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Suppose p � 5 is a prime number, and let G = SL2(Q p). We calculate the
derived functors Rn RG

B(⇡), where B is a Borel subgroup of G, RG
B is the

right adjoint of smooth parabolic induction constructed by Vignéras, and ⇡

is any smooth, absolutely irreducible, mod p representation of G.

1. Introduction

One of the most fundamental operations in the representation theory of p-adic
groups is that of parabolic induction: given a p-adic connected reductive group G,
a rational parabolic subgroup P = M N , and a smooth representation � of the
Levi quotient M of P (over some coefficient field C), we can construct the G-
representation IndG

P
(� ) induced from (the inflation to P of) � . In this way, we obtain

an exact functor IndG

P
from the category of smooth M-representations over C to the

category of smooth G-representations over C . The relevance of this functor comes
from the fact that any smooth irreducible admissible G-representation arises as a
subquotient of some IndG

P
(� ), where � is a so-called supercuspidal representation.

Vignéras [25] shows that the functor IndG

P
commutes with small direct sums.

Since the category of smooth M-representations is a locally small, Grothendieck
abelian category, a version of the adjoint functor theorem implies that IndG

P
possesses

a (left-exact) right adjoint RG

P
. When the characteristic of C is different from p, we

can identify this functor explicitly: RG

P
is naturally isomorphic to the normalized

Jacquet module relative to the opposite parabolic subgroup P
� = M N

�. For C = C,
this is [6, Main Theorem] and [7, Theorem 3], and the general char(C) 6= p case
follows from [9, Corollary 1.3] (see also [8, Theorem 1.5] for earlier partial results).

When the characteristic of C is equal to p, the functor RG

P
is more mysterious.

When restricted to the category of admissible representations, RG

P
is isomorphic

to Emerton’s functor OrdG

P� of ordinary parts (see [4, Corollary 4.13] for this
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equivalence). However, it is not clear how to describe R
G

P
on the entire category of

smooth representations.
There have also been fascinating recent advances in derived aspects of the mod p

representation theory of p-adic reductive groups, which provide new methods for
approaching the mod p Langlands program (see [13; 23]). In particular, the authors
of [22] consider the total derived functors RR

G

P
over a field of characteristic p, and

leave open the question of explicitly calculating these derived functors. The main
result of this note is the following, which addresses some of these questions.

Theorem. Suppose ⇡ is a smooth, absolutely irreducible representation of G =
SL2(Qp) over a field C of characteristic p �5, and let B denote the upper triangular

Borel subgroup of G. Then, for all n � 0, we have an isomorphism of smooth

admissible T -representations:

Rn
R

G

B
(⇡) ⇠= Rn OrdG

B�(⇡).

We make some comments regarding this result. As the category of admissible
G-representations does not have enough injectives, the derived functors Rn OrdG

B�

must be computed in the category of locally admissible G-representations. However,
it is not known whether OrdG

B� agrees with R
G

B
on this category, and therefore we

cannot construct a direct comparison between Rn
R

G

B
and Rn OrdG

B� . To address
this subtlety, we use the results of [16] to relate R

G

B
to the analogously defined

functor on pro-p-Iwahori–Hecke modules, where we can do explicit calculations to
evaluate Rn

R
G

B
(⇡) (and deduce a posteriori the isomorphism with Rn OrdG

B�(⇡)).
To our knowledge, the results computing Rn

R
G

B
(⇡) are the first of their kind.

We are hopeful that some of the techniques for calculating Rn
R

G

B
(⇡) will gen-

eralize to other p-adic reductive groups (though some are specific to the group
SL2(Qp)).

2. Preparation

2A. Suppose p � 5 is a prime number, and define G := SL2(Qp). We let B

denote the upper triangular Borel subgroup and T the diagonal maximal torus. We
let Rep1(�) denote the category of smooth representations with coefficients in
a field C of characteristic p. We will examine the (exact) functor of parabolic
induction

IndG

B
: Rep1(T ) ! Rep1(G)

and its right adjoint
R

G

B
: Rep1(G) ! Rep1(T ),

constructed in [25, Section 4].
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We also define two distinguished characters ⇢̄, ↵̄ : T ! C
⇥ which we use in the

sequel:
⇢̄

✓✓
xp

a 0
0 x

�1
p

�a

◆◆
= x̄, ↵̄

✓✓
xp

a 0
0 x

�1
p

�a

◆◆
= x̄

2,

where a 2 Z, x 2 Z⇥
p

, and where x̄ 2 F⇥
p

⇢ C
⇥ denotes the mod p reduction of x .

2B. In order to understand the right derived functors Rn
R

G

B
, we use pro-p-Iwahori–

Hecke algebras. Let I1 denote the subgroup of SL2(Zp) which is upper triangular
and unipotent modulo p, and let T1 := T \ I1. Note that T1 ⇠= 1 + pZp

⇠= Zp, so
that T1 has cohomological dimension 1. We let H denote the pro-p-Iwahori–Hecke
algebra of G with respect to I1, and let HT denote the pro-p-Iwahori–Hecke algebra
of T with respect to T1 (see [24, Section 4] for more details and definitions). We note
that HT

⇠= C[T/T1] ⇠= C[Z] ⌦C C[F⇥
p
], and therefore HT has global dimension 1.

We have analogous functors of parabolic induction

IndH

HT
: Mod�HT ! Mod�H

and its right adjoint
R

H

HT
: Mod�H ! Mod�HT ,

defined on categories of right modules. We refer to [18, Section 4.2] for details and
definitions.

2C. Given a smooth representation ⇡ of G, the space ⇡ I1 of I1-invariants has a
right action of H, recalled in [18, proof of Lemma 4.5]. Passing to derived functors,
the cohomology spaces Hi (I1,⇡) also inherit a right action of H (described in [16,
Section 2.3]). We have analogous constructions for T and HT .

Given a smooth character � : T ! C
⇥, we have �T1 =� , and therefore � inherits

the structure of a right HT -module. We will use the same notation � to denote the
T -representation and the resulting HT -module; the meaning should be clear from
context.

2D. The goal will be to compute Rn
R

G

B
(⇡) where ⇡ is an absolutely irreducible

admissible G-representation. Our main tool will be [16, Theorem 3.13]: if ⇡ is an
admissible G-representation, then we have an E2 spectral sequence of HT -modules:

Hi (T1, R j
R

G

B
(⇡)) ) R

H

HT
(Hi+ j (I1,⇡)).

(Note that the assumption in [16, Section 3] that C be finite is not required for
the construction of the above spectral sequence.) Since T1 has cohomological
dimension 1, the above spectral sequence degenerates at the E2 page to give an
isomorphism
(1) R

H

HT
(⇡ I1) ⇠= R

G

B
(⇡)T1
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and, for n � 1, an exact sequence

(2) 0 ! H1(T1, Rn�1
R

G

B
(⇡)) ! R

H

HT
(Hn(I1,⇡)) ! (Rn

R
G

B
(⇡))T1 ! 0.

In particular, this implies the following.

Lemma 2.1. If ⇡ is an admissible G-representation, then each Rn
R

G

B
(⇡) is an

admissible T -representation.

Proof. Assuming ⇡ is admissible, Lemma 3.4.4 of [11] implies that Hn(I1,⇡)

is finite-dimensional for all n � 0. By [18, Section 4.2, Property (4)], the space
R

H

HT
(Hn(I1,⇡)) is also finite-dimensional, and so Theorem 6.3.2 of [19], along

with (1) and (2), imply that each Rn
R

G

B
(⇡) is an admissible T -representation. ⇤

2E. In addition to the functor RG

B
, we will also use Emerton’s functors of derived

ordinary parts (see [10; 11] for the relevant definitions; we note that for our applica-
tions, the assumption in op. cit. that the residue field of A is finite is not necessary).
We recall that the functor OrdG

B� is the right adjoint to the parabolic induction
functor from Repladm(T ), the category of locally admissible T -representations, to
Repladm(G), the category of locally admissible G-representations.

For a locally admissible T -representation � and a locally admissible G-representa-
tion ⇡ , we have two spectral sequences relating extensions and parabolic induction:
one in the smooth category

(3) Exti
T
(�, R j

R
G

B
(⇡)) ) Exti+ j

G
(IndG

B
(� ),⇡),

(coming from an application of the Grothendieck spectral sequence) and one in the
locally admissible category

(4) Exti
T,ladm(�, R j OrdG

B�(⇡)) ) Exti+ j

G,ladm(IndG

B
(� ),⇡)

(see [11, (3.7.4)]). By Corollary 3.3 below, we have Extn
H,ladm(⌧,⇡) ⇠= Extn

H
(⌧,⇡)

if ⌧ and ⇡ are locally admissible H -representations, where H 2 {T, G}. In addition,
by [16, Theorem A.4], we have R j OrdG

B� ' H j OrdG

B� for the group SL2, and
the latter can be explicitly calculated by work of Emerton [11] and Hauseux [14].
Therefore, the spectral sequence (4) becomes

(5) Exti
T
(�, H j OrdG

B�(⇡)) ) Exti+ j

G
(IndG

B
(� ),⇡).

3. Locally admissible representations versus smooth representations

In this section, we compare locally admissible and smooth representations.

Lemma 3.1. Let H 2 {T, G}, let ◆ : Repladm(H) ! Rep1(H) denote the fully

faithful inclusion, and let J 2 Repladm(H) denote an injective object. Then ◆(J) 2
Rep1(H) is also an injective object.
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Proof. The proofs are virtually identical to the proof of [21, Proposition 5.16].
Since we do not fix the central character, we briefly highlight the main differences,
and explain why the arguments work in our setting. Once again, the assumption in
op. cit. that the coefficient field k is finite is not necessary for our purposes.

Suppose first that H = T . We outline the main changes to the proof in loc. cit.
(using that article’s notation):

• We replace c-IndG

K Z
with c-IndT

T0
in the proof, where T0 ⇠=Z⇥

p
denotes the maximal

compact subgroup of T .

• Since Fp ⇢ C , we may take the representation � to be a character; further, by
twisting, we may assume this character is trivial.

• Instead of [12, Corollary 3.8], we use [16, Theorem A.8].

• The reference to [5, Proposition 18] is no longer applicable; however, in this case,
we still have a noninjective T -equivariant surjection : c-IndT

T0
(1T0)

⇠=C[X
±1]⇣ A.

Since this map is equivariant for the action of C[T/T0] ⇠= C[X
±1] on both sides,

the structure theorem for finitely generated modules over a PID implies that A ⇠=
C[X

±1]/( f (X)), where f (X) is some nonzero polynomial. In particular, A is
finite-dimensional and admissible.

• We may still appeal to [10, Theorem 2.3.8] to obtain the equivalence of the notions
of “locally admissible” and “locally finite” representations.

The other parts of the proof apply with minor changes to give the desired result.
Suppose now that H = G = SL2(Qp). Since the center Z is a finite group of

order 2, and since p � 5, the action of Z on any smooth representation is semisimple.
In particular, we may assume without loss of generality that Z acts by a character
on J. The proof contained in [21] may again be adapted to the group SL2(Qp),
with the following changes:

• We replace c-IndG

K Z
with c-IndSL2(Qp)

SL2(Zp)
in the proof.

• Instead of [12, Corollary 3.8], we use [16, Section A.2, proof of Step 1].

• The analog of [5, Proposition 18] holds for the group SL2(Qp) (see Remark 3.2
below).

• Let
T 2 EndSL2(Qp)(c-IndSL2(Qp)

SL2(Zp)
(� ))

denote the spherical Hecke operator associated to the SL2(Zp)-bi-equivariant func-
tion with support SL2(Zp)

�
p

0
0

p�1

�
SL2(Zp), so that the relevant spherical Hecke

algebra is a polynomial algebra in T . To see that

c-IndSL2(Qp)

SL2(Zp)
(� )/(T � �)



350 KAROL KOZIOŁ

is of finite length, we appeal to [1, Theorem 3.18, Proposition 2.7, Corollary 3.26(3),
proof of Proposition 4.4]. Further, each representation

c-IndSL2(Qp)

SL2(Zp)
(� )/(T � �)

is admissible by [1, Proposition 2.9, Corollary 3.26(3), Corollary 4.6, Proposi-
tion 4.7]. Therefore, the representation A appearing in [21, proof of Proposi-
tion 5.16] is admissible.
• In order to prove the equivalence of “locally admissible” and “locally finite,” we
need an analog of [10, Theorem 2.3.8] for the group SL2(Qp) (more precisely, we
need a version of the equivalence (1) , (2) of loc. cit., Lemma 2.3.6). The validity
of this claim follows from the claim that the quotients

c-IndSL2(Qp)

SL2(Zp)
(� )/(T � �)

are of finite length, proved in the previous bullet point. (Of independent interest: in
order to verify the equivalence (1) , (3) of [10, Lemma 2.3.6] for SL2(Qp), one
can use [1, Theorem 3.36(3)].)

The other parts of the proof apply with minor changes to give the desired result. ⇤
Remark 3.2. We believe the counterexample contained in [1, Section 3.7.3] is incor-
rect.1 In particular, in the notation of op. cit., the Hecke algebra H(GS, IS,!(p�1)/2)

contains functions supported on double cosets of the form IS

� 0
p`

�p
�`

0

�
IS . Therefore,

there are more Hecke operators contained in H(GS, IS,!(p�1)/2) than simply the
span of the T2n,2n+1. Moreover, the action of the Hecke operator T�

0
�1

1
0

� on the
function f1 is given by

f1 · T�
0

�1
1
0

� = (�1)(p�1)/2
f�1,

which implies that the submodule
L

n�1Fp fn is not Hecke-stable.
After checking details, we believe that the analog of [5, Proposition 18] for the

group SL2(Qp) is indeed true: any H-stable submodule

W ⇢ (c-IndSL2(Qp)

SL2(Zp)
(Symr ))I1

is of finite codimension.

Corollary 3.3. Let H 2 {T, G}, and let ⌧,⇡ be two locally admissible H-representa-

tions. Then

Exti
H,ladm

(⌧,⇡) ⇠= Exti
H
(⌧,⇡).

4. Some Ext calculations

We begin with some calculations of Ext groups which we will need below.
1We have discussed this with Abdellatif, and she has agreed with our assessment.
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4A. T-extensions. Let �,  denote two smooth T -representations, and suppose
that � is generated by its space of T1-invariant vectors. (As T1 is normal in T ,
this is equivalent to requiring that � T1 = � .) Since the category of smooth T -
representations generated by their T1-invariants is equivalent to the category of right
HT -modules, we get an E2 spectral sequence of C-vector spaces

(6) Exti
HT

(� T1, H j (T1, )) ) Exti+ j

T
(�, ).

Compare [20, (33)].

Lemma 4.1. Let � ,� 0 : T ! C
⇥

denote two smooth characters of T . Then

dimC(Extn
T
(� ,� 0)) =

�2
n

�
�� ,� 0,

where �� ,� 0 denotes the Kronecker delta function.

Proof. Since HT is of global dimension 1 and T1 has cohomological dimension 1,
the spectral sequence (6) degenerates at the E2 page. The equations

H1(T1,�
0) ⇠= � 0 and dimC(Extn

HT
(� ,� 0)) =

�1
n

�
�� ,� 0

then give the result. ⇤
Lemma 4.2. Suppose �,  are smooth T -representations, and suppose � has finite

length. Then, for n � 3, we have

Extn
T
(�, ) = 0.

Proof. By induction on length, it suffices to assume � is simple. In particular, � is
generated by its T1-invariant vectors. Since HT is of global dimension 1 and T1 has
cohomological dimension 1, the spectral sequence (6) degenerates at the E2 page,
which gives the result. ⇤

Now let � : T ! C
⇥ be a smooth character, and let � denote a nonsplit extension

of � by � :

(7) 0 ! � ! � ! � ! 0.

Lemma 4.3. We have

dimC(Extn
T
(�,�)) =

�2
n

�
.

Proof. The degree n = 0 case follows from the fact that � is a nonsplit extension,
while the n = 1 case follows from a direct calculation with Yoneda extensions.
Applying the functor HomT (�,�) to the short exact sequence (7) gives a long exact
sequence of Ext groups; taking the Euler characteristic, using Lemmas 4.1 and 4.2
and the degrees already computed gives the result in degrees n � 2. (Alternatively,
one can dualize and use the spectral sequence (6).) ⇤
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5. Right adjoint calculations

We are now in a position to calculate Rn
R

G

B
. The smooth, absolutely irreducible

representations of SL2(Qp) are divided into four classes (see [1, Theorems 3.42,
4.12; 15, Theorem 4]), and we discuss each in turn.

5A. Principal series. This is the most involved calculation.
For this entire subsection we let ⇡ = IndG

B
(�), where � : T ! C

⇥ is a smooth
character. By [16, Section 5.4.2], we have

(8) Hn(I1,⇡) =

8
>>><

>>>:

IndH

HT
(�) if n = 0,

extension of IndH

HT
(��1↵̄)_ by IndH

HT
(�) if n = 1,

IndH

HT
(��1↵̄)_ if n = 2,

0 if n � 3.

The extension in the H1 term is nonsplit if and only if � = ⇢̄, and for a right H-
module M we equip M

_ := HomC(M, C) with the structure of a right H-module
as in [2, Section 4]. We now apply R

H

HT
to (8), and use [3, Theorem 5.20] and [2,

Theorem 4.9]. This gives

(9) R
H

HT
(Hn(I1,⇡)) =

8
>>><

>>>:

� if n = 0,

extension of ��1↵̄ by � if n = 1,

��1↵̄ if n = 2,

0 if n � 3.

Once again, the degree 1 term is nonsplit if and only if � = ⇢̄. We will use the
above as input into the short exact sequence (2).

Since the unit of the adjunction (IndG

B
,RG

B
) is an isomorphism [25, Theorem 5.3],

we get
R

G

B
(⇡) = � .

Suppose next that n � 3. Then the short exact sequence (2) and equations (9) imply
(Rn

R
G

B
(⇡))T1 = 0, so that

Rn
R

G

B
(⇡) = 0 for all n � 3.

We now calculate the remaining two degrees.

Lemma 5.1. We have R2
R

G

B
(⇡) = 0.

Proof. We proceed in several steps. Note first that the short exact sequence (2) for
n = 2 and n = 3 along with the equations (9) give

dimC(R2
R

G

B
(⇡)T1)  1, dimC(H1(T1, R2

R
G

B
(⇡))) = 0.

Step 1. The T1-representation R2
R

G

B
(⇡)|T1 is either 0 or isomorphic to C

1(T1, C).
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This essentially follows from the dimension calculations above. We elaborate.
Since R2

R
G

B
(⇡) is an admissible T -representation, the Pontryagin dual

R2
R

G

B
(⇡)_ := HomC(R2

R
G

B
(⇡), C)

is a finitely generated module over the DVR C[[T1]]⇠=C[[X ]]. Furthermore, the coso-
cle of R2

R
G

B
(⇡)_ is dual to the space of invariants R2

R
G

B
(⇡)T1 . By Nakayama’s

lemma, R2
R

G

B
(⇡)_ is generated by at most one element, which implies

R2
R

G

B
(⇡)_ ⇠= 0 or C[[X ]] or C[[X ]]/X

r

for some r � 1. Dualizing, we obtain

R2
R

G

B
(⇡)|T1

⇠= 0 or C
1(T1, C) or (C[[X ]]/X

r )_.

However, the condition H1(T1, R2
R

G

B
(⇡)) = 0 rules out the last possibility.

Step 2. We calculate the graded pieces of the socle filtration of R2
R

G

B
(⇡).

When R2
R

G

B
(⇡) = 0, there is nothing to prove, so assume the contrary. For the

sake of brevity, we set  := R2
R

G

B
(⇡), and for i � 0, let � i := soci

T
() denote the

socle filtration of  .
First, we have

� 1 = socT () ⇢ T1 ⇠= ��1↵̄

(by (2) in degree n = 2, assuming  6= 0). Thus, T1 is semisimple as a T -represen-
tation, so that T1 ⇢ socT (), and this implies � 1 ⇠= ��1↵̄. Similarly, we have

� 2/� 1 = socT (/� 1) = socT (/��1↵̄) ⇢ (/��1↵̄)T1 .

To determine the latter space (which is nonzero by Step 1), we apply the functor
of T1-invariants to the short exact sequence

0 ! ��1↵̄ !  ! /��1↵̄ ! 0

to get

0 ! ��1↵̄ ⇠�! T1 0�! (/��1↵̄)T1 ! H1(T1,�
�1↵̄) ⇠= ��1↵̄.

Thus, we obtain (/��1↵̄)T1 ⇠=��1↵̄, and consequently � 2/� 1 ⇠=��1↵̄. Continuing
in this way, we see that dimC(� i ) = i and � i+1/� i ⇠= ��1↵̄ for all i � 0.

Step 3. We have R2
R

G

B
(⇡) = 0.

Assume the contrary, so that R2
R

G

B
(⇡)|T1

⇠= C
1(T1, C). As in Step 2, we have

R2
R

G

B
(⇡)T1 ⇠= ��1↵̄. By injectivity of C1(T1, C), the spectral sequence (6) for

 = R2
R

G

B
(⇡) collapses to give

(10) dimC(Exti
T
(��1↵̄, R2

R
G

B
(⇡))) = dimC(Exti

HT
(��1↵̄,��1↵̄)) =

�1
i

�
.
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Let � =� 2 denote the second step in the socle filtration of R2
R

G

B
(⇡), as in Step 2

above, and note that by construction we have dimC(HomT (�, R2
R

G

B
(⇡))) = 2.

Applying HomT (�, R2
R

G

B
(⇡)) to the short exact sequence

0 ! ��1↵̄ ! � ! ��1↵̄ ! 0

gives a long exact sequence of Ext groups. Taking the Euler characteristic and
using (10) implies

(11) dimC(Ext1
T
(�, R2

R
G

B
(⇡))) = dimC(HomT (�, R2

R
G

B
(⇡))) = 2.

We first examine the spectral sequence (5) for � and ⇡ as above. By Lemma 4.2
and the fact that H j OrdG

B�(⇡) = 0 for j � 2 [11, Proposition 3.6.1], we have
E

i, j

2 = 0 for i � 3 or j � 2. This implies

Ext3
G
(IndG

B
(� ),⇡) ⇠= E

2,1
1 = E

2,1
2 = Ext2

T
(�, H1 OrdG

B�(⇡)) ⇠= Ext2
T
(�,��1↵̄),

where the last isomorphism follows from [14, Corollary 3.3.8(ii)]. Therefore, we get

(12) dimC(Ext3
G
(IndG

B
(� ),⇡)) = 1

by Lemma 4.3.
Consider now the spectral sequence (3). By Lemma 4.2 and the Rn

R
G

B
already

calculated, we have E
i, j

2 = 0 if i � 3 or j � 3, which implies the spectral sequence
degenerates at the E3 page. In particular, we get a surjection

Ext3
G
(IndG

B
(� ),⇡) ⇣ Ext1

T
(�, R2

R
G

B
(⇡)).

By (11) and (12), the left-hand side has dimension 1 while the right-hand side has
dimension 2, and we arrive at a contradiction. ⇤

It remains to calculate R1
R

G

B
(⇡). We proceed as follows. Using the values of

Rn
R

G

B
(⇡) already computed, the spectral sequence (3) yields the following exact

sequence:

(13)
0 Ext1

T
(�,RG

B
(⇡)) Ext1

G
(IndG

B
(� ),⇡) HomT (�, R1

R
G

B
(⇡))

Ext2
T
(�,RG

B
(⇡)) Ext2

G
(IndG

B
(� ),⇡) Ext1

T
(�, R1

R
G

B
(⇡)) 0

e1

e2

Here, the maps ei are the edge maps of the spectral sequence (3). Similarly, using
the fact that H j OrdG

B�(⇡) = 0 for j � 2 [11, Proposition 3.6.1] and that ⇡ is locally
admissible, the spectral sequence (5) for � locally admissible gives

(14)
0 Ext1

T
(�,OrdG

B�(⇡)) Ext1
G
(IndG

B
(� ),⇡) HomT (�,H1OrdG

B�(⇡))

Ext2
T
(�,OrdG

B�(⇡)) Ext2
G
(IndG

B
(� ),⇡) Ext1

T
(�,H1OrdG

B�(⇡)) 0

e
ladm
1

e
ladm
2
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Let us now fix a locally admissible T -representation � , and recall that ⇡ =
IndG

B
(�). Consider the composite map

Exti
T
(�,�) ! Exti

T
(�,RG

B
(IndG

B
(�)))

ei! Exti
G
(IndG

B
(� ), IndG

B
(�)),

where the first map is induced by the unit � ! R
G

B
(IndG

B
(�)) of the adjunction

(IndG

B
,RG

B
). A straightforward exercise in homological algebra shows that this

composite map is, up to a sign, equal to the map obtained by applying the exact
functor IndG

B
to a Yoneda extension. A similar remark holds for the adjunction

(IndG

B
, OrdG

B�) defined on the locally admissible categories.
Suppose further that � has finite length; this implies that all Ext spaces appearing

in the exact sequences (13) and (14) have finite dimension. By [25, Theorem 5.3]
and [10, Proposition 4.3.4], the units of both the adjunctions (IndG

B
,RG

B
) and

(IndG

B
, OrdG

B�) are isomorphisms, which implies that the domain of e2 is identified
with the domain of e

ladm
2 (both of which are isomorphic to Ext2

T
(�,�)). There-

fore, the paragraph above implies that the image of the edge map e2 in the exact
sequence (13) has the same dimension as the image of the edge map e

ladm
2 in the

exact sequence (14). In particular, by dimension counting this implies

dimC(Ext1
T
(�, R1

R
G

B
(⇡))) = dimC(Ext1

T
(�, H1 OrdG

B�(⇡)));

the two exact sequences (13) and (14) then give

(15) dimC(HomT (�, R1
R

G

B
(⇡))) = dimC(HomT (�, H1 OrdG

B�(⇡)))

= dimC(HomT (�,��1↵̄)),

where the last equality follows from [14, Corollary 3.3.8(ii)].

Lemma 5.2. We have R1
R

G

B
(⇡) = ��1↵̄.

Proof. Taking � = ��1↵̄ in (15) shows that ��1↵̄ ,! R1
R

G

B
(⇡). Now, assume by

contradiction that dimC(R1
R

G

B
(⇡)) � 2, and let � denote the second step of the

socle filtration of R1
R

G

B
(⇡) (as in Step 2 of the proof of Lemma 5.1). Then � is a

nonsplit extension of ��1↵̄ by itself, and by construction, we have

dimC(HomT (�, R1
R

G

B
(⇡))) = 2, dimC(HomT (�,��1↵̄)) = 1.

However, this contradicts (15). ⇤

Putting everything together gives

(16) Rn
R

G

B
(IndG

B
(�)) =

8
<

:

� if n = 0,

��1↵̄ if n = 1,

0 if n � 2.
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5B. Steinberg. Suppose now that ⇡ = St := IndG

B
(1T )/1G is the Steinberg repre-

sentation. By [16, Section 5.4.3], we have

Hn(I1, St) =

8
>><

>>:

�sign if n = 0,

IndH

HT
(1T ) if n = 1,

�triv if n = 2,

0 if n � 3.

(For the definitions of �sign and �triv, see [18, Remarks 2.23 and 2.24(1)].) Thus,
by [3, Theorem 5.20], we have

R
H

HT
(Hn(I1, St)) =

⇢
1T if n = 0, 1,

0 if n � 2.

By [4, Corollary 6.5], we have

R
G

B
(St) = 1T .

Using this fact, the calculation of R
H

HT
(H1(I1, St)) above, and the short exact

sequence (2) for n = 1, we get

0 ! H1(T1, 1T ) ⇠= 1T ! 1T ! (R1
R

G

B
(St))T1 ! 0.

Therefore, we have (R1
R

G

B
(⇡))T1 = 0, which implies

R1
R

G

B
(St) = 0.

Finally, using the short exact sequence (2) for n � 2 and the calculation of
R

H

HT
(Hn(I1, St)) shows that (Rn

R
G

B
(⇡))T1 = 0. Putting everything together gives

Rn
R

G

B
(St) =

⇢
1T if n = 0,

0 if n � 1.

5C. Trivial representation. Suppose next that ⇡=1G is the trivial G-representation.
By [4, Corollary 6.5], we have

R
G

B
(1G) = 0.

To compute higher derived functors, we use the short exact sequence

0 ! 1G ! IndG

B
(1T ) ! St ! 0.

Applying the left-exact functor RG

B
to the above gives an exact sequence

0 ! R
G

B
(1G) = 0 ! R

G

B
(IndG

B
(1T )) ⇠= 1T ! R

G

B
(St) ⇠= 1T ! 0.



DERIVED RIGHT ADJOINTS OF PARABOLIC INDUCTION: AN EXAMPLE 357

Since Rn
R

G

B
(St) = 0 for n � 1, the long exact sequence for higher derived functors

implies Rn
R

G

B
(1G)⇠=Rn

R
G

B
(IndG

B
(1T )) for all n �1. Thus, using (16), we conclude

Rn
R

G

B
(1G) =

8
<

:

0 if n = 0,

↵̄ if n = 1,

0 if n � 2.

5D. Supersingular representations. Finally, suppose that ⇡ is an absolutely ir-
reducible supersingular G-representation. Then the H-modules Hn(I1,⇡) are
supersingular for all n � 0 (when C is finite, one can use [16, Section 5.4.4];
otherwise, see [17, Corollary 8.12]). Consequently, by [3, Theorem 5.20], we have
R

H

HT
(Hn(I1,⇡)) = 0 for all n � 0, and (1) and (2) imply (Rn

R
G

B
(⇡))T1 = 0 for all

n � 0. Thus, we conclude

Rn
R

G

B
(⇡) = 0 for all n � 0.
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