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Suppose p > 5 is a prime number, and let G = SL,(Q,). We calculate the
derived functors R" ’Rg (), where B is a Borel subgroup of G, Rg is the
right adjoint of smooth parabolic induction constructed by Vignéras, and =
is any smooth, absolutely irreducible, mod p representation of G.

1. Introduction

One of the most fundamental operations in the representation theory of p-adic
groups is that of parabolic induction: given a p-adic connected reductive group G,
a rational parabolic subgroup P = M N, and a smooth representation o of the
Levi quotient M of P (over some coefficient field C), we can construct the G-
representation Indg (o) induced from (the inflation to P of) o. In this way, we obtain
an exact functor Indg from the category of smooth M -representations over C to the
category of smooth G-representations over C. The relevance of this functor comes
from the fact that any smooth irreducible admissible G-representation arises as a
subquotient of some Indg (o), where o is a so-called supercuspidal representation.

Vignéras [25] shows that the functor Indg commutes with small direct sums.
Since the category of smooth M -representations is a locally small, Grothendieck
abelian category, a version of the adjoint functor theorem implies that Indg possesses
a (left-exact) right adjoint Rg. When the characteristic of C is different from p, we
can identify this functor explicitly: R(If is naturally isomorphic to the normalized
Jacquet module relative to the opposite parabolic subgroup P~ = MN~. For C =C,
this is [6, Main Theorem] and [7, Theorem 3], and the general char(C) # p case
follows from [9, Corollary 1.3] (see also [8, Theorem 1.5] for earlier partial results).

When the characteristic of C is equal to p, the functor Rg is more mysterious.
When restricted to the category of admissible representations, ’Rg is isomorphic
to Emerton’s functor Ordg, of ordinary parts (see [4, Corollary 4.13] for this
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equivalence). However, it is not clear how to describe RIGJ on the entire category of
smooth representations.

There have also been fascinating recent advances in derived aspects of the mod p
representation theory of p-adic reductive groups, which provide new methods for
approaching the mod p Langlands program (see [13; 23]). In particular, the authors
of [22] consider the total derived functors R Rg over a field of characteristic p, and
leave open the question of explicitly calculating these derived functors. The main
result of this note is the following, which addresses some of these questions.

Theorem. Suppose m is a smooth, absolutely irreducible representation of G =
SLy(Q)) over afield C of characteristic p> 5, and let B denote the upper triangular
Borel subgroup of G. Then, for all n > 0, we have an isomorphism of smooth
admissible T -representations:

R" RS (r) = R"Ord§_ (7).

We make some comments regarding this result. As the category of admissible
G-representations does not have enough injectives, the derived functors R" Ordg_
must be computed in the category of locally admissible G-representations. However,
it is not known whether Ordg_ agrees with Rg on this category, and therefore we
cannot construct a direct comparison between R” Rg and R” Ordg,. To address
this subtlety, we use the results of [16] to relate Rg to the analogously defined
functor on pro- p-Iwahori—-Hecke modules, where we can do explicit calculations to
evaluate R" Rg () (and deduce a posteriori the isomorphism with R” Ordg, (m)).
To our knowledge, the results computing R" Rg (7r) are the first of their kind.

We are hopeful that some of the techniques for calculating R" Rg () will gen-
eralize to other p-adic reductive groups (though some are specific to the group
SL2(@))).

2. Preparation

2A. Suppose p > 5 is a prime number, and define G := SL,(Q,). We let B
denote the upper triangular Borel subgroup and 7' the diagonal maximal torus. We
let Rep™(—) denote the category of smooth representations with coefficients in
a field C of characteristic p. We will examine the (exact) functor of parabolic

induction
Ind§ : Rep™(T) — Rep™(G)

and its right adjoint
RS : Rep™(G) — Rep™(T),

constructed in [25, Section 4].
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We also define two distinguished characters p, & : T — C* which we use in the

sequel: . 0 . 0
= ((*P _ =  =((XP _ 2
(7 )= (T )=

wherea € Z, x € Z;, and where x € [F;,< C C* denotes the mod p reduction of x.

2B. In order to understand the right derived functors R" Rg, we use pro- p-Iwahori—
Hecke algebras. Let I; denote the subgroup of SL,(Z,) which is upper triangular
and unipotent modulo p, and let 71 :=T N I;. Note that T} = 1 + pZ, = 7, so
that 77 has cohomological dimension 1. We let # denote the pro- p-Iwahori—-Hecke
algebra of G with respect to /1, and let {7 denote the pro- p-Iwahori—-Hecke algebra
of T with respect to T (see [24, Section 4] for more details and definitions). We note
that Hr = C[T/T11=ClZ]®c C [[F;], and therefore Hr has global dimension 1.
We have analogous functors of parabolic induction

Indy; : 9Mod—Hy — Mod—H

and its right adjoint
R Mod—H — Mod—Hr,

defined on categories of right modules. We refer to [18, Section 4.2] for details and
definitions.

2C. Given a smooth representation 7 of G, the space /! of I;-invariants has a
right action of H, recalled in [18, proof of Lemma 4.5]. Passing to derived functors,
the cohomology spaces H' (I}, 7r) also inherit a right action of # (described in [16,
Section 2.3]). We have analogous constructions for 7" and Hr.

Given a smooth character x : T — C*, we have x ' = x, and therefore x inherits
the structure of a right Hr-module. We will use the same notation x to denote the
T -representation and the resulting 7 7-module; the meaning should be clear from
context.

2D. The goal will be to compute R”" Rg (r) where 7 is an absolutely irreducible
admissible G-representation. Our main tool will be [16, Theorem 3.13]: if 7 is an
admissible G-representation, then we have an E; spectral sequence of Hr-modules:

HY(T\, R/ R (n)) = Ry, (H/ (I, ).

(Note that the assumption in [16, Section 3] that C be finite is not required for
the construction of the above spectral sequence.) Since 77 has cohomological
dimension 1, the above spectral sequence degenerates at the E, page to give an
isomorphism

M Ry, (x") 2 RE ()"
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and, for n > 1, an exact sequence
2 0—H'(T\,R"'"RE(m) > RYE H'(I, 7)) > R"RG(w)™ — 0.
In particular, this implies the following.

Lemma 2.1. If 7w is an admissible G-representation, then each R" Rg () is an
admissible T -representation.

Proof. Assuming 7 is admissible, Lemma 3.4.4 of [11] implies that H" (I}, )
is finite-dimensional for all n > 0. By [18, Section 4.2, Property (4)], the space
R%T (H"(I,, 7)) is also finite-dimensional, and so Theorem 6.3.2 of [19], along
with (1) and (2), imply that each R" Rg (7r) is an admissible T -representation. [J

2E. In addition to the functor Rg, we will also use Emerton’s functors of derived
ordinary parts (see [10; 11] for the relevant definitions; we note that for our applica-
tions, the assumption in op. cit. that the residue field of A is finite is not necessary).
We recall that the functor Ordg, is the right adjoint to the parabolic induction
functor from Mep'®™(T), the category of locally admissible T-representations, to
i)‘iepladm(G), the category of locally admissible G-representations.

For alocally admissible T -representation o and a locally admissible G-representa-
tion 7r, we have two spectral sequences relating extensions and parabolic induction:

one in the smooth category
(3) Exty (0, R/ RS (7)) = Extl)/ (Ind§ (o), 7),

(coming from an application of the Grothendieck spectral sequence) and one in the
locally admissible category

) EXth g (0, R Ord§_ (7)) = Extf ], (Ind§ (o), )

(see [11, (3.7.4)]). By Corollary 3.3 below, we have Exty, 1,4, (7, ) = Exty (7, )
if T and 7 are locally admissible H -representations, where H € {T', G}. In addition,
by [16, Theorem A.4], we have R/ Ord§_ ~ H’/ Ord§_ for the group SL,, and
the latter can be explicitly calculated by work of Emerton [11] and Hauseux [14].
Therefore, the spectral sequence (4) becomes

5) Ext; (o, H/ Ord§._ (7)) = Ext.// (Ind§ (o), 7).

3. Locally admissible representations versus smooth representations

In this section, we compare locally admissible and smooth representations.

Lemma 3.1. Let H € {T, G}, let 1 : Rep'™™(H) — Rep™(H) denote the fully
faithful inclusion, and let J € Rep™@™ (H) denote an injective object. Then 1(J) €
Rep™ (H) is also an injective object.
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Proof. The proofs are virtually identical to the proof of [21, Proposition 5.16].
Since we do not fix the central character, we briefly highlight the main differences,
and explain why the arguments work in our setting. Once again, the assumption in
op. cit. that the coefficient field k is finite is not necessary for our purposes.

Suppose first that H = T. We outline the main changes to the proof in loc. cit.
(using that article’s notation):

o We replace C—Indg 7 with c—Ind;O in the proof, where Ty = Z; denotes the maximal
compact subgroup of 7.

* Since [, C C, we may take the representation o to be a character; further, by
twisting, we may assume this character is trivial.

e Instead of [12, Corollary 3.8], we use [16, Theorem A.8].

 The reference to [5, Proposition 18] is no longer applicable however, in this case,
we still have a noninjective T'-equivariant surjection ¥ : c- Ind () =CIX A,
Since this map is equivariant for the action of C[T/Ty] = C[X *11 on both sides,
the structure theorem for finitely generated modules over a PID implies that A =
C[X*'1/(f(X)), where f(X) is some nonzero polynomial. In particular, A is
finite-dimensional and admissible.

» We may still appeal to [10, Theorem 2.3.8] to obtain the equivalence of the notions
of “locally admissible” and “locally finite” representations.

The other parts of the proof apply with minor changes to give the desired result.

Suppose now that H = G = SL»(Q),). Since the center Z is a finite group of
order 2, and since p > 5, the action of Z on any smooth representation is semisimple.
In particular, we may assume without loss of generality that Z acts by a character
on J. The proof contained in [21] may again be adapted to the group SL,>(Q,),
with the following changes:

» We replace c—Indg 2 With c—IndSL2§§”) in the proof.

« Instead of [12, Corollary 3.8], we use [16, Section A.2, proof of Step 1].

* The analog of [5, Proposition 18] holds for the group SL>(Q,) (see Remark 3.2
below).

e Let Ly(@,)

T e EndSLz(@p)(C'IndSLZ(Z]) (o))
denote the spherical Hecke operator associated to the SLo(Z )-bi-equivariant func-
tion with support SL,(Z P)(o 2 ) SL>(Zp), so that the relevant spherical Hecke

algebra is a polynomial algebra in 7. To see that

SLZ (@p)

SL(Z)( )/(T A)
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is of finite length, we appeal to [1, Theorem 3.18, Proposition 2.7, Corollary 3.26(3),
proof of Proposition 4.4]. Further, each representation

SL @y

-Indgy” ;") (@) /(T = 3)
is admissible by [1, Proposition 2.9, Corollary 3.26(3), Corollary 4.6, Proposi-
tion 4.7]. Therefore, the representation A appearing in [21, proof of Proposi-
tion 5.16] is admissible.

* In order to prove the equivalence of “locally admissible” and “locally finite,” we
need an analog of [10, Theorem 2.3.8] for the group SL>(Q,) (more precisely, we
need a version of the equivalence (1) < (2) of loc. cit., Lemma 2.3.6). The validity
of this claim follows from the claim that the quotients

SL Q

Indg (") (@)/(T =)
are of finite length, proved in the previous bullet point. (Of independent interest: in
order to verify the equivalence (1) < (3) of [10, Lemma 2.3.6] for SL»(Q,), one
can use [1, Theorem 3.36(3)].)

The other parts of the proof apply with minor changes to give the desired result. [

Remark 3.2. We believe the counterexample contained in [1, Section 3.7.3] is incor-
rect.! In particular, in the notation of op. cit., the Hecke algebra H(Gy, Is, w(p—1),2)
contains functions supported on double cosets of the form / S([?l 7’(’)7 )I s. Therefore,
there are more Hecke operators contained in H(Gs, Is, w(p—1)/2) than simply the
span of the T, 2,+1. Moreover, the action of the Hecke operator T( 0 1) on the

. . . 71 0
function f is given by

fi-T(ory = (=) P=b2 g,

—-10

which implies that the submodule EBnle]_: p Jn 18 not Hecke-stable.
After checking details, we believe that the analog of [5, Proposition 18] for the
group SL>(Q)) is indeed true: any #-stable submodule

W C (c-IndiiQ&Q”) (Sym™ )"

is of finite codimension.

Corollary 3.3. Let H €{T, G}, and let T, w be two locally admissible H -representa-

tions. Then . - ;
Exty jaam (T, T) = Exty (7, 7).

4. Some Ext calculations

We begin with some calculations of Ext groups which we will need below.

lwe have discussed this with Abdellatif, and she has agreed with our assessment.
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4A. T-extensions. Let o, k denote two smooth T -representations, and suppose
that o is generated by its space of Tj-invariant vectors. (As 77 is normal in 7,
this is equivalent to requiring that o”' = ¢.) Since the category of smooth 7T-
representations generated by their 77 -invariants is equivalent to the category of right
‘Hr-modules, we get an E; spectral sequence of C-vector spaces

(6) Extl,, (67", H/ (T1, k)) = Ext;/ (0, &).
Compare [20, (33)].

Lemma 4.1. Let x, x' : T — C* denote two smooth characters of T. Then

dime (Exty(x, x)) = (3) 8.0’

where §, . denotes the Kronecker delta function.

Proof. Since Hr is of global dimension 1 and 77 has cohomological dimension 1,
the spectral sequence (6) degenerates at the E, page. The equations

H'(Ti, x) = x' and  dime Ext, (6 1)) = (,) 8.0
then give the result. U

Lemma 4.2. Suppose o, k are smooth T -representations, and suppose o has finite
length. Then, for n > 3, we have

Ext7 (o, k) =0

Proof. By induction on length, it suffices to assume o is simple. In particular, o is
generated by its 7}-invariant vectors. Since Hry is of global dimension 1 and 77 has
cohomological dimension 1, the spectral sequence (6) degenerates at the E; page,
which gives the result. O

Now let x : T — C* be a smooth character, and let o denote a nonsplit extension
of x by x:
@) 0> x—>0—x—0.

Lemma 4.3. We have
dim¢ (Ext} (o, x))—( ).

Proof. The degree n = 0 case follows from the fact that o is a nonsplit extension,
while the n = 1 case follows from a direct calculation with Yoneda extensions.
Applying the functor Homz (—, x) to the short exact sequence (7) gives a long exact
sequence of Ext groups; taking the Euler characteristic, using Lemmas 4.1 and 4.2
and the degrees already computed gives the result in degrees n > 2. (Alternatively,
one can dualize and use the spectral sequence (6).) (]
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5. Right adjoint calculations

We are now in a position to calculate R" Rg. The smooth, absolutely irreducible
representations of SL,(Q),) are divided into four classes (see [1, Theorems 3.42,
4.12; 15, Theorem 4]), and we discuss each in turn.

5A. Principal series. This is the most involved calculation.
For this entire subsection we let 7 = Indg( x), where x : T — C* is a smooth
character. By [16, Section 5.4.2], we have

Ind3;, (x) ifn=0,
; _Jextension of Ind} (x~'a)¥ by Ind} (x) ifn=1,
@ H'(,m)= U o —leny .
Indy, (x ™ @) ifn=2,
0 ifn>3.

The extension in the H! term is nonsplit if and only if x = p, and for a right -
module M we equip M := Hom¢ (M, C) with the structure of a right H-module
as in [2, Section 4]. We now apply R%T to (8), and use [3, Theorem 5.20] and [2,
Theorem 4.9]. This gives

X if n =0,
extension of y ~'& by x ifn=1,
9 RYE H'(I}, 7)) =
©) CHCHUIEDE B N
0 ifn > 3.

Once again, the degree 1 term is nonsplit if and only if x = p. We will use the
above as input into the short exact sequence (2).
Since the unit of the adjunction (Ind¢, Rg) is an isomorphism [25, Theorem 5.3],

we get G
Ryp(m)=x.

Suppose next that n > 3. Then the short exact sequence (2) and equations (9) imply
(R"RG ()Tt =0, so that

R'"R§(r)=0 foralln>3.
We now calculate the remaining two degrees.

Lemma 5.1. We have R? Rg (m)=0.

Proof. We proceed in several steps. Note first that the short exact sequence (2) for
n =2 and n = 3 along with the equations (9) give

dimc(R2RG ()1 <1,  dime(HY(T}, R* RS (7)) = 0.

Step 1. The T)-representation R? Rg (1) |7, is either O or isomorphic to C* (T, C).
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This essentially follows from the dimension calculations above. We elaborate.
Since R? Rg (r) is an admissible T -representation, the Pontryagin dual

R?>RS (7)Y := Hom¢ (R* RE (), C)

is a finitely generated module over the DVR C[[T1]] = C[[X]. Furthermore, the coso-
cle of R? Rg ()" is dual to the space of invariants R? Rg (r)T. By Nakayama’s
lemma, R? Rg (7r)" is generated by at most one element, which implies

R?RE ()Y =0 or C[X] or C[X]/X"
for some r > 1. Dualizing, we obtain
R2RSG ()|, =0 or C®(Ty, C) or (CIXT/X")V.

However, the condition H' (7}, R? Rg (,r)) = 0 rules out the last possibility.

Step 2. We calculate the graded pieces of the socle filtration of R> Rg ().

When R? Rg (r) = 0, there is nothing to prove, so assume the contrary. For the
sake of brevity, we set k := R? Rg (7), and for i > 0, let 0% := sociT (k) denote the
socle filtration of «.

First, we have
ol =socr(k) c k!l = X_l&
(by (2) in degree n = 2, assuming « % 0). Thus, 7! is semisimple as a T-represen-
1=

tation, so that ' C socr («), and this implies ol X~ 'a. Similarly, we have
oo =socr(k/o") =socr(k/x ‘@)  (x/x'@)".

To determine the latter space (which is nonzero by Step 1), we apply the functor
of Ti-invariants to the short exact sequence

0> x lask—«/x'la—0

to get
1

0— x'a =% /x ') > H (T, x @)= xa.

1 1

@, and consequently 0%/o' = xy ~'@. Continuing
o forall i > 0.

Thus, we obtain (k/x ~'a)T1 = x~
in this way, we see that dim¢(0?) =i and o' t!/o’ = ¥~
Step 3. We have R RS () = 0.

Assume the contrary, so that R? Rg ()7, =C>(T1, C). As in Step 2, we have
R? Rg ()Tt = x~'a. By injectivity of C°°(Ty, C), the spectral sequence (6) for
Kk =R? Rg (7r) collapses to give

(10)  dime (Bxty (x '@, R*R§ (7)) = dimc (Bxty, (x '@, x~'@) = (})-
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Let o = o2 denote the second step in the socle filtration of R? Rg (), asin Step 2
above, and note that by construction we have dim¢(Homr (o, R? Rg (m))) = 2.
Applying Homyz (—, R? Rg (7r)) to the short exact sequence

1 1

O—>x a—>o0o—>x a—>0

gives a long exact sequence of Ext groups. Taking the Euler characteristic and
using (10) implies
(11)  dime(Exth (o, R R§ ())) = dim¢ (Homy (0, R? RS (7)) = 2.

We first examine the spectral sequence (5) for o and 7 as above. By Lemma 4.2
an_d_ the fact that H/ Ordg, (r) =0 for j > 2 [11, Proposition 3.6.1], we have
E’Z’j =0 fori >3 or j > 2. This implies

Ext},(Ind§ (o), 7) = EX! = Ey' = Ext2 (0, H' Ord§._ (7)) = Ext2 (0, x @),
where the last isomorphism follows from [14, Corollary 3.3.8(ii)]. Therefore, we get
(12) dimc (Ext}. (Ind§ (0), 7)) = 1

by Lemma 4.3.

Consider now the spectral sequence (3). By Lemma 4.2 and the R" Rg already
calculated, we have Elzj =0if i >3 or j > 3, which implies the spectral sequence
degenerates at the E3 page. In particular, we get a surjection

Ext}.(Ind§ (o), ) — Ext}y (0, R* RS ().
By (11) and (12), the left-hand side has dimension 1 while the right-hand side has
dimension 2, and we arrive at a contradiction. O

It remains to calculate R! Rg (). We proceed as follows. Using the values of
R" Rg (r) already computed, the spectral sequence (3) yields the following exact
sequence:

0 — Exth(0, RG (1)) — Ext);(Ind§ (o), 7) — Homy (o, R' R§ (7))
(13) j

(—> Ext2 (0, R§ (7)) — Ext}(Ind§ (o), ) — Exth- (o, R'R§ (7)) — 0

Here, the maps ¢; are the edge maps of the spectral sequence (3). Similarly, using
the fact that H’ Ordg, (m)=0for j > 2 [11, Proposition 3.6.1] and that 7 is locally
admissible, the spectral sequence (5) for o locally admissible gives

ladm

0 — Exty(0,0rd§_ (7)) a Extg; (Ind§ (o)), m) — Homy (0,H'Ord§_ (7)) 7
(14)

eladm
Q Ext}.(0,0rd§_ (7)) = Ext} (Ind§ (0),7) — Ext}(o,H'Ord§_ (7)) — 0
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Let us now fix a locally admissible T'-representation o, and recall that 7 =
Indg (x). Consider the composite map

Ext) (o, x) — Exty(0, RS (Ind§ (x))) = Extl;(Ind§ (o), Ind§ (x)).

where the first map is induced by the unit x — Rg(lndg (x)) of the adjunction
(Ind9, Rg). A straightforward exercise in homological algebra shows that this
composite map is, up to a sign, equal to the map obtained by applying the exact
functor Ind§ to a Yoneda extension. A similar remark holds for the adjunction
(Ind§, Ordg,) defined on the locally admissible categories.

Suppose further that o has finite length; this implies that all Ext spaces appearing
in the exact sequences (13) and (14) have finite dimension. By [25, Theorem 5.3]
and [10, Proposition 4.3.4], the units of both the adjunctions (IndG, Rg) and
(Ind%, Ordg_) are isomorphisms, which implies that the domain of e, is identified
with the domain of elzadm (both of which are isomorphic to ExtzT (0, x)). There-
fore, the paragraph above implies that the image of the edge map e; in the exact
sequence (13) has the same dimension as the image of the edge map elz“dm in the

exact sequence (14). In particular, by dimension counting this implies
dime (Ext} (0, R' R§ (7)) = dimc (Ext} (o, H' Ord§_ (7)));
the two exact sequences (13) and (14) then give
(15)  dimc(Homg (o, R' R (7)) = dimc (Homy (o, H' Ord§_ (7))
= dimc (Homz (0, x~'@)),
where the last equality follows from [14, Corollary 3.3.8(ii)].

Lemma 5.2. We have R! Rg (r)=x"'a.

1 1

Proof. Taking 0 = x "« in (15) shows that x ~'a — R! RCB; (;r). Now, assume by
contradiction that dim¢ (R' Rg (r)) > 2, and let o denote the second step of the
socle filtration of R! Rg (r) (as in Step 2 of the proof of Lemma 5.1). Then o is a

nonsplit extension of x & by itself, and by construction, we have
dime (Homy (0, R'RG (7)) =2,  dimc(Homy (o, x~'@)) = 1.
However, this contradicts (15). O

Putting everything together gives
X ifn=0,
(16) R'RE(Ind§ (x) = yx'a ifn=1,
0 ifn>2.
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5B. Steinberg. Suppose now that w = St := Indg(lT) /1¢ is the Steinberg repre-
sentation. By [16, Section 5.4.3], we have

Xsign iftn=0,
H' (1, SO Ind} (17) %fn =1,
Xtriv ifn=2,
0 ifn>3.

(For the definitions of xsjgn and xyiv, see [18, Remarks 2.23 and 2.24(1)].) Thus,
by [3, Theorem 5.20], we have

1r ifn=0,1,

RX (H'(I,, St)) =
#y (L (1, 50) {o ifn>2.

By [4, Corollary 6.5], we have
RS (St) = 17.

Using this fact, the calculation of Rﬁr (H'(I;, St)) above, and the short exact
sequence (2) for n = 1, we get

0—HYT1,17) =17 — 17 - R'RE(SH) T — 0.
Therefore, we have (R Rg ()t =0, which implies
R'RE(St) =0.

Finally, using the short exact sequence (2) for n > 2 and the calculation of
Rzr (H"(1;, St)) shows that (R" Rg ()T = 0. Putting everything together gives

1r ifn=0,

R'RG(S) = {0 ifn>1

SC. Trivial representation. Suppose next that m =1 is the trivial G-representation.
By [4, Corollary 6.5], we have

RS (1) =0.
To compute higher derived functors, we use the short exact sequence
0— 15 — Indg(lT) — St— 0.
Applying the left-exact functor RCB; to the above gives an exact sequence

0— RG1g) =0— RG(Ind§ A7) =17 — RE(SH =17 — 0.
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Since R” Rg (St) =0 for n > 1, the long exact sequence for higher derived functors
implies R" RG (1) =R"R$ (Ind§ (17)) for all n > 1. Thus, using (16), we conclude

0 ifn=0,
R'R§(1g)=1a ifn=1,
0 ifn>2.

5D. Supersingular representations. Finally, suppose that 7 is an absolutely ir-
reducible supersingular G-representation. Then the H-modules H" (I, ) are
supersingular for all » > 0 (when C is finite, one can use [16, Section 5.4.4];
otherwise, see [17, Corollary 8.12]). Consequently, by [3, Theorem 5.20], we have
Rzr (H*(I;, 7)) =0 for all n > 0, and (1) and (2) imply (R" Rg ()T =0 for all
n > 0. Thus, we conclude

R"RG(w)=0 foralln>0.
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