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Serre weight conjectures for p-adic
unitary groups of rank 2

Karol Koziot and Stefano Morra

We prove a version of the weight part of Serre’s conjecture for mod p Galois representations attached to
automorphic forms on rank 2 unitary groups which are nonsplit at p. More precisely, let F/F* denote a
CM extension of a totally real field such that every place of F+ above p is unramified and inert in F, and
let 7 : Gal(F+/F*) — CUZ(E,,) be a Galois parameter valued in the C-group of a rank 2 unitary group
attached to F/F™. We assume that 7 is semisimple and sufficiently generic at all places above p. Using
base change techniques and (a strengthened version of) the Taylor—Wiles—Kisin conditions, we prove
that the set of Serre weights in which 7 is modular agrees with the set of Serre weights predicted by Gee,
Herzig and Savitt.
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1. Introduction

Let p be a prime number. The mod p local Langlands program (see [Breuil 2010; Berger 2011; Breuil and
Meézard 2002]) predicts a correspondence between continuous Galois representations p : Gal(Q p/Qp) —
GL, ([l_:p) and smooth admissible GL, (Q,)-representations on Fp—vector spaces. It is expected to be
compatible with the classical local Langlands correspondence over C, its geometric realization in the
torsion cohomology of Shimura varieties, and classical local/global compatibility.

The case when n = 2 has been most extensively studied, and such a correspondence has now been
established; see [Colmez 2010; Colmez et al. 2014; Emerton 2011]. However, the picture for n > 2 (or more
general p-adic fields) still remains highly conjectural, and evidence suggests that such a correspondence
will be much more intricate; see, for example, [Breuil and Herzig 2015]. Despite this deficiency, there
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has been substantial progress on several expected consequences of this conjecture: the weight part of
Serre’s conjecture, the Breuil-Mézard conjecture, and Breuil’s lattice conjecture [Buzzard et al. 2010;
Gee et al. 2014; Breuil and Mézard 2002; Gee and Kisin 2014; Breuil 2014; Emerton et al. 2013; 2015].

In a different direction, one is also interested in the possibility of enlarging the conjectural corre-
spondence to include more general groups. The works [Abdellatif 2014] and [Koziot 2016] give some
preliminary indication that a Langlands-type correspondence might be expected to hold for the groups
SL>(Q,) and U>(Q,), and reveal some new phenomena (e.g., the existence of L-packets in the mod p
setting). In general, the work of Buzzard and Gee [2014] lays out precise statements of Langlands-type
conjectures for general reductive groups by making use of an enhancement of the Langlands dual group
(this will figure prominently in our considerations below). This framework reconciles the classical local
Langlands correspondence with its geometric realization. These developments are also related to recent
work of Gee, Herzig and Savitt: the article [Gee et al. 2018] gives a formulation of the weight part of
Serre’s modularity conjectures for a large class of nonclassical reductive groups.

Classical Langlands correspondences (i.e., with C-coefficients) for various reductive groups, and
the relations among them, are at the core of the Langlands functoriality principle. In the specific
example of unitary groups, this principle predicts that a correspondence between (packets of) automorphic
representations of unitary groups on the one side and L-group valued Galois parameters on the other side
is obtained from a correspondence on general linear groups. When the unitary group has low rank, this is
studied in [Rogawski 1990, Section 15.1].

The goal of the present work is to give evidence for a mod p Langlands correspondence for rank 2
unitary groups. Specifically, given a Galois parameter 7 with values in the C-dual of our unitary group, we
prove that the Serre weights for r predicted in [Gee et al. 2018] (which are representations of finite unitary
groups) are exactly equal to the Serre weights in which 7 is modular (we give a precise statement below).
In order to do this, we use known instances of functoriality (in the form of classical base change results)
and local/global compatibility. Thus, our methods hint at a mod p principle of unitary base change.

We now introduce some notation and setup in order to state our main result. Let K» /K /Q,, be unramified
extensions, with K, /K quadratic. We let U, denote the unramified unitary group in two variables defined
over the ring of integers O of K. Note that U, splits over K». We let “U, denote the C-group of Us, in
the terminology of [Buzzard and Gee 2014] (U, is the usual Langlands L-group of a canonical central
extension of U»). An L-parameter is a continuous homomorphism /5 : Gal(Q 2/ K)— CU,(F »), compatible
with the projection ‘U, (F ») = Gal(K,/K). The C-group also comes equipped with a canonical map
‘U, — Gy, and we assume that the composite character Gal(Q,,/K) L, CULF ») — F; (called the
multiplier of p) is equal to the mod p cyclotomic character.

Inspired by the conjectures of Buzzard and Gee [2014] and the prospect of a mod p Langlands program
for unitary groups, we would like to infer that the L-parameter p is associated to an L-packet of smooth
representations of U,(K) over F p- Unfortunately, such representations are poorly understood beyond
the case K = Q,; see [Koziot 2016]. A possible first step in understanding such a correspondence
would be to study this question in a global context, that is, to study local/global compatibility for an
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L-parameter 7 : Gal(Q/F*) — U, (F »), where FT/Q is a totally real field. We assume furthermore
that 7 is associated to a nonzero Hecke eigenclass in the mod p cohomology with infinite level at p of a
definite unitary group G o, which is nonsplit at places of F * above p. We would like to stress that
our setting differs quite markedly from the body of work related to Serre weights for unitary groups
(e.g., [Gee et al. 2014; Barnet-Lamb et al. 2013]), wherein the group G is split at places above p. In
particular, our Serre weights are representations of finite unitary groups, not general linear groups. We
define W04 (7) to be the set consisting of the [ [, Ip
the Hecke isotypic component attached to r of the mod p cohomology of G.

U>(O f+)-representations appearing in the socle of

According to the conjectures of [Gee et al. 2018], the set W4 (7) should be described in an explicit
way by (flGal@p / FJ’))U | p using purely representation-theoretic constructions. Let us denote W’ (7) 4
Xy, W Gal@,/Fir))> Where W7(F|Gal(@p /F:+) 1 the set described combinatorially in [Gee et al. 2018]
(thus W’(7) is again a set of representations of the group [, Ip Ux(Op+)).

The main theorem of this paper is the following (we refer the reader to the bulk of the paper for any

unfamiliar terminology).

Theorem 1.1 (Corollary 7.5). Let F/F* be a CM field extension of F* which is unramified at all finite
places, suppose that p is unramified in F* and that every place of F* above p is inert in F. Let

F:Gal(@Q/F*) — CU,(F p) be an L-parameter with cyclotomic multiplier. Assume that:

o« i71(CUs(F,)) = Gal(Q/F).

e 1 is modular.

7 is unramified outside p.
e 7 is semisimple and 4-generic at places above p.

. @ker(ado(f)) does not contain F(;p)'

BC(7)(Gal(Q/ F)) 2 GLy(F') for some subfield F' C F, with |F'| > 6.

Then
W’ (7) = Winod (7).

In the GL; setting, the results of [Breuil and Pasktinas 2012] and [Emerton et al. 2015] imply that, for a
GL,(F p)-valued Galois representation p’, the set W?(p") of modular Serre weights should be equal to the
set of representations appearing in the GL,(O g )-socle of the GL, (K )-representation associated to p’ via
some sort of mod p local Langlands correspondence. For U,, the supersingular representations of U (Q),)
constructed in [Koziot 2016] all have simple U>(Z ,)-socle, while the set W’ (p) (for generic semisimple p)
has size 2K°@1. Thus, in the K = Q p case, the global evidence provided by Theorem 1.1 suggests
that W’ (p) (for appropriate p) takes into account the U (Z)-socles of all U»(Q),)-representations in a
supersingular L-packet.
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We obtain Theorem 1.1 by following the strategy of [Gee and Kisin 2014]. We first prove the
containment W’ (7) © W04 (7) by using a global base change argument and applying results of [Gee
2011]. The opposite containment follows by using a modified version of the patching functor constructed
in [Caraiani et al. 2016] and the explicit description of “U,-valued local deformation rings. We explain
these arguments with more details presently.

The main novelty in the unitary group setting is that for both inclusions we make use of the analogous
results for GL /k, . Firstly, we establish a compatibility between classical local base change of automorphic
types (as may be deduced from work of Rogawski [1990]) and the set of predicted Serre weights W’ ()
(for which we introduce a notion of base change of weights). In this direction our results give the following
proposition, which may be thought of as evidence towards a notion of mod p base change. Recall that a
tame U(Og)-type is the inflation of an irreducible U, (T, )-representation over Q p» Where [, denotes the
residue field of K.

Proposition 1.2 (Lemma 3.26, Theorem 4.9). Let o denote a 1-generic tame type for U(Og), and let V
denote a Serre weight for Uy(Og). Let BC(o) denote the base change of o (as defined in Section 3C).
Then

V € JH() <= BC(V) € JH(BC(0)),

where BC(V) is the base change of the Serre weight V (as defined in Section 3E) and JH(W) denotes the
set of Jordan—Hélder factors of the mod p reduction of a 7 p-lattice in W.

In particular, if p : Gal(Q »/K)— CU,(F p) is a 1-generic tame L-parameter with cyclotomic multiplier,
then the set of predicted local Serre weights W’ (p) is of the form JH(5), and we obtain

V e W (p) < BC(V) e W (BC(p)).

Here BC(p) : Gal(Q »/K2) — GL, (F p) denotes the Galois representation obtained by restricting p to the
absolute Galois group of K, and projecting onto the GL, factor.

The tame GL,(Ok,)-type BC(o) of the proposition is characterized by the property that BC(0) ® C —
BC(sr), where 7 is any smooth irreducible complex representation of U, (K) containing o ® C, and where
BC(r) denotes the stable base change of the L-packet containing 7 [Rogawski 1990, Section 11]. Using
the above proposition, we prove in Theorem 6.7 the inclusion W’ () © W4 (7) by base changing to
GL;, and using results of Gee [2011] on the set W’ (BC(p)).

In order to prove the inclusion W’ (7) € W04 (7), we would like to employ a patching argument,
which requires information regarding certain deformation rings. More precisely, let us suppose that
p: Gal(Q »/K) — €U, (F) is an L-parameter with [ a finite extension of [, and let O denote the ring of
integers in some sufficiently large finite extension of @, with residue field F. We let Rl(jl’o’l)’r/ denote
the deformation ring parametrizing potentially crystalline framed deformations of p to O-algebras with
(parallel) p-adic Hodge type (1, 0, 1), inertial type t’, and cyclotomic multiplier. In order to study the ring

R/(jl’o’l)’r , we introduce the notion of Frobenius twist self-dual Kisin modules. Given this, we are able to

describe the structure of Rg’o’l)’f in terms of the “base changed” deformation ring Rgé(();)r . Combining
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these calculations with Proposition 1.2, along with the analogous results of [Gee and Kisin 2014] for GLo,

we obtain the following result, which may be viewed as a ‘“Breuil-Mézard-type” result for unitary groups.

Proposition 1.3. Let p : Gal(@p /K) = CU(F) be a 3-generic tame L-parameter with cyclotomic
multiplier. Let ©' be a “Us-valued, 2-generic inertial type for Ix and o (t') the tame U>(Og)-type
associated to t’ via the inertial local Langlands correspondence of Theorem 4.11. Then

IW’(7) NJH(@ ()] = e(RS" M7 @0 ),
where e(—) denotes the Hilbert—Samuel multiplicity.

To conclude, we employ a variant of the construction of [Caraiani et al. 2016] in order to produce
v p U2(0Op#). Using the
(namely their integrality), the properties of the patching functor

a patching functor M., (—) on the category of O-modules with an action of [
(1,0,1),7'
o

Mo (—), and Proposition 1.3, we obtain the inclusion W’(7) € Woq (7) in Theorem 7.4. This is enough

explicit structure of the rings R

to prove the main Theorem 1.1.
Our results on the geometry of R/(;’O’l) '" in Section 5C can also be used to deduce new cases of

automorphy lifting phenomena for unitary groups which are nonsplit at p. Indeed, the integrality of

Rl(jl’o’l)’r/ (see Section 5C10 and Table 3) together standard Taylor—Wiles—Kisin arguments give the

following theorem (again, we refer the reader to the bulk of the paper for unfamiliar terminology):

Theorem 1.4. Let F/F* be a CM field extension of Ft which is unramified at all finite places, suppose
that p is unramified in F* and that every place of F* above p is inert in F.
Let r': Gal(Q /F)— GL, Z p) be a continuous Galois representation, and let ' : Gal(Q /F)— GL, (F »)

denote the associated residual representation. Assume that:

o v’ is unramified at all but finitely many places.
o We have r'® ="V ® ¢!, where ¢ € Gal(F/F%) is the complex conjugation.

o For all places v of F above p, the local representation r’ |Ga1(@p /F,) 18 potentially crystalline, with
parallel Hodge type (—1, 0) and 4-generic tame inertial type t,).

e For all places v of F above p, the local representation r’ |Ga1(@p JF) is semisimple and 4-generic.
o 7’ is unramified outside places above p.

o 7' =7, () where 7 is a cuspidal automorphic representation of G(Ag+), such that 7o is trivial and
for all places v of F* above p, the local component w, contains the tame U, (O Fi)-representation

associated to t, by the inertial local Langlands correspondence; see Theorem 4.11.
o QK@) goes not contain F (&p).

o 7'(Gal(Q/F)) 2 GLy(F') for some subfield F'  F, with |F'| > 6.

Then r’ is automorphic.
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(Recall that r” is automorphic if r’ ®z, Q, is isomorphic to r,(7") for some cuspidal automorphic
representation 77" of G(Ag+), where r, () is the continuous Galois representation associated to 7’ as in
Theorem 6.1.)

We conclude this introduction with a few remarks on natural questions which arise from the results in
this paper.

In Theorems 1.1 and 1.4, the assumption that 7 is unramified outside p is used to simplify our arguments,
and it should be possible to remove it. On the other hand removing the condition that the L-parameter is
residually tame at places above p requires further analysis of the possible set of modular weights

SS

- ‘) -
Winod (r|Gal(@p/F,,+)) cwW (r|Ga1(@p/Fv+))’

and will depend in a subtle way on the geometry of R;ll’o’l)’r/+ .
Gal@p/Fyh)

In the case where 7|, @, /) is semisimple, the combinatorics of the set W?(FlGal@p /F+) and the set
of Jordan—Hoélder constituents of tame types for U>(O f+) suggest that tame U, (O f+)-representations will
play the role of Breuil-Paskiinas diagrams for nonsplit unitary groups. We expect these representations
to be useful in constructing, by a purely local procedure, some mod- p representations of U,(K) which
naturally appear in the cohomology of Shimura curves with tame level at p. We hope to come back to
these questions in future work.

The paper is organized as follows. In Section 2, we discuss the unitary groups over O which are
relevant for this paper, namely the unramified unitary group in two variables U ¢, . In fact, in order to
speak about Serre weight conjectures, we must work with a certain central extension U, of U, constructed
by Buzzard and Gee [2014]. We also define the C-group “U,, which is the “classical” Langlands L-group
of U,. We give explicit descriptions of the Galois actions on these groups, their character groups, and
their [ ,-structures. Since the groups appearing are slightly nonstandard, we have attempted to give a
detailed account.

Section 3 is devoted to the theory of types, that is, absolutely irreducible U;([F,)-representations over
Frac(0), and their reductions over F. In Section 3C, we recall the notion of base change for types and
compare it with local automorphic base change of smooth U,(K)-representations over C. Then, in
Sections 3D and 3E, we analyze the Jordan—Holder constituents of the mod p reductions of types vis-a-vis
the constituents of the mod p reductions of their base changes. This allows us to establish several useful
properties of base change of Serre weights.

In Section 4A we study L-parameters of the form p: Gal(Q »/K)— CU,(F). We relate these parameters
to U>(Ok)-representations to produce the set of (local) predicted weights W’(p), as defined in [Gee
et al. 2018]. The core of this section is Section 4C, which examines the compatibility between Serre
weights of L-parameters and their base changes. To conclude, we establish Theorem 4.9, which figures
in subsequent base change results.

Section 5 deals with local deformation theory of C-group valued L-parameters. We introduce the
notion of Frobenius twist self-dual Kisin modules over Gz = (O, ®z, R)[[u]] in Section 5B, which are
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Kisin modules equipped with an isomorphism between their Frobenius pullback and their dual. Using
this definition, we deduce the deformation theory of Frobenius twist self-dual Kisin modules from that of
Kisin modules over G by means of base change; as in [Le et al. 2018]. The precise relation between
deformation theory of Frobenius twist self-dual Kisin modules and C-group valued L-parameters is
achieved in Section 5C. In particular, we obtain an explicit presentation for the deformation rings Rg’o’ D.w,

Sections 6 and 7 contain the main global applications, and the proof of the main theorem. In Sections
6A-6C, we provide the background on algebraic automorphic forms on unitary groups which are quasisplit
(but not split) at p, and the Galois representations associated to them, by generalizing the usual results in
the literature for groups which are split at p (see Theorem 6.2). We remark that the compatibility of base
change of types as recalled in 3C and classical base change are integral to these generalizations. The
main result of Section 6 is Theorem 6.7, which is the “weight elimination” statement.

In Sections 7A-7C we generalize the patching construction of [Caraiani et al. 2016] to our unitary
groups; see Proposition 7.3. The modifications are largely formal, using as input the results from
Section 6C. The main result on “weight existence” is then obtained in Section 7D, following the patching
techniques of [Gee and Kisin 2014]. The main result on automorphy lifting follows in Section 7E.

1A. Notation. Let p denote an odd prime number, and fix an algebraic closure @ » of Q,. We denote
its ring of integers by Z p» and its residue field by F »» and we assume that all field extensions of Q,, are
contained in @ p- Given a p-adic field F' and an element x in its residue field, we define X to be its
Teichmiiller lift. Throughout we will work with a finite extension E of @, which will serve as our field
of coefficients. We let O denote the ring of integers of E, e its uniformizer, and F its residue field. We
will assume E and [ are sufficiently large as necessary.

For any field F, we let ' & Gal(F/F) denote the absolute Galois group of F, where F is a fixed
separable closure of F. If F is a number field and v is a place of F, we let F, denote the completion of
F at v, and use the notation Frob, to denote a geometric Frobenius element of I'g,. If F' is a p-adic field,
we let I denote the inertia subgroup of ['g.

For F either a number field or a p-adic field, we let ¢ : I'r — Z; denote the p-adic cyclotomic
character, and let € or w denote its reduction mod p.

If F is a p-adic field, V a de Rham representation of I'r over E, and « : F — E an embedding, then
we define HT, (V) to be the mul}iset of Hodge—Tate weights with respect to «. Thus, HT, (V) contains i
with multiplicity dimg (V QF F@@)'7. In particular, HT, (¢) = {—1}. Further, we let WD(V) denote
the Weil-Deligne representation associated to V, normalized so that V +— WD(V) is a covariant functor.

Let F be a p-adic field. We let Artp : F* — F%’ denote the Artin map, which sends uniformizers
to geometric Frobenius elements. Let recc denote the local Langlands correspondence of [Harris and
Taylor 2001], from isomorphism classes of smooth irreducible representations of GL,(F) over C to
isomorphism classes of n-dimensional, Frobenius-semisimple Weil-Deligne representations of the Weil
group of F (normalized to agree Arty in dimension 1). For a choice of isomorphism ¢ : E = C, we

1

define recg 1~ orecc ot to be the local Langlands correspondence over E.
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All representations will live on vector spaces over E or [, or on O-modules, unless otherwise indicated.
By abuse of notation, we will generally not distinguish between a representation and its isomorphism
class. If G is a group, H < G a normal subgroup, p an H-representation and g € G, we write pé to
denote the H-representation given by & — p(ghg™").

Given a finite length representation V of some group, we let JH(V) denote its set of Jordan—Holder
factors. If V denotes a representation of a (pro)finite group G on a finite-dimensional E-vector space,
then we may choose a G-stable O-lattice V° inside V, and we write Vo for its reduction mod @ . By
[Serre 1977, Theorem 32], the set of Jordan—Holder factors of V° is independent of the choice of lattice
V°. We write JH(V) for JH(V°). We denote by V > V" the duality functor defined on the category of
finite dimensional E-vector spaces (resp. finite dimensional F-vector spaces).

We write matrix transposes on the right, so that AT denotes the transpose of a matrix A. Given
an (anti)automorphism 6 of GL, (R) which commutes with the transpose, we write A?T for (A4)T; in

particular, we write A~ T for (A™HT.

2. Group-theoretic constructions

Our first task will be to introduce the groups which will be relevant to arithmetic applications. After
defining unitary groups and certain central extensions in Sections 2A and 2B, we construct the dual
groups with which we will be working in Section 2C. For the sake of thoroughness, we also give explicit
descriptions of the Galois actions and [ ,-structures. We mostly follow [Buzzard and Gee 2014] and [Gee
et al. 2018, Section 9].

2A. Unitary groups over p-adic fields.

2A1. Let f > 1, and let K denote the unramified extension of Q, of degree f. We let Ok denote its ring
of integers, with canonical uniformizer p, and identify its residue field with F, =F,s. We let ¢ € T'q,
denote a fixed lift of Artg,(p) € Fabp; in particular, ¢ is a geometric Frobenius element and we have
e(¢) = 1. The group 'k is topologically generated by ¢/ and Ix (= lg,).

We let K denote the unique unramified quadratic extension of K, and Ok, its ring of integers. The
group U (K) C (f);é2 is defined as the kernel of the norm map K,* — K*.

Fix a choice of root 7 & (—p)l/(pzf_l) € @p. We define a character @, : I'x, — (f),x(2 by

7Y
Y B> —.
b4

We fix once and for all an embedding ¢o : Ko < E, and define
p = goody Tk, — 0%,

Y -1)/(p=1) _

We denote by w ¢ the mod p reduction of @, . Note that wé’} .
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2A2. Let U, denote the algebraic group over Ok given by
Ux(R) = {g € GLa(Ok, ®o, R) : g &V byg = @y}, !

where R is an Og-algebra, and @, S (_01 (1))
Recall that the field K> is considered as a subfield of @,. The projection O, ®o, @, — Q,, defined
by x ® y — xy induces an isomorphism Ug(@p) - GL, (@p), and via this isomorphism GLQ(@p)

obtains a 'k -action given by

{g}/ lf)/ S F[(z,
(DT, ify €T \Tk,.

2A3. Following [Buzzard and Gee 2014, Section 5.3], we set H = 172, so that H is a canonical central

extension

1-G, > H—>U;,—1

of algebraic groups over Ok. (To be precise, the construction of [Buzzard and Gee 2014] which we
outline below is done over K. The integral model for U, above gives rise to a hyperspecial point in the
semisimple Bruhat-Tits building of U, (K), which is identified with the semisimple Bruhat-Tits building
of H(K), since the extension defining H is central. We therefore obtain a hyperspecial point and the
desired integral model for H.) We will often abuse notation and conflate algebraic groups over Og with
their generic fibers. The group H possesses a twisting element, in the terminology of [loc. cit.]. We now
recall the explicit construction of H.
We proceed as follows. The group H is defined as a pushout followed by a pullback:

1 > Iy s SL, s PGL, — 1
[ o] ]

1 > Gy, > GL, > PGL, —— 1
I

1 >» Gy —— H > Uy > 1

Concretely, H is the set of all pairs (k, h'), with h € U,, h' € GL;, subject to the condition that ~z and
h' have the same image in PGL;. The maps H — U, and H — GL, are the projections onto the
corresponding factors, and the map : : G,, > H is A — (1, (3 g))

Note that the @ p-points of the top two rows of the diagram above carry the standard (i.e., split) action
of I'k. In particular, the action of I"x on the first factor of H (@ p) 1s the one induced from Uz(@ p), while
the action on the second factor is the standard one.

I This group is quasisplit, and is customarily denoted U 1 in the literature.
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2A4. Let Ty denote the diagonal maximal torus of U,, and Ty its preimage in H. Furthermore, let
TG, Ts, and Tp denote the diagonal maximal tori of GL;, SL; and PGL,, respectively. The character
groups of these tori fit into a diagram:

ar—>2a

0 — 5 X*(Tp) =7 — 422 X¥(T) =7 ——— X () =Z/27 ——— 0

H (a,b)>a—b O] T

ar>(a,—a (a,b)—>a+b

0 — & X*(Tp)=7 229 xx(1g) =72 7 xx (G =27 ——— 5 0

\Iial—)(a,—a) OJ

0 — 3 X*(T) =7 —— s X*Ty) —————— X' (G =7 ——————5 0

The isomorphisms appearing are the canonical ones. (The notation X*(T,), fore € {P, S, U, G, H},
stands for the character group of the torus 7, over Q@ D)

We describe the remaining character group. The group X*(Ty) is a pushout, so we may identify it as

X*(Ty) = {(i) e X*(Ty) ® X*(Tg) = z‘*} /~

a a+z
c c—z
d d+z

for z € Z. The maps X*(Ty) — X*(Ty), X*(Tg) — X*(Ty) are the inclusions into the corresponding
factors, and the projection X*(Ty) — X*(G,) = Z is

(IC’) —c+d.
d

2AS. We now consider cocharacter groups. The bottom two rows of the diagram above give the following

where

commutative diagram:

00— X (G =7 D X (Te) =72 I X (T =7 ————5 0

T O T(a’,b’)i—)a/—b/

0 —— X.(G) =7 —— X, (Tg) — X, (Ty) =7> —— 0

The isomorphisms are again the canonical ones, and we again consider the cocharacter groups of the tori
over @ -

We describe the remaining cocharacter group. The group X, (Ty) is a pullback, so we may identify it
as

’

X.(Ty) = {(b) €X.(Ty) ® X, (Te) 2% :d ' = —d’}.
d/
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The maps X.(Ty) = X«(Ty), X«(Tg) — X.(T¢) are the projections onto the corresponding factors,

and the map X,(G,,) =7 — X, (Ty) is
a — (8,).

a

2A6. The actions of 'y on X*(Ty) and X, (Tp) are the ones induced from X*(Ty) and X, (Ty): they

are both unramified, and we have
a —b
o ()-(3)

for ( ) € X*(Ty) and

[T

’

a
for (gﬁ) € X.(Ty).
d/
The pairing ( —,— ) : X*(Ty) x X.(Tg) — Z between characters and cocharacters is given by
a a:
<<b), <IC’ )> =aa +bb +cc +dd’;
d/

c /

this is well-defined and Galois-invariant. The roots &gy C X*(Ty) are given by {£a g}, where
def !
ag = ( _(1))
0
Likewise, the coroots @y, € X (Ty) are given by {£a},} where
1
O‘IYJ = (_1 )
~1
We define the set of simple roots as Ay & {ap), and let By denote the corresponding Borel subgroup
of H. We therefore have A}, = {arf;}.
The group H has a twisting element, in the sense of [Buzzard and Gee 2014]: tracing through the

construction in [loc. cit.], we obtain

0
ng = (?) € X*(Ty).
0

This element is Galois-invariant, and (ng, a,vi) =1.
The Weyl group of H with respect to Ty is denoted Wyy; it is a cyclic group of order 2. We denote by

s the unique simple reflection, which generates Wyg.
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2B. Unitary groups over Q.
2B1. We now consider unitary groups over Q,. We set
(G, B, T) = Reso,z,(H, By, T),
all group schemes over Z,. We have
G@,) = Ind " (H@,))
as ['g,-groups, and via the evaluation maps, we have

-1
(evl, eVy, ..., €Vyr-1) G(@p) — 1_[ H(@p)
i=0

fr— (f@)o<i<f1.
Recall that ¢/ acts on H(Q ») by
_ _ f f
o - (h1, o) = (@2h7 T O 1Y),

Tracing through the isomorphisms above, the action of I'g, on the right-hand-side product is given as
follows:

¢ ((ho1 ho2) ... hp1) = (At ... hpoy, (@2hy | @5 ho2)?”)
with inertia acting in the standard, diagonal way. In particular,
evi : G(Qp) = G(@,) " = H(@,)"* = H(K) = U(K).
2B2. The character and cocharacter groups of the torus T are given by
X*(T) ZIndp (X*(Tw)),  Xo(T) = Indp” (Xo(Th));

see [Gee et al. 2018, Section 9.4]. Using the evaluation maps as above (with the same ordering), we

identify
f-1 f-1
XN Z@X*Tu), X (T) =P Xu(Tu).
i=0 i=0

We will write elements of X*(T') as

a

2 ap ap Z.f-'
NOREORS
d do di dy
(and similarly for X, (T)).

The perfect pairing ( —,— ) : X*(T') x X4(T) — Z is given by

|

’

a f—1
N >=Za,-a;+b,~b;+cic;+d,-d;,

¢
d i=0

[INARTSNRTS ST
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and the action of I'g, on X *(T) is given by

ao al af—1 ai ar-1 —bo
(B)()- () -()- ()
(p . o cl P Croi — ¢l “ e i o .
do d; dy_y dy dy1 do
An analogous action (i.e., with a “shift left”) holds for X, (T').

2B3. We define the simple roots A as those functions f in Ind?i” (X*(Tg)) with image in {0} U A,
and such that f(y) = 0 for all but a single coset. Explicitly, we have A = {a;}o<;j<r—1, Where

/0 1 0
aid:“(g)... (é) (8) e X*(T).
0 0 0

——
i-th entry

We define A" analogously, and obtain AY = {«;"}o<i<s—1, Where

/0 1 0
=(0) (1) ()em
0 -1 0

———
i-th entry

The Weyl group W of G with respect to T is equal to WI{,. We shall write elements of W as
w = (wo, Wy, ..., ws_1). The group W has a nontrivial Galois action given by

@ - (wo, wi, ... wsr_1)=(wy,...Wsr_1, Wo).

def

Finally, we define 1 = (1, 1,...,1) and s = (s,8,...,5).
The map ev; induces a bijection X*(T) @ > X*(Ty)'¥. In particular, the twisting element

nu € X*(Ty)'x corresponds to the twisting element

0 0 0
ndief( >:<(1)>((1)>.“((1))GX*(T)FQP‘
0 0 0

2C. Dual groups. We now define the relevant Langlands dual groups.

o= 1010

2C1. The based root datum of U, (with respect to the upper-triangular Borel subgroup) is given by

(X*(Ty) =72, {(1, =D}, Xo(Ty) =72, {1, = D)}).

Therefore, we may take U> £ GL, as the dual group, which we consider as a split group scheme over

Z ,, along with its diagonal maximal torus, upper-triangular Borel subgroup, and the fixed isomorphism
between G, and the unipotent radical of the Borel given by x +— ((1) 1 ) We equip this data with the
canonical isomorphism between the based root datum of U, and the dual based root datum of U,. In
choosing this isomorphism, we obtain an induced action of I'x on 172 given by

A

R g if y eT'g,,
y-8=

AT x—1 det(®™! 0 A
D5 T, :( 1) det@,l)g if y € g \ Tk, .
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2C2. Consider now the group H = U>. The based root datum of H is given by

def

Uy = (X*(Tu), Au, X«(Thn), Ajp).
and therefore the dual based root datum is
V) = (Xo(Te), Ay, X*(Tw), An).

We let H denote the dual group of H, with maximal torus fH and Borel §H which contains fH. By
[Buzzard and Gee 2014, Proposition 5.39], we have

HZ= U, xGy) / <(<_01 _01> , —1>> =GL, x"G,,,

where the Galois action on H is the one induced from U,. We have an isomorphism

ﬁ =GL, x"G,, = GL, xG,,

lh, a] —> ((“ O) fz,a2>
0 a

and we will identify H with GL; xG,, via this isomorphism. The Galois action is then given by

(h, a) if y € 'k,

]/'(]:\l,a): a 0 AT adet(lAz)_l 0 ~ .
O~ T !, = N h, fyelk\TIk,,
((o a> 2P 0 adagpyt)) MY ETRAE

for (h, a) € GLy x G,,.
Thus, we obtain the based root datum for H

def

W E (X (Tw), A, X(Tw), AY) = (23, {1, —1,0)}, 2%, {(1, —1,0)}),

~

equipped with an action of I'x. Moreover, we obtain an isomorphism of based root data ¢ : Wy, = Wg:
¢ : X.(Tw) => X*(Tw).
@,b',c,d)y— (@ ,b,c —a).
@) X*(T) => X(Tn).
(a,b,c,dyr— (a+c,b+d,c+d).
Where the last coordinate in the character (resp. cocharacter) group of Ty corresponds to the G, factor

of H. Note that this exchanges the roots and coroots. We use this isomorphism to identify the Weyl group
of Ty with W.

2C3. Finally, we define

U, “'H = H x Gal(K»/K) = (GL, xG,,) x Gal(K2/K),
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with the Galois group acting on H as above. The injection 1 : G,, — H induces adual map7:“H — G,,,
which is given by (h,a) % Y da.

Remark 2.1. We will need to make use of the above construction in a global setting as follows. Suppose
F/FT™ is a quadratic extension of global fields, and let v denote a place of F* which is unramified and
inert in F, and such that FUJr = K and F, = K,. We then identify €U, with

H x Gal(F/F™)
via the isomorphism Gal(F/F*) = Gal(F,/F,") = Gal(K»/K).

2C4. We set

def

(G.B.T) £ nd.>" (H, By. Ty),

all group schemes over Z,, equipped with the induced I'g,-action. Using the (induced versions of the)
isomorphisms above, we consider G as the dual group of G, and set

LG ¥ G x Gal(K,/Q,).

2D. An isomorphism. We briefly digress to recall a construction of €U, from [Clozel et al. 2008]; see
also [Buzzard and Gee 2014, Section 8.3].
Let G> denote the group scheme over Z, which is a semidirect product of GL, xG,, by Gal(K,/K),

with ¢/ € Gal(K,/K) acting by
f. ~ a 0 AT
@’ - (h,a) = ((0 a)h ,a).

There is an isomorphism between our model ‘U, and G, given as follows:

‘U, = G,.

~ _1 ~
(h,a) ¥ 1+— <<a0 aol> h,a_l) x 1.
R : -1 R :
(h,a) x ¢/ —> <<a0 a(_)1> hd,, —a_1> x @/
-1 R R
<(“0 a(_)1> h,a—l) x1<—i(h,a)x 1.
a’l 0, 1) s of il !
0 a-! h®,, —a X @l «—i(h,a) X ¢’ .

The group G, also possesses a map v : §o — G, given by (h,a) x (/)" — (=1)'a. Under the
isomorphism above, this corresponds to the map (=)' o7 : U, — G,,.
As in Remark 2.1, we will often identify G, with (GL; xG,,) x Gal(F/F™).
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2E. [ ,-structures.

2E1. Viewing G and G as group schemes over Z,, we can form the F p-group schemes
(G,B.T)2(G,B,T) xz,F,, (G*,B*. T 2(G,B,T)xz,F,.

We denote by F the relative Frobenius on G, and denote by F* the composite Frog, where Fr is the

relative Frobenius on the split group G*. In particular, we have G = G(F p»)=H(F,).

The action of F on X*(T) is defined by F(x) = x o F, so that F = pp on X*(T). Identifying
X*(T) = X*(T) with @{:01 X*(Tg) as in Section 2B2, this action is explicitly given by

ag ap af-1 pai paf-1 —pby
F(b(J)(bl)..'(bfl>_([)bl)”.<pbfl)(_pao)
o 1 cr—1 | — \ pa per-1 pco
dp d; df_ pdi pdy_ pdo
Similarly, the action of F* on X,(T*) is given by F*(A) = F* o A, so that F* = pp on X,.(T™*).

Therefore, after chasing through the isomorphisms of root data of Section 2C2 and using the identification
X, (TH=X *(T) = @f:—ol X *(TH) similar to above, this map is explicitly given by

L (90 [ ai ar—1 pai par-i p(co—bo)
P ()= (F) - () ()
€0 C1 Cf—1 149} pPer—1 PCco
3. Representation theory

We now collect various results we will use regarding types and weights for the groups l72([Fq) and GLa(F2).
We give definitions of base change for both types and weights in Sections 3C and 3E, respectively, and
relate the former to automorphic base change. Section 3D discusses various compatibilities between
types and weights, and contains useful combinatorial properties which will be employed extensively in
the applications which follow.

3A. The group G.

3A1. Let X (T), X{(T) and X°(T) denote respectively the subsets of X*(T') consisting of dominant,
p-restricted, and inner-product-zero elements:
def

X (T)E{ue X (T):0< (u o) forall0<i< f—1}.

def

Xi(T)={peX*(T):0<(u,a)y<p—1forall0<i < f—1}.

def

XO(T)={MGX*(T):(u,oziV)=O forallO0<i < f —1}.
3A2. Recall that a Serre weight of G(F),) is an irreducible representation of G([F,) on an F p-vector space.
Given u € X ((T), we let F(u) denote the restriction to G(F,) of the algebraic G-representation of
highest weight . We then have the following result.
Proposition 3.1 [Gee et al. 2018, Lemma 9.2.4]. The map
X(T)
(F—-1)X%(T)
p= F(w)

— {Serre weights of G(F )}~

is a well-defined bijection.
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We will always assume that the coefficient field F is large enough so that the representations F (i)
may be realized over F.

Definition 3.2. Given a character u € X*(T'), we say u lies n-deep in the fundamental alcove if we have
n<{u+neo’)<p—n

forall 0 <i < f — 1. We say a Serre weight F is n-deep if we can write F = F(u) for some n-deep
character ©. (Note that this notion is independent of the choice of w«.)

3A3. We likewise consider Deligne—Lusztig representations for the group G([F ), as in [Gee et al. 2018,
Section 9.2]. In particular, for w € W and u € X*(T) such that (T, 6, ,,) is maximally split, we let
Ry, (1) denote the associated Deligne-Lusztig representation, a representation of G([F,) over Q p- Note
that if  — n is O-deep, then (T, 0, ,,) is maximally split for any choice of w € W see [Le et al. 2019,
Lemma 2.2.3]. We again assume the coefficient field £ is large enough so that R,, (1) may be realized over
E. Using the surjection G(Z,) — G([F,), we will occasionally view Serre weights and Deligne—Lusztig
representations as representations of the compact group G(Z,) = U>(Ok).

By [Herzig 2009, Section 4.1], if (w, u) € W x X*(T) with u — n being 0-deep, and if (v, v) €
X*(T) x W, then we have an isomorphism

Ru (1) = Ry 1 (0(0) + F0) — vwF ()~ (1)), (BA.D)

Moreover, by [Herzig 2009, Lemma 4.2], if (w, n), (w’, u') € W x X*(T) are two pairs with © — n and
u' — n being 0-deep, and we have an isomorphism R, (1) = R, (u'), then (w, u) and (w’, i) lie in the
same X*(T) x W-orbit.

Definition 3.3. Let o denote a Deligne—Lusztig representation. We say o is n-generic if there is an
isomorphism o = R, (it + 1), where u lies n-deep in the fundamental alcove.

3A4. We shall also need to know how the representations R, (1) decompose upon reduction mod p. To

this end, we define the following elements of X*(T). Fix w = (wo, w1, ..., ws_1) € W, and set
w (0 ; w (9 0 w ] 0 w (0
pw:... 0 0 cee gw:... 0 0 cee yw: 0 0 cee p: 0 .
0 0 0 0 0 0 0
w;=1 w;=s w;=1 w;=s w;=1 w;=s

Suppose that € X*(T) is such that u© — n is 1-deep. By the main theorem in the appendix of [Herzig
2009], we have

JH(Ry (1) = {Fu (Rw (1)) }wrew, (3A2)

where
def

Fu (Ryw(1)) = F(pyw +w' (1 — wi (5uw)) + ppw — 7 (p)), (3A3)

and where 7 denotes the action of ¢~ on X*(T).
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Definition 3.4. Let o be a 1-generic Deligne—Lusztig representation and fix a presentation o = R, (1)
with w € W and i — n being 1-deep. We define the Deligne-Lusztig representation (o) by

def

B(0) = Ryw(s(u—mn)+(p—1n).

By [Le et al. 2019, Proposition 2.2.15] and (3A.1) one easily checks that (o) does not depend on the
choice of presentation o = R,,(1). Moreover, note that if n < (u, o”) < p—n, then s(u—n)+(p—Dn
will satisfy the same set of inequalities. Therefore if R, () is n-generic, then S8(R,, (u)) will also be

n-generic.

3AS. Finally, suppose i € X*(T) is a character of the form

ao aj af—1
b b br_
0 0 0

(that is, suppose w is in the image of X*(Reso,z,(Ty)) < X*(T)). Then R, (u) is a representation
of G(Z,) = Uy(Ok) on which z(O};) acts trivially, and therefore we view it as a representation of
172((‘)1()/1((‘);;) = U»(Ok). Conversely, if R, (1) is a representation of G(Z,) on which 1(02) acts
trivially, then p is a character of the form

ag aj af-1

_ [ b b br_
M_(68)<C]1)”‘(6;})

0 0 0

with Z,-f:_ol cip' =0 (mod p/ — 1). By applying the equivalence R, (1) = Ry, (i + (F — w)u') for an
appropriately defined element 1’ € X*(T') and using the equivalence relation on X*(Ty), we may assume

a N /4 @

w={o )2 ) -2
0 0 0
0 0

0

w is of the form

(one can even take u’ € X°(T)).

3B. The group GL,.

3B1. Set
(G'. T") = Resoy, /z,(GLajoy, . To/0y,):

so that G'(F,) = GLy(F,2). We identify the maximal torus Tg,o %, of GLy/0 %, with Ty x o, Ok,. This
gives isomorphisms
2f-1

T Xz, @p = 1_[ (Ty xox Ok,) X0k, .¢l @1’
i=0

f—1 2f—1
= (l_[ Ty x4 @p> X ( l_[ Ty Xoy.p @p)

i=0 i=f
= (Resog/z,(Tv) Xz, @,) x (Reso, sz, (Tv) xz, @),
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where we conflate Gal(K,/Q),,) with the set of embeddings of K into Q p- In this way, we identify
X*(T") with two copies of X*(Reso,/z,(Ty)). We write elements of X*(T’) as (i, u') with u, u' €
X*(Resoy /7 ,(Ty)). In particular, if 4 is an element of X *(T) of the form

ap ay af—1
(b )b )...[0—
0 0 0

() (5) - (b)) € X*(Resoy/z, (Tv)),

we will identify it with

and consider expressions such as (i, @) or (u, —s(w)) in X*(T").

Given some object (homomorphism, character, etc.) associated to G, we will denote by a prime the
analogous object associated to G'. For example, the notation F’ will be used to denote the Frobenius map
on G' xz, ﬁp, and on the character lattice X*(T"):

a a arf—1 pa Pazf—1y ¢ pao
F/(bg)(bi ) U (be—l) = (Pbi) e (Pbe—l )(Pbo)
We identify the Weyl group W’ of T’ with two copies of W, and we will sometimes write elements of
W’ as (w, w’) where w, w € W.

3B2. We define the subsets X (T"), X1 (T') and X°(T") as above, and denote by F’(i1) the restriction to
G'(F,) = GLy(F,2) of the algebraic G'-representation of highest weight 1 € X (T”). In particular, we
have the following classification result.

Proposition 3.5 [Gee et al. 2018, Lemma 9.2.4]. The map
X1(T")

(F' —1)Xo(T)

= F'(n)

— {Serre weights of GLy(F2)} /=

is a well-defined bijection.
Once again, we will assume that [ is large enough so that F’(u) may be realized over F.

3B3. We define Deligne-Lusztig representations R, (u) for w € W', u € X*(T') analogously to the
above. We again assume that R, (1) may be realized over E. Furthermore, an analog of (3A.1) holds.
We will often view F'(u) and R;, (1) as representations of G'(Z,) = GL,(Ok,) by inflation.

3B4. Given w = (wo, wy, ..., war—1) € W, we define the following elements of X*(T"):
P (0) e () e e e () () e (D) (9) e P E ().
—_ == —— —_ ==
w;=1 w;=s w;=1 w;=s w;=1 w;=s

Suppose @ € X*(T’) is such that u — p’ is 1-deep. The analog of (3A.2) takes the following form:

TH(R}, (1) = {Fp (R, (1) }wrew, (3B.1)
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where

def

Fo (R, (1) = F'(py,, +w'(n — wr'(g(; 1y,)) + poyy — 0°),

and where 77’ is the automorphism of X*(7") such that F' = pz'~!.

Definition 3.6. Let o’ be a 1-generic Deligne—Lusztig representation and fix a presentation o = R, (1)
with w € W’ and u — p’ being 1-deep. We define the Deligne—Lusztig representation 8'(c”) by

def

B'(0") = R 5, ((s, )t — p") + (p = 1)p').

As above for the map B, the above expression is well-defined, and if R, (u) is n-generic, then 8'(R;, (1))
will also be n-generic.

3C. Base change of types. Our next task will be to define a notion of base change for tame types of
U,(Ok). We note that this is essentially the Shintani lifting considered in [Kawanaka 1977].

3C1. We first recall the classification of irreducible representations of U,([F,) in characteristic zero; see
[Ennola 1963].
Fix a character

w:[FqXZ—MDX,

which we also view as a character of By (F,) via

w((’o‘ xyq>) =V (),

where x € [F;z, y € Fp2, and xy? = yx9. (Here By denotes the upper triangular Borel subgroup of U;.) We
let Indgﬁgq))(w) denote the induced representation. If ¥ =7 = i, then Indgi,(([F[gq))(‘/’) is irreducible. On the
other hand, if v/ ~9 = v, then ¥ extends to a character of U,([F,), and we have

Us(F -
Indp> (@) () =Y © (¥ ® S,

where St denotes the irreducible representation Indgf](([%’q)) (H/1.

Consider now the group Jend L€ U, x U, over O, which is the unique elliptic endoscopic group of Us.
Fix a character
0 =01 @6 : Jend(Fy) = U1 (Fy) x Ui (Fy) — OF

(x, y) = 01(x0)62(y).
We suppose that 6 # 6>, and let o (6) denote the associated irreducible cuspidal representation of U, (),

as in [Blasco 2010, Section 3.1(b)].
We have the following classification theorem.
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Theorem 3.7 [Ennola 1963]. Any irreducible representation of U>(F,) over E is isomorphic to one of the
Sfollowing:

o Y, where  is a character of Uy ([,).
o V Qk St, where v is a character of Uy (Fy).

. Indgz(ffq))(lﬁ), where r is a character of I]:qX2 which satisfies ¥~9 # .

e 0(0), where 8 =0, ® 0 is a character of Uy (Fy) x U (F,) with 01 # 0,.

The only isomorphisms among these representations are Indgi](ggq)) E Indgi](ggq)) W) and o (01 Q6,) =

0 (6, ®6)).

Definition 3.8. We define a tame type o to be an irreducible U, (O )-representation over E which arises
by inflation from an irreducible U, ([F,)-representation over E. Likewise, we define a tame type over O to
be a representation o of U,(Og) on a finite-free O-module, such that o ®¢ E is a tame type over E. We
make similar definitions for the group GL,(Ok,).

3C2. The principal series case. Consider again a character
v [F;2 — 0%
Ux(Fy)

which satisfies ¥~ # 1, and let Ind Bu(F,)
We may extend the character ¥ to a character ¥ ® ¥~ of By (F,2) as follows:

(¥) denote the (irreducible) principal series representation.

Y@y~ By(Fp) — O

(’5 y) =YY@
Z

. . . . . GLa(F 2)
where x, z € [quz, y € F 2. We consider the (irreducible) induced representation Ind BUZ([F ‘;2) (Y @y~7) of
q

Ux(F,2) = GLa(F,2), and view it as a tame type of GL,(Ok,) by inflation.

Definition 3.9. Let ¢ : I]:(:;2 — O be a character such that ¥ ~7 # . We define the base change of

Indgi](%q)) (¥) to be the GL,(Ok,)-type given by
U, (F,) def GL2(F 2) _
Bam%m%wnzm%w§g¢®wa

There is a compatibility of this definition with automorphic base change, as follows. Let o =
Indgi](ggl 1) ) (¥), and suppose 7 is a smooth irreducible representation of U,(K) over C such that 0 @ p C C
7|y, () (for some choice of morphism E < C). This implies that 7™ £ 0, where Iw; denotes the
upper-triangular pro-p-Iwahori subgroup of U;(Og). Consequently, = cannot be supercuspidal, and
is therefore a subquotient of a principal series representation. Since the character ¢ is regular, this
subquotient must in fact be an irreducible principal series; see [Rogawski 1990, Section 11.1] for a

classification of nonsupercuspidal representations of U, (K)). We let BC(;r) denote the stable base change
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of m to a representation of GL,(K>3); see [Rogawski 1990, Section 11.4]. Then BC(;r) contains a unique
tame type, which is isomorphic to BC(0) ® g C

3C3. We now wish to compute the base change map on Deligne — Lusztig representations. Let u € X*(T')
be such that
ap af—1
w= (%)) e <bfol),
0 0

-1 -1 f-1 f-1
Y aip'—p! Y bip' £ bip'—p/ > aip' (mod p* —1).
i=0 i=0 i=0 i=0

By [Deligne and Lusztig 1976, Propostion 8.2] we have an isomorphism of U, (0O g )-representations

and suppose

Uy (Fy)
Ry () =1In de (F, )(Qu)

X N i Ny
9”<(o xzq)) = Go(%im0 WP Lo bl

(recall that we identify representations of lNJZ(O k) trivial on z((f)}é) and representations of Up(Ok)).

where

Further, the assumption on w and [loc. cit., Propostion 7.4] imply that R; () is irreducible. Consequently,
the base change map becomes

BC(Ry (1)) = R}y 1y (11, —s ().

Now let w € W be an element in the F-conjugacy class of 1, and choose w’ € W such that w'wF(w') ™' =
1. Applying first the equivalence (3A.1) for the element v = w’ (and v = 0), then the above equation,
then the equivalence induced by (w'~!, w'~!), we obtain

BC(Ry (1)) = Ry, (1, (1), (3C.1)

3C4. The cuspidal case. Consider again the character 6 = 0; ® 0, of Jena([F,) which satisfies 6, # 0.
By base change we obtain the character
01 Jena(Fp2) =Fs x 5y — 0
(x, 3) > 01 D0 (v 7).

By inflation, we view this as a character of upper triangular Borel subgroup By (F,2) of Ux(Fp2) =
GLy(F,2), and view the (irreducible) induced representation Ind By ([(F ) (9) as a tame type of GL,(Ok,).
Definition 3.10. Let 0 = 60; ® 65 : Jena(Fy) — O be a character such that 6, # 6,. We define the base
change of o (0) to be the GL,(Ok,)-type given by

def 2( 2)

BC(o(6)) £ Indy, ¢ ) ().
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We again have a compatibility of this definition with automorphic base change. Let 0 = o (6), and
suppose 7 is a smooth irreducible representation of U,(K) over C such that 0 @ C C 7|y, (o) (for
some choice of morphism E < C). This implies that 77 is a level O supercuspidal representation, and we
let BC(r) denote the stable base change of (the L-packet containing) rr. Then BC(sr) contains a unique
tame type, which is isomorphic to BC(0) ® g C; see [Blasco 2010, Corollary 3.6].

3CS. We now wish to compute the base change map on cuspidal Deligne—Lusztig representations. Let

u € X*(T) be such that
ao af—1
w= (%’)...(bf(')l)’
0 0

and suppose that Z;f:_ol a;p' # Z;f:_ol bip' (mod p/ +1). By [Deligne and Lusztig 1976, Theorem 8.3],
this assumption guarantees that R 1, 1)(u) is an irreducible, cuspidal U, (O )-representation. Then a
straightforward character computation using [Ennola 1963, Section 6] and [Deligne and Lusztig 1976,
Corollary 7.2] gives
R(s,l,...,l)(ﬂ) = O'(QM),
where
S aip X by
O (x, y) = go(X&i=0 P y2izo %P,

Consequently, the base change map becomes

BC(Rs.1,...1» (1) = Ry 1) (1, —p1).

Now let w € W be an element in the F-conjugacy class of (s, 1, ..., 1), and choose w’ € W such that
wwFw)™ ' =(s,1,...,1). Applying first the equivalence (3A.1) for the element v = w’ (and v = 0),
then the above equation, then the equivalence induced by (w'~!, sw'~!), we obtain

BC(Ry (1) = Ry 1) (1 =5 (10)). (3C2)

3C6. We define a base change map on the remaining irreducible representations of U, ([F,). Given a
character ¥y : U1 (F;) — O, we let &0 denote the character

Vo : [F;2 — 0%
x B Po(x 7).
Definition 3.11. Let v/ : U;(F,) — O* denote a character of U;(F,). We define
BC (v o det) £ g o det,
BC(¥godet®g St) = /g o det @ St
where St’ denotes the Steinberg representation of GL;(F,2), inflated to GL2(Ok,).

Taken together, these definitions give a base change map on isomorphism classes of tame types. One
further checks that the association o — BC(o) is injective on isomorphism classes.



2028 Karol Koziot and Stefano Morra

3C7. We define an involution € on (isomorphism classes of) representations of GL,(F,2) by twisting a
representation by the automorphism
g (D2g 0y H@

(note that the fixed points in GL,(F,2) of this automorphism are exactly U(F,)). On Deligne-Lusztig
representations, this becomes
€ (R ury (s 1)) = Ry ) (=5 (1), =5 (1))

The above can be checked using the equivalences of Sections 3C3 and 3C5, and character tables for
GLy(F,2); see, e.g., [Diamond 2007, Section 1]. Note that by dimension reasons e(REw’w,)(u, 1)) is an
irreducible principal series, resp. an irreducible cuspidal representation, if and only if Réw,w,) (m, () is
such a representation.

The following lemma is one of the main results of [Kawanaka 1977].

Lemma 3.12. Let o’ denote a tame GLy(Ok,)-type over E. Then we have €(c') = o’ if and only if o' is
of the form BC(o) for a tame U, (Ok)-type o.

3D. Combinatorics of types and weights. For future applications to weight elimination and weight
existence results, we now analyze the combinatorial properties of the set JH(5') for a tame type o.

3D1. Before proceeding, we make some definitions to simplify the discussion below.

Definition 3.13. (i) We define wEx *(T) x W to be the extended affine Weyl group. It acts on X*(T')
in the natural way, and we write elements of W as t,w, with u € X*(T), w € W, to underscore this
action.

(i) An alcove is a connected component of

X(T)®zR - (U{w +n.a”) = np})-

o,n

We let Cy denote the dominant base alcove
heX* (T)®zR:0< (u+n,a)<pforall0<i< f—1}.

(iii) The group pX*(T) x W C W acts on the set of alcoves via the dot action « centered at —n. We
define

QE(W e pX*(T)X W:eCo=Co).
Remark 3.14. One easily checks that if w = wt_ ), = (w;t_,,,); € 2, then we must have
(i, vi) € {1} x X*(Ty) or  (wi, vi) € {s} x (nu + X"(Tn))

forall0<i< f—1.
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Lemma 3.15. Let R, (i + n) denote a Deligne—Lusztig representation of G(Z,), and suppose |1 is a
1-deep character. Let .. € X1(T). Then F () € JH(R,, (it +n)) if and only if there exists zt_ ,, € Q such
that

2t_pye(m+wmr(v)) =se(A—pn).

Moreover, the element z € W is unique, and every choice of z arises. Consequently |TH(R,, (1u + n))| =27.
(Compare with (3A.2).)

Proof. First, note that by our depth assumption on w, we may apply [Gee et al. 2018, Prop. 10.1.2] (which
is based on [Jantzen 1981, Satz 4.3]) and [Gee et al. 2018, Proposition 10.1.8].

Suppose F' (1) € JH(m) for some A € X{(T). By [Gee et al. 2018, Proposition 10.1.8], this
holds if and only if there exists v € X*(T') such that

7o (u+ (wr — p)v) 4 se(h—pn)

for all 7/ € W. (We refer to [Jantzen 1987, 11.6.4] for the definition of 1; since the root system is of type
Ay X -+ x Ay, the condition u' 1 A is equivalent to ' < 1" and ' € (pAg x W) e/, where Ag denotes
the root lattice of G.) Select z € W such that

2+ (wr — p)v+n) € X (T).

Since z e (1 + (wmw — p)v) lies below s e (A — pn) in the 1 ordering, since z(u + (wwr — p)v +1n) is
dominant, and since s(A — (p — 1)n) is p-restricted, we must have
ze(n+ (ww — p)v) =5 (A — pn).

The proof of [Le et al. 2019, Proposition 4.1.3] shows that |(v, «;)| < 1 for every i, from which we
deduce zr_ ), € Q2. Furthermore, we deduce a posteriori that the choice of z is unique.

Conversely, if ze(u+(wm — p)v) =s¢(A— pn) for some zt_,, € 2, then z(u+(wmw —p)v+n) € X (T),
and [Jantzen 1987, 11.6.4(5)] implies

(') e (u+ (wr — p)v) t ze (n+ (W — p)v) =5 (A — pn)

for all 7/ € W, so that F'(A) € JH(R,, (it + 1)) by [Gee et al. 2018, Proposition 10.1.8].
To show that every choice of z arises, choose any v € X*(T) such that zz_,, € 2, and define

def

A =sz(+ (wr — p)v+n) +(p = Dn.
The depth assumption on p implies that A, € X;(T'), and by definition we have
topy e (twmr(v)) =se (= pn),

so F(A;) € JH(R, (i + n)). Finally, we note that different choices of v will alter A, by an element of
(p —m)X(T), which will give an isomorphic Serre weight. [l
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Proposition 3.16. Let o1 = Ry, (11 + 1), 02 = Ry, (2 + 1) be two Deligne—Lusztig representation
of G(Z,). Suppose that 1 is 3-deep and i, is 1-deep:
(i) We have JH(o1) NJH(02) # @ if and only if there exists a pair (w), u5) € W x X*(T') such that
Ry, (p2 +n) = Ry (15 + 1) and
tu, Wy =ty W
in W, where w; € {1, s, tqys} forall 0<i < f —1.
(i1) Suppose JH(o1) NJH(02) # @, and let (w/z, wy) and w = (W;); be as in item (i). Let A € X(T).
Then F (1) € JH(67) NITH(67) if and only if
se(h—pn) =Wy e (1 +wiw(v)) =Wy » (15 +wymw (v)

for an element W) = wt_,, € Q satisfying the following conditions:

(@) If w; = s then (0;)i—1 = 1 mod X°(Ty).

(b) If W; = tyy,s then (W;)i—1 = st_py, mod X°(Ty).

In particular, since adding (p — m)X°(T) to A does not affect the isomorphism class of a Serre

weight, we obtain
ITH(57) NTH(53)| = 2/E@i=11,

Proof. We begin with item (i).
Assume JH(o7) NJH(03) # &; by Lemma 3.15 we have

o+ (war — p@ + 7= @)z (g + (i — ppv® +1) (3D.1)

where zV1_ ) € Q. This gives

Ru, (112 + 1) = Ry, (2 + 1+ (warr — p)v@)

= Rup ()20 (i + wir — ppV +))
= R;0)-1,00,F ()1 700y -1 (1 + (w7 — p)v(l) +n)
= Rt)1:@myp(y120) 1 (1 +wir 0 —wim (D) +1)
= Ry (w5 +1)
where the first isomorphism comes from (3A.1) by adding (w,mw — p)v(z), the second from (3D.1), the third
from (3A.1) by conjugation by (z1)~1z?®, and the fourth again from (3A.1) by adding (p — w’zn)v(l).
Here, we define w) = (z0) "1 z@wy F((zM)~12@) 7! and 1)y = g + wir (D) — wimr (D).
We now proceed entrywise:
o If w’z’i = wy ;, then by definition we have '“/2,1' =i,

o Ifw)y, =wy;s, then p; = pi; + wi; (@), — s (wD);). Since 7(vV); € {0, nu} + X°(Th),
we have 7 (v(D); — sz (VD); € {0, ).
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This means exactly that 1, wh =1, Wi in W, with w; € {1, s, ty,s}.
For the converse, suppose that (w), u5) satisfies 02 = Ry, (2 +1n) = Ry (u5 +n) and
fu, Wy =ty W
with w; € {1, s, to,, s}. In particular, this implies p1, is 1-deep. Let w; = wt_, € Q be any element which
satisfies conditions (a), (b) in the statement of the lemma:

o If w; =, then w’z’l. = wy ;s and
Wy =i =i Fwii(ieg —sWi—1) = i + wim(v); — wy;w(v);.
o If W; =14,s, then u/li = w; ;s and
Wy =i +wii(an) =pri+wiiior —sis) = pri +wim (V) — wh T (v);.
o Finally, if w; = 1, then wlz,i = wy; and
W = i = 1, Fwii(Vim) —why,; (vim1) = i+ wi W) — wyw(V);.
Collecting these, we obtain w1 + wim(v) = ) +wim(v), ie.,
Wy, e (1 4wy (v)) = Wy o (W + wHm(v)).
By Lemma 3.15, we conclude that F (1) € JH(67) NJH(03,), where A is defined by
se(A—pn) =Wy (1 +wiw(v)) =Wy » (5 4+ wHT(v)).
This completes the proof of item (i) and of the “if”” direction in item (ii), and shows that
JH(51) NIH(33)| = 2/F=11,

We now conclude the proof of item (ii).
Suppose there exists some F (1) € JH(67) NJH(o7), and let (wé, ,u/2) be as in item (i). By Lemma 3.15
there exist z(j)t,pvm € Q such that

),

se—pn) =201 00 (i +wirD) =221 00 (uh+ whr(v@)). (3D.2)

Pairing the middle expression with &, and reducing modulo 2 gives

(ZDt_ 0 0 i +wir M), ) = Oy + i — pw® + ), ) — 1

5<1)
1) & (g + (i — pwP +n,07) =1

= (-
= (w1 + (it — pwP +n, ) — 1

= (u1. o) + (=D (v D), o) — p(vD, &)
= (1, o)+ (D), o) + (v, &)

= (U, o )+8<1> +8151>’S (mod 2).
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We have a similar calculation for the rightmost expression. Recalling how ), and pu; are related (see
item (i)), we see that (1, al.v Yy = (1, ociv ) (mod 2). Consequently, the last equality in (3D.2) gives

8151)"? + 821@73 = SZ,O,)I,S + SZ,Q,)I,S (mod 2).

Suppose by contradiction that z(1 # 7z so that zgl) # zl@ for some i. The above equation implies that
this inequality holds for all 7, i.e., z? = sz(" and vV + V@ = 548 for some B € X(T'). Substituting
this into (3D.2) and canceling z(! yields

1+ i — p 4+ 5 =s(uh + Whr — p)(n+ B —v) +1n). (3D.3)

Recalling how (w1, wy) is related to (15, w5) via w (see item (i), by pairing the above equation with o’

we see that
—1 o=
p2 — 8w 1 if w; = 1,
v p=l _ i —
(i o) =137 ~8u,,.® if w; =, (3D.4)
-1 Swi il g -
pT _Swli,xzo)l + (=DMt i W = gy

To proceed further, let us write w) = wiv and u), = 1 +w;(§), where v e W and & = Zif:_ol a;o;
with a; € {0, 1} and a; = 1 only if v; = s. We wish to evaluate the expression
-1
—swi@)+ (w1, o)+ D+ i 0= (D)) + (—swivm () +s7 () +(swrvr () —s7 (v D)),

i=0
(3D.5)

which lies in Ag. By working entrywise and considering all possibilities for wy ;, zlgl_)l, v; and a;, and
using (3D.4), we see that (3D.5) is equal to

f-1 p—1

>0t

. 2

i=0
On the other hand, rearranging the expression (3D.5) gives
(1 = (un) =swi () +1—s ) +wix (WD) —swivr () +swivr V) =72 W) +s7(0) — s (D),
and using (3D.3) to further simplify the parenthesized term above, we get

(pv P47 (B)—ps(m)—pB+ps ) =7 W) +sm () —sm (0 D) = (p—7) VP = B—5s () +s 0 D)).

Combining these two calculations, we see that Zif:_ol pT_lotl- liesin AgN(p—m)X*(T) = (p — ) Ar,
which yields the desired contradiction.
The above argument shows we must have z® =z and v® = v(D 4+ 8 for some g € X°(T'). Thus,

(3D.2) reduces to
1+ wir (D) = ph + wir (D) + (7 — p)B.
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Writing ), = w1 4+ wq(§) and w) = wyv as above, this equation becomes
1+ wir D) = i+ wi€) +wivr(0) + (r - p)g.
Canceling p| and applying wl_1 gives the equation
§+ v (D) =) = (p—1)B;
since the intersection A g N XO(T) is trivial, we conclude that B =0 and
n(v(l)) — vn(v(l)) =¢.

This equation and the condition that z‘Vz_ pv(h € £ determines v up to an element in X(T'), so that
7MW pvh must exactly be one of the w;, of the statement of the lemma. This shows |JH(c7) NJH(02)| =
ol =1} O

Remark 3.17. The above results hold mutatis mutandis for the group G’ = Resgo K/ Zp (GLy/0 Kz). More
precisely:

(i) The statement of Lemma 3.15 holds with G (and related objects, e.g., T, W, R, (i + 1), etc.)
replaced by G’ (resp., the relevant primed objects). Moreover, the quantity 2/ is replaced by 22/, and
the element € X*(T) is replaced by the character p’ € X*(T") (corresponding to ((1)) e (759 ~
X*(T"). ’

(ii) The statement of Proposition 3.16(i) holds with G (and related objects) replaced by G’ (resp.,
the relevant primed objects), and the element ay € X*(Tx) replaced by the character of GL,
corresponding to ( 4 ) € 7> = X*(Tg) (recall from Section 2A4 that Tg is the diagonal maximal
torus of GL»).

3D2. We are now in a position to compare how intersection of Jordan—Holder factors behaves under base
change.

Proposition 3.18. Let o1, 0 be two 3-generic Deligne—Lusztig representations of G(Z,) on which 1(O)
acts trivially. Then

JH(BC(01)) NJH(BC(02))| = [JH(51) N TH(52) .

Proof. Letus write 0 = Ry, (i) for j =1, 2, with  j —n being 3-deep. By the discussion in Section 3AS5,
we may assume that the last two entries of 1 ; in each embedding are equal to 0.

Suppose first that JH(o7) NJH(02) # @. Let w = tzv € W be as in Proposition 3.16, so that oy =
Ry, v (i1 +wi(£)) and |JTH(G7) NTH(57)| = 2!¥i=1I, Using (3C.1) or (3C.2), we get

BC(01) = R{, ) (41, =8 (1)),

and

BC(02) = Ry, (1 + w1 (E), —=s (1) = sw1(8)) = Ry, 0y (1, =5 (1)) + (w1 (§), w1(§)))
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(note that §; € {0, oy} foreach 0 <i < f — 1, so —s(§) = &). By the GL;, analog of Proposition 3.16(i),
we may obtain BC(07) from BC(o7) via the element 7 £ (v, v) € w’ , and therefore

[TH(BC(01)) NTH(BC(0y))| = 2!t:@i=hl = 2=l — | 1H(57) N TH(52) |

(We write W’ for the affine Weyl group of G’ = Resgp /2y (GLy/0 Kz), and use similar primed notation
below for the automorphism 7’ acting on the character lattice of G’ (see Section 3B4).)

To conclude, it suffices to prove that JH(BC(a1))NIJH(BC(c3)) # & implies JH(o1) NJH(07) # &. As-
sume the former. By Remark 3.17(ii) we may obtain BC(0) from BC(o) via an element 7z ¢y (v, v') € w’
with 1¢,v;, té,-’vf € {1, s, ty,s}. That is, we have

BC(02) = R{yy, ) (K2, —5(12)) = Riyy g oy (1, =8 () + (Wi, wi)(§. §)).

By Lemma 3.12, the isomorphism class of the representation on the right is invariant under €, which
implies

R0 10y (1 =5 (1)) + (W1, W) E, E9) Z Ry iy (15 =8 () + (i, w) E 6)).

By [Le et al. 2019, Proposition 2.2.15] (which can be used by the depth assumption on p; —n, 2 — 1
and the fact that &, &/ € {0, ag} for all i) there exists zt_,, € W’ such that:

e If z; =1, then v; € X°(Tg).
« If zi =5, then v; € (}) + X°(Tg).
e We have (wiv/, wiv) = z(wiv, wiv)’(z) L.
¢ We have
(1, —s (1)) + (i, w)E, &) = z(1, —s (1)) +z(wr, w)E, E) + (p — z(wiv, w7’ (2) "7 (V).

Rearranging the equation in the last item, we obtain

(p—z(wiv, w1V)7' () "' W) = (i, —s (1) — 21, —s () + (w1, w)E', §) —z(wi, wi)(, §),

and the right-hand term lies in the root lattice of G’; consequently, the same is true for the element v.
Combining this with the first two items implies that v = 0, and thus z = 1. Finally, the third and fourth
items imply v' = v and &' = &.

The above argument shows

BC(02) = Ry, 1,0 (11, =8 (1)) + (w1, w1) (€, §)) = BC(Ry, o (11 + w1 (§))).
Since the base change map is injective on isomorphism classes of tame types, we get

02 = Ryyo (1 +wi(§))

and consequently JH(c7) NJH(02) # & by Proposition 3.16. ]
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3D3. We introduce a metric on the set of Serre weights contained in a sufficiently generic tame type.
This will turn out to be useful in the proof of Theorem 7.4.

Definition 3.19. Let R, (1) denote a Deligne-Lusztig representation of G(Z ), and suppose @ — 1 is
I-deep. Let F(A) € JH(R,,(1)). By Lemma 3.15, there exists an element z7_,, € Q defined by

se(A—pn) =zt_pye(u—n+wr()).
We say z € W is the label of F()) with respect to (w, ).

Remark 3.20. Maintain the setting of Definition 3.19. If (w’, i) is another pair such that R, (u) =
Ry (") with ' — n being 1-deep, then by (3A.1) we have

W', ') = (wF®)™", v(u) + F(v) — vwF(v) ' (v))

for some pair (v, v) € X*(T) x W. It is easily checked that if the label of F(A) with respect to (w, )

is z, then the label of F()) with respect to (w’, ') is given by zv™'.

Definition 3.21. Let o denote a 1-generic Deligne-Lusztig representation of G(Z ), and let F, F' € JH(o).
Choose an isomorphism o = R,,(u), with u — n being 1-deep, and suppose that the labels of F and F’
with respect to (w, u) are z and 7, respectively. We define the graph distance dgr(F, F’) as the number
of i for which z; # 2} (i.e., dgr(F, F') is the length £(z'z7Y) of 7/z71). By Remark 3.20 the graph distance
is well-defined.

Remark 3.22. Suppose that o and o, are two 3-generic Deligne—Lusztig representations of G(Z),),
and suppose F, F’' € JH(a1) N JH(63). Then the graph distance between F and F’, computed using o7,
agrees with the graph distance between F and F’, computed using o, (this follows from Lemma 3.15 and
Proposition 3.16).

Lemma 3.23. Let o be a 4-generic Deligne—Lusztig representation of G(Z,), and let F, F' € JH(G).
Then there exists a tame type o’ such that:

« F,F' €JH(0').

e Forany F” € JH(G) NTH(c") satisfying F" # F’, we have

dgr(F, F") < dgr(F, F').

Specifically, o and o’ can be written so that 0 = Ry, (i), o' = Ry (1) with w — n being 3-deep, and
ty—qw' = fy—nWlap. F(2) for an element z € W which satisfies £(sz) = dgr(F, F’). (Forv e W we denote

def N
oy = Y. «;.) In this case,
iv=s

JH() NJH(0")| = 2462 = pder(F 1),

Proof. Let us write 0 = Ry, () with u — n being 4-deep. By applying the equivalence (3A.1), we may
assume that the label of F' with respect to (w, u) is s at the cost of assuming p — n is only 3-deep.
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Suppose that the label of F’" with respect to (w, ) is z. By definition, we have

F=F(u+wmn)—n =F(u—ay)
F' = F(sz(u+ (wr — p)v) + (p — Dn),
where z1_,, € 2.

We define o/ &= Ryrz) (W + wr(a;)). We easily see that F and F' are Jordan—Holder factors of o/,
whose labels with respect to (wF(z), u + wmr(a,)) are s and z, respectively. Moreover, by the explicit
description of JH(o') NJH(c") of Proposition 3.16(ii), we see that any element F” # F’ of the intersection
satisfies dgr(F, F"") < dgr(F, F'). The final part of the aforementioned proposition gives the size of the
intersection. U

3E. Base change of weights. We now define a notion of base change for weights, and show that it is
compatible with the notion of base change of types defined above.

3El.

Definition 3.24. Let 1 € X{(T) and let F(u) denote a Serre weight of G(Z,) on which 1(Og) acts
trivially. As in Section 3A5, we may assume p is of the form

ao ap af—1
(1))
0 0 0
We define the base change of F (i) as

def

BC(F () = F' (14, —s ().

One easily checks that the map F — BC(F) is well-defined and injective on isomorphism classes of
Serre weights.

3E2. Recall the automorphism € of G'(F),) = GL,(F,2) defined in Section 3C7. On Serre weights, this
automorphism gives

€(F'(1, n) = F'(=s (W), —s ().
We have the following result:

Lemma 3.25. Let F' denote a Serre weight of GLy(F 2). Then we have € (F") = F' if and only if F' is of
the form BC(F) for a Serre weight F of U(F,).

Proof. The backwards implication is clear. We prove the forward implication. Thus, suppose u, u' € X (T)
are as in Definition 3.24, and suppose we have an isomorphism

Fi(p, W) E F'(=s(u), —=s(w)).
By Proposition 3.5, there exists 8’ € X°(T’) such that

(m+su), W' +s(w)=F -Dp'". (3E.1)
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Since the right-hand side of (3E.1) is fixed by (s, 5), the same is true of the left-hand side. This implies
that the left-hand side is also fixed by 7'/, from which we obtain

F —Dal ()= F -1

Since F’'—1 is injective on X°(T"), we see that ' lies in ker(r’/ — 1), which in turn is equal to im(z'/ 4 1).
Therefore, we can write B’ = (B8, B) with 8 € XO(ResoK/Zp(TU)), and (3E.1) becomes

(s, W' +s(w) =F —1)(B. B). (BE.2)
Applying Proposition 3.5 again, we get an isomorphism
Fi(p, W) = F'(1, )+ F' = D(=B,0)).

Equation (3E.2) then implies that the term on the right-hand side above is of the form F’(u”, —s(u”)),
and the result follows. (Il

3E3. We now wish to relate base change of types with base change of weights. The relevant result is the
following.

Lemma 3.26. Let o denote a 1-generic Deligne—Lusztig representation of G(Z,) on which 1(Oy) acts
trivially, and let F denote a Serre weight on which 1(Oy) acts trivially. We then have

F €JH(0) <= BC(F) € JH(BC(0)).

Proof. Let us write 0 = Ry, () where u is of the form

ap a af—1
()0 ()
0 0 0
and pu — n is 1-deep. Thus BC(0) = REw,w)('u” —s()).
Suppose first that F € JH(c). By (3A.2), F is of the form
F = Fy(Ry() = F(pyw +w' (it — wit (g5u)) + ppuw — 7(p))

for some w’ € W. Note that the parenthesized character has its last two entries equal to 0 in each
embedding. Thus, we have

BC(F) = F'(p(yw, —vw) + (W', w) (1, —s (1) — (w, w) (7 (gu), —ST (Egur)))
+ p(ow, —s(pw)) — (@ (P), —s7(P))).

A straightforward calculation shows that adding (p — 7/)(0, 2y + pw + 5(0w)) € (F' — HX%T) to
the parenthesized character gives

BC(F) = F'(pY(yr wy + W', w) (1, =5 () — (W, W) (&5 510))) + PP(wyr ry = £1)-
Hence, we obtain

BC(F) = Fyr ) (Rlyy (s —5G)) € TH(R],, (12, (1)) = JH(BC(0)).
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To prove the converse we begin with an observation. Let F, (/U’v,) (BC(0)) be a Jordan—Holder factor
of BC(o) = sz’w)(,u, —s(u)) asin (3B.1). (Note that F(’M,) (BC(0)) depends on the pair (w, u). For
readability, we fix the presentation (w, ©) and omit this dependence from the notation.) Since € (BC(0)) =
BC(o) by Lemma 3.12, we obtain e(F(’ ,)(BC(G))) € JH(BC(0)). A similar argument to the one above

v,

shows that
€(F{, ,,(BC(0))) = F/,, ,,(BC(0)).

Suppose that BC(F) € JH(BC(c)). Then there exists (v, v') € W' such that BC(F) = F(/

v,v)

(BC(0)).
Since BC(F) is a base change, Lemma 3.25 and the above equation imply

F(y ) (BC(0)) = €(F(, ,,(BC(0)))
=~ ¢(BC(F))
=~ BC(F)
= F, ) (BC(0)).

Since  —n is 1-deep, (3B.1) and Remark 3.17(i) implies that we have a bijection between W’ and the
(all distinct) Jordan—Holder factors of BC(o). We obtain v' = v, and thus

BC(F) = F(/v’v)(BC(a)) ZBC(Fy(Ry())).
Since the base change map is injective on Serre weights, we conclude that
F = Fy(Ry(p)) € JH(R, () = JH(G). O
3E4. The following lemma will be useful in the proof of Theorem 6.7.

Lemma 3.27. Let o be a 2-generic Deligne—Lusztig representation of G(Z ,) on which 1(O) acts trivially,
and let F denote a 3-deep Serre weight with trivial action of 1(O ) such that F ¢ JH(G). Then there exists
another Deligne—Lusztig representation o' of G(Z,) such that F € JH(¢') and TH(G) NJH(¢') = 2.

Proof. If & and F have different central characters, then any o’ for which F € JH(¢’) works. We may
therefore assume that & and F have the same central character. The remainder of the proof will be based
on the combinatorics of the extension graph for Serre weights for GL,, as defined in [Le et al. 2022,
Section 2]. We recall some of the definitions and constructions of [loc. cit.] (and use similar notation for
convenience of comparison).

Define A}, to be the weight lattice for G'9, the derived subgroup of G’, and let A’, denote the
root lattice, so that A/R - A/W' Note that A/W >~ 7/ x 7/ and we fix such an identification in what
follows. Recall from Section 3B1 that X*(T’) denotes the weight lattice for the group G’; we have
AR € X*(T') and X*(T") - Aw. We further write w/, (resp. w’) for the affine (resp. extended affine)
Weyl group of G', which admits a factorization w), = W' x A’y (resp. w' = W' x X*(T")). The group W,
(resp. W’) is canonically isomorphic to two copies of W x Ag (resp. W x X*(Reso,,z,(Ty))) (compare
with Section 3B1).
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We let Q' denote the set of elements of W’ which stabilize the fundamental alcove C|, of G’ under the

p-dilated dot action e :
w/t)\, . M/ — w'(,u/ + ,0/ + p)»/) N ,0/,

where w'ty;y € W' and w' € X*(T"). Thus, Q' is the analog of 2 of Section 3D, except that translations
have been scaled by a factor of p~!. (We apologize for this inconsistency of notation.)

Let ' € X*(T') satisfy 0 < (u/,a’Y) < p — 1 for every positive coroot &’ of T'. We call such
characters p-regular. We then define the map Tt;l/ by

X*(T")
(F — DHXO(T")

o > ﬁ)/.p (M/_i_a)/_p/)

roL oAl
‘Itﬂ,.AW—>

where &' € X*(T") is a lift of 0’ € A, and W' is the unique element in ©’ such that the class of —7'~!(®")
corresponds to the class of @’ via the isomorphism X*(7T")/A’, — w’/w,. Note that this is well defined.
Define furthermore

def

AN e Ny o + 1/ — pl € Cl) (3E.3)

(where we consider the image of u' — p" and C{ in A’), and let Tt be the restriction of ‘It;, to A";“‘;.
Then, as in [Le et al. 2020, Section 2.1], one checks that:

(i) The image of Tt,, is contained in the set of p-regular characters. Further, the map o’ — F'(Tv,/ (')
defines a bijection between A’ l;v and the set of p-regular Serre weights with the same central character as
F' (1 — p’) (see the discussion preceding [Le et al. 2022, Proposition 2.9]).

(ii) Suppose ' € X*(T’) is such that ' — p’ is 2-deep, and consider the Deligne-Lusztig representation
R! ,(1). Applying the analog of (3A.1) for G'(Z,), we obtain an isomorphism
R, (1) =R, ((s,8) (1) + pp' —w'(p"),

where the character (s, s)(u') + pp’ — w'(p’) — p’ is 1-deep. Combining this isomorphism with [Le et al.
2022, Propositions 2.5 and 2.11], Proposition 4.6 and Remark 4.7 below, we obtain

JH(R,, (1) = {F Tty p (t-g,, (s, Hw (E)))},
where X' C A, is the subset consisting of (images of) elements of the form ((1)) or (8) in each embedding.
(That is, X' is the image in A}, of {p] }urew’.)
(iii) Let u € X*(Resoyz,(Ty)) S X*(T) satisfy 0 < (u+p, ") < p — 1 for every positive coroot o
of T. We let Ay denote the weight lattice of G (which is a quotient of X*(Resg «/z,(Tv)) ), and define

A"fVerd:ef{a)eAW: a)-l—unger}
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where Cger is the fundamental alcove of G%'. Consider the map
Xi(T")
(F' —1)X%T)

0 > T (utp,—s(w)+0) (@, =5 (@)).

T0

. AP
;H—,o'AW —

G
H+p

and p-regular Serre weights of G'(Z,,) which are in the image of the base change map and have the same

Using Lemma 3.25 and item (i), one checks that w — F’(%t)’, (w)) defines a bijection between A’G,J”O

central character as F’' (i, —s(u)).

We now proceed with the proof. Let us write 0 = R, (1), with © chosen as in Lemma 3.26 and i — p
being 2-deep. By assumption and Lemma 3.26, we have

BC(F) ¢ JH(BC(0)) =JH(R(,, (1, —s(1))).
Since the character (u, —s(u)) — p’ is 2-deep, item (ii) above implies
BC(F) & {F"(Tt(u,—su)+0' =ty (S0, sW) (X))}

Therefore, since F and ¢ have the same central character, item (iii) implies that BC(F) = F ’(‘Itg 4o (w))
for some w € A’v‘vﬂ) \7_q,sw(X). (Here, X is the image in Aw of {py,}wew.) Since ¥’ is a fundamental
domain for the translation action of A’y on A, there exists an element 7, _s(,)) € A’y € w’ such that

(0, =$(@)) € t,—s ) —apy, (SW, sW)(Z). (3E.4)

(Since the left-hand side of the above containment is fixed by €, the translation element of A’, must be of
the form #(, _s(.)).) Note that this implies v # 0 and consequently

1) (W, SW) (B N, 50y (=, (SW, sW)(E)) = D (3E.5)

Recall that we have assumed F is 3-deep. Therefore the same is true of BC(F). Using the relation

BC(F)=F' (‘Ztg +(®)), and the fact that Q' preserves C, under o, we get that the character 1 + w is

3-deep. On the other hand, the relation (3E.4) implies that we have
® =V —ay+sw(py)
for some v € W. Since 0 < (&, — sw(py), ozl.V) <2forall 0 <i < f — 1, the relation
mto+tay —sw(py) =pn+v

implies that 2 < (u+v, ) < p—2forall 0 <i < f—1. Thatis, we have that (i, —s () + (v, —s(v))—p’
is 2-deep.
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Now set o’ & Ry, (i + v). By the previous paragraph and item (ii), we have

JH(BC(0")) =JH(R|,, ,,(n+ v, =s(un +1)))
= {F'(Zv(u—5(0)+ 0. —s )+ (T (SW, SW)(Z)))}
= {F" (Tt (u,—s(u)+0 0, —s) =gy W, SW(EN))},

where the last equality follows from the definition of Tt and the fact that (v, —s(v)) € A,. Thus,
the relation BC(F) = F’ (itg o (w)) and (3E.4) imply that BC(F) € JH(BC(c’)), and the injectivity
of Tr, and (3E.5) imply JH(BC(o)) NJH(BC(0')) = &. We conclude by using Lemma 3.26 and

Proposition 3.18. U

4. Predicted Serre weights

In this section we discuss the conjectural set of weights attached to Galois parameters and their relation
with base change. We give the relevant definitions in Section 4A, along with a classification of mod p
tamely ramified L-parameters. We then define the set W’ () in Section 4B. The main result is Theorem 4.9,
which relates the sets W’ (5) and W’ (BC(p)). Finally, we state in Section 4D a version of the inertial
local Langlands correspondence that we will require for local/global compatibility. Our discussion is
based on [Gee et al. 2018, Section 9].

4A. L-parameters.
4A1. We first define the Galois representations we shall consider.

Definition 4.1. Let R be a topological Z ,-algebra. An L-parameter (with R-coefficients) is a continuous
homomorphism I'g, — LG(R), which is compatible with the projection to Gal(K,/Q »). Likewise, we
define an inertial L-parameter (or an inertial type) to be a continuous homomorphism Ig, — G(R)
which admits an extension to an L-parameter I'g, — LG(R). We say two (inertial) L-parameters are
equivalent if they are G (R)-conjugate.

We make similar definitions for homomorphisms valued in G (R).

By [Gee et al. 2018, Lemma 9.4.1], the 6(R)—conjugacy classes of L-parameters I'g, — LG(R) are in
bijection with H (R)-conjugacy classes of L-parameters 'y — L H(R) = “U,(R). A similar statement
holds for inertial L-parameters; see [loc. cit., Lemma 9.4.5].

We make similar definitions of L-parameters I'p+ — CU,(R)if FTisa global field with a place v
satisfying F,;F = K (cf. Remark 2.1).

4A2. The following lemma is easily checked.

Lemma4.2. Let p: 'y — CU,(F) denote an L-parameter such that p|r x, s semisimple (or, equivalently,
tamely ramified). Then, up to equivalence, p is of one of the following two forms:
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(1) ThereexistOSr<q2—1,05s<q—1andk,veﬂzx such that

wh  nry ¢ -1, (h) 0
o(h) = 2f Jv _ , ¥ h X 1,
p(h) (( 0 Cszqr+(q+1)s nrzf,ux(h) Wy m’zf,ﬂ( )

sy =((L° ~f
(e )—((0 v),/\>>w .

forall h € I'k,.
(ii) There exist0 <k, f <q+1,0<s <qg —1and ) € F* such that

s+(1—q)k
_ w nl‘zf,,)h(h) 0
h) = 2f _ , ' nr h) | x1,
p(h) (( 0 o q)enrzf,_;\(h) pnry;2(h)

2f
ple~) = (((1) _01) ,/\> o7,
forall h € T'k,.
In both cases nryy,, denotes the unramified character of Tk, sending 02 to x.
4A3.

Definition 4.3. Let R denote a topological Z,-algebra:

(i) Let p : Tx — €U,(R) denote an L-parameter, and write ,0|1~K2 = 02 ® p1, where pp : I'x, —
GL2(R), p1 : 'k, = G, (R) = R*. We define the base change of p to be

def

BC(p) = p2.

(i) Let p : 'y — S2(R) denote an L-parameter valued in G;, and write ,0HK2 = pr & p1, Where
p2: Tk, = GLa2(R), p1 : Tk, = G, (R) = R*. We define the base change of p to be

BC'(p) £ .

We make similar definitions if F* is a global field with a place v satisfying F,” = K; see Remark 2.1.

The two notions of base change are related as follows. Let p : 'y — €U, (R) denote an L-parameter,
and let O denote the continuous character i o p : 'y — R*. Using the isomorphism of Section 2D, we get
an isomorphism of GL;(R)-valued Galois representations

BC'(p) =BC(p) @6~ (4A.1)

4A4. Recall from Section 2C2 that we have a map (¢¥) ™! : X*(Ty) => X *(TH), which induces an
isomorphism X*(7T) = X*(T). Given u € X*(T) (viewed as an element of X*(T)) and w e W, we
define a tamely ramified inertial L-parameter t(w, u) : [x — H (F) by
211
tw, ) = [ Fow™) (ulwy))
i=0
(compare with [Gee et al. 2018, Section 9.2] and note that (F* o w™H2/ = p2/).
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We define BC(¢) to be the canonical identification of the dual root datum of the split group GL2 /0,
with the root datum of its dual group. Given this, we make an analogous definition of tamely ramified
inertial L-parameters t’((w, w’), (1, n')) : Ix, = GL(F).

Lemma 4.4. Suppose p : Tx — CU-(F) is a tamely ramified L-parameter which satisfies T o p = w. Via
the identification of [Gee et al. 2018, Lemma 9.4.5] we have

Pliy =Et(w, w+n)

with w € W and p € X*(T) of the form

Furthermore, we have

BC(P)|1, = 7'(w, w), (k, —s(1) +p").
Proof. The proof is a straightforward exercise using the definitions. O

4AS5. We will also need a definition of genericity to study the relation between L-parameters, the set of
conjectural associated weights and local deformations.

Definition 4.5. Suppose p : 'y — U, (F) is a tamely ramified L-parameter. We say p is n-generic if,
via the identification of [Gee et al. 2018, Lemma 9.4.5], we can write

pliy =Et(w, w+n)

where w € W and pn € X*(T) is n-deep.

4B. The set W*. We now give a description of the set W’. We refer to [Gee et al. 2018, Section 9] for
the definition, and to [loc. cit., Proposition 9.2.1] for the definition of V.

~

Proposition 4.6. Let p : T'x — CUy(F) be a 1-generic tamely ramified L-parameter, and write p|j, =
T(w, u + n) as in Definition 4.5, with u being 1-deep. Let V4(p) = R, (1 + n) be the associated
Deligne—Lusztig representation of G([F,) as in [Gee et al. 2018, Propositions 9.2.1 and 9.2.2]. Then

W/ (5) = TH(B(Ru (1 + ).
Proof. By definition of W’ (p), we must prove that

RUH(Rw (w4 m)) = TH(B(Rw (1 + 1)),

where R is the reflection operator defined in [Gee et al. 2018, Section 9.2]. We use (3A.2). We claim that

R(Fuy (R (e +m)) = Fur (B(Rw (e + 1)) (4B.1)
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for all w’ € W. Note first that 7 and s commute as operators on X*(T'), and the group W is commutative.
Therefore, in order to prove (4B.1), it suffices to show

ps(yw) +sw'(n+n) —sw'wr (eg) + ps(pw) — 7 (s(p)) +s(p) — ps(n) — p
= pyw +w'(s(u+n) —sm) + (p — Dy — swr(egu)) + ppuw — 7 (p),

the equivalence being taken modulo (F — 1) X°(T).
One easily checks that s(yy) = vy and —mw(s(p)) + s(p) — p = —m(p), and hence (4B.1) will be
satisfied if we show that

ps(pw) —ps(m) =—w's(n) + (p — Dw' () + ppuw (4B.2)

modulo (F — 1) X%(T).
Expanding the left-hand side gives

while expanding the right-hand side gives

0 p
—w's() + (p — Dw' () + ppur =+ - (,,%)"'( . )

-1 p—1
~— ——
wi=1 w)=s

In particular, adding

I = D1
v
—
< ‘“c

| [ =X}
[y e
S~——"

F — 1)(
to the left-hand side of (4B.2) gives

() (B () ()

S —’ ——— —— — ——
wi= wi=s w=1 wi=s
where the equality follows form the equivalence relation on X*(T'). This gives the claim. (]

Remark 4.7. The above proposition and its proof carry over mutatis mutandis to the group GL,(Ok,)
and a tamely ramified Galois parameter I"'x, — GL,(F); see [Diamond 2007].

4C. Base change and W°. This section contains the main result on compatibility between the set W’
and base change of L-parameters (Theorem 4.9).
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4C1.

Proposition 4.8. Let p : Tx — CU,(F) be a 1-generic tamely ramified L-parameter which satisfies
1 o p = w. Then the subgroup z(O,X() acts trivially on B(V4(p)), and

B' (V) (BC(0))) = BC(B(Ve (D).

Proof. By Lemma 4.4, we may write

15|IK ; T(w? M+77)»

aop af—1

b b
M:((?)...(f()l).

0 0

Applying the map B to V4 (p) = Ry, (10 + 1) gives

with u being 1-deep and of the form

B(Vy(P)) = Ry (s() + (p — D).

Notice that 1 (O ) acts trivially on this representation. In order to apply the base change map, the character
appearing inside the Deligne—Lusztig representation must have its last two entries equal to zero. Using
the equivalence given by adding the element —(F — sw)(n), we get

B(Ve(P)) = Ryw(s() —n+sw(n)) = Rsw <§(u) - ai),

w;=1

and by (3C.1) or (3C.2), we obtain

BC(B(Vy(P)) = R{y u) (s(u) =D -y a,-).

u),'=] w;:]

On the other hand, Lemma 4.4 gives

BC(P) |1, = 7'((w, w), (i, —s(1)) + "),

and therefore
Vecp) (BC(D)) = Ry, ) (1, —s() + 0.

Applying the map B’ gives
B' (V) (BC(D))) = Ry g ((s(10), =) + (p — 1)p").
Finally, using the equivalence given by adding —(F' — (sw, sw))(p’) we obtain

B (V) BC(D))) = Ry o) ((S(1), =) — o' + (sw, sw)(p"))

=5 (g(u) =D =y oc,-) O

wl-:l w,-:l
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4C2. The main result of this section concerns local functoriality of predicted Serre weights.

Theorem 4.9. Let p: T'x — U, (F) be a 1-generic tamely ramified L-parameter which satisfies 1 o p = w,
and let F denote a Serre weight of G(Z,) on which l((f)lx() acts trivially. Then

F € W' (p) <= BC(F) e W' (BC(p)).
Proof. This follows by combining Lemma 3.26 and Propositions 4.6 and 4.8. (I

4D. Inertial local Langlands. In this section we discuss the inertial local Langlands correspondence
which will be used in the rest of the paper. Recall that a tame inertial type T’ is a homomorphism
7" Ix, — GL,(0) with open kernel, which is tamely ramified, and such that 7 extends to a representation
of the Weil group of K.

We set L = Kz((—p)l/(pzf_l)). As 1’ is tame, it factors as

' Ix, - Gal(L/K3) — GL,(0).

This implies that t’ is of the form

!~

T =@ @S
If a £ b (mod p>/ —1), we call such a type a principal series tame (inertial) type. By Henniart’s appendix
to [Breuil and Mézard 2002], the inertial type 7’ is associated to the tame type

et . GLa(F 2)
o'(') Endp, ¢ %) (6a ® )

if a £ b (mod p*/ — 1), and

o'(t)) £ 6, odet

if a =b (mod p2f — 1), where we use the notation 6,(x) = ¢o(X*). We view o’ (t’) as a representation of
GL,(Ok,) by inflation. (According to the appendix of [Breuil and Mézard 2002], the a =5 (mod p* =1
case corresponds to a twist of the Bernstein component denoted s in [loc. cit.], and consequently we
have two options for o’(z"). We choose o’ (t’) to be one-dimensional in order to guarantee that we are in
the N =0 case in Theorem 4.11 below.)

Suppose now that (z/)¢" = ¢'¥, where "V denotes the dual type, i.e., the type Wy Dy fb if o/ =
@5 7 695)127 - (Note that the condition (t/ )‘P_'/ = 1’V means exactly that 7’ extends to amap p : 'y — ‘U, ()
such that BC(p) |, = 7" and (7 o p)|;, is the trivial character.) In this case 7’ is of the form

- ~—gec ~(1— ~(1—q)b
a)gf@a)z;” or a)éf q)aEBw§f o8,
so that o/(z’) is of the form

GLz([qu) GL2(F 2)

IndBU([qu) 0 ®6_4c), IndBU([F;) Oa-g)a ®O1—g)p) Or OH1_g)aodet.

In particular, these tame types come via base change from tame types of U,(Og). We therefore make the
following definition.
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Definition 4.10. Let t’: Ix, — GL,(O) denote a tame inertial type which factors through Gal(L/K>),

and suppose furthermore that (t’ )‘ff ='V:

(i) If o/ = @5 @ @,/ with ¢ # —gc (mod p*/ —1), we set

e Uy (F,
o (') EIndy i (00,

which we view as a representation of U,(Og) via inflation.

) If ' = ~(1 D36 ~(1 Db \with a # b (mod p>/ — 1), we set
o (1) E 0 (0. ®0p),
where we view 0, and 6, as characters of U;([F,) by restriction, and where we view o(t') as a
representation of U,(Og) via inflation.

(i) If v/ = ~(1 D3 & ~(1 4 \we set
def

o(t') =6, odet,

where we view 6, as a character of U, (F,) by restriction, and where we view o (7’) as a representation
of Uy(Og) via inflation.

Note that the representations o (') are all irreducible by Theorem 3.7, and by construction we have
BC(o(t)) = o'(7)).

We may now state a version of the inertial local Langlands correspondence.

Theorem 4.11. Let ' : Ix, — GL2(O) be a tame inertial type as in Definition 4.10, so that in particular
(t/ )‘ff = 1V, Let 7w denote a smooth irreducible representation of Uy(K) over E, and let w® denote the
direct sum of all representations appearing in the L-packet containing . Let BC(1r) denote the stable base
change of the L-packet containing 7. Then 7T@|U2(OK) contains o (t') if and only iflreCE(BC(JT))hK2 =1
and N = 0 on recg(BC(x)). In this case, we have dimz Homy, o, (o (7'), n@lyz(@,()) =1.

Proof. This follows from Henniart’s inertial local Langlands correspondence ([Breuil and Mézard 2002];
see also [Caraiani et al. 2016, 3.7 Theorem]) and the properties of the stable base change map; [Rogawski
1990, Section 11.4].

To verify the claim about multiplicities, suppose that Homg, o) (o ('), JT®|U2((9K)) # 0, so that
in particular 7® has an irreducible summand of depth zero. By the classification of depth zero L-
packets (see [Rogawski 1990, Section 11.1] and [Blasco 2010, Proposition 2.1(ii)], or [Adler and
Lansky 2005, Section 3.1]), the (semisimple) representation 7 ® |y, (o, is either a subrepresentation of
Ind 2((K)(X)|U2(OI()’ or a direct sum (71 ®72) |y, k), Where x : By (K) — E* is a smooth tame character,
and where 11, 7, are irreducible supercuspidal representations of U, (K) which are conjugate under the
action of GU;,(K).

Suppose that |U2(O <) 18 a subrepresentation of Ind?¥? By K)( X)|U,0x), and let U(Ok )1 denote the
principal congruence subgroup of U,(Og). Using the Mackey formula and the Iwasawa decomposition,
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we have
Us(K
Homuy, o) (0 (1), 7®|uy04)) S Homy, (o, (0 (), Ind () GO lvs04)

U>(K
= Homy, (0,0 (0 (), Ind 2 () G0 2O

~ U>(Fy)
= Homy,(0,) (0 (), Indg, ) (X 1By (F,))-

Since o (t') is irreducible and Indgz(a))( X |By¥,)) is multiplicity-free (see [Ennola 1963, Section 6]), the
result follows in this case.

Suppose now that 7@ |y,0,) = (771 ® 72)|v,0,). We may label the supercuspidal representations such
that JTIUZ(OK)‘ # 0 and anz(o'()l = 0. This gives

Homy, o) (0 ("), 780,04)) = Homy, o) (0 (t), (11 © 72) |v,0x))

U, (O
= Homy, (o, (0 ('), 72 0F ).

As in [Adler and Lansky 2005, Section 3.1], we may write 7 = c- Indgigg;)(o), where o denotes an

irreducible cuspidal representation of U, ([, ), inflated to U>(Og). Applying the Mackey formula and the

U>(Og)1 ~
1

Cartan decomposition, and using cuspidality of o, we obtain & = 0. Again using the irreducibility

of o ('), we obtain the desired multiplicity result. O

5. Local deformations

In this section we compute potentially crystalline deformation rings for certain L-parameters p : ['x —
€U, (F). The main result is Corollary 5.25 which relates Hilbert—-Samuel multiplicities of such rings with
the set W’(p). This will be used to prove the “weight existence” direction of Corollary 7.5.

We follow [Le et al. 2018, Section 6], adapting the base change techniques to our setting; see also
[Caruso et al. 2018]. Section 5A contains the background on Kisin modules for GL,, together with their
classification by shapes. In Section 5B we introduce the notion of polarized (or Frobenius twist self-dual)
Kisin modules and use a base change technique to compute their deformations. We then relate the
deformation problems of polarized Kisin modules and of L-parameters to obtain the desired description
of the potentially crystalline deformations rings.

5A. Kisin modules. Throughout this section, we let R denote a complete local Noetherian O-algebra
with residue field F. We start by defining the relevant categories of Kisin modules with tame descent data
Y‘”,(R) - Y[O’”’T/(R); [Caraiani and Levin 2018, Section 5], see also [Le 2019, Section 3].

5A1. The ring G & (Ok, ®z, R)lul is equipped with a Frobenius map ¢ : S — G which is the

1

arithmetic Frobenius on Ok, (i.e., ¢ = ¢~ on Og,), which is trivial on R, and which sends u to u?.

Definition 5.1. A Kisin module with height in [0,1] over R is a finitely generated projective & g-module
I together with an G g-linear map ¢oy : ¢*IMN £6 R ®g,6; M — I such that

E)M S ¢om(9™) S M,

where E (1) denotes the Eisenstein polynomial of (—p)l/(pzf_l) over K, i.e., E(u) = ub?’ =1 + p.
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We often write 90 for a Kisin module, the Frobenius map ¢gy being implicit.

5A2. Recall that 7 = (—p)/®P” =D ¢ Q,, and set L = K, (). For g € Gal(L/K3), we have defined
- s
a)n(g) = 7 € O;z

(Note that reducing @, mod p induces an isomorphism Gal(L/K) — [F;2 ;) Given g € Gal(L/K>),
we let ¢ denote the Ok, ®z, R-linear automorphism of Gy given by u — (@ (g) ® 1)u. Note that
gog=4godp.

Definition 5.2. Let 9 denote a Kisin module over R:

(i) A semilinear action of Gal(L/K>) on 9 is a collection {g}cGai(L/k,) Of g-semilinear additive
bijections & : 9 — M such that g o h = gh for all g, h € Gal(L/K>).

(i1) A Kisin module with descent datum over R is a Kisin module together with a semilinear action of
Gal(L/K>) given by {g}¢eGai(L/k,) Which commutes with ¢gy, i.e., we have

godm=¢mop*g
for all g € Gal(L/K>).

5A3. Any Kisin module 9t admits a decomposition

2f-1
m= P m®,
i=0

where MY is the R[[u]-submodule of 9t such that (x ® 1)m = (1 ® ¢ o ¢’ (x))m for m € M® and
X € OKZ'
We let

v’ Ig, — Gal(L/K;) — GL,(0)

denote a tamely ramified inertial type which factors through Gal(L/K>). Recall that this implies t’ can
be written v’ = ®§ @ 4 i

Definition 5.3. Suppose 9 is a Kisin module with descent datum over R. We say the descent datum is
of type T’ if we have M@ /ud® = ¢’V ®¢ R as representations of Gal(L/K») for every 0 <i <2f — 1,
where 7’V denotes the dual type.’

Zwe impose the condition om® / um® = v ®@© R because our functors to Galois representations in later sections are
contravariant. In particular, if 90 is a Kisin module over O with height in [0, 1] and descent datum of type 7’ (as defined in
Definition 5.3), then the I'g, -representation Tg‘d (OM[1/p] will have inertial type /. (See below for undefined notation and
terminology.)
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5A4. We now define the categories of Kisin modules that will be relevant for us. Let y = ((1)) denote the
standard minuscule cocharacter of G’ = Resg %,/ Zp GLy/0 Ky

Definition 5.4. Fix a principal series tame type t’:

(i) We define YIO117'(R) to be the groupoid of Kisin modules over R of rank 2, with height in [0,1],

and descent datum of type 7’.

(i1) We define Y ’”/(R) to be the (full) subgroupoid of Y[O*l]’f/(R) consisting of Kisin modules such that

E () det I = oy (¢*(det M)). (5A.1)

Note that the definition of Y% (R) above is consistent with the construction of [Caraiani and Levin
2018, Section 5], thanks to Theorem 5.13 and Corollary 5.12 of [loc. cit.]. See also [Le et al. 2018,
Theorem 4.18].

5A5. We fix some notation, following [Le et al. 2018, Section 2.1]. Let t’ be a principal series tame type

of Ix,. We may write
_y2f- _ N2~
Vi=n D=,/ Til e do fZ =0 amp,
with 0 < a;; < p—1 for all i. By Remark 5.5 below, we may assume without loss of generality that
neither 1y nor n; are trivial, i.e., (ax;);i ¢ {(p—1,...,p—1),(0...,0)} fork=1, 2.

Remark 5.5. The goal of Section 5 is to compute the deformation rings R;/ (described in Section 5C3
below), where ,5 F K — CU,(F) is a tamely ramified L-parameter. Given an integer 0 < k < p/ + 1, we

(117)

define p ® w§ 7 the twist of p by w, , by the rules

(1 phk
(1 Iy oy = (h) 0
(PRw g )(h) = p(h) - (( 0 (1 pf)k(h)) 1) X1

G ®w§§_pf)k>(go—f> = 5p~")
where h € I',. One checks that these rules give a well-defined tamely ramified L-parameter which
satisfies 7 o (p ® a)21 POk ) =1 o p. Using this twisting procedure, the proof of [Gee and Kisin 2014,
Lemma 2.1.2] shows that we have an isomorphism of deformation rings
. ®5)(1 Dk
w“ —phik

T/
Rﬁ

12

R
p®

Consequently, we may assume that v/ does not contain the trivial character.
Set a; & (a1,1)i, a2 & (az,i)i, and given 0 < j <2 f — 1, define the shifted sums
2f—1 2f—1

() def j (j) def ~
a’ = Z al,,-_jp’, a, = Z az’i_jpl,
i=0 i=0

© —a©

. . _ ~—a, _ o~ 2
so that, in particular, n; =@, , 112 =@,
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Definition 5.6. Let n > 0. We say the pair (a;, ay) is n-generic if
n<la;—ail<p—n

for every 0 <i <2f — 1. If 7/ is associated to (aj, a;) as above, we say 1’ is n-generic if the pair
(ai, ap) is.

This agrees with the notion of genericity given in Definition 4.5.
5A6.

Definition 5.7. Let 7’ denote a principal series tame type of /k,, and let (a;, a;) denote the associated
pair. Suppose 1’ is 2-generic. An orientation of T’ is an element w = (w;); € S%f such that
@) @)
o1y Z Py (2)
forall0 <i <2f —1.

(We view S, as a subgroup of GL,(Z) via the standard embedding as permutation matrices. Since
S;f = W', we also view orientations as elements of W’ when convenient.) We note that an orientation
depends on the ordering of the characters 1y, n,. Since we take 7’ to be 2-generic, the orientation is
unique, and w; depends only on the pair (a1 27—1—i, @22 f-1-i)-

. e 2
5A7. In what follows, we use the notation v ey

Definition 5.8. Let v’ denote a 2-generic principal series tame type, and write 7 = n; @ n,. Let
M e Y[O*””/(R), and let N = @lzio—l M@ be the decomposition of 9T as in Section 5A3:

(i) We let zmﬁ” (resp. E)ﬁg)) denote the R[[v]-submodule of M) on which Gal(L/K>) acts by 11
(resp. n2).

(i1) We define @mﬁ") (resp. ¢9ﬁ;i)) to be the R[[v]-submodule of &*(M®) = (g*M)+V on which
Gal(L/K>) acts by 1 (resp. n2).

(iii) We define an eigenbasis B = {B©}; of 901 to be a collection of ordered bases @) = ( f](i), fz(i)) of
each M@ such that fl(l) € EJJT(II) and fz(l) € Dﬁg).

Now let 7" be a 2-generic principal series tame type, with orientation w = (w;);. We have a commutative
diagram:

2f _1_(g®  _ @ @ _ @)
W T ) T ) Wi () ;)

G i—1) . Fami—D . geamG—D
wfmw;(Z) ’ (pmwi(l) ’ (pmwf@)

(=1 -1 @i-1)
lqsfm.wi(Z) J/¢9)7<uri(l) lqbim,w,-@)
p2f717(a(f) (@) (i) (i)

—a ) a —a
(l) u w; ()™ “w; (2) N (l) u wi (1) "w; (2) N (1)
My, ) > Moy 7 My

Here, ¢gt_kl) denotes the restriction of ¢gy to %ﬁ,(f_l).
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5A8. Fix a principal series 2-generic tame type 7/ and 0t € Y017 (R). Let w = (w;); denote the
orientation of 7/, and let 8 = {8?}; denote an eigenbasis for . We define

(i) g L=y ) )
ﬂw @ = i (1)° fw (2))

(-1 &t ay) —ay) (i—1) (i=1)y.
ﬂw 2 = (u"wim 2R f 1) - 1® f (2)

the first is an R[[v]-basis for Smg,)(z)’ the second is an R[[v]]-basis for “".)JT(Z (21; We then define the matrix
A e Maty,»(R[[v]) by the condition

(i) (i) (i+1) i
S Bun @) = Bur A (GA2)

We say that A is the matrix of the partial Frobenius of 90t (at embedding i, with respect to f).

5A9. We now find a more convenient expression for the data of the matrices (A");.
We define the extended affine Weyl group of GL; as

def

W No, (Te) (F(v)) /T (FIvI),
where TG denotes the torus dual to TG0 Ky We have an exact sequence
0— X.(Tg) > W— S, — 0,

where the first nontrivial map sends a cocharacter to its value on v. Furthermore, we have a Bruhat
decomposition

GL2(F(w) = | ] 9w,
HeW

where J denotes the standard Iwahori subgroup of GL, (F[v]]), that is, the set of matrices which are upper
triangular mod v.

Using the canonical identification X *(Tg) = X*(Tg o Kz), we identify W2/ with the extended affine
Weyl group W' of G'.

Definition 5.9. Let w = (i0;); € W', let T/ be a principal series 2-generic tame type, and let w = (w;); € W’
denote the orientation of t’. Let M1 € Y[O’”*’,([F):

(1) We say 91 has shape w if for some eigenbasis B , the matrices (A®); (defined by (5A.2), with respect
to B) have the property that A® e Ji; 7.

(i1) As in the discussion following [Le et al. 2018, Definition 2.17], the notion of shape does not depend
on the choice of eigenbasis. We define Yg " (F) to be the full subcategory of Y7 (F) consisting of
Kisin modules of shape w.
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lI),' t t 10

AD (véT,l O) (57,1 51,2) ( 0 ET,z)
= =k =k =k
Ve €5y 0 UG 5 ves 0

Table 1. Shapes of Kisin modules over F. Here we have ¢ x € F and ¢}, € F*.

5A10. Upon choosing the dominant chamber corresponding to J in X *(fg) ®z R, we obtain a Bruhat
order < on W. Given a cocharacter A € X *(T G ), we define the A-admissible set as

Adm(}) < {we Wb <ty for some w € $>}.

aam()=1(5 1) (50)- (Co))

We denote these elements by t, t' and tv, respectively. Given u = ((1)), we define

In particular, we have

2f-1
Adm(p) = [T Adm((§)).
i=0

which we call the p-admissible set. As in [Le et al. 2018, Corollary 2.19], we have that Yg ’f,([F) is
nonempty if and only if w € Adm(u).
We now have the analog of [Le et al. 2018, Theorem 2.21], using [loc. cit., Lemma 2.20].

Lemma/Definition 5.10. Suppose w = (;); € W' is w-admissible and t’ is a 2-generic principal series
tame type. Let M € Yﬁ’f U (F). Then there is an eigenbasis B for M such that the matrix of partial Frobenius
AD has the form given in Table 1. We call such an eigenbasis a gauge basis.

5A11. Now fix M e Ylg”/([F), and fix a gauge basis B for 9. We denote by Y%’T/(R) the category of
pairs (901, ), where 901 € Y*7(R) and J is an isomorphism ; : M F = M.

Definition 5.11. Let (9N, ;) € Y%{T/(R). A gauge basis of (0N, ) is an eigenbasis B lifting B via j such
that the matrix of partial Frobenius A) satisfies the degree conditions given in Table 2.

Note that a gauge basis for (901, ;) € YON* T (R) exists by the analog of [Le et al. 2018, Theorem 4.1],
and the set of gauge bases for (901, ;) is in bijection with the set of eigenbases of 90t/u9 lifting 8 mod u
by the analog of [Le et al. 2018, Theorem 4.16]. (See also the cases Ay, A, of [Le 2019, Theorem 3.3],
where a detailed proof of the cases t and tv above is given.)

5B. Duality. We introduce the notion of Frobenius twist self-dual Kisin modules over K and study their
relation with usual Kisin modules over K, via the theory of base change; as in [Le et al. 2018, Section 6].
The main result of this section (Lemma 5.18) describes the matrix of partial Frobenius on Frobenius twist
self-dual Kisin modules.
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w; t ¢ 0
‘ 1" —o0 0* <0 <0 O*
deg(A® = <
A <v<f 0) 0 ) <—o<> I* ) <v<0*> < 0)
AD (w+p)er; O ko cn L1 ochy
V21 C;,Z 0 sz(v + p) UC;,] €22
C1,1022 = —pCi ,C5 4

Table 2. Deforming Kisin modules by shape. Here, deg(A") denotes the degree of the
polynomial in each entry. We write n* to denote a polynomial entry of degree n whose
leading coefficient is a unit. We have c¢;; € R and c}?’ « € R*. Row 3 is deduced from
row 2 by imposing condition (5A.1).

5B1. We now collect the relevant properties of Cartier duality which we will need.

Definition 5.12 [Broshi 2008, Section 3.4.1]. Suppose t’ is a tame principal series type, R is a local
Artinian O-algebra with residue field F, and let 9 Y/”/(R). We define the Cartier dual of 91 to be

M = Home, (M, Sg),
which we equip with a Frobenius map by

1® f > ¢, 0 (1® f)ogy o E(u),

where 1® f € ¢* Homg , (M, Gr) =Home, (¢*M, ¢*Sg). (Note that the map ¢9y is injective by [Kisin
2009, Lem. 1.2.2(1)].) We also equip 9" with a descent datum, given by

(the right-hand g/_\1 denotes the semilinear action of Gal(L/K>) on 91, while the left-hand g denotes the
semilinear action on Gg). With this definition, one easily checks that the descent datum of 9t is of type
'V, where 7'V is the type dual to 7/, so that MY € Y7 (R).

Before proceeding with the proof of the proposition below, we introduce some notation. We define

{Pnln>0 to be a sequence of elements of Q p Which satisfy pf 41 =Dn and pg = —p, and define K o

Unso K (Pn) and K266 = [, K2(pa). Note that Gal(K», 00/ Koo) = Gal(K2/K).
Proposition 5.13. Suppose R is a local Artinian O-algebra with residue field F. Let ' : Ix, — GL2(0)
be a principal series tame type. Then M — MY defines an involutive functor Y*'© (R) — Y**" (R),

which enjoys the following properties:
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o We have TH(MNY) = TH(ON)Y ® € as [k, . -representations, where the functor Tj is as defined in
[Le et al. 2018, Section 2.3].

o Let B = {BYV)}; be an eigenbasis of N as in Definition 5.8. Let C) = “ Matg (¢ ) € Maty o (R[[u])
denote the matrix of the Frobenius on §*(IMY), defined by

(l)(l ® f(l)’ 1® f l)) — (fl(i+1)’ fz(H_l))C(i)-
Then the matrix of Frobenius on 9"V with respect to the dual basis B is given by
Matge (¢.) = E@)(CD) T (5B.1)

Proof. The first point follows from [Broshi 2008, Proposition 3.4.1.7], while the second point follows
from an explicit calculation. U

5B2. We explain how orientations and shapes change under duality. Suppose 7’ is a 2-generic principal
series tame type, and write TV = 1 @ 1. We then have the associated pair (a;, a;) and orientation
w = (w;); € S;f . We fix an ordering on the characters of 7’ so that t/ = nfl ®n, I'is associated to the
pair (p —1 —a;, p— 1 —ay) and orientation (s, s)w (recall that we view elements of S%f = W’ as pairs
of elements of S{ = W as in Section 3B1). Note that 7’ is n-generic if and only if 'V is n-generic.

Assume that R is a local Artinian O-algebra with residue field F, M € Y ‘”/(R), and let S denote an
eigenbasis of 9. The matrix C @) of Frobenius on ¢* (M) (as in the above proposition) and the matrix
AD of the partial Frobenius (as in Section SAS8) are related by the equation

@i+1) @i+1)

ay. . 1) @y (1)
. +1 . +1
C(l) — w u -t 0 A(l) u t 0 —1.
— Wi+l gD gD W15
0 u z+1(2) 0 u H—l(z)

for the proof, see [Le et al. 2018, Proposition 2.13]. Using this relation for the dual Kisin module 2t
and dual type 7"V (ordered as in the previous paragraph), along with Proposition 5.13, we conclude that
the matrix of partial Frobenius on 91", with respect to 8" at embedding i, is equal to

— v+p 0 N—T
E AD A®D
(u)s(AD)~T ( 0 v+p>S( )
Now suppose 9t € Y7 (F). The above relation shows that 9 has shape W; at embedding i if and
only if 9" has shape ( )sw s at embedding i. In particular this involution on W’ fixes Adm(u)
pointwise, and thus Cartier duality induces an involutive functor

YT () - YeT ().

Furthermore, (5B.1) shows that f is a gauge basis for 90t if and only if 8 is a gauge basis for 9",
Similarly, if (O, ;) € YD%’T (R), then B is a gauge basis for (9, ;) if and only if 8" is a gauge basis for
oY, (7.
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5B3. In the following, we use the notation ¢ to denote the automorphism of G which is the arithmetic
Frobenius on O, and which acts trivially on R and the variable u. Thus, given a Kisin module M, we
may form the pullback ¢*9t = “ Sk Ro.5, M along o, equipped with Frobenius Porm = o*Pon. One
easily checks that (o*901)@ = o* (M=), If 9 comes equipped with a descent datum, o *91 obtains a

descent datum via the canonical identification
g7 (0 M) = o™ (§*M)

(here g*90t denotes the pullback of 9t along the automorphism g of Sg, and similarly for gP). We note

-1 -1
that if 90 has type t’ and t"¥ = n; @ 1, then o *9N has type (), where (t/)*V = ()¢ =n! &)
Thus, Frobenius twisting gives a functor

*YRT(R) - YO (R).

We make similar definitions for iterates of o.
We briefly describe how the Frobenius twist transforms certain objects associated to Kisin modules.
Twisting changes the principal series tame type t’ into (z/)?. Thus, it also transforms the associated pair

(a1, ax) = ((ar0,a1,1, ..., a12f-1), (@2,0,a2,1,...,022f-1))
into

((a11,a1,2,...,a127-1,a1,0), (@2,1,a22, ..., 4221, 02,0)),
and transforms the orientation w = (wo, wy, ..., war—1) into (way_1, Wy, ..., w2 —2). Further, given an
eigenbasis B = {(f(l) fz(’))}, for 91, the elements a*,B e {(1®f1(l), 1®f2(’))},- form an eigenbasis of o *9.
Therefore, by their definition, the Frobenius twist transforms the matrices (A®, AD .. AGS=D) of
partial Frobenius (with respect to ) into (ACT=D A0 - ACI=2) and if M e Y/”/(I]:) has shape
w = (W, W1, - .., War—1), then o*M € Y’ (F) will have shape (w271, Wo, - - . , Wa—2). Finally, we

obtain an isomorphism on the associated I'k, . -representation
T (o™ = T(0)?,
where we recall that the superscript ¢ denotes the twist of the representation by ¢.

5B4. Suppose now that 7’ is a 2-generic principal series tame type which satisfies (t’ )‘/’7/ =1’V (and
note that (r’)‘”f'f = (r’)‘”f). As in Section 4D, this implies that 7’ is of the form

r_ ~ple r_ ~( 14+pHa ~( 1+pf)b

oT¢
T Wy ¢ D w, ¥ or 7 W ¢ P w
If ¢/ is 2-generic, the orientation on 7’ has the form (z, z) for z € W in the first case, while in the second
case the orientation has the form (z, zs) forz € W.

The discussion above gives the following:
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Lemma 5.14. Assume 1’ is a 2-generic principal series tame type, write T = n; ® na, and let w =
(w;); € W' denote its orientation. Suppose that (t’)‘ff = V. Then

f
P _ -1
My @) = Mwis)

forevery0<i <2f —1.
Proof. This may be proved case-wise, using the possible orientations on 7’. U

SBS. Asin [Le et al. 2018, Section 6.1], we define Kisin modules which are Frobenius-twist self-dual.

Definition 5.15. Let R denote a local Artinian O-algebra with residue field F, and let 7" denote a principal
series tame type which satisfies (t)*"" = 'V, We define

YT (R) 2O, 0 s M e YT (R), 13 (o))" I = ),
where ¢ is a map of Kisin modules with descent data, such that the composite morphism

M (o) (o)) T (o)) £ (o) oy 5 o

4L,

is —1 on 9. We call ¢ a polarization of 9. A morphism (9, t;) — (My, 1) in Yéolfl(R) is a morphism

a9y — My in Y7 (R) such that the following diagram commutes:

o/
@y 8 oy,

Lok

my «——— my
Definition 5.16. Let R be a local Artinian O-algebra with residue field F, suppose 7’ is a 2-generic
principal series tame type, and let (O, 1) € Y;f;lr (R). A gauge basis of (I, 1) is a gauge basis  of

M € YT (R) which is compatible with ¢, meaning (((o/)*8) = (1, —=1)B".
We now discuss the effect of adding a gauge basis.

Proposition 5.17. Ler R be a local Artinian O-algebra with residue field F, and let t' be a 2-generic
principal series tame type. Let (I, 1) € Yéf)’lf (R). Then the set of gauge bases of (M, 1) is a torsor for

’fG (Ok, ®z, R)"f:in", where inv denotes the homomorphism t — t1.

Proof. The proof follows the argument of [Le et al. 2018, Proposition 6.12]. Let 8 be a gauge basis
of M € Y*T'(R). Then t((o/)*B) is a gauge basis of M"Y and by [loc. cit., Theorem 4.16], the set of
gauge bases of 91 are uniquely determined up to scaling and are exactly fg(O K, ®z, R)BY. Thus
t((cF)*B) =cBY for a unique ¢ € T 6Ok, ®z, R), and the cocycle condition satisfied by ¢ is equivalent to
¢~'o/(¢) = —1. Further, given 1 € Tg (O, ®z, R), wehave (((a/)*(1B)) =o'/ ()i((a/)*B) =0/ (1)cB".
Since the basis on 9" dual to 8 is ¢t '8V, we conclude that the set of gauge bases of (91, ¢) is exactly
the set of solutions ¢ € Tg((‘) K, ®z, R) to the equation (1, —1)t‘1 = o/ (t)c. The conclusion follows
as in [loc. cit., Proposition 6.12]: using that Reso %,/Zp splits over O, we have that the equation has a
solution, and the solution set is a Tg((‘) K, ®z, R)"f:i“V—torsor. U
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5B6.

Lemma 5.18. Let R be a local Artinian O-algebra with residue field F, and t’ a 2-generic principal series
tame type which satisfies (r’)‘/ff =1V, Let w = (w;); € W' denote the orientation of t':

(i) Let M, 1) € Y pol (R) and let B denote a gauge basis for M, 1). Let AV be the matrix of partial
Frobenius of M € Y™ (R) with respect to B. We then have

A1 {E(u)s(A@)—Ts ifi# f—1,2f—1,
N\ —EwsADY s ifi=f—1,2f—1.

(5B.2)
In particular, if R =F, N, 1) € Ylﬁ)’]f/([F), and M has shape © = (;); € W', then

w,-,f = w;.

(ii) Conversely if MeY w7 (R) and the matrices AV of partial Frobenius satisfy the condition (5B.2)
for a gauge basis B of N, then there exists a polarization 1 on N such that (N, 1) € Y[ﬁf)’lr (R), and
such that B is a gauge basis for (M, 1).

Proof. (i) We follow [Le et al. 2018, Sections 2.1 and 6.1]. Let j : (¢/)*9 — 9 denote the o /-
semilinear bijection sending s ® m to o~/ (s)m. We have a commutative diagram of R[[v]]-modules:

) o e ), ——= (e, s v,
k 77wi7f+1 ) wl-+1x(2) nwi+1x(2)
(G ; ) i
¢DJI l‘z)((o)f)*)ﬁ J¢(a f)*‘.m Jj%;;v
e | .
e —— (@Y — (e —L—
i—f+ ’75}71«41(2) nw,+lv(2) n,,)'.+ls(2)

(here the subscripts denote isotypic components). The left square commutes by [loc. cit., Lemma 6.2], the
center square commutes by Lemma 5.14, and the right square commutes by definition of polarization. By
Section 5B2, we see that the matrix of partial Frobenius on 9" at embedding i is E (u)s(A®¥)~Ts. Since
B is a gauge basis which is compatible with the polarization, the above commutative diagram implies that
AU=1) is of the form stated above.

(i) We may define ¢ : (6/)*9 = 9M" by the condition

fl ffs)(,j) if0o<i<f—1,

fo i iff<iz2f-1,

A® fp) =

where kK = 1, 2, and where f @~ S(k) " denotes the basis vector of 91" dual to f (= S(k) The relation (5B.2)
guarantees that ¢ is a morphlsm of Kisin modules. U
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lZ)i t t 1o
expl
RT | Ollea, 1, xf 1. x5, Ollera, xf 1. x5, Ollxi, y2.2. %5 5. x5 1/ (x11y2.2 + p)

Table 3. Deformation rings by shape. The variables x* appearing in the power series
rings below correspond to the coefficients ¢} ; —[¢} n of the universal matrices appearing
in Tables 1 and 2.

5C. Deformations. In this section we describe deformations of Frobenius twist self-dual Kisin modules
and relate them to deformations of local L-parameters. The main result is Corollary 5.25, giving a
description of the special fiber of the Galois deformation ring in terms of Serre weights.

Throughout the discussion, we fix a tamely ramified L-parameter p : 'y — €U, (F) such that 7 o 0 =&,

and let v’ : I, — GL»(0O) be a principal series tame type satisfying () =V,

5C1. We begin with Kisin modules. Fix (), 1) € Y[ﬁ)’lr/([F) and let ¥ = (#;); € W’ denote the shape
of 9. We also fix a compatible gauge basis f, and assume that 7’ is 2-generic. Given a local Artinian
O-algebra R with residue field F, we let

wr O(EDZR,LR)EYO] (R)
mﬁz (R) = = 1 MR, (R JR) 0 Jg: Mr @ F => M ‘
O () o tr®rF) =10 (c/)* g

and

M, pol

r B def
(R) = {(fmk, LR, JR> BR) :
mt -pol ¢ Br is a gauge basis of (Mg, tg) lifting B

o (Mg, g, Jr) € YET (R), }

Using [Le et al. 2018, Theorems 4.16 and 4.17] along with Lemma 5.18 and Proposition 5.17, we see that

D;n i o — Y ;Ol 1sa G -torsor, and in particular is representable by a formal Artin stack, since Y“ 7t pol is.
As D_ T.p has no nontr1v1al automorphisms we conclude that D T representable by a complete local

N, pol N, pol
Noetherian O-algebra R The act of deforming a polarized Kisin module (O, 1) with M e Y“ v (F)

and a gauge basis on it 1s equlvalent to deforming the collection of associated matrices (A" ))o<,<2 -1
subject to the degree conditions of Table 2 and (5B.2). We conclude that:

~

Theorem 5.19. Let t/ be a 2-generic principal series tame type which satisfies (t’ )*"# = ¢V, and let M,

~ ® expl
Sﬁ pol i€{0 wi

.....

w, i, and B be as above. Then

1. . . . "B
where R';X_p is as in Table 3, and the completed tensor product is taken over O. In particular R;ﬁ’/; o 18 an

integral domain.

5C2. We now discuss deformations of L-parameters.
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We recall a result from [Clozel et al. 2008] in a language more suited for our purposes. Let R be a
topological Z ,-algebra. By [loc. cit., Lemma 2.1.1], there is a bijection between

e L-parameters p : 'y — CU,(R); and

e triples (p’, 6, @), where p’ : 'k, = GL(R) is a continuous homomorphism, 6 : 'x — R* is a

continuous character, and « is a compatible polarization, that is, « : (o’ )‘p_j > p’Y ® 0 such that
the composite map

1o —2f _ -f _ _ vy—1
pl AT (e E L (@) S (@t @

is equal to multiplication by —0 (¢ 7).

The correspondence is given by sending p : 'y — €U, (R) to (BC(p),i o p, ), where p(p~/) =
(A, 0(p~ ) x g~ and a(v) = &5 A

In what follows, we will usually fix 8 = ¢ (hence —0(¢~/) = —1), so that L-parameters p : 'y —
€U, (R) with 7 o p = & correspond bijectively to pairs (p’, o) where p’ : I’ kx, = GL2(R) is a continuous
homomorphism and « is a compatible polarization. In particular, our fixed p is associated to (BC(p), &@).

5C3. We introduce several deformation problems for Galois representations. Let R%’ denote the universal
framed deformation ring of p. By [Bellovin and Gee 2019, Sections 3.2-3.3], there exists a unique O-flat
quotient R; of RE with the property that if B is a finite local E-algebra, then a morphism x : RE — B
factors through Rg if and only if the corresponging L-parameter p, : 'y — CU,(B) is potentially
crystalline with p-adic Hodge type (1, 0, 1) € X, (T), inertial type T’ and cyclotomic multiplier 7 o p, = ¢.
We recall the terminology used above:

o An L-parameter 'y — CU,(B) is potentially crystalline if and only if it is so after composition with
any faithful algebraic representation ‘U, < GL,.

« Suppose the L-parameter p : 'y — “U,(B) has cyclotomic multiplier 7 o p = ¢. Then p has p-adic
Hodge type (1, 0, 1) if and only if BC(p) has p-adic Hodge type u = ((1)), that is, if BC(p) has
Hodge-Tate weights {—1, 0}.

o An L-parameter p : [x — €U,(B) has inertial type t’ if WD(p)|;, = (t' ®1;,) ®f E (by WD(p)
we mean the E -points of the CU,-torsor whose construction is contained in [Bellovin and Gee 2019,
Section 2.8, Lemma 2.6.6, and Definition 2.1.1]). Assuming p has cyclotomic multiplier, this is
equivalent to WD(BC(p)) |, = 7.

(In this section, we will be working with framed deformations with p-adic Hodge type (1,0, 1) and
cyclotomic multiplier, so we omit (1, 0, 1), € and [J from the notation.) We write D%/ = Spf R[E)/.

Similarly, we let RE/C( 5 be the framed potentially crystalline deformation ring parametrizing lifts of
BC(p) with p-adic Hodge type n and inertial type 7’. We write D{;C(ﬁ) = Spf R]?C(ﬁ)'
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5C4. Let R denote a local Artinian O-algebra with residue field F. We define

o ph € Dgc(ﬁ)(R)
o arg is a compatible polarization of p’ lifting &

! def
D) pol (R) = {(/033, aR):
We have natural maps
‘[/ ~ ‘[/ ‘[/
D = Dyc(p).pot = Picp)

where the first isomorphism follows from Section 5C2.

5CS. Our next task will be to relate deformations of L-parameters to deformations of Kisin modules.
Before considering further deformation problems we record the following result.

Lemma 5.20. Let p : T'x — CUs(F) be a tamely ramified L-parameter satisfying t o p = & and v’ a

o~ . ..
¢ = ¢V, Then there exists at most one Kisin module

2-generic principal series tame type satisfying (t")
M e YT (F) such that Td*a(ﬁ) = BC('ENFsz‘ If such an 9N exists, then there is a unique polarization [
on M such that N, 1) € Ylﬁf)’lt/(ﬂz), and such that T is compatible with the polarization @ on BC(p)|r K> oo
via Ty

Proof. The first part of the lemma is [Le et al. 2018, Theorem 3.2]. Assume that Mm e Y/”/([F)
satisfies Td":i(S)Tt) =BC(p)|r K oo and let M £ 0 ®e; O¢ r denote the associated étale ¢-module (where
Oer = O¢ ®z, [ and Og¢ is the p-adic completion of Ok, [[u]l[1/u]). Since the category of I'k, -
representations is equivalent to the category of étale ¢-modules, and since BC(p) is essentially conjugate
self dual, we have an isomorphism

Loy M = Y

(see [Broshi 2008, Section 3] for the definition and properties of MY). By [Le et al. 2018, Theorem 3.2]
the Kisin varieties of both (o/)* M and MV are trivial. Since (o/)* 9t and IV are Sg-lattices in
(o/)* M and MY, respectively, we conclude that the map 7 < t|(ry+ oy Tactors through an isomorphism
(o7)* M => MY, giving a polarization on N.

We now claim that if 7y, i, are polarizations on 9t which are compatible with the polarization & on
BC(E”%,M then i1 = ;. Since Tj;(i1) = Tj;(i2) we deduce that (i1 — 12) ®g; Og,r = 0 and hence
im(i; — i) is a u-torsion Sg-submodule of 9MY. Since MY is a projective Gp-submodule we conclude
that iy — 7, = 0. O

We may now introduce the following definition:

Definition 5.21. Let 5 : 'y — U, (F) be a tamely ramified L-parameter such that { o 5 = & and let 7’ be
a 2-generic principal series tame type satisfying (7’ )9”_f = ¢/V. Assume that there exists (M1, 7) € Yéf)’lr "
together with an isomorphism Tdﬁ(i)?t) —> BC(p)Ir,  compatible with the polarizations on both sides.

We define the shape of p with respect to ' to be the shape of 90, and denote it by w(p, ).

Whenever we invoke the shape of an L-parameter with respect to a 2-generic type 7’ (with p and
7’ as above), we implicitly assume that there exists a (necessarily unique) polarized Kisin module
O, ) e Y;‘ '" (F) such that Td"a(ift) - BC(ﬁ)lFKZ,oc compatibly with the polarizations on both sides.

ol
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5C6. In what follows, we fix a polarized Kisin module (97(, ) € Y;f)’lr/([F) and an isomorphism 5
T3 — BC(p)Ir % , which is compatible with the polarizations on both sides (with g and t’ as
above). (The existence of such a (M, 1) is a necessary condltlon for the ring Rf to be nonzero, since a
pol (O) which reduces to (91, ©) modulo @,
by the analog of [Kisin 2006, Theorem (0.1)] with coefficients and descent data.)
Let R denote a local Artinian O-algebra with residue field F. We define

nonzero morphism x : Rr — O gives rise to an element of Y

o (Mg, Jr) € YT (R)
def 4
(R) = { Mg, Jr, /O}gv SR): © P;e € D}SC@)(R)

fm BC( ) _
0 8r  Tjy(Mp) = plr,, lifts §

o (Mg, tg, Jr) € YL v (R)
def

M, pol
DT (R)
(R) E L Mg, tr. Jry pr-0R): CPREYS _
mtpol P 0O : TH(MR) — BC(,OR)|1~K2,Oo lifts &,

compatibly with the polarizations

The forgetful functor (Mg, tg) > Mg along with the base change map pr — BC(pgr) induces a morphism
7,0 /.0 . . . . %
. pol: p . BC(D) which is compatible with 7.

Lemma 5.22. Let p and t' be as above, so that in particular t' is 2-generic and satisfies (t)¢~ ='V.

4 / . . .
Then the natural map Di%tﬂ — Dg is an isomorphism.

,pol; o

Proof. Let R be a local Artinian O-algebra with residue field [, and let pr € D/E)/(R). Recall that the
data of pg is equivalent to the data of (BC(,oR) aR), with ag a compatible polarization. By [Le et al.

2018, Corollary 3.6], the representing rings RZ and REIR/C( 5 are isomorphic, and hence there exists a

EUIBC( ) B
unique pair (Mg, Sg), where Mg € Y” v (R) and &g : T;;(Mpg) — BC(/OR)|1~K200 lifts §. It remains to

construct a unique polarization on g compatlble with ag. By the equivalence of categories between étale
@-modules and Ik,  -representations, the polarization ag induces a polarization (g : (o Iy Mp = MY,
where My denotes the étale ¢-module associated to 91g. The uniqueness of Mg implies that (g carries
(c/)*Mpg to 9. Finally, the fact that t is unique follows exactly as in the proof of Lemma 5.20. O

5C7. We now fix a gauge basis B on (901, 7). For a local Artinian O-algebra R with residue field F, we
define

r 8.0 def

(R) =

o (MR, tr, IR, pr.8R) € DL le( )
Dﬁpolp

o ﬁR is a gauge basis for (Mg, tg) lifting B

/3 O /.0
We see by Proposition 5.17 that the forgetful map Dim oo . pol: p

ol; o
torsor of relative dimension 2 f. We denote by RL H polip mﬂ ol:5 the corresponding map of deformation

rings. It is a formally smooth morphism of relatlve dimension 2 f between complete local Noetherian

{(me, LR, JR: BR: PR, OR) :

is a representable formal torus

O-algebras.



Serre weight conjectures for p-adic unitary groups of rank 2 2063

Finally, we define the deformation problem

. O(WR,LR,JR,,BR)GDT ﬂ 4B
def —
D;ﬁﬁ (R) = { (MR, tr, JR, BR:€R) * & e is a basis for T, d(imR) hftlng the (pullback via § of the)
standard basis on BC(,('))HKzOo

In particular, if (Mg, tr, Jr, Br: ¢r) € Dt ﬂD

BC()Iry, . Welet R’ ’f‘D

(R ), then (T;;(Mg), er) is a framed deformation of
denote the deformatlon ring corresponding to the above deformation problem.

5C8. The relatlonshlps between the various deformation problems are summarized in the following
diagram, where “f.s.” stands for formally smooth.

Spt RY éspr%{i‘p L5 gpf R’ *m S spr’ PO L gy fRf '3 (5C.1)

0

The maps which are formally smooth correspond to forgettmg either a gauge basis on the (polarized)
Kisin module or a framing on the Galois representation. The former is formally smooth of relative
dimension 2 f while the latter is formally smooth of relative dimension 4. The isomorphism follows from
Lemma 5.22.

Our next goal will be to show that the remaining map Spf R P, ?7 — Spf RY: ‘z o is an isomorphism.
This will follow from some calculations with Galois cohomology
5C9. Given the tamely ramified L-parameter p : 'y — CU,(F) with 7 o p = &, we set ado(ﬁ) ) gl (F).
It is a direct summand of the Lie algebra of ‘U, endowed with the adjoint action of 'y via p. Explicitly
the action of 'k on the direct summand ado(,5) is given as follows: 'k, acts by the adjoint action (via
BC(p)), and p(¢p~/) = (A, 1) x ¢~/ acts by

X> —Ady X oy A
Lemma 5.23. Suppose p is 1-generic. Then the restriction map on cocycles
Z' (T, ad’(p)) - Z' (Tk,,, ad’ (D))
is injective.
Proof. Lemma 4.2 implies that ado(,5)|r % is a direct sum of four characters, and the condition of 1-
genericity implies that none are equal to the mod p cyclotomic character. Thus, ad®(5) is cyclotomic

free, in the terminology of [Le et al. 2018, Definition 3.8]. The result now follows from [loc. cit.,
Proposition 3.12]. |

Proposition 5.24. Suppose p is 1-generic. Then the natural map Spf R%i 0? — Spf R%’i 0? is an

isomorphism.
Proof. By considering tangent spaces and using the above lemma, the map in question is a closed

immersion; compare [Le et al. 2018, Proposition 5.11]. Therefore it suffices to prove it is surjective
on R-points. This is obtained following the argument of the proof of [loc. cit., Theorem 5.12], noting
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that in our situation, the monodromy condition in [loc. cit.] is empty and the p-adic Hodge type is
(1, 0) in all embeddings. (Alternatively, one can invoke [Caruso et al. 2018, Theorem 2.1.12]: the cited

theorem implies that if (Mg, tg, jr, Br, €rR) € Dr G D(R) then we may extend the framed deformation
(T3 (MR), er) of BC(p)l g, toa framed deformatlon of BC(p); the claim about functoriality in

[loc. cit.] implies that the polarization 7;(tg) also extends.) O

5C10. By Theorem 5.19, Proposition 5.24 and (5C.1), we finally conclude that:

7 :tﬁDNrﬂ :A expl
REIS1. ... S D= RE" mp}[[Tl,...,T4]]_(®ie{o R )[[Tl,...,T4]] (5C.2)

where W = (w;); = w(p, T) € W' is the shape of p with respect to 7'.
5C11. The following corollary is the main result on the local Galois side.

Corollary 5.25. Let p: ' g — U, (F) be a 3-generic tamely ramified L-parameter which satisfies 1o p = é.
Let T/ denote a 3-generic principal series tame type which satisfies (t/ Y0~ =1V, and let o (¢') denote the
tame type associated to T’ via Theorem 4.11. We view o (t') as a Deligne—Lusztig representation of G(Z )
on which l(OIX() acts trivially. Assume that there exists M, 1) € Y;f)f (F) together with an isomorphism
THONM) — BC(p)Ir K200 compatible with the polarizations on both sides.

We then have
IW’(p) NTH(o (7)) = e(RS ®o F),

where e(—) denotes the Hilbert—Samuel multiplicity.

Proof. Let N, 0) e Y“ ol ([F) correspond to p, let B denote a gauge basis for (O, 1), and let = (W;); =
w(p,t’) e W’ denote the shape of p with respect to t’. The isomorphism (5C.2) above implies that

e(RY ®0 F) = e(RLP | @0 F) = 2101 =/~ 1wl

where the last equality follows from Table 3.

By the GL,-analog of the discussion in [Le et al. 2018, Section 5.2], we see that REC( 5) is a formally
smooth modification of R P , where the latter ring represents the functor sending a local Artinian O-
algebra R with residue ﬁeld [ to the set of triples (Mg, jr, B R) where (Mg, jr) € Y wt (R) and Bg is a

gauge basis of (Mg, jr) lifting B. Further, the structure of Rzﬁ is obtained by removing the restriction
“i €{0,..., f — 1} in the right-hand side of Theorem 5.19 (this is the GL;-analog of [Le et al. 2018,
Theorem 4.17]). Thus, Lemma 5.18(i) implies

e(R]g/C(f)) ®olF) = e(R;ﬁ"3 ®RoF)
_ ollizin=)

— 22{0<i<f—T:w;=w}|

= e(R/E)/ X0 [F)z.
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After unwinding definitions and conventions regarding duals and Hodge—Tate weights, [Gee and Kisin
2014, Theorem A] gives

IW(BC(p)) NTH(BC (0 (1))| = e(Rc 5 ®0 F).
Hence, it is enough to prove that
IW?(BC(p)) NJH(BC(o (t))))| = [W'(p) NJH (o (z)))|*.

This follows from Propositions 3.18 (applied to (V4 (p)) and o (z')), 4.6 and 4.8. [l

6. Global applications I

In this section we apply the results of Sections 3 and 4 in a global context. Our main references will be
[Clozel et al. 2008] and [Caraiani et al. 2016]; as such, we will be considering Galois representations
valued in the group Go. (We will translate these results back to the group ‘U, at the end of Section 7.)
After preliminaries on automorphic forms on unitary groups and their associated Galois representations
(Theorem 6.2), we give the main result on weight elimination in Theorem 6.7, building on the compatibility
of base change of tame types and L-parameters.

We caution the reader that some of the notation below differs from previous sections.

6A. Unitary groups.

6A1. Let F be an imaginary CM field with maximal totally real subfield F. We suppose:
o F*/Q is unramified at p.
o F/F™ is unramified at all finite places.
o every place of FT above p is inert in F.

This implies that [F* : Q] is even (see [Gee and Kisin 2014, Section 3.1]), and there exists a reductive
group G, , which is a totally definite unitary group, quasisplit at all finite places. More precisely we
take

G(R) = {g € GLy(0F ®v,, R) : gV Tg =15},

where R is an O p+-algebra, and where we write ¢ € Gal(F/F™) for the complex conjugation.
Note that this group is different from the group G from Section 2B1.
The group G is equipped with an isomorphism

t:G XOFJr OF > GLZ/OF

which satisfies to (1®c¢) ot (g) = g~¢T. For all places v of F™ which splitin F as v = ww¢, we obtain
an induced isomorphism
Ly - G((‘)FJ) — GL2(Of,)
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such that ¢,, o t;} (g) =g~ “T. If vis a place of F* which is inert in F, then we have an isomorphism
ty: G(Op+) = Ua(Op+) € GLy(OF,),

where U, is the quasisplit unitary group over O+ defined Section 2A. This isomorphism is given by
g (; _bl)g(}] _bl)_l, where b € O is an element which satisfies bb° = —1 and b ¢ O;j. Finally,
for an embedding «* : F™ < R, the group G(F,:Cr) is compact, and isomorphic to the compact unitary
group Uz (R).

(We note that the running hypothesis in [Gee and Kisin 2014] that v splits in F for v a place of F T

above p is irrelevant for the construction and the basic properties of the group G.)

def

6A2. Set F ;F EFtReQ pand Op+ , = Op+ ®7 Z,,. Recall that E is our coefficient field, with ring of
integers O, uniformizer @, and residue field F. We assume E is sufficiently large; in particular, we will
assume that the image of every embedding F — Q p 1s contained in E.

We write E;“ (resp. X ,) for the set of places of F (resp. F) lying above p. Restriction from F to
F gives a bijection between X, and E;, and we will often identify these two sets. Similarly, we let
I} (resp. I,) denote the set of embeddings «* : F™ < E (resp. x : F <> E). We fix a subset I,cl,
such that [, = I, U ;. Then restriction from F to F * gives a bijection between I, and I;. Further,
composing Kkt € [ ;r (resp. k € 1, ») with the valuation on E gives an element of 2; (resp. ), and we let
v(k™) (resp. v(k)) denote the place induced from the embedding «+ € [ I‘f (resp. k € I,). This gives the
following diagram:

Ip y N ip K> v(k)

I (6A.1)
+ +
I; KT 2 E;r

For a finite place v of F* (resp. F), we let F; (resp. [,) denote the residue field of v. We have
G(F) = Uy(F)) for all v € X7 by construction.

s T,

6B. Algebraic automorphic forms on unitary groups.

6B1. Let K =[], K, be a compact open subgroup of G(A%,). We set

K, =[] k0. k7= J] Ko,
ves} vES)
and if k € K, we write k), for the projection of k to K,. We say that the level K is sufficiently small if for
all t € G(A},), the finite group t~'G(FT)t N K does not contain an element of order p.

6B2. Let K =[], K, C G(A;o;p ) X G(OF+ ;) be a compact open subgroup, and suppose W is an
O-module endowed with an action of G(Of+ ;). The space of algebraic automorphic forms on G (A%)
of level K and coefficients in W is defined as the O-module

def

Se(K, W)= 1{f: GIFI\GAR.) - W: f(gh) =k, f(e)Ve € GAAR.), k € K).
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Given a compact open subgroup K as above, we have

GAYR)=| |6FHk

for some finite set {¢;};. This induces an isomorphism of O-modules

So(K, W) = gk e

fr—= (ft))i

In particular we have inclusions Sg (K, W) C Sg(K', W) for K’ C K. If we assume that K is sufficiently
small or A is a flat O-algebra, we further have

S6(K,W)®9A=Sg(K,WR®nA). (6B.1)

6B3. Suppose that J =[], J, C G(A;o;p ) X G(Op+ p) is a compact subgroup. We define

S(J, W) = lim SG(K, W),
K>J

where K runs over compact open subgroups containing J, for which K, € G(Op+ ). If g € G(AY,) is
such that g, € G(Of+ ,) then

(&-f)h)=gp.f(hg)

defines an element g. f of Sg(gjg_l, W). Hence, we obtain an action of g on Sg(J, W) as soon the

-1

relation J C gJg~' is satisfied. In particular, if J =[], J, C G(A;o;p ) x G(OF+ p) is any compact

subgroup, then J acts on Sg({1}, W), and we have
Se ({1}, W) = Sg(J, W), (6B.2)

6B4. Recall the map I, — X, defined by « +— v(k). This gives a bijection 7, = | | Hom(F,, E)
and we identify embeddings F, — E with elements in /,, without further comment. Let v € X,. We

define Hom(F,, E) € Hom(F,, E) by the condition

ISH

I, = | | Hom(F,, E)

veEX),

where the map is given as restriction of the map 1, = | |, ez, Hom(F,, E). Note that k — « o c defines

a nontrivial involution on Hom(F,, E) and hence |H/5/m(FU, E) = %lHom(Fv, E)|.

6B5. Let Z%r denote the set of all pairs of integers (A, A2) such that A; > A,. (Thus, for v € £, we may
identify (Zi)Hom(F B with X + (Res@F + /ZP(T v)), where Ty denotes the torus of the group U, defined in
Section 2A4 with K = F,". Note that the discussion in Section 3A works equally well for the group U,
and its restriction of scalars.) Given A, = (A,), € (Zi)H?m(F vE) we let W,, denote the free O-module

W, 2 Q) det’2 g, Sym™TH2(0F) ®oy, « O,
xeHom(F,,E)
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which, by restriction and usmg the isomorphism ¢,, has an action of G(Of+). Given an element 1 =
(he)e € (23 ) = @vez (z% YHOM(FuE) e set

W, = ® Wi,

vEX),

which is a free O-module with an action of ]_[Ud; G(Op+) = G(OF+ p)-
Since F,' is unramified over @, for every v € E;;, restriction and reduction mod p give bijections

Hom(F,, E) > Hom(F,", E) => Hom(F},F).

For an element A = ()\,v)vez € (Z )I = EBveE,, (Zi)HFm(F”*E), we let A = (Xv)vegp denote its image
in @uezp (Z%F)H‘)m([F+ D Let Z%ﬁ » denote the subset of 22 consisting of elements (A;, A,) satisfying
A1 — Ay < p — 1. Then the image of (Z )IP in EBUG): (Z )H"m([F D gives rise to the irreducible
mod p representations of G(Of+ ), in a manner similar to Proposition 3.1. (More precisely, under
the identification of (Z2 yHom(F,", "E) with X (Resp /2 (Ty)), the set (Z2 )Hom(F -E) is identified with
Xl(Res@FJ/Zp(TU)) .) In particular, if A = (A, )vegp € (Z )’f’ = @vezp (Z )Hom(F ) we have

WA®0[F§®F(5W)

vex,

as mod p representations of G(Ofp+ p).

6B6. We now relate the spaces Sg (K, W) to spaces of classical automorphic forms.
We let A denote the space of automorphic forms on G (Ag+); see, e.g., [Grbac and Schwermer 2011,
Sections 1.5-1.8]). Since G is totally definite, A decomposes as a G (Ag+)-representation as

A= @m(n)n (6B.3)

where 7 runs through the isomorphism classes of irreducible admissible representations of G(Ap+) and
m(7r) is the (finite) multiplicity of 7 in A [Guerberoff 2011, Section 2.2; Bellaiche and Chenevier 2009,
Section 6.2.3].

Fix an isomorphism : : E = C. This gives an identification

(Z ) P (Zi)Hom(F+’R)

defined by (141), = km for k : F* < R (here 1~! ok denotes the unique element of 1, » lying
over: ok € 1.

The set (Zi)Hom(F TR parametrizes irreducible complex representations of G(FJ); given a p €
(72 YHom(FT.R) we let W, denote the associated irreducible complex G (F)-representation.

For A € (Z%F)IP, the space W) ®gp,, C is a complex representation of G (F ; ). We let

0 ZVVXQ@OJ 624:9'VVQA

denote a G (F)-equivariant isomorphism.
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6B7. From now onwards we let 6° = ®U€2; o, denote a smooth G(Of+ p,)-representation on a finite
free O-module such that 0° ®¢ E is a tame G(Of+ ,)-type. (By abuse of language, we say that 0° is a
tame G(Op+ ,)-type over O.)

Fix A € (Zi)’ r. By letting G(FZ) act trivially on the second tensor factor of le* , ®c (0°®p, €)Y
we define an isomorphism

S6({1}, (Wy, ®0,, ©) ®¢ (0° ®o,, €)) <> Homg (WY, ®c (0° ®o,, ©)", A) (6B.4)

as follows. Let f : G(F*)\G(A;i) — (W, ®0., C) ®c (6° ®p,; C) be an element of the left hand side.
We send this element to a homomorphism f : le* , ®c (0°®o, C)Y — A defined by

F@)(@) =w"((Ex(gx) ® Do @@ 1) o (5,(g) ® 1).f(8)),

where g € G(Ap+), w” € (W, ®c(0°®p,C))Y = WZA®@ (0°®0,, €)Y, &, denotes the action of G(F;r)
on W, ®p, C, and & denotes the action of G(F;g) on W, ;. One easily checks that this isomorphism is
well defined and G(A;O;p) x G(OF+ p)-equivariant. Therefore if J = [T, v S G(A;o;p) X G(OF+ p) is
a compact subgroup we have

(6B.1)
S6(J, W), ®90°)®n, C = Sg(J, (W, ®0, C)®c (0°R®n, C))
(6B.2)
= Se({1}, (Wi ®o. C) ®c (6° ®o., C))’
(6B.4

)
Homg 1+, (W,’, ®c (6° ®0, ©)”, A)’

= Homg sy, (W), ®c (0° R0, C)”, A)
(6B.

lIe®

3)
@m(n) HomG(FO‘E)XJ(W;:k ®c (0° ®o, C)v’ )
7

12

@ m () Homy, ((6° ®o, )", ,) ®c (>P)’". (6B.5)

~ \%
Moo =W,

In particular, this implies that Sg(G(Of+ ), Wy ®0 0°) ®o Eisa semisimple admissible G(AOFO;” )-
representation.

6C. Galois representations associated to automorphic representations and Hecke algebras.
6C1. We define (Zi){)" to be the subset of (Z%r)lp consisting of all A = (A,), for which

Aii = —Aicoc,3—i
for i =1, 2. Note that the restriction map induces a bijection

. )
72y = Z)".
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We use the following notation in the theorem below. Throughout, we fix an isomorphism  : E = C,
and recall that recz denotes the local Langlands correspondence over E. We define |det|~!/? to be the
E-valued character whose composition with : is the square root of |det|~! which takes positive values.

Theorem 6.1. Fix A € (Zi)ip, and for every v € Z;, let T, denote a tame inertial type of I, which

~[FQp] def
=Y. Leto = Qs+ 0 (1)) and let E be an
P

factors as in Definition 4.10 and satisfies (t,)¢ .

irreducible G(A;O;p)—subrepresentation of S¢(G(OF+ ), Wy ®0 E)®r0") QF E. Then there exists a
cuspidal automorphic representation w of G(Ap+) such that w, = E, ® , C for all finite places v ¢ X7,
Moo = WZV* 5o AN T, G(O 4 ) contains o0 @, C. Furthermore, there exists a unique continuous semisimple
representation

r, () : TF — GLy(E)
satisfying the following properties:
(1) We have an isomorphism
rE@ =)y e
(i) If v is a finite place of F* which splits as v = ww® in F, then
WD(r, (1) |r,, )F ™ Zrecz (B, 01y,") @ |det| ~1/2).
(i) If v & ¥ is a finite place of F* which is inert in F, then
WD(r, ()|, )7 Zrec (BCr, )y (By) ® [det|~'/?),
where BCy, g+ denotes the stable local base change.
(iv) Letv € E;. Then r, () is potentially crystalline at v (viewed as a place of F), and we have
WD, (7)) 15, Z 7,
If k € I, satisfies v(k) = v, then
HT, (r, ()lrp,) = Dt + 1, A2

(where we view A as an element of (Zi)(l)” via the bijection preceding the theorem). In particular,
1. ()|, is Hodge-Tate regular.

Proof. Firstly, we note that the existence of the representation r follows from Section 6B7 (specifi-
cally, (6B.5)). Additionally, the set of primes of F which are split over a place of F* has Dirichlet
density 1. Therefore, if we have two semisimple continuous Galois representations satisfying (ii), they
must be isomorphic.

Let G* denote the quasisplit unitary group in two variables over FT, defined as in [Rogawski 1990,
Section 1.9]. There exists a Jacquet—Langlands transfer from L-packets on G(Afg+) to L-packets on
G*(Ap+), which induces isomorphisms at all finite places of the constituents of the L-packets. (In order to
see this, we may appeal to any of the following methods: (1) noting that G%" = SL; (D) and G*%" = SL,
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(where D denotes the quaternion algebra over F* which is ramified exactly at the infinite places of FT),
we proceed in a similar fashion as [Labesse and Langlands 1979, Section 7, page 781]; (2) we may embed
G and G* into their respective similitude groups, which are isomorphic to GL; (D) xCn Resp 1P+ Gy
and GL, x %" Resp /F+ G, and apply the results of [Labesse and Schwermer 2019] along with the
classical Jacquet-Langlands correspondence between GL; (D) and GLj;; (3) use [Kaletha et al. 2014,
Theorem 1.7.1], which nevertheless is conditional on forthcoming work of the cited authors.)

Let BCr/r+ denote the global stable base change map (see [Rogawski 1990, Section 11.5]), and
put I1 EBC r/r+ (JL([r])), where [7] denotes the L-packet containing 7. Then IT is an automorphic
representation of GL,(Af) which enjoys the following properties:

o IT is conjugate self-dual.

[l is cohomological of weight 1, A (viewed as an element of (Zi)gom(ﬁc)).

If w is a place of F which is split over a place v of Ft, then
My, = BCp, pr (1) =my 00,

where BC, JFF denotes the local base change (see [Guerberoff 2011, Section 2.4]).

If v is a place of F lying over an inert place v of F', then

I, = BCFU/FJ' (1),

where BC, -+ denotes the local base change (described explicitly in [Rogawski 1990, Proposi-
tion 11.4.1], and in further detail in [Blasco 2010, Corollary 3.6 and Theorem 4.4]).

If v € X, then we have an injection
o' (ty) ®E, C = Ty|6Ly0p,)-
Hence, if 7] is a principal series tame type, IT, is a principal series representation.

The construction of r,(w) now follows just as in [Guerberoff 2011, Theorem 2.3], appealing to
[Rogawski 1990, Theorem 11.5.1] instead of [Labesse 2011, Corollary 5.3] in order to control what
happens above p. All the properties listed follow from [Guerberoff 2011, Theorem 0.1; Caraiani 2012,
Theorem 1.1; 2014, Theorem 1.1] and Theorem 4.11. O

6C2. Fix a sufficiently small compact open subgroup K =[], K, € G(A%’,), and let T denote a finite
set of finite places of FT, which contains all inert places v for which K, is not hyperspecial and all
split places v for which K, # G(O+). We define the abstract Hecke algebra TT to be the commutative
polynomial O-algebra generated by formal variables T fori =1,2,and w a place of F split over a
place of F* such that w|p+ ¢ T.

def

Fix A € (Zi)ip and let " = {7, }yex, and o¥° denote a G(Of+ ,)-stable O-lattice in the dual of
o= ®v62; o(t)). Given K as above, with K, C G(Opy) forallv e >+, the Hecke operator TLE’) acts
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on the space Sg (K, W; ®9 o¥:°) via the characteristic function of double coset

14
Ko (w'” ’ 12—,-> K, K"

(w, denotes a choice of an uniformizer of F,, and v = w|p+). The image in Endo (S¢ (K, W) Q¢ 0 ¥°))
of T" will be denoted T} _,(K). The algebra T; _,(K) is reduced, finite free over O, and thus a semilocal
ring. Furthermore, note that we have T,ﬁ-) = Tf‘”(Tf))—‘ in TAT’ +(K).

Recall that we have

S6(K, Wy ®00"°) @0 E= (P Mz EX", (6C.1)

)

where the direct sum runs over all irreducible constituents E of Sg(G(Of+ ), Wy Qo oV"°)®p E for
which 2% £ 0, and where Mz is a multiplicity space. The Hecke algebra TFAT, (K acts on each 2X" by
scalars, and we obtain a homomorphism

rg:T] (K)— E.

The ideal ker(Ag) is a minimal prime ideal, and every minimal prime of TAT’T,(K ) arises in this way.
Fix a maximal ideal m C T){T,(K ). Then we have

S6(K, W, ®00"°)m ®0 E #0,

and this localization annihilates all the direct summands of (6C.1) for which ker(Ag) Z m. Letp Cm
denote a minimal prime ideal, corresponding to an irreducible constituent E of (6C.1). We choose an
invariant lattice in r, (;r) (for 7 associated to E as in Theorem 6.1), reduce modulo p, and semisimplify
to obtain a representation ry,; by the density argument of Theorem 6.1 this is independent of the choice of
pand E.

Theorem 6.2. Fix A € (Zi)ip and let v/ = { T;}vezp be as in Theorem 6.1. Suppose that m is a maximal
ideal of '[I'{ . (K) such that the residue field TAT o (K)/m s equal to . Suppose further that ry, is absolutely
irreducible. Then ry, has an extension to a continuous homomorphism

Fm . FF‘*' — 92([F)
Choose such an extension. There exists a continuous lifting
Fm 1 Tre = Go(T] L (K)w)

satisfying the following properties. Note that properties (i) and (iii) characterize BC'(ry) up to isomor-
phism:
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(1) The representation r, is unramified at all but finitely many places.
(ii) We have vorg =& .
(iii) If v € T is a finite place of F which splits as v = ww® in F, then ry, is unramified at w and
BC'(rm) (Froby,) has characteristic polynomial
X2 —TVX + Nw)TP.

v) If v & E; is an inert place, then ry, is unramified at v.

(v) Givenv € E; and a homomorphism x : T{ 7 (K)m — E, the representation x o ry - is potentially
crystalline, and we have

WD(x 0”m|1“F;f)|1F;r =1, @ 11Fu+-
Ifk € L] satisfies v(k) = v, then
HT,(BC'(x o rm)Iry, ) = {Mei + 1, Ao}

Proof. This follows exactly as in [Clozel et al. 2008, Proposition 3.4.4], using Theorem 6.1. The fact
that v o ry = ¢! in (ii) (instead of 8*18;;‘“) follows from the main result of [Bellaiche and Chenevier
2011]. O

6C3. We recall one more well known lemma on the space of algebraic automorphic forms.

Lemma 6.3. Let K =[], Ky, € G(A},) be a sufficiently small compact open subgroup as above, and
let W be a finite, p-torsion free O-module endowed with an action of G(Of+ ). Fix a maximal ideal m
of TT. Then

S6(K,W®0F)n #0<= Sg(K, W®¢ E)n #0.
Proof. This is standard; see, for example, the proof of [Clozel et al. 2008, Lemma 3.4.1]. More precisely,

the fact that K is sufficiently small gives the isomorphism (6B.1), and implies Sg(K, W)y, is p-torsion
free. We therefore obtain

S6(K, W0 F)n=S6(K, W)n®oF #0<+= S¢(K, W& E)n = S6(K, W)n Qo E #0.

6D. Weight elimination.
6D1.

Definition 6.4. A Serre weight for G is an isomorphism class of smooth, absolutely irreducible represen-
tations of ]_[%2; G(F) over F, inflated to G(OF+ ). If v € X7, a Serre weight at v is an isomorphism
class of smooth, absolutely irreducible representations of G(F;") over F, inflated to G(O Fi)-

Note that any Serre weight V for G is of the form V = ), ezt V, where V, are Serre weights at v.
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Definition 6.5. Let v : '+ — G»(F) be a continuous representation such that:

e vor=2¢"1

e i1 (GLy(F) x G, (F)) =Tf.
o BC/'(7) : Tr — GL,(F) is absolutely irreducible.

Let K =[], Ky, € G(A%,) be a compact open subgroup, 7' a finite set of places as in Section 6C2, and
suppose 7 is unramified at all finite places v of F* which split in F and for which v ¢ T. We define a
maximal ideal m; of T” by

m; = (@, T,V — tr(BC'(7) (Froby,)), T, — N (w) ™" det(BC'(¥) (Froby,))) u| ., ¢7
where w|p+ = v &€ T splits as v = ww in F.

Definition 6.6. Let 7 be as in Definition 6.5, and let V be a Serre weight for G. Let K =[], K, S G(A},)
be a sufficiently small compact open subgroup with K, hyperspecial for v inert in F" and K, = G(Of+)
for v e E;r, and let T be a finite subset as in Section 6C2 such that 7 is unramified at each split place not
in T. We say that r is modular of weight V and level K (or that V is a Serre weight of r at level K) if

SG(K, V)m, #0.

We say that 7 is modular of weight V (or that V is a Serre weight of r) if r is modular of weight V
and level K, for some sufficiently small compact open subgroup K € G(A}’,) as above. We denote by
Wod () for the set of all Serre weights of 7. We say that 7 is modular if Woq (7) # @.

6D2. Fix r as in Definition 6.5, and for v € Z+ define 5, < F|p . By Proposition 4.6, we have a set of
conjectural Serre weights W’(p,) at v for every vE Z* (Here we use the isomorphism U, =G, of
Section 2D. Moreover, the condition vor = &~ 1mphes that the Uz([F;“) -representations appearing in
W’(p,) descend to Uz([Fj) = G([Fj), see for instance Proposition 4.8.) Thus, we can attach to 7 a set
W’(7) of predicted Serre weights for G defined as

W()T{@ VU:VveW7(ﬁv)forallveZ;}.

UEE;

In a similar fashion we define the set W’ (BC(#)) of conjectural weights attached to BC(r). (Note that,
under the isomorphism in Section 2D, we have BC(r) = BC' () ® €.)
Ifo = ®U€2; oy is a tame G(Of+ ,)-type, we define the base change of o as

BC(0) = (X) BCy (o),

+
veX,

where BC, denotes the local base change of types.
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Theorem 6.7. Letr : I'p+ — G5 (F) be a continuous representation such that:
evor=2¢l
e i 1(GLy(F) x G,,(F)) =Tf.
o BC'(¥) : T r — GLy(F) is absolutely irreducible.
. f|1~Fv+ is tamely ramified and 3-generic for every v € Z;.
Then
Winod (7F) € W' (7).

Proof. Assume Wy, (7) # &, otherwise there is nothing to prove. Let V € W4 (7), and assume by
contradiction that V ¢ W’ (7). By Proposition 4.6 and Lemma 3.27, there exists a tame U2 (Op+ ,)-type
o= ®U62; o, such that:
(i) V € JH(o).
(i) JH(E) "W’ () = @.
(Note that if p, is n-generic, so is B(Vg(py)).) We define 7, to be the tame principal series type such that
~ , . . o B Fpl ~~

oy = o (1)) (so that, in particular, (z,)? =1,7).

By definition of modularity, there exists a sufficiently small compact open subgroup K =[], K, such
that K, is hyperspecial for v inert in F and K, = G(Opy+) for v € E;, and a finite set of places T such
that

S6(K, V), #0.

Since K is sufficiently small, the functor of algebraic automorphic forms is exact, so item (i) implies
S6(K,0V*)m; #0,
and Lemma 6.3 gives
S (K, o”° Xo E)mf £ 0.

By the discussion preceding Theorem 6.2 and upon choosing an isomorphism 7 : E > C, there exists
a cuspidal automorphic representation 7 of G(Ap+) such that:

* T is the trivial representation of G(F;g).

« Homg, (0 ®g, C, 7)) # 0.

o For each place v of F which is split in F and not contained in T, the local constituent 7, is an
unramified principal series with Satake parameters determined by a minimal prime of Tg o (K)m;

via .
As in the proof of Theorem 6.1, we obtain a continuous representation

r, () : TF — GLy(E)
such that:



2076 Karol Koziot and Stefano Morra

o 1, () lifts BC'(7).
 Foreach v € ), r,(7)|r,, is potentially crystalline, and
WD(r, (7)1, )1y, Z 75
o For each « € I,, we have
HT, ()l ) = {1, 0}.
Consequently, the representation r, () ® € has the following properties:

o 1,(m) ®e¢ lifts BC'(F) ® § = BC(¥).
» Foreachv € ), (r,(7) ® ¢)|r,, is potentially crystalline, and

WD((r,(7) ® &)Irp )1y, = T,
e For each k € I}, we have

HT, ((r () ® &)lry, ) = {0, — 1}.

By the above, we see that BC(p,) has a potentially Barsotti—Tate lift of type z, for every v € X ,, namely
(r: () ® &)|ry, (with notation as in [Gee 2011, Definition 2.3]). Therefore, [loc. cit., Proposition 3.12]
implies that

JH(BC(a (1)))) N\W'(BC(py)) # &

for all v € ¥,,. By Propositions 3.18, 4.6 and 4.8 we obtain
TH(o (7)) "W (5,) # @

for all v e E;. However, this contradicts item (ii), which concludes the proof. |

7. Global applications II

In this section we use patching techniques to prove the existence of Serre weights for L-parameters, using
the results on local deformation theory obtained in Section 5. We first adapt the patching construction of
[Caraiani et al. 2016] to the case of unitary groups which are not split at places above p, and state the
necessary properties in Proposition 7.3. This allows us to deduce the main results on weight existence in

Theorem 7.4 and automorphy lifting in Theorem 7.7.

7A. Setup.

7A1. Suppose that 7 : '+ — Go(F) is a fixed Galois representation such that:
o i1 (GL2(F) x G,y (F)) =T'F.

-1

or==¢

<

e 7 is modular.
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7 is unramified outside E;;.

e 7|r,, is tamely ramified and 4-generic for all v € Z[J;.

o Frer@d®@®) doeg not contain F (¢ p)-

o BC'(¥)(I'r) 2 GLy(F) for some subfield I’ C F with || > 6.

The last condition implies that BC' () (I" F(z,)) 18 adequate (see [Barnet-Lamb et al. 2013, Proposition 6.5]),
and that BC'(7) is absolutely irreducible. Furthermore, the argument in [Caraiani et al. 2016] shows that
this condition also guarantees the existence of a place v; of FT such that:

(a) vy splits as v10f in F.

(b) vy does not split completely in F'({p).

(c) BC () (Frobg, ) has distinct F-rational eigenvalues, whose ratio is not equal to N (vt

~ _rEt.
TA2. Let )\ € (Z%r)lp and for every v € 2;, let 7, denote a tame inertial type which satisfies (z,)¢ el

;7. Set T = = E;; U{vy} and TEY » U{v1}. We consider a slight generalization of the global deformation
problems of [Clozel et al. 2008, Section 2.3]:

def

Y(F/FF T T, 0.7, e (R cx UIRDY
S B (F/F* T T, 0,7, 67 (RS} ens URD)).

The difference here is that we allow places in T to be inert in F. In this notation, R} denotes the
maximal reduced and p-torsion free quotient of the universal framed deformation ring parametrizing lifts
p of r|r - such that v o p = ¢~ !. Further, the ring R 2T denotes the unique quotlent of REI with the
property ‘that if B is a finite local E- -algebra, then x : RD — B factors through R v if and only if
the corresponding representation ry : I' .+ — G2(B) is potentially crystalline, and satisfies vor, = e !,
HT(BC'(ry)) = {Ae,1 + 1, A2}, and WD(BC'(r))|1,, = ;. (Again, the existence of such a quotient
follows from [Bellovin and Gee 2019, Section 3.2-3.3].) In particular, if A =0, then by applymg the

UN

0O,
isomorphism of Section 2D, we obtain an isomorphism of deformation rings R, ', where the
second ring is as in Section 5C3.

We note also that RE is formally smooth over O of relative dimension 4, and all of the corresponding

Galois representations lifting FlpF . are unramified; see [Caraiani et al. 2016, Lemma 2.5].
vl

We let R‘Slniv be the complete local Noetherian O-algebra representing the functor of deformations of r
of type 8, and let Rlsz denote the O-algebra representing T-framed deformations of 7 of type S. (We
define a framing at places in E; just as in [Clozel et al. 2008, Defnition 2.2.1], i.e., as an element of
12 +Maty,o(mp) C ker(G2(R) — G2(F)).) We have similar notation for the deformation problem &, ..

7A3. Set

def

T=0[Xy;j:veT, 1<i,j=<2].
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Choose a lift rgniv representing the universal deformation of type 8, and form the tuple

(runiv {(1+Xv,l,l Xv,1,2 )} )
5 Xoo1 1+Xu22))er/)

This gives a representative of the universal T-framed deformation of type 8, and we obtain
Or ~ punive e ~ puni
RS T ~ Rclglan®OrJ* - Rnglan[[XU,i’j]]

(and similarly for 8y /).

We set
loc def 50\ 5 50 loc def 00,7 \ o 5O
R = (®v€E;RU>®Rv1 and RS, = (®v€E;RU ®R,,.

where all completed tensor products are taken over O.

Proposition 7.1. Assume that RvEI 2T pasa nonzero O-point for all v € E;. Then R}SCT/[I /p] is regular.

If moreover (Ay, 7,) = (0, 7)) with T, being 2-generic and f|1~F+ being 1-generic and semisimple, then
R}fi,[l / p] is formally smooth, and Rgf‘r’/ is equidimensional of dimension 1 +4|T |+ [F* : Q).

Proof. The fact that R}\‘fi,[l /p] is regular follows from [Bellovin and Gee 2019, Theorem 3.3.7], formal
smoothness of ﬁle, and [Caraiani et al. 2016, Corollary A.2]. When A =0, formal smoothness of R}X‘)’Cr, [1/p]
follows from the results of Section 5C10, formal smoothness of I?UDI, and [Kisin 2009, Lemma (3.4.12)].
The claim about dimensions then follows from [Bellovin and Gee 2019, Theorem 3.3.7], the fact that RUDl

is of relative dimension 4 over O, and [Barnet-Lamb et al. 2011, Lemma 3.3]. O

7A4. We now relate the above constructions to spaces of automorphic forms. We fix a compact open
subgroup K, =[], Kin.v S G(AP,) satisfying the following properties:

o If v is a place of F which is inert in F and v ¢ X', then K,, , is a hyperspecial subgroup of
G(F)).

o If v is a place of F* which is splitin F and v # vy, then K, , = G(OF;).

o« Ifve X7, then Ky, , =ker(G(Opy) = G(Opt /o).

o If v = vy and v is the fixed place of F above vy, then K,, ,, is the preimage under ¢ of the
upper-triangular Iwahori subgroup of GL2(OF; ).

These assumptions guarantee that K, is sufficiently small. We define K “ Ko.

Before proceeding, we will need the following level-lowering result.

Proposition 7.2. Suppose r satisfies the hypotheses from the beginning of Section 7A, so that in particular
7 is modular, unramified outside p, and Flr, is tamely ramified and 4-generic for all v € E;“. Thenr is

modular of level K.
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Proof. Suppose r is modular of weight V = ®v62; V. Thus, there exists a finite set of finite places 7’ and
a sufficiently small level K’ =[], K, € G(A%,) (with K hyperspecial for all inert v and K|, = G(O F)
for v € X1 and for split v ¢ T") satisfying

SG(K', V), #0.

n .. . ’ o F L~y
For each v € X7, we choose a principal series tame type 7, such that (z,)? = 1,” and such that

V €JH(c), where 0 := ®U€2; o (1,). By the genericity hypotheses and Theorem 6.7, V,, is 3-deep for
every v € E;, and consequently t; is 2-generic. Since K’ is sufficiently small, Lemma 6.3 implies

SG(K/a Gv)mf # 0.

As in the proof of Theorem 6.7, there exists an automorphic representation 7w of G(Ag+), and (after
choosing an isomorphism 7 : E > C) an associated Galois representation

r(): Tp — GLa2(E)

which lifts BC'(7) ®¢ F .
Let IT denote the automorphic representation of GL,(Ar) obtained from 7 by base change (as in the
proof of Theorem 6.1), and let £ denote the set of prime-to-p places of F* at which 7 is ramified

(note that every place of £} is split in F, and if IT is ramified at some place w, then w|p+ € T ).
Adjusting the place v, if necessary, we may assume v; ¢ X& . We choose a totally real extension L of

F™ such that the following conditions hold:

e 4 divides [LT : Q].

o LT/F* is Galois and solvable.

e LYI*Fis linearly disjoint from err(f)(gp) over F.

e p is unramified in L.
vy splits completely in L.

o If w is a place of L™ lying over a place in £ . then N(w) =1 (mod p).

ram’

« If I1;, denotes the base change of Il to an automorphic representations of GL,(A;) and w is a
place of L lying over a place in £, then HILW;; # 0, where Iw,, € GL»(0O,) denotes the standard
upper-triangular Iwahori subgroup.

(Note that L/L™ is everywhere unramified.) We use the following notation in what follows: if L / Fisa
finite extension of number fields and 7 is a finite set of finite places of F, we let BC i ﬁ(f) (or BC(T)
when the context is clear) denote the set of places of L lying above T'.

Let r;+ denote a descent of I1; to an automorphic representation of G(A;+). We analyze the local
behavior of 7 +:
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(a) If w is a place of L™ which splits as ww® in L, then 7r+w = Ip 3 oy, where ¢ is an isomorphism
G(L})) = GLy(Ly) which identifies groups of integral points. In particular, if [T, ; is unramified, so
IS T+ 4.

(b) Next, we consider the situation above p. Define

def / 7 def / /
o= Q) o). and o EBClo)= Q) o(Tl.).
w w
weBCL+/F+(E,*;) wEBCLJr/FJr(EIT)
vV=w|p+ V=w|p+

which are representations of G(Op+ ,) and GL2(0Op, ), respectively (see Section 4D and Definition 4.10
for the definitions of o (7| I $), o' (7)) I $)). We claim that we can choose 7+ so that we have a
G(Op+, ,)-equivariant injection o7+ @, C — mr+ ,. Indeed, note that by construction we have a
GL2(Oy,p)-equivariant injection ai ®g, C < Il ,, which implies that I1; ,, is a tamely ramified
principal series representation for every place w of L above p (this uses the genericity hypothesis). By
the explicit description of the local base change map given in [Rogawski 1990, Section 11.4] and [Blasco
2010], we see that if w is a place of L™ above p, then 7+ ,, is either a tamely ramified principal series, or
a supercuspidal representation contained in a local L-packet of size 2. In the first case, we have a G(O +)-
equivariant injection o7+, @, C <= mp+ . In the second case, it may happen that the supercuspidal
representation 7+, has no invariants under the principal congruence subgroup of G(Op+ ), and
therefore does not admit a G(Op+ ,,)-equivariant injection o+ ,, ®fg, C — mp+ ,,; however, if we let

:

i*,w L+,
injection (see, e.g., the explicit description of depth 0 L-packets in [Adler and Lansky 2005, Section 3.1]).

%
I+

Galois representation associated to 7+ via Theorem 6.1 is irreducible, 7; + defines a stable L-packet,

b4 denote the other element of the local L-packet containing 77+ 4, then 7, ~will admit such an

Let us define rr;, := 7th+,w ® ®;J/7éw 7+, Which lies in the same global L-packet as 7z+. Since the
and in particular ﬂz+ will be automorphic and cuspidal (this uses [Rogawski 1990, Proposition 11.2.1(a),
Theorem 11.5.1]). Therefore, by replacing 7+ by nﬁ (for several w € BCpr+/, F+(2;) if necessary), we
can guarantee that we have a G(Op+ ,)-equivariant injection o7+ @g, C — mp+ .

(c) Finally, suppose that w is a place of L™ which is inert in L and such that I, ,, is unramified (in
particular, this means that w ¢ BCj+, F+(E;r)). By the explicit description of local base change found
in [Rogawski 1990, Section 11.4] and [Blasco 2010], we see that m;+ ,, is unramified relative to a
hyperspecial subgroup of G(L}), which is equal to G(O 1) for all but finitely many inert primes w.

Thus, we define K7+ =[], Kr+w S G(ATS) to be the compact open subgroup satisfying the following
conditions:

e Ifwe BCL+/F+(Erng U{v1}), then K+ ,, is the preimage under ¢ of Iwy, where w is a fixed choice

of place of L lying over w.

o If w is a place of L™ which is splitin L and w & BCp+/p+(X5, U {v1}), then K+, = G(Op+).

ram

e Ifwe BCL+/F+(E;), then Ky + 4 = G(OL$).
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o If w is a place of L™ which is inert in L and w & BCp+/p+ (E;), then K+ ,, denotes a hyperspecial
subgroup of G (L)) relative to which 77+ ,, is unramified, chosen to be equal to G(O Li) for all but
finitely many such w.

Note that K+ is sufficiently small. The representation 77, + then contributes to the space
\'
SGOL+ (KL+ s GL+)m;lrL+ )

where m7 . is the maximal ideal of TECT") defined as in Definition 6.5. Here 7 = £+ U f U {vy).
+

For every place w € BCp+,p+(X,,), we fix two distinct tame characters ¥y, 1, Yy 2 : O z+ — O of

p-power order, and define ¥, : K+, — O* by

Y (a;l (‘C’ Z)) = Y1 @¥2(d),

where (Z Z) € Iwg. (Note that such a choice of characters is possible by the choice of L™.) We define
= Quepc(zs,) Yws so that the reduction mod @ of y is the trivial character of [ ], cpe(st ) Ki+w-
Let

SGo, . (KL+, ¥ @£ 0})

denote the space of algebraic automorphic forms with nebentypus v above £ (defined as in Section 6B,

except that the component [, eBC(st) Ko+ w acts by ¥).
We claim SGOL+ (Kp+, ¥ ®@f ULV+)mﬂr # 0. Indeed, after possibly replacing E by a finite extension,
LT
the representation 7y + gives a morphism

BC(T”
0 : TOB(C(),)(KU) -0,

(where BC(t") denotes the collection {t, | 1., }w|r=vex,) and by reduction modulo @ we obtain
0 ®0 F: Tg 5oy (Ki+) ®oF — F.
Let Tg%(CT(/;),)(K 1+, F) denote the image of the universal Hecke algebra TBC(") in

Endo(SG, , (Kr+, o),

where JLV;O denotes a choice of K+ ,-stable O-lattice in o*LV+. Since the kernel of T(])B %(CT(/;),) (Ki+)®9F —

Tg(];(g(/;),)(l( L+, [F) is nilpotent, 6 @ [ factors through a map

5 BC(T”)
01 Tg e (Krs. F) > F.

Now let TF(})S’%(CT(,;),)(K L+, ¥) denote the image of the universal Hecke algebra TBCT) in
Endo(Sg, , (Ki+, ¥ ®0 o),

and define T(Ii (];(CT(?,) (Kp+, ¥, F) analogously. Since v is of p-power order, we have TOB’%(CT(/;),) (Kp+, ¢, F)=

Tg’%(CT(/;),)(K .+, F), and by pulling 6 back we get

BC(T” BC(T” BC(T” 0
0" Tg ey (Ko W) = To e (Kie, ¥) @0 F — Topl ) (KL wr, F) = F.
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We view ker(’) as a prime ideal lying over the ideal (z) relative to the finite flat extension O —
Tg’(];(CT(r),)(K L+, ¥). By the going-down theorem, there exists a prime p C ker(#’) lying over (0) € O.
The minimal prime p constructed above corresponds to an automorphic representation 7, , contributing
to SGOL+ (Kp+, ¥ QF JLV+)mﬂF L Let H’L denote the base change of n’U to GL,(AL). Then for every
place w of L™ which is inert in L and for which w ¢ BCy+ JF+ (E*) the representation I'I/L » 18 unramified.
U{v1}), the
), then
(H/ )IWu ety 7é 0. By choice of the characters v, the latter condition implies that l'[’ 5 must be a

pr1nc1pa1 series representation.

For every place w of L™ which splits as w = ww® in L and for which w ¢ BCp+/r+ (5,

representation l'I’ o= nL+ w© o —1 is unramified. Finally, if w splits in L and w € BCpr+/p+ (X2

Associated to nL+ (or T, ) we have a Galois representation
r () 2) : T — GLo(E)

lifting BC'(7)|r, ®F ﬁ By the discussion in the previous paragraph and local/global compatibility, the
representation r, (7 L+) is unramified outside BCy /p+ (E+ U Xt ) (recall that all deformations at places
). Further, if w € BCL/F+(Z+) then

r.(m; )Ir,, is potentially crystalline with (parallel) Hodge-Tate weights {1, 0} and inertial type 7|y,

ram
above v; are unramified), and tamely ramified at BCy /p+(Z

ram
(where v = w| ).

We now choose another totally real extension M+ /L™" satisfying the first five conditions imposed
on LT above, along with the following further condition: letting IT), denote the base change of IT} to
GL,(Ay) (where M = M* F), we have (IT), ,)GL2(Omu) £ 0 for every w € BCpyp+ (Ey,). Thus, if we
let

ram

r,(I),) : Ty — GLy(E)

denote the Galois representation associated to IT),, then we see that r, (IT},) is a lift of BC'(¥)|r,, ®F [F
Moreover, r,(l'IM) is unramified outside BCM/F+(E;;) and if w € BCM/F+(E;“), then rl(l'[M)|er is
potentially crystalline with (parallel) Hodge-Tate weights {1, 0} and inertial type ,|;,, (where v=w|r).

Recall that we have defined a deformation problem 8¢ . We define S to be the “base changed”
deformation problem, so that

Sy = (M/MT . BCyejp+ (S U1}, BCyyp(E, U1}, O, Flr,, . 67

’
0.0.7)11y,,

L]
{Rw YweBCype pr (5 Y {Rw}weBCM+/p+({Ul}))'

Thus, we see that the extension of r, (IT),) to I'y+ corresponds to an E -point of R}S“A‘;V. A variant of the
patching construction of [Guerberoff 2011, Theorem 3.4] with potentially Barsotti—Tate deformation
rings (see also the argument which follows in subsequent sections) shows that (Rg;i")red is isomorphic
to an appropriate localized Hecke algebra, and consequently R’ is finite over O. Just as in the proof
of [Barnet-Lamb et al. 2014, Lemma 1.2.3(1)], we have that Runlv is finite over Rumv Combining these
facts with the dimension calculation in [Clozel et al. 2008, Corollary 2.3.5], we see that R““‘V/ is a finite
O-module of positive rank. "
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Now, let 7 : T+ — G»(E) correspond to an E-point of Rg(‘iirv/, so that in particular r is a lift of 7 ®f F »
which is unramified outside of E;. The restriction r|r, , corresponds to an E-point of Rg‘;“’, which
necessarily factors through the reduced ring. Thus, BC'(r)|r,, is automorphic, and by [Barnet-Lamb
et al. 2014, Lemma 2.2.2] applied successively to M/L and L/F, we conclude that BC'(r) is also
automorphic (more appropriately, the pair (BC'(r), e~!) is automorphic in the sense of [Barnet-Lamb
et al. 2014, Section 2.1]). Therefore, using [Rogawski 1990, Theorem 11.5.1] and the Jacquet-Langlands
correspondence (the latter in the “opposite direction” as compared to the proof of Theorem 6.1), we
can find an automorphic representation 7" of G(Af+) which contributes to the space Sg (Ko, 0" )m,
(perhaps after replacing 7" by another element in its L-packet, as in item (b) above). This implies that
S6 (Ko, 0¥)m, # 0, and by Lemma 6.3 we have Sg (Ko, V'V )m, 7# 0 for some V' € JH(7). O

Recall that we defined a maximal ideal m = m; C T7 associated to 7 (Definition 6.5). Proposition 7.2
shows that S (K, ") # 0 for m > 1, where 0 ¥>° is a G(Of+ p)-stable O-lattice in the dual of a
tame type. Since the p-component of K, acts trivially on o*-° for m > 1, we have Sg (K, 0¥"°)n =
S6 (K, O)m ®¢ o ¥-°. Thus, the image of m in TT({I(K,,,) (which will be denoted by the same symbol m)
is a maximal ideal. By Theorem 6.2, we have a continuous lift of 7 given by

rm® 0/ :Tre = G(T] 1 (Kn)m ®0 O/w")
which is of type S. Therefore, we obtain a surjection
RY™ — T (K ®0 O/ (TA.1)
In particular, S (K, O/@ ") is a finite Rg“iv-module.

7B. Auxiliary primes.

7B1. Let g denote the maximum of [F* : Q] and dimp H Ll L,T(F F+.Ts ad’(7)(1)) (defined as in [Clozel
et al. 2008, Section 2.3]; note that the latter cohomology group is the usual H Ir F+.Ts ad® (r)(1)) since
“S = T in the notation of [loc. cit.]). The proof of [loc. cit., Proposition 2.5.9] (see also [Thorne 2012,
Proposition 4.4]) remains valid, and thus for each N > 1 we can find a tuple (Qy, QN, (Y, J;}UEQN)
such that:

e Qy is a finite set of places of FT which splitin F.

* [ONl=4q.

e Oy is disjoint from 7.

« Qy consists of a single place ¥ of F above each place v of Q.
e Ifve Qy then N(v) =1 (mod pV).

e If v e Qy, then BC’(;7)|1~Fﬁ =Y, d J; where 1/, and J; are distinct unramified characters.
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For v e Qy, We let R;Z ¥ denote the quotient of EUD corresponding to lifts I', — GL2(R) of BC'(P)|r Py
which are 1, 4+ Mat,,>(mg)-conjugate to a lift of the form y @ ', where v lifts ¥5, ¥ lifts J%, and '
is unramified. We then obtain a deformation problem

Soy =(F/FT, TUQN,TUQN, 0,7, &” {RD}U€Z+U{R }U{R'/’“}UEQN)

From this data we obtain the associated universal (resp. T'- framed) deformation ring Ruan (resp. Rg o )

of type 8¢p,. By [Thorne 2012, Proposition 4.4], the ring Rg 7 can be topologically generated over R10C
oN

by ¢ — [F* : Q] elements.

7B2. We now shrink the subgroup K at places in Q. For w a place of F, denote by Ko(w) and K;(w)
the following subgroups:

Ko(w) Z 1w, = {g € GL2(0F,) : g = (§ %) (mod w)},

K1 (w) =ker(Ko(w) — F(p))

where [, (p) denotes the maximal p-power order quotient of [, and the map in question sends (“ Z) to

the image of d (mod w) in F};(p). Fori =0, 1, define

Ki(Qnm Z K2V T ' (Ki(®)).
veQy

7B3. Let T7Y2~ C T7 denote the universal Hecke algebra away from T U Qy, and define mg, =

m;NTTYEN | As in [Caraiani et al. 2016, Section 2.6] (which is based on [Thorne 2012, Proposition 5.9]),
we have a projection operator

pr e EndO(SG(Ki(QN)m’ O/wr)mQN)

for i =0, 1. This operator induces an isomorphism

pr: SG(Km, O/ )m = pr(Se(Ko(Qn)m, O/ Imy, ),
which commutes with the action of G(Op+ p).

7B4. Define
TwZ [] GOp: /o))
UGE;

and
def

Agy EKo(@Wn/K1(QW)n = [ Ko®)/K (D),
veQn
a finite p-group.
The space pr(Sg(K1(ON)m.» O/w’)mQN) has commuting actions of I',, and A, , under which it
becomes a projective (O/@")[A g, 1[Iy ]-module (this follows from [Clozel et al. 2008, Lemma 3.3.1]).
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From this, we obtain I';,-equivariant isomorphisms

Pr(S6 (K1 (QN)m» O/ g, )22¥ = pr(S(Ko(Qw)m, O/ my,) = S6 (K, O/@ )
where the last isomorphism follows from the previous subsection.

7BS. Let T&LIJQN (K; (ON)m, O/w’)mQN be the image of TTYOw in Endp(pr(S¢(Ki (On)m, (‘)/w’)mQN)).
(This is the mod @" reduction of the image of TF&LIJQN (Ki(QOnN)m) in Endp (pr(Sg (Ki (ON)ms O)mQN B
We let

Moyt Tre = G2(T3 1 2Y (K1 (QW)ms O/ Img,)
denote the Galois representation obtained by pushing forward the representation of Theorem 6.2 to
TUQN (K;(ON)m», O/ w’)mQ Using the construction of Fmg, > the local/global compatibility statements

of Theorem 6.1, and the properties of the auxiliary primes (along with [Thorne 2012, Proposition 5.12]),
we see that r,ﬁ’fQN is a lift of type 8 g,,. In particular, pr(Sg (K; (Qn)m, O/ )m,, ) 1s a finite Rgzi;; -module.

7B6. We identify the group A, with the image of [], coy Ir; in the maximal abelian p-power order

quotient of [, I'r;. This gives rise to a homomorphism Ag, — Rumv * as follows: let rsmV denote
any choice of universal deformation, and consider the map
gnév univ univ, X
[ 1n =2 [] GLa(R Rgy ™.
veQy vely

Thus, we obtain morphisms O[Ag, | — R;‘Sv — RSDQT . This gives an induced O[A g, ]-module structure
N N

on pr(S¢(K1(On)m, O/ w’)mQN ), which agrees with the action of Ay, via diamond operators. These
morphisms also lead to natural isomorphisms

1 ~ i D ~ D
Rgy /agy = Rg™ and Ry [ag, = Rg",
where ag, denotes the augmentation ideal of O[Ag, ]; see [Gee and Kisin 2014, Section 4.3.7].

7B7. For each N, we choose a lift rém“’ representing the universal deformation of type 8¢, , with
““‘V (mod ag,) = rgm" The choice of r‘sm1V gives an isomorphism RDT = R“Z‘V ®oT, which reduces
N
modulo ag, to the isomorphism RDT = R““‘V® 7T.

7C. Patching.

7C1. Let g be as in Section 7B, and define

def

Ao _Zq
Seo “‘i‘iT[[Aoo]] = OfZ1y - s Z4T] V1o - - - Vgl
R o Rlocllxl, ey xq_[p+;@]]]

def

Ry v/,00 = Rloc [x1,....x¢—(r+ail
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We let a € S denote the augmentation ideal of So,. For each N > 1, fix a surjection Ay — AQ Vs
passing to completed group algebras, we get a surjective map Soo = T[Aco]l = T[A g, ]. We view Rg | r
as an Seo —algebra via Soo = T[Agy] — R 7 which gives Rg Cr /a = Ruan
Recall that R 7 can be topologically generated over R by g — [F* : Q] variables. Therefore, we
can choose a surJectlon of R'°°-algebras
Ros — Rg .
7C2. We may now proceed exactly as in [Caraiani et al. 2016, Section 2.8] and patch together (certain

quotients of) the spaces
N Y Ur
pr(Se(Ki(Qn)an, O/ my,,) ®R§‘g" RSQN’ (7C.1)
N

where V denotes here the Pontryagin dual. (In our setup, we are omitting the Hecke operators at vy, and
we ignore the maps ay of [loc. cit.].) Thus, we obtain a profinite topological Se[G(OF+ ,)]-module
M, with a commuting action of R.,. Furthermore, M, enjoys the following properties:

* Soo acts on (7C.1) via the map S — T[Ag,] — RSDQT of Section 7C1, and this action factors
N
through an O-algebra morphism S, = Roo. Since the image of S in Endg, (M) is closed, this
implies we may factor the action of S, on M, through an O-algebra morphism Sy, — Roo

o The argument of [Caraiani et al. 2016, page 29] implies that M is a finite Soo[[G (O f+ ,)]-module,
and thus it is a finite Ro[[G(Ofp+ ,)]-module.

¢ As in [Caraiani et al. 2016, 2.10 Proposition], M is projective over Soo[[G (O F+ ,)].

7C3. Using the patched module M., we define a patching functor M., (—) from the category of finitely
generated O-modules with an action of G(Of+ ) to the category of R..-modules by

def
My (W) = HomCGIS(OFﬂp)(W, M),

By projectivity of M, (in the category of pseudocompact O[[G(OF+ ,)]-modules), the functor Me,(—)
is exact. Moreover, if W is p-torsion free, then we have

Moo(W) = Hom{y (W, M )4,
where “d” denotes the Schikhof dual; see [Caraiani et al. 2016, Section 1.8] for the definition.
Proposition 7.3. (i) We have a G(Op+ ,)-equivariant isomorphism
Moo/a = (lim Sg(K”, O/ )m)’,
n

which is compatible with the action of @vez;r Iévm on both sides, the action on the right-hand side being
given by the maps

—

pLJ univ . T
®v€E;RU — R§™ — imT{ (K-

m
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(ii) If W is a free O-module of finite type (resp. a free [F-module of finite type) with a continuous G(Op+ ,)-
action, then Moo (W) is a free Soo-module of finite type (resp. a free Soo ®¢ F-module of finite type).

o I Fpl oV

(iii) Letd e (Zi)iﬁ and let t' = {7}, 5+ be a collection of tame inertial types satisfying (t,) V.

Seto & ®U€2; o(t)) and W o Wf Qo 0°. Then we have an isomorphism
Moo(W)/a = Sg (K, WOy,

compatible with the surjection Ry, /a — Rg“iv; note that Rg“iv acts on the right-hand side via Rg"iv —»
T
Ty o (K.

(iv) Suppose V is a Serre weight. Then we have an isomorphism
M (V)/a=Sg(K, VY )y,

compatible with the surjection Ry /a —» Rg“iv (and the action on the right-hand side is obtained as in
item (ii1)).
—[FFpl ~ N

(v) Letx € (Zi)ip and let v’ ={ fé}uezg be a collection of tame inertial types satisfying (t,)¢ i

Set o = ®v€2; o(t)). Then the Rx-action on MOO(WS ®o 0°) factors through R) ' .co. Further, if
MOO(WS(X)OUC’) #0, then it is maximal Cohen—Macaulay over R;, v/ o, and the support ofMoo(Wf(X)ocr")
is a union of components of Spec R;, 1’0o

Let Rx,r’,oo denote the quotient of R ..o Which acts faithfully on MOO(W;i Qo 0°). Then
MOO(W/{jl ®o o °)[1/p] is locally free of rank 2 over Ek,rgoo[l/p].

(vi) Let V be a Serre weight with highest weight A € (Z%ﬁp)il’ - (Z%r)il’. Then M (V) # 0 if and only
if v is modular of weight V. In this case, the Ry-action on M, (V') factors through R) 1,00 ®o F and
M (V) is maximal Cohen—Macaulay over R 1,00 Qo F.

Proof. (i) This follows from the patching construction; see [Caraiani et al. 2016, Section 2.8]. The
argument of 2.11 Corollary of [loc. cit.] shows ®v€2p+ Iévm—equivariance.

(if) The module M is a finite projective Soo[[G(OF+ ,)]l-module. If W is p-torsion free, then the proof
of [Caraiani et al. 2016, 4.18 Lemma] implies that M., (W) is a finite free Soo-module. The same argument
applies when W is a free F-module of finite type.

(iii) Using part (i), we have
(Moo (W) /)4 = Homg,,, (W, M3)[a]
= Homgy,, ,(W. (Mso/a)*)
= SG(K, Whn.

The statement about the action of the deformation ring follows in a manner analogous to the proof of
[Herzig et al. 2017, Theorem 5.2.1(iii)].

(iv) This follows by applying the previous point to a free O-module whose reduction mod p is V, and
reducing mod p.
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(v) The claims regarding the R.c-action, the support of the module MOQ(W)‘»j ®o 0°), and its local
freeness follow exactly as the proof of [Caraiani et al. 2016, 4.18 Lemma], using [Bellovin and Gee 2019,
Theorem 3.3.7] instead of [Kisin 2008, Theorem 3.3.8].

In order to calculate the precise value of the rank, we proceed as follows. We first claim that every
irreducible component of R 1700l 1/ p] has nonempty intersection with the locus a = 0. Indeed, since
15,\,1/,00 acts faithfully on Moo(Wii ®o 0°), the localized ring Rk,r/,oo[l/p] acts faithfully on Moo(Wf1 X0
0°)[1/p]. The latter module is free of finite rank over Soo[1/p] (by item (ii)), so the ring Soo[1/p] acts
faithfully on it, and the ring R 1.7.00l1/p] injects into a matrix ring over So[1/p]. As the action of
Seol1/ p] factors through the action of R r.7.00l1/p], we conclude that we have an injection So[1/p] —
R;. v oo[1/p], and that Rj o/ oo[1/p] is finite as an Ss[1/p]-module.

Now let q denote a minimal prime of R r.7.00l1/p], and consider the composite map y : Seo[1/p] —
R;. v .0o[1/P]— Ry.v.00[1/p1/9. Using the fact that y is a finite map between integral domains of the same
Krull dimension (the latter because R r.7.00l1/p] is equidimensional; see [Bellovin and Gee 2019, Theo-
rem 3.3.7] and note that Spec Rk,,/,oo[l/p] is a union of irreducible components of Spec Ry +/ «[1/p]),
standard commutative algebra arguments imply that y must be injective (indeed, one sees that ker(y)
is a prime ideal of height 0). Thus, by applying the Lying Over Theorem to the integral extension
¥ 1 Sool1/p] <> R;.+.00[1/p]/q, we see that there exists a prime ideal lying over the augmentation ideal
a. This verifies the claim.

Since the rank of Moo(Wf ®o o °)[1/p] is constant on the irreducible components of Rx,f/,oo[l/p], the
paragraphs above imply that it suffices to compute the rank at prime ideals p containing a. In particular, we
may compute the rank after modding out by a. Since MOO(W)?@)OGO)[I /pl/ais locally free of positive rank
over R; /.o[1/p]/a, the localized ring (R, 1 ool1/pl/a), acts faithfully on (Moo(WL ®¢ a°)[1/pl/a)y,
and since this action factors through (T{J,(K Jm[1/p])p we obtain an isomorphism

(Ry.v,00[1/ 1/ @)y == (T] 1 (K)wl1/pDp.

(The surjectivity of this map follows from item (iii).) It therefore suffices to compute the rank of
Moo(W{ ®0 0°)[1/pl/a = Sg(K, W, ®o 0 "-°)4[1/p] as a module over T] ,(K)m[1/p]. Finally, since
TAT’ o (K)w[1/p]isaproduct of fields (being a reduced Artinian E-algebra), this is equivalent to computing
the rank of the linear dual Sg (K, W) ®¢ 0 ¥-°)m[1/p] over TAT’T,(K)m[l/p].

Up to enlarging E if necessary, we can assume that all prime ideals of TI’T,(K Jml[1/p] have residue
field E. Hence a prime ideal p of TAT, (K)u[l/p] corresponds to a Hecke eigensystem

A T) L (K)mll/p] = E,
and therefore we obtain

(S6(K, W), ®0 0" )ull/pD)p ®,C= P m(r)Homgo,, )(©0°®0C, 7)) ®c (x")K",

~ \%
Too=W ;.

Ax=Ap
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where A : T/\T’r,(K Jm[l/p]— C i> E denotes the Hecke eigensystem corresponding to 7. Since the
base change map is injective on L-packets, strong multiplicity one for GL, implies that there is at most
one L-packet contributing to the direct sum above. Further, the base change map is determined by local
base changes of local L-packets. We have that the condition 7 Xv # 0 for v ¢ E; inert in F determines a
unique member of the local L-packet at v, and the condition Homgo, +,p)(00 ®o C, m,) # 0 along with
the multiplicity one property of Theorem 4.11 also determine a unique member of the local L-packet
atv € E;’. Therefore, there is exactly one automorphic representation 7 contributing to the direct sum
above. For this 7, we know that r, (1) is irreducible (being a lift of BC'(#)), and therefore the base change
of  to GL,(Ap) is cuspidal. This implies that the L-packet JL.([7r]) on G*(Ag+) is stable, and therefore
m(w*) =1 for any 7* € JL([7r]) by [Rogawski 1990, Theorem 11.5.1(c)]. Using an analog of the relation
“n(w) = n(r) [, c(ry)” in [Labesse and Langlands 1979, page 781], we obtain m () = 1; see also
[Kaletha et al. 2014, Theorem 1.7.1]. To conclude, we note that dim¢ HomG(oFtp)(oo ®oC,mp) =1by
Theorem 4.11 and dime ((>?)X") = 2 by [Taylor 2006, Lemma 1.6(2)] (since we have omitted Hecke
operators at vy).

(vi) Let V be a Serre weight. By point (iv) and Nakayama’s lemma, M. (V) # 0 if and only if 7 is
modular of weight V and level K. Therefore, in order to conclude it suffices to show that if 7 is modular
of weight V, then r is modular of weight V and level K. This follows from Proposition 7.2 : in that
proof, if we choose o so that JH(c) N W’(7) = {V}, then Theorem 6.7 and exactness of the functor of
algebraic automorphic forms guarantees that the V'’ appearing at the end of the proof is equal to V.
The claim about M, (V) being maximal Cohen—Macaulay follows exactly as in the previous point. []

7D. Weight existence.

Theorem 7.4. Let v : I'p+ — G1(F) be a continuous representation such that:
. - a1
Vor=¢&".

F Y (GLy(F) x G (F)) =T'f.
BC'(7)(T'r) 2 GLy(F') for some subfield F' C [ with |F'| > 6.

r is modular.

i7|ro+ is tamely ramified and 4-generic for all v € E;.
o I is unramified outside 7.
o FXr@d ™) does not contain F(&p).
Then
W) € Winoa (7).

Proof. Let V € W(7) and V' € Wpoa (7). We will prove that e(My,(V)) = 2 by induction on d o
dgr(V, V') = ZU@:; dgr(Vy, V). (We write e(M«(V)) to denote d! times the coefficient of degree d of
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the Hilbert—Samuel polynomial of M, (V) as a module over R/ Anng_ (M~ (V)), where d denotes the
Krull dimension of Ry/ Anng (M (V)).)
By Lemma 3.23 there exists a tame U>(Of+ ,)-type o = ®v62:§ oy such that:
(i) V, V' eJH(®G).
(i) JTH@E) "W’ (@) = 24.
(iii) for any V" € JH(&) N W’ () satisfying V" # V one has dgr(V", V') < dgr(V, V').
We define 7, to be the tame principal series type such that o, = o (7;). We note that in this case, we have

isomorphisms

~~ .[L/y ~ 5
(RZB&) oy K5 it - = Ravi = Ruvi

The last equality follows from Proposition 7.3(v) and the fact that each R;é is integral, see Table 3.

We thus have
22 =D +eMo(V) = Y e(Mo(V"))
V" eJH(3)NW? (F)

= e(Mxs(0°))

— 2e(<®veE;Rp';> = [F)

=2.2¢,

The first equality follows from the inductive hypothesis and item (iii). For the second, we note that M. (—)
is exact, and if V" is a Serre weight such that V” ¢ W’ (7'), then Theorem 6.7 and Proposition 7.3(vi) imply
My, (V") = 0. For the third we use Proposition 7.3(v) above, and the fourth follows by Corollary 5.25.
Hence, we obtain e(M,(V)) =2, and in particular M (V) #0. Thus V € W4 () by Proposition 7.3(vi).
O
Combining Theorems 6.7 and 7.4, along with the isomorphism in Section 2D, we obtain the following.
Corollary 7.5. Let 7 : T p+ — CU>(F) be a continuous L-parameter such that:
e loF =&
F~Y(GLy(F) x G, (F)) =T'p.
BC(#)(I'r) 2 GLy(F) for some subfield F' C [ with |F'| > 6.

r is modular.

f|1~F+ is tamely ramified and 4-generic for all v € E;,L.
o 7 is unramified outside .
o F*r@d ™) does not contain F (&p).

Then
W () = Winod (7).
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7E. Automorphy lifting. We now discuss our other main global application.

Definition 7.6. Let F/F* and G be as in Section 6A, and suppose ' : I'r — GL,(E) is a continuous
Galois representation. We say r’ is automorphic if there exists a cuspidal automorphic representation 7
of G(Afg+) such that FQpE X, (), where r, (;r) is as in Theorem 6.1.

Theorem 7.7. Let F/F*t and G be as in Section 6A. Let r' : T'p — GL3(0) be a Galois representation
and let ' : T — GLy(F) denote the associated residual representation. Assume that:

e v’ is unramified at all but finitely many places.

o We have r' = ¢V @ e~

« Forallk €1 »» the local representation r'|r P is potentially crystalline, with HT, (¢’ | Fu(;()) = {1, 0}
and 4-generic tame inertial type r;(x).

o 7' is unramified outside X ,.

e Forall v € X, the local representation r'|r,, is tamely ramified and 4-generic.

o 7' =1, () where 7 is a cuspidal automorphic representation of G(Afp+) with s trivial and such
that for all v € E;, Ty IG(OF +) contains the tame G (O p+) = Uz (O g+ )-representation associated to

T, by the inertial local Langlands correspondence; see Theorems 4.11 and 6.1.
o FXer@d() does not contain F (&p).
o 7'(T'r) 2 GLy(F) for some subfield F' C F with |F'| > 6.
Then r'®oE is automorphic.

Proof. We outline the proof, which is based on [Taylor 2008, Sections 4 and 5].
We begin with several reductions. Let X, denote the set of prime-to-p places of F at which ' is

ramified, and

+ . the set of places of F which are the restriction to FT of places in Z,y. For every

ve Xt . welet U denote a fixed choice of place of F lying above v. We moreover fix a finite place v of
F7 satisfying the hypotheses (a),(b) and (c) of Section 7A1. By [Barnet-Lamb et al. 2014, Lemma 2.2.2],
we may replace r’ by r'|r, (for L = L™ F and an appropriately chosen L™ furnished by [Clozel et al.
2008, Lemma 4.1.2]) and assume without loss of generality that the following conditions are satisfied:
for every w € ¥iam, we have

o w is split over w|p+;
e N(w)=1 (mod p);
o 7’|y, is trivial;

o the representation 7’|, is, up to an unramified twist, a nonsplit extension of the trivial character by
the cyclotomic character.

By the proof of Proposition 7.2 we can assume further that 7, (7) is unramified outside X, (in particular
it is unramified outside X, U {v1, 0{} U Xam).
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We first discuss Galois representations. Enlarging O if necessary, we view r,(;r) as being valued

in GLy(0). Let 7/ : T g+ — G2(0) and 7, () : T' g+ — G2(O) denote respectively the extensions of ' and

U= v o7 (). We also let 7 denote the reduction mod @ of 7/

r, () to I'p+ which satisfy vo 7 =&~
or 7, (7).

+
Forve X7,

by RI(,X”"’X”) denote the quotient of RvD parametrizing lifts p of 7 Ir,.. which satisfy vop=¢~

we let xy,1, Xv,2 : I'r;, = 1+ @O denote two distinct continuous characters. We denote

Iand

chargc(p) () (X) = (X = xu 1 (¥ )D (X — x0,2(¥))

for all y € Ir,. We define Rf,l’l) similarly, with the characters x, 1, xv.2 replaced by the trivial character.
(Note that these quotients exist and are nonzero, by the discussion in [Taylor 2008, Section 3].) Since the
characters x,. 1, xy.2 are trivial modulo @, we have RSX”’I’X”‘Z)/w =~ Rl()]’l)/w.

We now consider two global deformation problem 8y__ .+ and S/Emm,r, given by

ram, T

def

S = (F/FT, B Ui} US S, Ul UES L 0.7, 7",

ram’ ram? |:|() ,
0,7, ] 1,1
{Ry }UEE;—U{RUI}U{RI(J )}vézrtm)’
I E(F/FH S Ui, S, U UEh,, 0.7, e,

Yram, T’ ram’ ram’ ,
0,0,7;

(R} yepy VRN U RS 7Y ope ).

We let Rg;‘iv | (resp., R‘S‘,niv ) denote the complete local Noetherian O-algebra representing the functor

— Sram.t’
of deformations of 7’ of type 8y, 1 (resp., of type SIEmm, ). We note that by the conditions at o, we
have
R™ Jo =Rg™ o

8 /
4 ’
Zram, T Zram,T

By the assumptions on 7" and r, (77), both 7" and 7, (;r) are deformations of 7 of type Sx,,,.-’» and therefore
the ker(G2(0) — G2(F))-conjugacy classes of 7" and 7, (;r) give rise to morphisms ¢’ : Rgniv . — O and

Cr: R‘S";V . — 0, respectively. o
Next, we construct the spaces of algebraic automorphic forms that we will patch. Recall from
Section 7A4 the compact open Ko € G(AY,). Let K "=TI, K, € Ky denote the compact open subgroup

satisfying the following conditions:

e If v is a place of F* which is inert in " and v ¢ ¥ ¥, then K is a hyperspecial subgroup of G(F,\).
o If v is a place of F* which is splitin F and v & {vi} UX ], then K| = G(O+).
« Ifve X7, then K = G(O+).

e Ifve{v}UXL | then K| is the preimage under ¢; of Iwy, the upper-triangular Iwahori subgroup
of GL2 (O F; ) .

def

With these choices, we have that K’ is sufficiently small. Let o = ), s} o (t,) denote the tame type

associated to the collection v/ = {Tl/;}ue):,f by Theorem 4.11, and let 6° (resp., o *-°) denote a fixed choice
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G(OF+ ,)-stable O-lattice in o (resp., o). For v € >+ we also define a character ¥, : K, — 0* by

- b
X (Lﬁ ! (Z‘ d)) = (.1 0 ATt) (@) (o2 0 ATt ) (d),

where (f Z) € Iwy. We then set x & X, ext Xv. We will examine the spaces of algebraic automorphic
forms

Se(K',o¥°) and Sg(K',0"°®0x™ "

(the latter is defined as in Section 6B, except that the component ]_[ve)::gm K] acts by x).

Let mp C T YoU%m denote the maximal ideal associated to 7 as in Definition 6.5. Since the
representation 7 contributes to the space Sg (Ko, aV’O)mF, (recall that Ky O K’ with K defined in
Section 7A4), we obtain Sg(K’, ov’°)mf, # 0. Using the fact that x is congruent to the trivial character
modulo @, repeated application of Lemma 6.3 gives

SG(K/7 O.\/,O)m;, ;é O <:> SG(K/7 O.\/,O ®O [F)m;/ # O
& Sg(K', (0"°®0 x ") ®0 F)m,, #0
& Sg(K',0""° @0 x ., #0.

We now outline the patching argument which uses the above spaces. Let

loc def 0,07 \apds (1,1

R 2R _rROTNSRIS(R) ., RV,
0.7, Zram vex) v Vi veXh, VY

loc,’ def 007 \s 505 (Ow.1:Xv,2)
Rios (X RT)BRIB(Q) ., RSV,
O’T/’Emm UGE;— v 1 Uezgm v

A variant of the patching construction in Sections 7B and 7C with E; U{v;} replaced by 2; U{vJuxzt

ram
provides us with the following data (see [Taylor 2008, Section 4]):
(i) Aring Ry 15, .00 Which a formal power series ring in ¢ —[F* : @] variables over R[* , together

0,7/, Zram
with a surjection Ry ' 5, 0o = R¢™

Szramvf/ ’
(i) An Rp ¢ x,,, co-module M, (c°) supported on a union of irreducible components of Spec Ry 1’ 5,00

(iii) The mod a reduction of M, (c°) is isomorphic to S¢(K’, (o°)hd compatibly with the morphism

mg?
THU{v JUSE "

i p ram /
Roaflqzram»oo/a - R:Slmv - —I]—()’-L-/ (K )m;/ .

Sram,t’

(iv) We have analogous “primed” versions of the above constructions corresponding to the deformation
problem S/me,r’ (e.g., R(/),r/,Emm,oo’ R(/),r/,Emm,oo_» Rg‘;lm’t,, M. (0°)/a=Sg(K', (G°®o)()d)?n;, ,etc.).
Furthermore, the primed data may be chosen so that it is compatible with the previous data modulo

@ (e.g., under the isomorphism My, (0°)/w = M/ (c°)/w, the action of Ry ' 5,00/ on the

left-hand side intertwines with the action of Ry _, 5,00/ @ on the right-hand side).

By the primed version of item (ii) and irreducibility of Spec R;, ., .00 WE conclude that

SUPPRE)_T, . (M/_(c°)) = Spec R{)’T,’me’oo.

+Zram
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(To see that Spec R(/),r’,Zram,oo is irreducible, we use the primed version of item (i) and [Barnet-Lamb et al.
2011, Lemma 3.3(5)], and observe that each of the local deformation rings comprising Réoi,/ s, Nasan
irreducible spectrum: for v € X + , this follows from Table 3 and (5C.2); for v = vy, this follows from
[Caraiani et al. 2016, Lemma 2. 5] for v € T+ | this follows from [Taylor 2008, Proposition 3.1(1)].) In
particular, we get

ram’

Suppg w(Méo(o")/w) = Spec Ré,r’,Eram,oo/w'

0,7/, Zra

By item (iv), we obtain the analogous statement for the deformation problem Sy

S
ram, T *

SuppRO.T,‘mem/w (Mo (0°) /) = Spec Ry ¢/ 5,00/ T - (7E.1)

Likewise, item (ii) implies that Supp Rov s OO(MOO (0°)) is a union of irreducible components of
Spec Ro ¢/ %,,,.00- Since the irreducible components of Ry ' 5., 0o/ are in bijection with the irreducible
components of Ry ¢/ 5, 00 by [Taylor 2008, Proposition 3.1(3)], (7E.1) implies

Suppg, (Moo (0°)) = Spec Ro.¢', 5,100
Consequently, we get
SuppROYr,’Emmm/a(MOo (6°)/a) = Spec Ro.1'.5,,,.00/0s
which implies by item (iii) that

SuppRun.v (Sg(K', (0°)d) ) = Spec RumV

Zrdm 4
’ onvdyd Epu{vl}uzram
Since Sg(K', (0°))qn " is a faithful T,7, (K")m.-module and the latter ring is reduced, the
surjection
U JUZ T

Ru;t’:m f - —l]—Oq/;/ {v]} ram(K/)m;/

induces an isomorphism
o 2 HTU{v }Uzmm
(Rg2 e =Ty, (K Yin-
RAUI{I} () ohx .

Thus, the homomorphism ¢’ : R“’;V — O factors through (Rurllv )red = T o) “"(K")m,,» which
implies that r” is automorphic. (]
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