identification

ı⇤ : (Z2
+
) Ĩ p ⇠�! (Z2

+
)Hom(F+,R)

defined by (ı⇤�) = �
ı̂�1�

for  : F+ ,! R (here ı̂�1 �  denotes the unique element of Ĩ p lying
over ı�1 �  2 I +

p ).
The set (Z2

+
)Hom(F+,R) parametrizes irreducible complex representations of G(F+

1
); given a µ 2

(Z2
+
)Hom(F+,R), we let Wµ denote the associated irreducible complex G(F+

1
)-representation.

For � 2 (Z2
+
) Ĩ p , the space W�⌦O,ı C is a complex representation of G(F+

p ). We let

✓ : W�⌦O,ı C ⇠�!Wı⇤�

denote a G(F+)-equivariant isomorphism.
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6B7. From now onwards we let � � =
N

v26+
p
� �v denote a smooth G(OF+,p)-representation on a finite

free O-module such that � � ⌦O E is a tame G(OF+,p)-type. (By abuse of language, we say that � � is a
tame G(OF+,p)-type over O.)

Fix � 2 (Z2
+
) Ĩ p . By letting G(F+

1
) act trivially on the second tensor factor of W_ı⇤�⌦C (� � ⌦O,ı C)_

we define an isomorphism

SG({1}, (W�⌦O,ı C)⌦C (� � ⌦O,ı C)) ⇠�! Hom
G(F+

1)(W
_

ı⇤�⌦C (� � ⌦O,ı C)_,A) (6B.4)

as follows. Let f : G(F+)\G(A1F+)! (W�⌦O,ı C)⌦C (� � ⌦O,ı C) be an element of the left hand side.
We send this element to a homomorphism f̃ : W_ı⇤�⌦C (� � ⌦O,ı C)_ !A defined by

f̃ (w_)(g) = w_((⇠1(g�1
1

)⌦ 1) � (✓ ⌦ 1) � (⇠p(gp)⌦ 1). f (g1)),

where g 2G(AF+), w_ 2 (Wı⇤�⌦C(� �⌦O,ı C))_ ⇠=W_ı⇤�⌦C(� �⌦O,ı C)_, ⇠p denotes the action of G(F+
p )

on W�⌦O,ı C, and ⇠1 denotes the action of G(F+
1

) on Wı⇤�. One easily checks that this isomorphism is
well defined and G(A

1,p
F+ )⇥G(OF+,p)-equivariant. Therefore if J =

Q
v Jv ✓ G(A

1,p
F+ )⇥G(OF+,p) is

a compact subgroup we have

SG(J, W�⌦O �
�)⌦O,ı C

(6B.1)
⇠= SG(J, (W�⌦O,ı C)⌦C (� � ⌦O,ı C))

(6B.2)
⇠= SG({1}, (W�⌦O,ı C)⌦C (� � ⌦O,ı C))J

(6B.4)
⇠= Hom

G(F+
1)(W

_

ı⇤�⌦C (� � ⌦O,ı C)_,A)J

⇠= Hom
G(F+

1)⇥J (W
_

ı⇤�⌦C (� � ⌦O,ı C)_,A)

(6B.3)
⇠=

M

⇡

m(⇡) Hom
G(F+

1)⇥J (W
_

ı⇤�⌦C (� � ⌦O,ı C)_,⇡)

⇠=

M

⇡1⇠=W_ı⇤�

m(⇡) HomJp((�
�
⌦O,ı C)_,⇡p)⌦C (⇡1,p)J p

. (6B.5)

In particular, this implies that SG(G(OF+,p), W� ⌦O �
�)⌦O E is a semisimple admissible G(A

1,p
F+ )-

representation.

6C. Galois representations associated to automorphic representations and Hecke algebras.

6C1. We define (Z2
+
)

Ip
0 to be the subset of (Z2

+
)Ip consisting of all �= (�) for which

�,i =���c,3�i

for i = 1, 2. Note that the restriction map induces a bijection

(Z2
+
)

Ip
0
⇠�! (Z2

+
) Ĩ p .
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We use the following notation in the theorem below. Throughout, we fix an isomorphism ı : E ⇠�! C,
and recall that recE denotes the local Langlands correspondence over E . We define |det|�1/2 to be the
E-valued character whose composition with ı is the square root of |det|�1 which takes positive values.

Theorem 6.1. Fix � 2 (Z2
+
) Ĩ p , and for every v 2 6+

p , let ⌧ 0v denote a tame inertial type of IFv which
factors as in Definition 4.10 and satisfies (⌧ 0v)

'�[F+
v :Qp ]
⇠= ⌧ 0_v . Let � def

=
N

v26+
p
� (⌧ 0v) and let 4 be an

irreducible G(A
1,p
F+ )-subrepresentation of SG(G(OF+,p), (W�⌦O E)⌦E �

_)⌦E E. Then there exists a
cuspidal automorphic representation ⇡ of G(AF+) such that ⇡v

⇠=4v ⌦E,ı C for all finite places v /26+
p ,

⇡1 ⇠=W_ı⇤�, and ⇡p|G(OF+,p)
contains � ⌦E,ı C. Furthermore, there exists a unique continuous semisimple

representation
rı (⇡) : 0F ! GL2(E)

satisfying the following properties:

(i) We have an isomorphism
rı (⇡)c ⇠= rı (⇡)_ ⌦ "�1.

(ii) If v is a finite place of F+ which splits as v = wwc in F , then

WD(rı (⇡)|0Fw
)F-ss ⇠= recE((4v � ◆

�1
w )⌦ |det|�1/2).

(iii) If v 626+
p is a finite place of F+ which is inert in F , then

WD(rı (⇡)|0Fv
)F-ss ⇠= recE(BCFv/F+

v
(4v)⌦ |det|�1/2),

where BCFv/F+
v

denotes the stable local base change.

(iv) Let v 26+
p . Then rı (⇡) is potentially crystalline at v (viewed as a place of F), and we have

WD(rı (⇡)|0Fv
)|IFv
⇠= ⌧ 0v.

If  2 Ip satisfies v() = v, then

HT(rı (⇡)|0Fv
) = {�,1 + 1, �,2}

(where we view � as an element of (Z2
+
)

Ip
0 via the bijection preceding the theorem). In particular,

rı (⇡)|0Fv
is Hodge–Tate regular.

Proof. Firstly, we note that the existence of the representation ⇡ follows from Section 6B7 (specifi-
cally, (6B.5)). Additionally, the set of primes of F which are split over a place of F+ has Dirichlet
density 1. Therefore, if we have two semisimple continuous Galois representations satisfying (ii), they
must be isomorphic.

Let G
⇤ denote the quasisplit unitary group in two variables over F+, defined as in [Rogawski 1990,

Section 1.9]. There exists a Jacquet–Langlands transfer from L-packets on G(AF+) to L-packets on
G
⇤(AF+), which induces isomorphisms at all finite places of the constituents of the L-packets. (In order to

see this, we may appeal to any of the following methods: (1) noting that G
der⇠= SL1(D) and G

⇤,der⇠= SL2
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(where D denotes the quaternion algebra over F+ which is ramified exactly at the infinite places of F+),
we proceed in a similar fashion as [Labesse and Langlands 1979, Section 7, page 781]; (2) we may embed
G and G

⇤ into their respective similitude groups, which are isomorphic to GL1(D)⇥Gm ResF/F+ Gm

and GL2⇥
Gm ResF/F+ Gm , and apply the results of [Labesse and Schwermer 2019] along with the

classical Jacquet–Langlands correspondence between GL1(D) and GL2; (3) use [Kaletha et al. 2014,
Theorem 1.7.1], which nevertheless is conditional on forthcoming work of the cited authors.)

Let BCF/F+ denote the global stable base change map (see [Rogawski 1990, Section 11.5]), and
put 5 def

= BCF/F+(JL([⇡ ])), where [⇡ ] denotes the L-packet containing ⇡ . Then 5 is an automorphic
representation of GL2(AF ) which enjoys the following properties:

• 5 is conjugate self-dual.

• 51 is cohomological of weight ı⇤� (viewed as an element of (Z2
+
)

Hom(F,C)
0 ).

• If w is a place of F which is split over a place v of F+, then

5w
⇠= BCFw/F+

v
(⇡v) = ⇡v � ◆

�1
w

where BCFw/F+
v

denotes the local base change (see [Guerberoff 2011, Section 2.4]).

• If v is a place of F lying over an inert place v of F+, then

5v
⇠= BCFv/F+

v
(⇡v),

where BCFv/F+
v

denotes the local base change (described explicitly in [Rogawski 1990, Proposi-
tion 11.4.1], and in further detail in [Blasco 2010, Corollary 3.6 and Theorem 4.4]).

• If v 26p, then we have an injection

� 0(⌧ 0v)⌦E,ı C ,!5v|GL2(OFv ).

Hence, if ⌧ 0v is a principal series tame type, 5v is a principal series representation.

The construction of rı (⇡) now follows just as in [Guerberoff 2011, Theorem 2.3], appealing to
[Rogawski 1990, Theorem 11.5.1] instead of [Labesse 2011, Corollary 5.3] in order to control what
happens above p. All the properties listed follow from [Guerberoff 2011, Theorem 0.1; Caraiani 2012,
Theorem 1.1; 2014, Theorem 1.1] and Theorem 4.11. ⇤

6C2. Fix a sufficiently small compact open subgroup K =
Q

v Kv ✓ G(A1F+), and let T denote a finite
set of finite places of F+, which contains all inert places v for which Kv is not hyperspecial and all
split places v for which Kv 6= G(OF+

v
). We define the abstract Hecke algebra TT to be the commutative

polynomial O-algebra generated by formal variables T (i)
w for i = 1, 2, and w a place of F split over a

place of F+ such that w|F+ 62 T .
Fix � 2 (Z2

+
) Ĩ p and let ⌧ 0 def

= {⌧ 0v}v26p and �_,� denote a G(OF+,p)-stable O-lattice in the dual of
� =

N
v26+

p
� (⌧ 0v). Given K as above, with Kv ✓ G(OF+

v
) for all v 26+

p , the Hecke operator T (i)
w acts
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on the space SG(K , W�⌦O �
_,�) via the characteristic function of double coset

Kv◆
�1
w

✓
$w1i

12�i

◆
Kv · K v

($w denotes a choice of an uniformizer of Fw, and v = w|F+). The image in EndO(SG(K , W�⌦O �
_,�))

of TT will be denoted TT
�,⌧ 0(K ). The algebra TT

�,⌧ 0(K ) is reduced, finite free over O, and thus a semilocal
ring. Furthermore, note that we have T (i)

wc = T (2�i)
w (T (2)

w )�1 in TT
�,⌧ 0(K ).

Recall that we have

SG(K , W�⌦O �
_,�)⌦O E ⇠=

M

4

M4⌦4
K p

, (6C.1)

where the direct sum runs over all irreducible constituents 4 of SG(G(OF+,p), W�⌦O �
_,�)⌦O E for

which 4K p
6= 0, and where M4 is a multiplicity space. The Hecke algebra TT

�,⌧ 0(K ) acts on each 4K p by
scalars, and we obtain a homomorphism

�4 : TT
�,⌧ 0(K )! E .

The ideal ker(�4) is a minimal prime ideal, and every minimal prime of TT
�,⌧ 0(K ) arises in this way.

Fix a maximal ideal m✓ TT
�,⌧ 0(K ). Then we have

SG(K , W�⌦O �
_,�)m⌦O E 6= 0,

and this localization annihilates all the direct summands of (6C.1) for which ker(�4) 6✓ m. Let p ✓ m

denote a minimal prime ideal, corresponding to an irreducible constituent 4 of (6C.1). We choose an
invariant lattice in rı (⇡) (for ⇡ associated to 4 as in Theorem 6.1), reduce modulo p, and semisimplify
to obtain a representation r̄m; by the density argument of Theorem 6.1 this is independent of the choice of
p and 4.

Theorem 6.2. Fix � 2 (Z2
+
) Ĩ p and let ⌧ 0 = {⌧ 0v}v26p be as in Theorem 6.1. Suppose that m is a maximal

ideal of TT
�,⌧ 0(K ) such that the residue field TT

�,⌧ 0(K )/m is equal to F. Suppose further that r̄m is absolutely
irreducible. Then r̄m has an extension to a continuous homomorphism

r̄m : 0F+! G2(F).

Choose such an extension. There exists a continuous lifting

rm : 0F+! G2(T
T
�,⌧ 0(K )m)

satisfying the following properties. Note that properties (i) and (iii) characterize BC0(rm) up to isomor-
phism:
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(i) The representation rm is unramified at all but finitely many places.

(ii) We have ⌫ � rm = "�1.

(iii) If v 62 T is a finite place of F+ which splits as v = wwc in F , then rm is unramified at w and
BC0(rm)(Frobw) has characteristic polynomial

X2
� T (1)

w X + N(w)T (2)
w .

(iv) If v 626+
p is an inert place, then rm is unramified at v.

(v) Given v 26+
p and a homomorphism x : TT

�,⌧ 0(K )m! E , the representation x � rm|0F+
v

is potentially
crystalline, and we have

WD(x � rm|0F+
v
)|IF+

v

⇠= ⌧ 0v � 1IF+
v
.

If  2 I +
p satisfies v() = v, then

HT(BC0(x � rm)|0Fv
) = {�,1 + 1, �,2}.

Proof. This follows exactly as in [Clozel et al. 2008, Proposition 3.4.4], using Theorem 6.1. The fact
that ⌫ � rm = "�1 in (ii) (instead of "�1�

µm

F/F+) follows from the main result of [Bellaïche and Chenevier
2011]. ⇤

6C3. We recall one more well known lemma on the space of algebraic automorphic forms.

Lemma 6.3. Let K =
Q

v Kv ✓ G(A1F+) be a sufficiently small compact open subgroup as above, and
let W be a finite, p-torsion free O-module endowed with an action of G(OF+,p). Fix a maximal ideal m
of TT . Then

SG(K , W ⌦O F)m 6= 0() SG(K , W ⌦O E)m 6= 0.

Proof. This is standard; see, for example, the proof of [Clozel et al. 2008, Lemma 3.4.1]. More precisely,
the fact that K is sufficiently small gives the isomorphism (6B.1), and implies SG(K , W )m is p-torsion
free. We therefore obtain

SG(K , W ⌦O F)m ⇠= SG(K , W )m⌦O F 6= 0() SG(K , W ⌦O E)m ⇠= SG(K , W )m⌦O E 6= 0.

⇤

6D. Weight elimination.

6D1.

Definition 6.4. A Serre weight for G is an isomorphism class of smooth, absolutely irreducible represen-
tations of

Q
v26+

p
G(F+

v ) over F, inflated to G(OF+,p). If v 26+
p , a Serre weight at v is an isomorphism

class of smooth, absolutely irreducible representations of G(F+
v ) over F, inflated to G(OF+

v
).

Note that any Serre weight V for G is of the form V ⇠=
N

v26+
p

Vv where Vv are Serre weights at v.
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Definition 6.5. Let r̄ : 0F+! G2(F) be a continuous representation such that:

• ⌫ � r̄ = "�1.

• r̄�1(GL2(F)⇥ Gm(F)) = 0F .

• BC0(r̄) : 0F ! GL2(F) is absolutely irreducible.

Let K =
Q

v Kv ✓ G(A1F+) be a compact open subgroup, T a finite set of places as in Section 6C2, and
suppose r̄ is unramified at all finite places v of F+ which split in F and for which v 62 T . We define a
maximal ideal mr̄ of TT by

mr̄
def
= h$, T (1)

w � tr(BC0(r̄)(Frobw)), T (2)
w � N(w)�1 det(BC0(r̄)(Frobw))iw|F+ 62T

where w|F+ = v 62 T splits as v = wwc in F .

Definition 6.6. Let r̄ be as in Definition 6.5, and let V be a Serre weight for G. Let K =
Q

v Kv✓G(A1F+)

be a sufficiently small compact open subgroup with Kv hyperspecial for v inert in F and Kv = G(OF+
v
)

for v 26+
p , and let T be a finite subset as in Section 6C2 such that r̄ is unramified at each split place not

in T . We say that r̄ is modular of weight V and level K (or that V is a Serre weight of r̄ at level K ) if

SG(K , V_)mr̄ 6= 0.

We say that r̄ is modular of weight V (or that V is a Serre weight of r̄) if r̄ is modular of weight V
and level K , for some sufficiently small compact open subgroup K ✓ G(A1F+) as above. We denote by
Wmod (r̄) for the set of all Serre weights of r̄ . We say that r̄ is modular if Wmod (r̄) 6= ?.

6D2. Fix r̄ as in Definition 6.5, and for v 26+
p define ⇢v

def
= r̄ |0F+

v
. By Proposition 4.6, we have a set of

conjectural Serre weights W?(⇢v) at v for every v 2 6+
p . (Here we use the isomorphism C

U2 ⇠= G2 of
Section 2D. Moreover, the condition ⌫ � r̄ = "�1 implies that the eU2(F

+
v )-representations appearing in

W?(⇢v) descend to U2(F
+
v ) ⇠= G(F+

v ), see for instance Proposition 4.8.) Thus, we can attach to r̄ a set
W?(r̄) of predicted Serre weights for G defined as

W?(r̄)
def
=

⇢ O

v26+
p

Vv : Vv 2W?(⇢v) for all v 26+

p

�
.

In a similar fashion we define the set W?(BC(r̄)) of conjectural weights attached to BC(r̄). (Note that,
under the isomorphism in Section 2D, we have BC(r̄)⇠= BC0(r̄)⌦ ".)

If � =
N

v26+
p
�v is a tame G(OF+,p)-type, we define the base change of � as

BC(� )
def
=

O

v26+
p

BCv(�v),

where BCv denotes the local base change of types.
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Theorem 6.7. Let r̄ : 0F+! G2(F) be a continuous representation such that:

• ⌫ � r̄ = "�1.

• r̄�1(GL2(F)⇥ Gm(F)) = 0F .

• BC0(r̄) : 0F ! GL2(F) is absolutely irreducible.

• r̄ |0F+
v

is tamely ramified and 3-generic for every v 26+
p .

Then
Wmod (r̄)✓W?(r̄).

Proof. Assume Wmod (r̄) 6= ?, otherwise there is nothing to prove. Let V 2Wmod (r̄), and assume by
contradiction that V 62W?(r̄). By Proposition 4.6 and Lemma 3.27, there exists a tame U2(OF+,p)-type
� =

N
v26+

p
�v such that:

(i) V 2 JH(� ).

(ii) JH(� )\W?(r̄) = ?.

(Note that if ⇢v is n-generic, so is �(V�(⇢v)).) We define ⌧ 0v to be the tame principal series type such that
�v
⇠= � (⌧ 0v) (so that, in particular, (⌧ 0v)

'�[F+
v :Fp ]
⇠= ⌧ 0_v ).

By definition of modularity, there exists a sufficiently small compact open subgroup K =
Q

v Kv such
that Kv is hyperspecial for v inert in F and Kv = G(OF+

v
) for v 26+

p , and a finite set of places T such
that

SG(K , V_)mr̄ 6= 0.

Since K is sufficiently small, the functor of algebraic automorphic forms is exact, so item (i) implies

SG(K , �_,�)mr̄ 6= 0,

and Lemma 6.3 gives
SG(K , �_,�

⌦O E)mr̄ 6= 0.

By the discussion preceding Theorem 6.2 and upon choosing an isomorphism ı : E ⇠�! C, there exists
a cuspidal automorphic representation ⇡ of G(AF+) such that:

• ⇡1 is the trivial representation of G(F+
1

).

• HomK p(� ⌦E,ı C,⇡p) 6= 0.

• For each place v of F+ which is split in F and not contained in T , the local constituent ⇡v is an
unramified principal series with Satake parameters determined by a minimal prime of TT

0,⌧ 0(K )mr̄

via ı .

As in the proof of Theorem 6.1, we obtain a continuous representation

rı (⇡) : 0F ! GL2(E)

such that:
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• rı (⇡) lifts BC0(r̄).

• For each v 26p, rı (⇡)|0Fv
is potentially crystalline, and

WD(rı (⇡)|0Fv
)|IFv
⇠= ⌧ 0v.

• For each  2 Ip, we have
HT(rı (⇡)|0Fv()

) = {1, 0}.

Consequently, the representation rı (⇡)⌦ " has the following properties:

• rı (⇡)⌦ " lifts BC0(r̄)⌦ " ⇠= BC(r̄).

• For each v 26p, (rı (⇡)⌦ ")|0Fv
is potentially crystalline, and

WD((rı (⇡)⌦ ")|0Fv
)|IFv
⇠= ⌧ 0v.

• For each  2 Ip, we have

HT((rı (⇡)⌦ ")|0Fv()
) = {0,�1}.

By the above, we see that BC(⇢v) has a potentially Barsotti–Tate lift of type ⌧ 0v for every v26p, namely
(rı (⇡)⌦ ")|0Fv

(with notation as in [Gee 2011, Definition 2.3]). Therefore, [loc. cit., Proposition 3.12]
implies that

JH(BC(� (⌧ 0v)))\W?(BC(⇢v)) 6= ?

for all v 26p. By Propositions 3.18, 4.6 and 4.8 we obtain

JH(� (⌧ 0v))\W?(⇢v) 6= ?

for all v 26+
p . However, this contradicts item (ii), which concludes the proof. ⇤

7. Global applications II

In this section we use patching techniques to prove the existence of Serre weights for L-parameters, using
the results on local deformation theory obtained in Section 5. We first adapt the patching construction of
[Caraiani et al. 2016] to the case of unitary groups which are not split at places above p, and state the
necessary properties in Proposition 7.3. This allows us to deduce the main results on weight existence in
Theorem 7.4 and automorphy lifting in Theorem 7.7.

7A. Setup.

7A1. Suppose that r̄ : 0F+! G2(F) is a fixed Galois representation such that:

• r̄�1(GL2(F)⇥ Gm(F)) = 0F .

• ⌫ � r̄ = "�1.

• r̄ is modular.
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• r̄ is unramified outside 6+
p .

• r̄ |0F+
v

is tamely ramified and 4-generic for all v 26+
p .

• Fker(ad0(r̄)) does not contain F(⇣p).

• BC0(r̄)(0F )◆ GL2(F
0) for some subfield F0 ✓ F with |F0| > 6.

The last condition implies that BC0(r̄)(0F(⇣p)) is adequate (see [Barnet-Lamb et al. 2013, Proposition 6.5]),
and that BC0(r̄) is absolutely irreducible. Furthermore, the argument in [Caraiani et al. 2016] shows that
this condition also guarantees the existence of a place v1 of F+ such that:

(a) v1 splits as ṽ1ṽ
c
1 in F .

(b) v1 does not split completely in F(⇣p).

(c) BC0(r̄)(Frobṽ1) has distinct F-rational eigenvalues, whose ratio is not equal to N(v1)
±1.

7A2. Let �2 (Z2
+
) Ĩ p and for every v 26+

p , let ⌧ 0v denote a tame inertial type which satisfies (⌧ 0v)
'�[F+

v :Fp ]
⇠=

⌧ 0_v . Set T def
=6+

p [ {v1} and T̃ def
=6p [ {ṽ1}. We consider a slight generalization of the global deformation

problems of [Clozel et al. 2008, Section 2.3]:

S
def
= (F/F+, T, T̃ ,O, r̄ , "�1, {R̃⇤

v }v26+
p
[ {R̃⇤

v1
}),

S�,⌧ 0
def
= (F/F+, T, T̃ ,O, r̄ , "�1, {R⇤,�v,⌧

0
v

v }v26+
p
[ {R̃⇤

v1
}).

The difference here is that we allow places in T to be inert in F . In this notation, R̃⇤
v denotes the

maximal reduced and p-torsion free quotient of the universal framed deformation ring parametrizing lifts
⇢ of r̄ |0F+

v
such that ⌫ � ⇢ = "�1. Further, the ring R⇤,�v,⌧

0
v

v denotes the unique quotient of R̃⇤
v with the

property that if B is a finite local E-algebra, then x : R̃⇤
v ! B factors through R⇤,�v,⌧

0
v

v if and only if
the corresponding representation rx : 0F+

v
! G2(B) is potentially crystalline, and satisfies ⌫ � rx = "�1,

HT(BC0(rx)) = {�,1 + 1, �,2}, and WD(BC0(rx))|IFv
⇠= ⌧ 0v. (Again, the existence of such a quotient

follows from [Bellovin and Gee 2019, Section 3.2–3.3].) In particular, if � = 0, then by applying the
isomorphism of Section 2D, we obtain an isomorphism of deformation rings R⇤,0,⌧ 0v

v
⇠= R⌧

0
v

⇢v
, where the

second ring is as in Section 5C3.
We note also that R̃⇤

v1
is formally smooth over O of relative dimension 4, and all of the corresponding

Galois representations lifting r̄ |0F+
v1

are unramified; see [Caraiani et al. 2016, Lemma 2.5].

We let Runiv
S

be the complete local Noetherian O-algebra representing the functor of deformations of r̄
of type S, and let R⇤T

S
denote the O-algebra representing T -framed deformations of r̄ of type S. (We

define a framing at places in 6+
p just as in [Clozel et al. 2008, Defnition 2.2.1], i.e., as an element of

12 + Mat2⇥2(mR)✓ ker(G2(R) ⇣ G2(F)).) We have similar notation for the deformation problem S�,⌧ 0 .

7A3. Set

T
def
= O[[Xv,i, j : v 2 T, 1 i, j  2]].
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Choose a lift runiv
S

representing the universal deformation of type S, and form the tuple
✓

runiv
S

,

⇢✓
1 + Xv,1,1 Xv,1,2

Xv,2,1 1 + Xv,2,2

◆�

v2T

◆
.

This gives a representative of the universal T -framed deformation of type S, and we obtain

R⇤T
S
⇠= Runiv

S
b⌦OT
⇠= Runiv

S
[[Xv,i, j ]]

(and similarly for S�,⌧ 0).
We set

Rloc def
=

✓
dO

v26+
p

R̃⇤
v

◆
b⌦R̃⇤

v1
and Rloc

�,⌧ 0
def
=

✓
dO

v26+
p

R⇤,�v,⌧
0
v

v

◆
b⌦R̃⇤

v1
,

where all completed tensor products are taken over O.

Proposition 7.1. Assume that R⇤,�v,⌧
0
v

v has a nonzero O-point for all v 26+
p . Then Rloc

�,⌧ 0[1/p] is regular.
If moreover (�v, ⌧

0
v) = (0, ⌧ 0v) with ⌧ 0v being 2-generic and r̄ |0F+

v
being 1-generic and semisimple, then

Rloc
0,⌧ 0[1/p] is formally smooth, and Rloc

0,⌧ 0 is equidimensional of dimension 1 + 4|T | + [F+ : Q].

Proof. The fact that Rloc
�,⌧ 0[1/p] is regular follows from [Bellovin and Gee 2019, Theorem 3.3.7], formal

smoothness of R̃⇤
v1

, and [Caraiani et al. 2016, Corollary A.2]. When �=0, formal smoothness of Rloc
�,⌧ 0[1/p]

follows from the results of Section 5C10, formal smoothness of R̃⇤
v1

, and [Kisin 2009, Lemma (3.4.12)].
The claim about dimensions then follows from [Bellovin and Gee 2019, Theorem 3.3.7], the fact that R̃⇤

v1

is of relative dimension 4 over O, and [Barnet-Lamb et al. 2011, Lemma 3.3]. ⇤

7A4. We now relate the above constructions to spaces of automorphic forms. We fix a compact open
subgroup Km =

Q
v Km,v ✓ G(A1F+) satisfying the following properties:

• If v is a place of F+ which is inert in F and v 62 6+
p , then Km,v is a hyperspecial subgroup of

G(F+
v ).

• If v is a place of F+ which is split in F and v 6= v1, then Km,v = G(OF+
v
).

• If v 26+
p , then Km,v = ker(G(OF+

v
) ⇣ G(OF+

v
/$m

v )).

• If v = v1 and ṽ1 is the fixed place of F above v1, then Km,v1 is the preimage under ◆ṽ1 of the
upper-triangular Iwahori subgroup of GL2(OFṽ1

).

These assumptions guarantee that Km is sufficiently small. We define K def
= K0.

Before proceeding, we will need the following level-lowering result.

Proposition 7.2. Suppose r̄ satisfies the hypotheses from the beginning of Section 7A, so that in particular
r̄ is modular, unramified outside p, and r̄ |0F+

v
is tamely ramified and 4-generic for all v 26+

p . Then r̄ is
modular of level K0.
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Proof. Suppose r̄ is modular of weight V =
N

v26+
p

Vv . Thus, there exists a finite set of finite places T 0 and
a sufficiently small level K 0 =

Q
v K 0v ✓ G(A1F+) (with K 0v hyperspecial for all inert v and K 0v = G(OF+

v
)

for v 26+
p and for split v 62 T 0) satisfying

SG(K 0, V_)mr̄ 6= 0.

For each v 2 6+
p , we choose a principal series tame type ⌧ 0v such that (⌧ 0v)

'�[F+
v :Fp ]
⇠= ⌧ 0_v and such that

V 2 JH(� ), where � :=
N

v26+
p
� (⌧ 0v). By the genericity hypotheses and Theorem 6.7, Vv is 3-deep for

every v 26+
p , and consequently ⌧ 0v is 2-generic. Since K 0 is sufficiently small, Lemma 6.3 implies

SG(K 0, �_)mr̄ 6= 0.

As in the proof of Theorem 6.7, there exists an automorphic representation ⇡ of G(AF+), and (after
choosing an isomorphism ı : E ⇠�! C) an associated Galois representation

rı (⇡) : 0F ! GL2(E)

which lifts BC0(r̄)⌦F Fp.
Let 5 denote the automorphic representation of GL2(AF ) obtained from ⇡ by base change (as in the

proof of Theorem 6.1), and let 6+
ram denote the set of prime-to-p places of F+ at which ⇡ is ramified

(note that every place of 6+
ram is split in F , and if 5 is ramified at some place w, then w|F+ 2 6+

ram).
Adjusting the place v1 if necessary, we may assume v1 626

+
ram. We choose a totally real extension L+ of

F+ such that the following conditions hold:

• 4 divides [L+ : Q].

• L+/F+ is Galois and solvable.

• L def
= L+F is linearly disjoint from Fker(r̄)(⇣p) over F .

• p is unramified in L .

• v1 splits completely in L .

• If w is a place of L+ lying over a place in 6+
ram, then N(w)⌘ 1 (mod p).

• If 5L denotes the base change of 5 to an automorphic representations of GL2(AL) and w is a
place of L lying over a place in 6+

ram, then 5Iww

L ,w 6= 0, where Iww ✓ GL2(OLw) denotes the standard
upper-triangular Iwahori subgroup.

(Note that L/L+ is everywhere unramified.) We use the following notation in what follows: if L̃/F̃ is a
finite extension of number fields and T̃ is a finite set of finite places of F̃ , we let BCL̃/F̃ (T̃ ) (or BC(T̃ )

when the context is clear) denote the set of places of L̃ lying above T̃ .
Let ⇡L+ denote a descent of 5L to an automorphic representation of G(AL+). We analyze the local

behavior of ⇡L+ :
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(a) If w is a place of L+ which splits as w̄w̄c in L , then ⇡L+,w
⇠=5L ,w̄ � ◆w̄, where ◆w̄ is an isomorphism

G(L+
w) ⇠�! GL2(Lw̄) which identifies groups of integral points. In particular, if 5L ,w̄ is unramified, so

is ⇡L+,w.

(b) Next, we consider the situation above p. Define

�L+
def
=

O

w2BCL+/F+ (6+
p )

v=w|F+

� (⌧ 0v|IL+
w
), and � 0L

def
= BC(�L+) =

O

w2BCL+/F+ (6+
p )

v=w|F+

� 0(⌧ 0v|IL+
w
),

which are representations of G(OL+,p) and GL2(OL ,p), respectively (see Section 4D and Definition 4.10
for the definitions of � (⌧ 0v|IL+

w
), � 0(⌧ 0v|IL+

w
)). We claim that we can choose ⇡L+ so that we have a

G(OL+,p)-equivariant injection �L+ ⌦E,ı C ,! ⇡L+,p. Indeed, note that by construction we have a
GL2(OL ,p)-equivariant injection � 0L ⌦E,ı C ,! 5L ,p, which implies that 5L ,w is a tamely ramified
principal series representation for every place w of L above p (this uses the genericity hypothesis). By
the explicit description of the local base change map given in [Rogawski 1990, Section 11.4] and [Blasco
2010], we see that if w is a place of L+ above p, then ⇡L+,w is either a tamely ramified principal series, or
a supercuspidal representation contained in a local L-packet of size 2. In the first case, we have a G(OL+

w
)-

equivariant injection �L+,w⌦E,ı C ,! ⇡L+,w. In the second case, it may happen that the supercuspidal
representation ⇡L+,w has no invariants under the principal congruence subgroup of G(OL+,w), and
therefore does not admit a G(OL+,w)-equivariant injection �L+,w ⌦E,ı C ,! ⇡L+,w; however, if we let
⇡

‡
L+,w denote the other element of the local L-packet containing ⇡L+,w, then ⇡‡

L+,w will admit such an
injection (see, e.g., the explicit description of depth 0 L-packets in [Adler and Lansky 2005, Section 3.1]).
Let us define ⇡‡

L+ := ⇡
‡
L+,w⌦

N
0

w0 6=w ⇡L+,w0 , which lies in the same global L-packet as ⇡L+ . Since the
Galois representation associated to ⇡L+ via Theorem 6.1 is irreducible, ⇡L+ defines a stable L-packet,
and in particular ⇡‡

L+ will be automorphic and cuspidal (this uses [Rogawski 1990, Proposition 11.2.1(a),
Theorem 11.5.1]). Therefore, by replacing ⇡L+ by ⇡‡

L+ (for several w 2 BCL+/F+(6+
p ) if necessary), we

can guarantee that we have a G(OL+,p)-equivariant injection �L+ ⌦E,ı C ,! ⇡L+,p.

(c) Finally, suppose that w is a place of L+ which is inert in L and such that 5L ,w is unramified (in
particular, this means that w 62 BCL+/F+(6+

p )). By the explicit description of local base change found
in [Rogawski 1990, Section 11.4] and [Blasco 2010], we see that ⇡L+,w is unramified relative to a
hyperspecial subgroup of G(L+

w), which is equal to G(OL+
w
) for all but finitely many inert primes w.

Thus, we define KL+ =
Q

w KL+,w ✓ G(A1L+) to be the compact open subgroup satisfying the following
conditions:

• If w 2BCL+/F+(6+
ram[{v1}), then KL+,w is the preimage under ◆w̄ of Iww̄, where w̄ is a fixed choice

of place of L lying over w.

• If w is a place of L+ which is split in L and w 62 BCL+/F+(6+
ram [ {v1}), then KL+,w = G(OL+

w
).

• If w 2 BCL+/F+(6+
p ), then KL+,w = G(OL+

w
).
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• If w is a place of L+ which is inert in L and w 62 BCL+/F+(6+
p ), then KL+,w denotes a hyperspecial

subgroup of G(L+
w) relative to which ⇡L+,w is unramified, chosen to be equal to G(OL+

w
) for all but

finitely many such w.

Note that KL+ is sufficiently small. The representation ⇡L+ then contributes to the space

SGOL+
(KL+, �_L+)mr̄ |0L+

,

where mr̄ |0L+
is the maximal ideal of TBC(T 00) defined as in Definition 6.5. Here T 00 def

=6+
p [6

+
ram [ {v1}.

For every place w 2 BCL+/F+(6+
ram), we fix two distinct tame characters  w,1, w,2 : O

⇥

L+
w
! O

⇥ of
p-power order, and define  w : KL+,w! O

⇥ by

 w

✓
◆�1
w̄

✓
a b
c d

◆◆
=  w,1(a) w,2(d),

where
�a

c
b
d

�
2 Iww̄. (Note that such a choice of characters is possible by the choice of L+.) We define

 
def
=

N
w2BC(6+

ram)  w, so that the reduction mod $ of  is the trivial character of
Q

w2BC(6+
ram) KL+,w.

Let
SGOL+

(KL+, ⌦E �
_

L+)

denote the space of algebraic automorphic forms with nebentypus  above 6+
ram (defined as in Section 6B,

except that the component
Q

w2BC(6+
ram) KL+,w acts by  ).

We claim SGOL+
(KL+, ⌦E �

_

L+)mr̄ |0L+

6= 0. Indeed, after possibly replacing E by a finite extension,
the representation ⇡L+ gives a morphism

✓ : T
BC(T 00)
0,BC(⌧ 0)(KL+)! O,

(where BC(⌧ 0) denotes the collection {⌧ 0v|ILw
}w|F =v26p ) and by reduction modulo $ we obtain

✓ ⌦O F : T
BC(T 00)
0,BC(⌧ 0)(KL+)⌦O F! F.

Let T
BC(T 00)
0,BC(⌧ 0)(KL+, F) denote the image of the universal Hecke algebra TBC(T 00) in

EndO(SGOL+
(KL+, �_,�

L+ )),

where �_,�
L+ denotes a choice of KL+,p-stable O-lattice in �_L+ . Since the kernel of T

BC(T 00)
0,BC(⌧ 0)(KL+)⌦O F ⇣

T
BC(T 00)
0,BC(⌧ 0)(KL+, F) is nilpotent, ✓ ⌦ F factors through a map

✓ : T
BC(T 00)
0,BC(⌧ 0)(KL+, F)! F.

Now let T
BC(T 00)
0,BC(⌧ 0)(KL+, ) denote the image of the universal Hecke algebra TBC(T 00) in

EndO(SGOL+
(KL+, ⌦O �

_,�
L+ )),

and define T
BC(T 00)
0,BC(⌧ 0)(KL+, , F) analogously. Since is of p-power order, we have T

BC(T 00)
0,BC(⌧ 0)(KL+, , F)=

T
BC(T 00)
0,BC(⌧ 0)(KL+, F), and by pulling ✓ back we get

✓ 0 : T
BC(T 00)
0,BC(⌧ 0)(KL+, ) ⇣ T

BC(T 00)
0,BC(⌧ 0)(KL+, )⌦O F ⇣ T

BC(T 00)
0,BC(⌧ 0)(KL+, , F)

✓
�! F.
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We view ker(✓ 0) as a prime ideal lying over the ideal ($ ) relative to the finite flat extension O !

T
BC(T 00)
0,BC(⌧ 0)(KL+, ). By the going-down theorem, there exists a prime p✓ ker(✓ 0) lying over (0)✓ O.
The minimal prime p constructed above corresponds to an automorphic representation ⇡ 0L+ contributing

to SGOL+
(KL+, ⌦E �

_

L+)mr̄ |0L+

. Let 50L denote the base change of ⇡ 0L+ to GL2(AL). Then for every
place w of L+ which is inert in L and for which w 62BCL+/F+(6+

p ), the representation50L ,w is unramified.
For every place w of L+ which splits as w = w̄w̄c in L and for which w 62 BCL+/F+(6+

ram [ {v1}), the
representation 50L ,w̄ = ⇡ 0L+,w � ◆

�1
w̄ is unramified. Finally, if w splits in L and w 2 BCL+/F+(6+

ram), then
(50L ,w̄)Iww̄, w�◆

�1
w̄ 6= 0. By choice of the characters  w, the latter condition implies that 50L ,w̄ must be a

principal series representation.
Associated to ⇡ 0L+ (or 50L ) we have a Galois representation

rı (⇡
0

L+) : 0L ! GL2(E)

lifting BC0(r̄)|0L ⌦F Fp. By the discussion in the previous paragraph and local/global compatibility, the
representation rı (⇡

0

L+) is unramified outside BCL/F+(6+
p [6

+
ram) (recall that all deformations at places

above v1 are unramified), and tamely ramified at BCL/F+(6+
ram). Further, if w 2 BCL/F+(6+

p ), then
rı (⇡

0

L+)|0Lw
is potentially crystalline with (parallel) Hodge–Tate weights {1, 0} and inertial type ⌧ 0v|ILw

(where v = w|F ).
We now choose another totally real extension M+/L+ satisfying the first five conditions imposed

on L+ above, along with the following further condition: letting 50M denote the base change of 50L to
GL2(AM) (where M def

= M+F), we have (50M,w)GL2(OMw ) 6= 0 for every w 2 BCM/F+(6+
ram). Thus, if we

let
rı (5

0

M) : 0M ! GL2(E)

denote the Galois representation associated to 50M , then we see that rı (5
0

M) is a lift of BC0(r̄)|0M ⌦F Fp.
Moreover, rı (5

0

M) is unramified outside BCM/F+(6+
p ) and if w 2 BCM/F+(6+

p ), then rı (5
0

M)|0Mw
is

potentially crystalline with (parallel) Hodge–Tate weights {1, 0} and inertial type ⌧ 0v|IMw
(where v = w|F ).

Recall that we have defined a deformation problem S0,⌧ 0 . We define SM to be the “base changed”
deformation problem, so that

SM
def
=

�
M/M+, BCM+/F+(6+

p [ {v1}), BCM/F (6p [ {ṽ1}),O, r̄ |0M+ , "�1,

{R
⇤,0,⌧ 0v |IMw
w }w2BCM+/F+ (6+

p ) [ {R̃⇤
w }w2BCM+/F+ ({v1})

�
.

Thus, we see that the extension of rı (5
0

M) to 0M+ corresponds to an E-point of Runiv
SM

. A variant of the
patching construction of [Guerberoff 2011, Theorem 3.4] with potentially Barsotti–Tate deformation
rings (see also the argument which follows in subsequent sections) shows that (Runiv

SM
)red is isomorphic

to an appropriate localized Hecke algebra, and consequently Runiv
SM

is finite over O. Just as in the proof
of [Barnet-Lamb et al. 2014, Lemma 1.2.3(1)], we have that Runiv

S0,⌧ 0
is finite over Runiv

SM
. Combining these

facts with the dimension calculation in [Clozel et al. 2008, Corollary 2.3.5], we see that Runiv
S0,⌧ 0

is a finite
O-module of positive rank.
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Now, let r : 0F+! G2(E) correspond to an E-point of Runiv
S0,⌧ 0

, so that in particular r is a lift of r̄ ⌦F Fp

which is unramified outside of 6+
p . The restriction r |0M+ corresponds to an E-point of Runiv

SM
, which

necessarily factors through the reduced ring. Thus, BC0(r)|0M is automorphic, and by [Barnet-Lamb
et al. 2014, Lemma 2.2.2] applied successively to M/L and L/F , we conclude that BC0(r) is also
automorphic (more appropriately, the pair (BC0(r), "�1) is automorphic in the sense of [Barnet-Lamb
et al. 2014, Section 2.1]). Therefore, using [Rogawski 1990, Theorem 11.5.1] and the Jacquet–Langlands
correspondence (the latter in the “opposite direction” as compared to the proof of Theorem 6.1), we
can find an automorphic representation ⇡ 00 of G(AF+) which contributes to the space SG(K0, �

_)mr̄

(perhaps after replacing ⇡ 00 by another element in its L-packet, as in item (b) above). This implies that
SG(K0, �

_)mr̄ 6= 0, and by Lemma 6.3 we have SG(K0, V 0_)mr̄ 6= 0 for some V 0 2 JH(� ). ⇤

Recall that we defined a maximal ideal m def
= mr̄ ✓ TT associated to r̄ (Definition 6.5). Proposition 7.2

shows that SG(Km, �_,�)m 6= 0 for m � 1, where �_,� is a G(OF+,p)-stable O-lattice in the dual of a
tame type. Since the p-component of Km acts trivially on �_,� for m � 1, we have SG(Km, �_,�)m ⇠=

SG(Km,O)m⌦O �
_,�. Thus, the image of m in TT

0,1(Km) (which will be denoted by the same symbol m)
is a maximal ideal. By Theorem 6.2, we have a continuous lift of r̄ given by

rm⌦O/$ r
: 0F+! G2(T

T
0,1(Km)m⌦O O/$ r )

which is of type S. Therefore, we obtain a surjection

Runiv
S

⇣ TT
0,1(Km)m⌦O O/$ r . (7A.1)

In particular, SG(Km,O/$ r )m is a finite Runiv
S

-module.

7B. Auxiliary primes.

7B1. Let q denote the maximum of [F+ : Q] and dimF H 1
L?,T (0F+,T , ad0(r̄)(1)) (defined as in [Clozel

et al. 2008, Section 2.3]; note that the latter cohomology group is the usual H 1(0F+,T , ad0(r̄)(1)) since
“S = T ” in the notation of [loc. cit.]). The proof of [loc. cit., Proposition 2.5.9] (see also [Thorne 2012,
Proposition 4.4]) remains valid, and thus for each N � 1 we can find a tuple (QN , Q̃N , { v, 

0
v}v2QN )

such that:

• QN is a finite set of places of F+ which split in F .

• |QN | = q .

• QN is disjoint from T .

• Q̃N consists of a single place ṽ of F above each place v of QN .

• If v 2 QN then N(v)⌘ 1 (mod pN ).

• If v 2 QN , then BC0(r̄)|0Fṽ

⇠=  v � 
0
v where  v and  0v are distinct unramified characters.
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For v 2 QN , We let R v
v denote the quotient of R̃⇤

v corresponding to lifts 0Fṽ
!GL2(R) of BC0(r̄)|0Fṽ

which are 12 + Mat2⇥2(mR)-conjugate to a lift of the form  � 0, where  lifts  ṽ ,  0 lifts  0ṽ , and  0

is unramified. We then obtain a deformation problem

SQN
def
=

�
F/F+, T [ QN , T̃ [ Q̃N ,O, r̄ , "�1, {R̃⇤

v }v26+
p
[ {R̃⇤

v1
}[ {R v

v }v2QN

�
.

From this data we obtain the associated universal (resp. T -framed) deformation ring Runiv
SQN

(resp. R⇤T
SQN

)
of type SQN . By [Thorne 2012, Proposition 4.4], the ring R⇤T

SQN
can be topologically generated over Rloc

by q � [F+ : Q] elements.

7B2. We now shrink the subgroup K at places in QN . For w a place of F , denote by K0(w) and K1(w)

the following subgroups:

K0(w)
def
= Iww =

�
g 2 GL2(OFw) : g ⌘

�
⇤ ⇤
0 ⇤

�
(mod w)

 
,

K1(w)
def
= ker(K0(w)! F⇥w(p))

where F⇥w(p) denotes the maximal p-power order quotient of F⇥w , and the map in question sends
�a

c
b
d

�
to

the image of d (mod w) in F⇥w(p). For i = 0, 1, define

Ki (QN )m
def
= K QN

m ·

Y

v2QN

◆�1
ṽ (Ki (ṽ)).

7B3. Let TT[QN ✓ TT denote the universal Hecke algebra away from T [ QN , and define mQN
def
=

mr̄ \TT[QN . As in [Caraiani et al. 2016, Section 2.6] (which is based on [Thorne 2012, Proposition 5.9]),
we have a projection operator

pr 2 EndO(SG(Ki (QN )m,O/$ r )mQN
)

for i = 0, 1. This operator induces an isomorphism

pr : SG(Km,O/$ r )m
⇠�! pr(SG(K0(QN )m,O/$ r )mQN

),

which commutes with the action of G(OF+,p).

7B4. Define

0m
def
=

Y

v26+
p

G(OF+
v
/$m

v )

and

1QN
def
= K0(QN )m/K1(QN )m ⇠=

Y

v2QN

K0(ṽ)/K1(ṽ),

a finite p-group.
The space pr(SG(K1(QN )m,O/$ r )mQN

) has commuting actions of 0m and 1QN , under which it
becomes a projective (O/$ r )[1QN ][0m]-module (this follows from [Clozel et al. 2008, Lemma 3.3.1]).
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From this, we obtain 0m-equivariant isomorphisms

pr(SG(K1(QN )m,O/$ r )mQN
)1QN ⇠= pr(SG(K0(QN )m,O/$ r )mQN

)⇠= SG(Km,O/$ r )m

where the last isomorphism follows from the previous subsection.

7B5. Let T
T[QN
0,1 (Ki (QN )m,O/$ r )mQN

be the image of TT[QN in EndO(pr(SG(Ki (QN )m,O/$ r )mQN
)).

(This is the mod $ r reduction of the image of T
T[QN
0,1 (Ki (QN )m) in EndO(pr(SG(Ki (QN )m,O)mQN

)).)

We let

rpr
mQN

: 0F+! G2(T
T[QN
0,1 (K1(QN )m,O/$ r )mQN

)

denote the Galois representation obtained by pushing forward the representation of Theorem 6.2 to
T

T[QN
0,1 (Ki (QN )m,O/$ r )mQN

. Using the construction of rmQN
, the local/global compatibility statements

of Theorem 6.1, and the properties of the auxiliary primes (along with [Thorne 2012, Proposition 5.12]),
we see that rpr

mQN
is a lift of type SQN . In particular, pr(SG(Ki (QN )m,O/$ r )mQN

) is a finite Runiv
SQN

-module.

7B6. We identify the group 1QN with the image of
Q

v2QN
IFṽ

in the maximal abelian p-power order
quotient of

Q
v2QN

0Fṽ
. This gives rise to a homomorphism 1QN ! Runiv,⇥

SQN
as follows: let runiv

SQN
denote

any choice of universal deformation, and consider the map
Y

v2QN

IFṽ

runiv
SQN��!

Y

v2QN

GL2(Runiv
SQN

)
det
�! Runiv,⇥

SQN
.

Thus, we obtain morphisms O[1QN ]! Runiv
SQN
! R⇤T

SQN
. This gives an induced O[1QN ]-module structure

on pr(SG(K1(QN )m,O/$ r )mQN
), which agrees with the action of 1QN via diamond operators. These

morphisms also lead to natural isomorphisms

Runiv
SQN

/aQN
⇠= Runiv

S
and R⇤T

SQN
/aQN

⇠= R⇤T
S

,

where aQN denotes the augmentation ideal of O[1QN ]; see [Gee and Kisin 2014, Section 4.3.7].

7B7. For each N , we choose a lift runiv
SQN

representing the universal deformation of type SQN , with
runiv
SQN

(mod aQN ) = runiv
S

. The choice of runiv
SQN

gives an isomorphism R⇤T
SQN

⇠= Runiv
SQN

b⌦OT, which reduces
modulo aQN to the isomorphism R⇤T

S
⇠= Runiv

S
b⌦OT.

7C. Patching.

7C1. Let q be as in Section 7B, and define

11
def
= Zq

p

S1
def
= T[[11]]⇠= O[[z1, . . . , z4|T |, y1, . . . , yq ]]

R1
def
= Rloc

[[x1, . . . , xq�[F+:Q]]]

R�,⌧ 0,1
def
= Rloc

�,⌧ 0[[x1, . . . , xq�[F+:Q]]]
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We let a ✓ S1 denote the augmentation ideal of S1. For each N � 1, fix a surjection 11 ⇣ 1QN ;
passing to completed group algebras, we get a surjective map S1 = T[[11]] ⇣ T[1QN ]. We view R⇤T

SQN

as an S1-algebra via S1⇣ T[1QN ]! R⇤T
SQN

, which gives R⇤T
SQN

/a⇠= Runiv
S

.
Recall that R⇤T

SQN
can be topologically generated over Rloc by q � [F+ : Q] variables. Therefore, we

can choose a surjection of Rloc-algebras

R1⇣ R⇤T
SQN

.

7C2. We may now proceed exactly as in [Caraiani et al. 2016, Section 2.8] and patch together (certain
quotients of) the spaces

pr(SG(Ki (QN )2N ,O/$ N )mQN
)_ ⌦Runiv

SQN

R⇤T
SQN

, (7C.1)

where _ denotes here the Pontryagin dual. (In our setup, we are omitting the Hecke operators at v1, and
we ignore the maps ↵N of [loc. cit.].) Thus, we obtain a profinite topological S1[[G(OF+,p)]]-module
M1, with a commuting action of R1. Furthermore, M1 enjoys the following properties:

• S1 acts on (7C.1) via the map S1 ⇣ T[1QN ]! R⇤T
SQN

of Section 7C1, and this action factors
through an O-algebra morphism S1! R1. Since the image of S1 in EndS1(M1) is closed, this
implies we may factor the action of S1 on M1 through an O-algebra morphism S1! R1.

• The argument of [Caraiani et al. 2016, page 29] implies that M1 is a finite S1[[G(OF+,p)]]-module,
and thus it is a finite R1[[G(OF+,p)]]-module.

• As in [Caraiani et al. 2016, 2.10 Proposition], M1 is projective over S1[[G(OF+,p)]].

7C3. Using the patched module M1, we define a patching functor M1(�) from the category of finitely
generated O-modules with an action of G(OF+,p) to the category of R1-modules by

M1(W )
def
= Homcts

G(OF+,p)
(W, M_

1
)_.

By projectivity of M1 (in the category of pseudocompact O[[G(OF+,p)]]-modules), the functor M1(�)

is exact. Moreover, if W is p-torsion free, then we have

M1(W )⇠= Homcts
G(OF+,p)

(W, Md
1

)d,

where “d” denotes the Schikhof dual; see [Caraiani et al. 2016, Section 1.8] for the definition.

Proposition 7.3. (i) We have a G(OF+,p)-equivariant isomorphism

M1/a⇠= (lim
 ��

n
SG(K p,O/$ n)m)d,

which is compatible with the action of c
N

v26+
p

R̃⇤
v on both sides, the action on the right-hand side being

given by the maps
dO

v26+
p

R̃⇤
v ! Runiv

S
! lim
 ��

m
TT

0,1(Km)m.



Serre weight conjectures for p-adic unitary groups of rank 2 2087

(ii) If W is a free O-module of finite type (resp. a free F-module of finite type) with a continuous G(OF+,p)-
action, then M1(W ) is a free S1-module of finite type (resp. a free S1⌦O F-module of finite type).

(iii) Let �2 (Z2
+
) Ĩ p and let ⌧ 0={⌧ 0v}v26+

p
be a collection of tame inertial types satisfying (⌧ 0v)

'�[F+
v :Fp ]
⇠= ⌧ 0_v .

Set � def
=

N
v26+

p
� (⌧ 0v) and W def

= W d
� ⌦O �

�. Then we have an isomorphism

M1(W )/a⇠= SG(K , W d)d
m,

compatible with the surjection R1/a⇣ Runiv
S

; note that Runiv
S

acts on the right-hand side via Runiv
S

⇣
TT
�,⌧ 0(K )m.

(iv) Suppose V is a Serre weight. Then we have an isomorphism

M1(V )/a⇠= SG(K , V_)_m,

compatible with the surjection R1/a⇣ Runiv
S

(and the action on the right-hand side is obtained as in
item (iii)).

(v) Let �2 (Z2
+
) Ĩ p and let ⌧ 0= {⌧ 0v}v26+

p
be a collection of tame inertial types satisfying (⌧ 0v)

'�[F+
v :Fp ]
⇠= ⌧ 0_v .

Set � def
=

N
v26+

p
� (⌧ 0v). Then the R1-action on M1(W d

� ⌦O �
�) factors through R�,⌧ 0,1. Further, if

M1(W d
�⌦O�

�) 6=0, then it is maximal Cohen–Macaulay over R�,⌧ 0,1, and the support of M1(W d
�⌦O�

�)

is a union of components of Spec R�,⌧ 0,1.
Let R�,⌧ 0,1 denote the quotient of R�,⌧ 0,1 which acts faithfully on M1(W d

� ⌦O �
�). Then

M1(W d
� ⌦O �

�)[1/p] is locally free of rank 2 over R�,⌧ 0,1[1/p].

(vi) Let V be a Serre weight with highest weight � 2 (Z2
+,p)

Ĩ p ✓ (Z2
+
) Ĩ p . Then M1(V ) 6= 0 if and only

if r̄ is modular of weight V . In this case, the R1-action on M1(V ) factors through R�,1,1 ⌦O F and
M1(V ) is maximal Cohen–Macaulay over R�,1,1⌦O F.

Proof. (i) This follows from the patching construction; see [Caraiani et al. 2016, Section 2.8]. The
argument of 2.11 Corollary of [loc. cit.] shows cN

v26+
p

R̃⇤
v -equivariance.

(ii) The module M1 is a finite projective S1[[G(OF+,p)]]-module. If W is p-torsion free, then the proof
of [Caraiani et al. 2016, 4.18 Lemma] implies that M1(W ) is a finite free S1-module. The same argument
applies when W is a free F-module of finite type.

(iii) Using part (i), we have

(M1(W )/a)d ⇠= Homcts
G(OF+,p)

(W, Md
1

)[a]

⇠= Homcts
G(OF+,p)

(W, (M1/a)d)

⇠= SG(K , W d)m.

The statement about the action of the deformation ring follows in a manner analogous to the proof of
[Herzig et al. 2017, Theorem 5.2.1(iii)].

(iv) This follows by applying the previous point to a free O-module whose reduction mod p is V , and
reducing mod p.



2088 Karol Kozioł and Stefano Morra

(v) The claims regarding the R1-action, the support of the module M1(W d
� ⌦O �

�), and its local
freeness follow exactly as the proof of [Caraiani et al. 2016, 4.18 Lemma], using [Bellovin and Gee 2019,
Theorem 3.3.7] instead of [Kisin 2008, Theorem 3.3.8].

In order to calculate the precise value of the rank, we proceed as follows. We first claim that every
irreducible component of R�,⌧ 0,1[1/p] has nonempty intersection with the locus a = 0. Indeed, since
R�,⌧ 0,1 acts faithfully on M1(W d

� ⌦O �
�), the localized ring R�,⌧ 0,1[1/p] acts faithfully on M1(W d

� ⌦O

� �)[1/p]. The latter module is free of finite rank over S1[1/p] (by item (ii)), so the ring S1[1/p] acts
faithfully on it, and the ring R�,⌧ 0,1[1/p] injects into a matrix ring over S1[1/p]. As the action of
S1[1/p] factors through the action of R�,⌧ 0,1[1/p], we conclude that we have an injection S1[1/p] ,!

R�,⌧ 0,1[1/p], and that R�,⌧ 0,1[1/p] is finite as an S1[1/p]-module.
Now let q denote a minimal prime of R�,⌧ 0,1[1/p], and consider the composite map � : S1[1/p] ,!

R�,⌧ 0,1[1/p]⇣ R�,⌧ 0,1[1/p]/q. Using the fact that � is a finite map between integral domains of the same
Krull dimension (the latter because R�,⌧ 0,1[1/p] is equidimensional; see [Bellovin and Gee 2019, Theo-
rem 3.3.7] and note that Spec R�,⌧ 0,1[1/p] is a union of irreducible components of Spec R�,⌧ 0,1[1/p]),
standard commutative algebra arguments imply that � must be injective (indeed, one sees that ker(� )

is a prime ideal of height 0). Thus, by applying the Lying Over Theorem to the integral extension
� : S1[1/p] ,! R�,⌧ 0,1[1/p]/q, we see that there exists a prime ideal lying over the augmentation ideal
a. This verifies the claim.

Since the rank of M1(W d
� ⌦O�

�)[1/p] is constant on the irreducible components of R�,⌧ 0,1[1/p], the
paragraphs above imply that it suffices to compute the rank at prime ideals p containing a. In particular, we
may compute the rank after modding out by a. Since M1(W d

�⌦O�
�)[1/p]/a is locally free of positive rank

over R�,⌧ 0,1[1/p]/a, the localized ring (R�,⌧ 0,1[1/p]/a)p acts faithfully on (M1(W d
� ⌦O �

�)[1/p]/a)p,
and since this action factors through (TT

�,⌧ 0(K )m[1/p])p we obtain an isomorphism

(R�,⌧ 0,1[1/p]/a)p ⇠�! (TT
�,⌧ 0(K )m[1/p])p.

(The surjectivity of this map follows from item (iii).) It therefore suffices to compute the rank of
M1(W d

� ⌦O �
�)[1/p]/a⇠= SG(K , W�⌦O �

_,�)d
m[1/p] as a module over TT

�,⌧ 0(K )m[1/p]. Finally, since
TT
�,⌧ 0(K )m[1/p] is a product of fields (being a reduced Artinian E-algebra), this is equivalent to computing

the rank of the linear dual SG(K , W�⌦O �
_,�)m[1/p] over TT

�,⌧ 0(K )m[1/p].
Up to enlarging E if necessary, we can assume that all prime ideals of TT

�,⌧ 0(K )m[1/p] have residue
field E . Hence a prime ideal p of TT

�,⌧ 0(K )m[1/p] corresponds to a Hecke eigensystem

�p : TT
�,⌧ 0(K )m[1/p]! E,

and therefore we obtain

(SG(K , W�⌦O �
_,�)m[1/p])p⌦E,ı C⇠=

M

⇡1⇠=W_ı⇤�
�⇡=�p

m(⇡) HomG(OF+,p)
(� � ⌦O C,⇡p)⌦C (⇡1,p)K p

,
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where �⇡ : TT
�,⌧ 0(K )m[1/p]! C

ı�1
�! E denotes the Hecke eigensystem corresponding to ⇡ . Since the

base change map is injective on L-packets, strong multiplicity one for GL2 implies that there is at most
one L-packet contributing to the direct sum above. Further, the base change map is determined by local
base changes of local L-packets. We have that the condition ⇡Kv

v 6= 0 for v 626+
p inert in F determines a

unique member of the local L-packet at v, and the condition HomG(OF+,p)
(� � ⌦O C,⇡p) 6= 0 along with

the multiplicity one property of Theorem 4.11 also determine a unique member of the local L-packet
at v 26+

p . Therefore, there is exactly one automorphic representation ⇡ contributing to the direct sum
above. For this ⇡ , we know that rı (⇡) is irreducible (being a lift of BC0(r̄)), and therefore the base change
of ⇡ to GL2(AF ) is cuspidal. This implies that the L-packet JL([⇡ ]) on G

⇤(AF+) is stable, and therefore
m(⇡⇤) = 1 for any ⇡⇤ 2 JL([⇡ ]) by [Rogawski 1990, Theorem 11.5.1(c)]. Using an analog of the relation
“n(⇡) = n(⌧ )

Q
v c(⇡v)” in [Labesse and Langlands 1979, page 781], we obtain m(⇡) = 1; see also

[Kaletha et al. 2014, Theorem 1.7.1]. To conclude, we note that dimC HomG(OF+,p)
(� � ⌦O C,⇡p) = 1 by

Theorem 4.11 and dimC((⇡1,p)K p
) = 2 by [Taylor 2006, Lemma 1.6(2)] (since we have omitted Hecke

operators at v1).

(vi) Let V be a Serre weight. By point (iv) and Nakayama’s lemma, M1(V ) 6= 0 if and only if r̄ is
modular of weight V and level K . Therefore, in order to conclude it suffices to show that if r̄ is modular
of weight V , then r̄ is modular of weight V and level K . This follows from Proposition 7.2 : in that
proof, if we choose � so that JH(� )\W?(r̄) = {V }, then Theorem 6.7 and exactness of the functor of
algebraic automorphic forms guarantees that the V 0 appearing at the end of the proof is equal to V .

The claim about M1(V ) being maximal Cohen–Macaulay follows exactly as in the previous point. ⇤

7D. Weight existence.

Theorem 7.4. Let r̄ : 0F+! G2(F) be a continuous representation such that:

• ⌫ � r̄ = "�1.

• r̄�1(GL2(F)⇥ Gm(F)) = 0F .

• BC0(r̄)(0F )◆ GL2(F
0) for some subfield F0 ✓ F with |F0| > 6.

• r̄ is modular.

• r̄ |0F+
v

is tamely ramified and 4-generic for all v 26+
p .

• r̄ is unramified outside 6+
p .

• Fker(ad0(r̄)) does not contain F(⇣p).

Then

W?(r̄)✓Wmod (r̄).

Proof. Let V 2 W?(r̄) and V 0 2 Wmod (r̄). We will prove that e(M1(V )) = 2 by induction on d def
=

dgr(V, V 0) =
P

v26+
p

dgr(Vv, V 0v). (We write e(M1(V )) to denote d! times the coefficient of degree d of
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the Hilbert–Samuel polynomial of M1(V ) as a module over R1/ AnnR1(M1(V )), where d denotes the
Krull dimension of R1/ AnnR1(M1(V )).)

By Lemma 3.23 there exists a tame U2(OF+,p)-type � =
N

v26+
p
�v such that:

(i) V, V 0 2 JH(� ).

(ii) |JH(� )\W?(r̄)| = 2d .

(iii) for any V 00 2 JH(� )\W?(r̄) satisfying V 00 6= V one has dgr(V 00, V 0) < dgr(V, V 0).

We define ⌧ 0v to be the tame principal series type such that �v
⇠= � (⌧ 0v). We note that in this case, we have

isomorphisms ✓
R̃⇤

v1
b⌦d
O

v26+
p

R⌧
0
v

⇢v

◆
[[x1, . . . , xq�[F+:Q]]]

⇠= R0,⌧ 0,1 = R0,⌧ 0,1.

The last equality follows from Proposition 7.3(v) and the fact that each R⌧
0
v

⇢v
is integral, see Table 3.

We thus have
2(2d
� 1) + e(M1(V )) =

X

V 002JH(� )\W?(r̄)

e(M1(V 00))

= e(M1(� �))

= 2e
✓✓

dO
v26+

p
R⌧
0
v

⇢v

◆
⌦O F

◆

= 2 · 2d .

The first equality follows from the inductive hypothesis and item (iii). For the second, we note that M1(�)

is exact, and if V 00 is a Serre weight such that V 00 62W?(r̄), then Theorem 6.7 and Proposition 7.3(vi) imply
M1(V 00) = 0. For the third we use Proposition 7.3(v) above, and the fourth follows by Corollary 5.25.
Hence, we obtain e(M1(V ))=2, and in particular M1(V ) 6=0. Thus V 2Wmod (r̄) by Proposition 7.3(vi).

⇤
Combining Theorems 6.7 and 7.4, along with the isomorphism in Section 2D, we obtain the following.

Corollary 7.5. Let r̄ : 0F+! C
U2(F) be a continuous L-parameter such that:

• ı̂ � r̄ = ".

• r̄�1(GL2(F)⇥ Gm(F)) = 0F .

• BC(r̄)(0F )◆ GL2(F
0) for some subfield F0 ✓ F with |F0| > 6.

• r̄ is modular.

• r̄ |0F+
v

is tamely ramified and 4-generic for all v 26+
p .

• r̄ is unramified outside 6+
p .

• Fker(ad0(r̄)) does not contain F(⇣p).

Then
W?(r̄) = Wmod (r̄).
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7E. Automorphy lifting. We now discuss our other main global application.

Definition 7.6. Let F/F+ and G be as in Section 6A, and suppose r 0 : 0F ! GL2(E) is a continuous
Galois representation. We say r 0 is automorphic if there exists a cuspidal automorphic representation ⇡
of G(AF+) such that r 0⌦E E ⇠= rı (⇡), where rı (⇡) is as in Theorem 6.1.

Theorem 7.7. Let F/F+ and G be as in Section 6A. Let r 0 : 0F ! GL2(O) be a Galois representation
and let r̄ 0 : 0F ! GL2(F) denote the associated residual representation. Assume that:

• r 0 is unramified at all but finitely many places.

• We have r 0c ⇠= r 0_ ⌦ "�1.

• For all  2 Ĩ p, the local representation r 0|0Fv()
is potentially crystalline, with HT(r 0|0Fv()

) = {1, 0}

and 4-generic tame inertial type ⌧ 0v().

• r̄ 0 is unramified outside 6p.

• For all v 26p, the local representation r̄ 0|0Fv
is tamely ramified and 4-generic.

• r̄ 0 ⇠= rı (⇡) where ⇡ is a cuspidal automorphic representation of G(AF+) with ⇡1 trivial and such
that for all v 26+

p , ⇡v|G(OF+
v

) contains the tame G(OF+
v
)⇠= U2(OF+

v
)-representation associated to

⌧ 0v by the inertial local Langlands correspondence; see Theorems 4.11 and 6.1.

• Fker(ad(r̄ 0)) does not contain F(⇣p).

• r̄ 0(0F )◆ GL2(F
0) for some subfield F0 ✓ F with |F0| > 6.

Then r 0⌦OE is automorphic.

Proof. We outline the proof, which is based on [Taylor 2008, Sections 4 and 5].
We begin with several reductions. Let 6ram denote the set of prime-to-p places of F at which r 0 is

ramified, and 6+
ram the set of places of F+ which are the restriction to F+ of places in 6ram. For every

v 26+
ram, we let ṽ denote a fixed choice of place of F lying above v. We moreover fix a finite place v1 of

F+ satisfying the hypotheses (a),(b) and (c) of Section 7A1. By [Barnet-Lamb et al. 2014, Lemma 2.2.2],
we may replace r 0 by r 0|0L (for L = L+F and an appropriately chosen L+ furnished by [Clozel et al.
2008, Lemma 4.1.2]) and assume without loss of generality that the following conditions are satisfied:
for every w 26ram, we have

• w is split over w|F+ ;

• N(w)⌘ 1 (mod p);

• r̄ 0|0Fw
is trivial;

• the representation r 0|0Fw
is, up to an unramified twist, a nonsplit extension of the trivial character by

the cyclotomic character.

By the proof of Proposition 7.2 we can assume further that rı (⇡) is unramified outside 6p (in particular
it is unramified outside 6p [ {ṽ1, ṽ

c
1}[6ram).
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We first discuss Galois representations. Enlarging O if necessary, we view rı (⇡) as being valued
in GL2(O). Let r̃ 0 : 0F+! G2(O) and r̃ı (⇡) : 0F+! G2(O) denote respectively the extensions of r 0 and
rı (⇡) to 0F+ which satisfy ⌫ � r̃ 0 = "�1 = ⌫ � r̃ı (⇡). We also let r̃ 0 denote the reduction mod $ of r̃ 0

or r̃ı (⇡).
For v 26+

ram, we let �v,1,�v,2 : 0Fṽ
! 1 +$O denote two distinct continuous characters. We denote

by R(�v,1,�v,2)
v denote the quotient of R⇤

v parametrizing lifts ⇢ of r̃ 0|0F+
v

which satisfy ⌫ � ⇢ = "�1 and

charBC0(⇢)(� )(X) = (X ��v,1(� ))(X ��v,2(� ))

for all � 2 IFṽ
. We define R(1,1)

v similarly, with the characters �v,1,�v,2 replaced by the trivial character.
(Note that these quotients exist and are nonzero, by the discussion in [Taylor 2008, Section 3].) Since the
characters �v,1,�v,2 are trivial modulo $ , we have R(�v,1,�v,2)

v /$ ⇠= R(1,1)
v /$ .

We now consider two global deformation problem S6ram,⌧ 0 and S
0

6ram,⌧ 0 given by

S6ram,⌧ 0
def
=

�
F/F+,6+

p [ {v1}[6
+

ram,6p [ {ṽ1}[e6+

ram,O, r̃ 0, "�1,

{R⇤,0,⌧ 0v
v }v26+

p
[ {R̃⇤

v1
}[ {R(1,1)

v }v26+
ram

�
,

S
0

6ram,⌧ 0
def
=

�
F/F+,6+

p [ {v1}[6
+

ram,6p [ {ṽ1}[e6+

ram,O, r̃ 0, "�1,

{R⇤,0,⌧ 0v
v }v26+

p
[ {R̃⇤

v1
}[ {R(�v,1,�v,2)

v }v26+
ram

�
.

We let Runiv
S6ram,⌧ 0

(resp., Runiv
S
0

6ram,⌧ 0
) denote the complete local Noetherian O-algebra representing the functor

of deformations of r̃ 0 of type S6ram,⌧ 0 (resp., of type S
0

6ram,⌧ 0). We note that by the conditions at 6+
ram, we

have

Runiv
S6ram,⌧ 0

/$ ⇠= Runiv
S
0

6ram,⌧ 0
/$.

By the assumptions on r 0 and rı (⇡), both r̃ 0 and r̃ı (⇡) are deformations of r̃ 0 of type S6ram,⌧ 0 , and therefore
the ker(G2(O) ⇣ G2(F))-conjugacy classes of r̃ 0 and r̃ı (⇡) give rise to morphisms ⇣ 0 : Runiv

S6ram,⌧ 0
! O and

⇣⇡ : Runiv
S6ram,⌧ 0

! O, respectively.
Next, we construct the spaces of algebraic automorphic forms that we will patch. Recall from

Section 7A4 the compact open K0 ✓ G(A1F+). Let K 0 =
Q

v K 0v ✓ K0 denote the compact open subgroup
satisfying the following conditions:

• If v is a place of F+ which is inert in F and v 626+
p , then K 0v is a hyperspecial subgroup of G(F+

v ).

• If v is a place of F+ which is split in F and v 62 {v1}[6
+
ram, then K 0v = G(OF+

v
).

• If v 26+
p , then K 0v = G(OF+

v
).

• If v 2 {v1}[6
+
ram, then K 0v is the preimage under ◆ṽ of Iwṽ, the upper-triangular Iwahori subgroup

of GL2(OFṽ
).

With these choices, we have that K 0 is sufficiently small. Let � def
=

N
v26+

p
� (⌧ 0v) denote the tame type

associated to the collection ⌧ 0 = {⌧ 0v}v26+
p

by Theorem 4.11, and let � � (resp., �_,�) denote a fixed choice
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G(OF+,p)-stable O-lattice in � (resp., �_). For v 26+
ram, we also define a character �v : K 0v! O

⇥ by

�v

✓
◆�1
ṽ

✓
a b
c d

◆◆
= (�v,1 �ArtFṽ

)(a)(�v,2 �ArtFṽ
)(d),

where
�a

c
b
d

�
2 Iwṽ. We then set � def

=
N

v26+
ram
�v. We will examine the spaces of algebraic automorphic

forms
SG(K 0, �_,�) and SG(K 0, �_,�

⌦O �
�1)

(the latter is defined as in Section 6B, except that the component
Q

v26+
ram

K 0v acts by � ).
Let mr̄ 0 ✓ T6

+
p [{v1}[6

+
ram denote the maximal ideal associated to r̄ 0 as in Definition 6.5. Since the

representation ⇡ contributes to the space SG(K0, �
_,�)mr̄ 0 (recall that K0 ◆ K 0 with K0 defined in

Section 7A4), we obtain SG(K 0, �_,�)mr̄ 0 6= 0. Using the fact that � is congruent to the trivial character
modulo $ , repeated application of Lemma 6.3 gives

SG(K 0, �_,�)mr̄ 0 6= 0() SG(K 0, �_,�
⌦O F)mr̄ 0 6= 0

() SG(K 0, (�_,�
⌦O �

�1)⌦O F)mr̄ 0 6= 0

() SG(K 0, �_,�
⌦O �

�1)mr̄ 0 6= 0.

We now outline the patching argument which uses the above spaces. Let

Rloc
0,⌧ 0,6ram

def
=

✓
dO

v26+
p

R⇤,0,⌧ 0v
v

◆
b⌦R̃⇤

v1
b⌦
✓
dO

v26+
ram

R(1,1)
v

◆
,

Rloc,0
0,⌧ 0,6ram

def
=

✓
dO

v26+
p

R⇤,0,⌧ 0v
v

◆
b⌦R̃⇤

v1
b⌦
✓
dO

v26+
ram

R(�v,1,�v,2)
v

◆
.

A variant of the patching construction in Sections 7B and 7C with 6+
p [{v1} replaced by 6+

p [{v1}[6
+
ram

provides us with the following data (see [Taylor 2008, Section 4]):

(i) A ring R0,⌧ 0,6ram,1 which a formal power series ring in q�[F+ : Q] variables over Rloc
0,⌧ 0,6ram

, together
with a surjection R0,⌧ 0,6ram,1⇣ Runiv

S6ram,⌧ 0
.

(ii) An R0,⌧ 0,6ram,1-module M1(� �) supported on a union of irreducible components of Spec R0,⌧ 0,6ram,1.

(iii) The mod a reduction of M1(� �) is isomorphic to SG(K 0, (� �)d)d
mr̄ 0

, compatibly with the morphism

R0,⌧ 0,6ram,1/a⇣ Runiv
S6ram,⌧ 0

⇣ T
6+

p [{v1}[6
+
ram

0,⌧ 0 (K 0)mr̄ 0 .

(iv) We have analogous “primed” versions of the above constructions corresponding to the deformation
problem S

0

6ram,⌧ 0 (e.g., R00,⌧ 0,6ram,1, R00,⌧ 0,6ram,1⇣ Runiv
S6ram,⌧ 0

, M 0
1

(� �)/a⇠= SG(K 0, (� �⌦O�)d)d
mr̄ 0

, etc.).
Furthermore, the primed data may be chosen so that it is compatible with the previous data modulo
$ (e.g., under the isomorphism M1(� �)/$ ⇠= M 0

1
(� �)/$ , the action of R0,⌧ 0,6ram,1/$ on the

left-hand side intertwines with the action of R00,⌧ 0,6ram,1/$ on the right-hand side).

By the primed version of item (ii) and irreducibility of Spec R00,⌧ 0,6ram,1, we conclude that

SuppR00,⌧ 0,6ram,1
(M 0
1

(� �)) = Spec R00,⌧ 0,6ram,1.



2094 Karol Kozioł and Stefano Morra

(To see that Spec R00,⌧ 0,6ram,1 is irreducible, we use the primed version of item (i) and [Barnet-Lamb et al.
2011, Lemma 3.3(5)], and observe that each of the local deformation rings comprising Rloc,0

0,⌧ 0,6ram
has an

irreducible spectrum: for v 2 6+
p , this follows from Table 3 and (5C.2); for v = v1, this follows from

[Caraiani et al. 2016, Lemma 2.5]; for v 26+
ram, this follows from [Taylor 2008, Proposition 3.1(1)].) In

particular, we get
SuppR00,⌧ 0,6ram,1

/$ (M 0
1

(� �)/$ ) = Spec R00,⌧ 0,6ram,1/$.

By item (iv), we obtain the analogous statement for the deformation problem S6ram,⌧ 0 :

SuppR0,⌧ 0,6ram,1/$ (M1(� �)/$ ) = Spec R0,⌧ 0,6ram,1/$. (7E.1)

Likewise, item (ii) implies that SuppR0,⌧ 0,6ram,1
(M1(� �)) is a union of irreducible components of

Spec R0,⌧ 0,6ram,1. Since the irreducible components of R0,⌧ 0,6ram,1/$ are in bijection with the irreducible
components of R0,⌧ 0,6ram,1 by [Taylor 2008, Proposition 3.1(3)], (7E.1) implies

SuppR0,⌧ 0,6ram,1
(M1(� �)) = Spec R0,⌧ 0,6ram,1.

Consequently, we get

SuppR0,⌧ 0,6ram,1/a(M1(� �)/a) = Spec R0,⌧ 0,6ram,1/a,

which implies by item (iii) that

SuppRuniv
S6ram,⌧ 0

(SG(K 0, (� �)d)d
mr̄ 0

) = Spec Runiv
S6ram,⌧ 0

.

Since SG(K 0, (� �)d)d
mr̄ 0

is a faithful T
6+

p [{v1}[6
+
ram

0,⌧ 0 (K 0)mr̄ 0 -module and the latter ring is reduced, the
surjection

Runiv
S6ram,⌧ 0

⇣ T
6+

p [{v1}[6
+
ram

0,⌧ 0 (K 0)mr̄ 0

induces an isomorphism

(Runiv
S6ram,⌧ 0

)red ⇠�! T
6+

p [{v1}[6
+
ram

0,⌧ 0 (K 0)mr̄ 0 .

Thus, the homomorphism ⇣ 0 : Runiv
S6ram,⌧ 0

! O factors through (Runiv
S6ram,⌧ 0

)red ⇠= T
6+

p [{v1}[6
+
ram

0,⌧ 0 (K 0)mr̄ 0 , which
implies that r 0 is automorphic. ⇤
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