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Abstract

Transition metal dichalcogenides (TMDs) are known for their layered structure and tunable
functional properties. However, a unified understanding on other transition metal chalcogenides
(i.e. MX) is still lacking. Here, the relatively new class of copper-based chalcogenides Cu, X

(X =Te, Se, S) is thoroughly reported. Cu,X are synthesized by an unusual vapor-liquid assisted
growth on a Al,O3/Cu/W stack. Liquid copper plays a significant role in synthesizing these layered
systems, and sapphire assists with lateral growth and exfoliation. Similar to traditional TMDs,
thickness dependent phonon signatures are observed, and high-resolution atomic images reveal the
single phase Cu,Te that prefers to grow in lattice-matched layers. Charge transport measurements
indicate a metallic nature at room temperature with a transition to a semiconducting nature at low
temperatures accompanied by a phase transition, in agreement with band structure calculations.
These findings establish a fundamental understanding and thrust Cu,Te as a flexible candidate for
wide applications from photovoltaics and sensors to nanoelectronics.

1. Introduction

Recently, large area growths via chemical vapor
deposition (CVD) of two-dimensional (2D) trans-
ition metal dichalcogenides (TMDs) on different sub-
strates [1] have opened avenues to implement them
in practical applications [2]. However, while highly
effective for growing certain TMDs, CVD is still
limited in terms of controlling the crystal morpho-
logy, orientation, and chemical composition. The
development of alternative synthesis methods has the
potential to enable large area growths of other low-
dimensional materials [3].

In general, CVD requires a vapor precursor that
interacts with a substrate surface via nucleation and
diffusion, yielding layered crystals such as TMDs [4]

© 2022 IOP Publishing Ltd

and graphene [5]. In contrast, Xu et al has recently
used a liquid-based catalyst to enable diffusion-based
large area growth of MXene’s [6]. This same group
used a similar approach to successfully synthesize
novel MoSi,N, (MAX) materials [7]. We extended
this method to better understand the growth mech-
anism of MXene’s [8]. This approach is similar to
the vapor-liquid—solid (VLS) mechanism where the
precipitation of a supersaturated catalyst yields 1D
nanostructures [9], where the liquid catalyst is only
used for diffusion of metal precursors. Recent work
on growths of metal oxides on liquid metal surfaces
[10] and monolayer MoSe, [11] on molten glass fur-
ther demonstrates the potential of liquid-mediated
synthesis techniques to enable large area growths of
emerging layered structures.
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Cu-based chalcogenides (Cu,X) have recently
garnered significant attention for their potential
in thermoelectrics and photovoltaic applications
[12-15]. In particular, the three-dimensional (3D)
Cu,Te is expected to surpass the thermoelectric per-
formance of Cu,Se and Cu,S due to the relatively
low electronegativity and high atomic number of tel-
lurium [13]. However, small variations in synthesis
methods yield different stable and metastable copper
tellurides, complicating the precise identification of
the crystal structure [13, 16-18].

Reports on the 2D layered form of copper tel-
luride have recently expanded upon the active work
on 3D copper telluride. A study has reported the
versatility of Cu,Te, where one phase can display
metallic characteristics [19] while another can display
semiconductor characteristics with minor atomic
structural differences [17]. Atomically sharp metal-
semiconductor interfaces for application in electronic
devices can thus be achieved. The tendency of Cu
to be sandwiched between chalcogens also contrib-
utes to air-stability, which makes Cu,Te a promising
candidate for ultrathin channel FET devices [12].
A temperature-dependent reversible phase trans-
formation of Cu,Te from P3ml to P6/mmm phase
has also been reported [20]. However, the 2D cop-
per telluride also faces challenges of stoichiometric
synthesis and structure identification despite prom-
ising opportunities offered by its layered nature. Vari-
ous efforts have been made to stabilize the stoi-
chiometric Cu,Te such as spark plasma sintering
[21], molecular beam epitaxy on bilayer graphene-
SiC(0001) [22] or Cu(111) [23], and VLS growth
[17]. Despite these efforts, the capability to con-
trollably isolate a single phase of Cu,Te remains
limited [17].

In this work, we report a vapor-liquid assisted
CVD method for reliably synthesizing and exfoliat-
ing a P3m1 hexagonal, 2D layered Cu,Te. We show
this growth scheme is extendable to other Cu,X
(X = Se, S) materials. We demonstrate that sapphire
above the Cu foil plays a critical role in promoting
not only lateral growth, but also exfoliation to few-
layers and transfer to other substrates such as tra-
ditional silicon wafers. We also report the evolving
phonon modes from bulk to few-layer 2D Cu,Te and
detail the atomic structure with scanning transmis-
sion electron microscopy (S/TEM). Charge transport
measurements and density functional theory (DFT)
band structure calculations both point towards the
metallic nature of P3m1 Cu,Te at room temperature,
with a transformation to a semiconducting phase at
low temperatures. Although exciting electronic prop-
erties of 2D tellurides such as controllable phase or
bandgap in MoTe, and reduced thermal conductivity
in thermoelectric Bi, Te; have been reported, reports
on temperature dependent electronic property are
limited. In this aspect, Cu,Te has a wide application
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potential offering flexible tunability from metallic to
semiconducting state with a concurrent structural
transformation [24].

2. Results and discussion

A stack of Al,O3/Cu/W is used to grow crystals of
the Cu, X system by melted catalyst-based CVD (refer
to section 4 for details). Different chalcogen powders
(S, Se, Te) are placed 15 cm away from the center of
the tube to reach the vaporization temperature, and
a mix of Ar/H, gas carries the vaporized chalcogen
to the molten Cu catalyst surface at the center of the
tube. Figure 1(a) shows the schematics of the growth
scheme. First, the temperature is ramped above the
melting temperature of Cu before it is dropped to
1080 °C for growth. Growth is held for different dur-
ations (Tgrowth) as shown in figure S1. As expected,
longer growth times lead to higher density of crystals
on the substrate surface.

Melting of the Cu catalyst is an important pro-
tocol during the growth as it increases the diffusion
coefficients of the chalcogen atoms in Cu [25]. As
a result, even when the top surface of the catalyst
is covered with Al,Os, the chalcogen vapors diffuse
through the edges of the molten catalyst as shown
in figure 1(a). This is supported by the temperature-
dependent growth series, which shows no crystal-
line growth below the catalyst melting temperature as
shown in figure S2.

Furthermore, careful control of the Te concen-
tration was utilized to understand the initial phase
of growth. Therefore, the same growth protocol was
maintained with a decreased concentration (~10 mg)
of Te. After diffusion, nucleation on the Cu catalyst
surface in contact with sapphire becomes preferrable
both due to hydrogen flow that reduces contamin-
ation on the Cu foil and the epitaxy offered by the
sapphire as outlined in figure S3(a). Next, growth
occurs during the temperature ramp down process
on the surface of Cu in contact with sapphire, and
a mix of triangular and round crystal edges can be
observed as shown in the optical image in figure 1(a).
Although the triangular geometry is thermodynam-
ically favorable, the abundance of precursor Cu and
high reaction temperature may push to a kinetically
controlled rapid growth, leading to some round crys-
tal edges [26, 27]. Random, non-uniform distribution
of crystals throughout the copper surface suggests sat-
uration via the molten catalyst. The new small crys-
tals often merge with pre-existing crystals through
edge site reactivity, and increase in size as shown in
the magnified optical image in figure 1(a) [28]. Mul-
tilayer growth continues during the cooling process,
where the remaining precursors adsorb on the formed
crystal surface rather than diffuse to the edges, as dif-
fusion would energetically require high temperatures
[28]. These optical images, where Cu,Te is in green
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representative Cu,X (X = Te, S, Se) grown on sapphire.

Figure 1. Growth scheme of Cu, X systems: schematic of the growth of Cu, X materials using a W/Cu/Al, O3 sandwich is shown in
(a). Melting of the catalyst is essential to diffuse the incoming vapor species (X = Te, Se, S) to form Cu,X. Nucleation and growth
occurs on the Cu surface in contact with sapphire, and early growth crystals in the magnified optical image show both triangular
and round edges. Exfoliation is done by peeling off the sapphire substrate. The atomic structure of 2D Cu,Te is shown in (b). SEM
images of Cu, Te on copper and sapphire substrates are shown in (c) and (d), respectively. SEM images in (e) and (f) show

and Cu is in yellow, also demonstrate that the base
of the molten Cu often remains unreacted as there is
excess Cu.

Figure 1(b) shows the schematics of the atomic
structure of P3ml 2D Cu,Te crystals. Figures 1(c)
and (d) show SEM images of crystals grown on Cu
and sapphire surfaces, respectively. The growth on
sapphire enables facile exfoliation from bulk to few-
layers by simply peeling off after the reaction is com-
plete. Large areas of crystals grown on sapphire are
shown in figure S3. Thicker crystals adjacent to thin-
ner ones confirm the exfoliation on sapphire. Trian-
gular islands and edges indicate the hexagonal and
layered nature of the grown crystals. Different struc-
tures, most of them triangular, are shown in figure S4.
Extension to other Cu,X materials (Cu,Se, Cu,S) is
shown in figures 1(e)—(g), which highlights the ver-
satility of this growth mechanism for related mater-
ial systems. The elemental and structural composition
of these crystals are confirmed using energy dispers-
ive x-ray spectroscopy (EDS) and x-ray photoelectron
spectroscopy (XPS) as shown in figure S5.

To characterize the atomic structure of the grown
crystals and gain more insight into the growth mech-
anism, TEM samples are prepared by wetting the
sapphire growth substrate with ethanol, then gently
swiping with a molybdenum lacey carbon TEM grid.
The presence of Cu and Te is observed with electron
energy loss spectroscopy (EELS) and EDS on a bulk
crystal as shown in figures 2(d) and (e). The selec-
ted area electron diffraction (SAED) pattern of a few-
layer Cu,Te flake shown in figure 2(f) further high-
lights the single phase, crystalline products of our
synthesis technique. This pattern is closely aligned to
the [0001] zone axis of the hexagonal crystal struc-
ture. Diffraction spots from three family of planes,
(1100), (1210), (2200), are indexed in orange, green,
and blue, respectively.

The in-plane atomic structure is shown in the
high-resolution STEM high angle annular dark field
(HRSTEM-HAADF) image of figure 2(a). The cent-
ral column of Cu atoms appears dimmer relative to
the surrounding six columns of mixed Cu and heav-
ier Te atoms. The distance between the closest bright
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Figure 2. High resolution atomic analysis of transferred Cu,Te: (a) HRSTEM-HAADF image of the Cu, Te P3m1 crystal structure
in-plane. Schematics of Cu, Te are overlaid with the column of mixed Cu and Te atoms corresponding to the brighter spots and
the column of Cu to the lighter center spots. Due to thickness dependent diffusion of Te, thicker areas show Cu vacancies in

(b) HAADF and (c) BF images. (d) EELS and (e) EDS confirm the presence of Te and Cu. (f) The SAED pattern of a few-layer
Cu, Te flake confirms the hexagonal nature of the crystal. Flakes transferred on Si/SiO, substrate with C capping layer are used to
investigate the cross-sectional structure. (g) Cross-sectional STEM image and elemental maps. (h) The layered structure of the
crystal is observed along the c-axis and is compatible with the c-axis schematic of Cu, Te.

spots is 0.26 nm. This observation is consistent with
the hexagonal P3m1 crystal structure that is suggested
by the SAED pattern (figure 2(f)) [27]. A schematic
of the P3m1 crystal structure in figure 2(a) is overlaid
on the image for clarity. The blue and yellow spheres
represent Cu and Te atoms, respectively.

HRSTEM-HAADF and bright field (BF) images
of a thicker region on the same crystal are shown in
figures 2(b) and (c). As copper telluride often pos-
sesses high concentrations of copper vacancies [5, 7],
it is possible that non-uniformities can be detected
at the nanoscale. For example, the intensity of some
copper columns at the center of the six bright spots
is decreased in figure 2(b). Likewise, the intensity of
some copper columns increases in the BF image of
figure 2(c).

The appearance of these vacancies at thicker
regions of the flake hints towards the growth mech-
anism of these crystals. In this vapor-liquid growth
mechanism, the chalcogen vapors diffuse into and
saturate the molten catalyst as discussed above. Dif-
fusion of Te is higher compared to the self-diffusion
of Cu, which may explain the relatively higher Te con-
centration on the top crystal layers in contact with
the sapphire substrate, where growth occurs [29, 30].
This is corroborated by the cross-sectional Cu/Te
alloy in figure S6 where the Cu concentration relat-
ively decreases towards the top surface. The effect of
the diffusion variation is amplified with more crystal
layers. This may contribute to the noticeable copper
deficiencies in figures 2(b) and (c), which are a projec-
tion of all the layers in the thicker regions of the flake.
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In figure S7, we show that having excess Te eventually
ceases to yield Cu, Te, and the Raman signal attributed
to Cu,Te disappears. Despite these vacancies, the in-
plane crystal structure remains consistent. In fact, the
position of the vacancies agrees well with the lowest
energy two-Cu-vacancy model in the trigonal lattice
calculated by Yu et al [16].

To gain further insights into the structure of
Cu, Te, we prepared a focused ion beam (FIB) sample
cutting into the planes of stacking to visualize the
cross-sectional view as shown in figure 2(g). This
FIB sample is prepared by mechanically transferring
Cu,Te on sapphire onto a SiO, substrate. In the
HAADF image, from top to the bottom is the SiO,
substrate, Cu,Te crystals, and carbon capping layer.
Essentially, the capping layer is laid on the surface
that is facing the Cu foil during the growth. The extra
thickness of Cu relative to Te at the interface with
amorphous carbon is therefore most likely from unre-
acted molten Cu at the Cu/W interface. Focusing on
a region of the cross-section, regular white, grey, and
dark bands are observed along the c-axis of the crystal
as shown in figure 2(h). The white bands correspond
to tellurium-rich regions, while the grey and dark
bands appear to correspond to copper-rich regions
with differences in shade arising from variations in
atomic density and tellurium concentration.

Phonon mode signatures reflect both the material
and its crystal system [31]. The challenge with Cu,Te
synthesis has yielded a wide discrepancy in repor-
ted vibrational signatures including those of Cu,Te
pellets [22] and sputtered nominal Cu,Te, which is
a combination of Cu;Te; and Cu,_,Te phases [32].
Only recently have some studies reported the Raman
signature of Cu, Te nanoplates in its P3m1 phase [20].
Our Raman spectra obtained in figure 3(a) demon-
strate distinct peaks at 75, 90, 105, 145,and 215 cm ™!,
verifying the P3m1 phase of the grown crystals. The
peak fittings and Raman maps showing homogeneity
of the flakes are shown in figure S8.

Raman spectroscopy is also a powerful tool to
study layer-dependence in 2D materials [33]. Here,
flakes of 2, 5, 8, 10, and 15 nm, as well as a bulk crys-
tal of approximately 300 nm in thickness, are iden-
tified and a correlative study is conducted as shown
in figure 3(a). Before reaching a critical thickness,
two sapphire substrate peaks can be observed at 150
and 415 cm™! and are marked with “*’ Although
the peak positions remain consistent, interestingly,
there are significant changes in some peak intens-
ities as the flakes get thicker. Notably, the peak at
~105 cm~! becomes dominant for bulk crystals,
while that at ~215 cm™! is almost suppressed. Com-
paring the ratios of ~90 cm™! to ~105 cm™! modes
in figure 3(b), there appears to be a relationship
between the relative intensity and thickness of Cu, Te.
The ratio linearly decreases for thicknesses between 2
and 15 nm before a further drop for bulk flakes.

M A Shehzad et al

Using sapphire to prevent Cu from dewetting
during the growth is pivotal to acquire flakes that
are a few nanometers thick as shown in the atomic
force microscopy (AFM) image in figure 3(c). Not
only does the sapphire act as a second substrate on
which growth is promoted, but also peeling the sap-
phire from the copper after the reaction has cooled
exfoliates thin flakes. XPS is used to determine the
surface elemental composition of the grown crystals
on both copper and sapphire. Figures 3(d) and (e)
show the spectra of Cu 2p and Te 3d, respectively.
The Cu spectra show two distinct peaks at 932 and
952 eV, corresponding to Cu 2ps3,; and Cu 2p;; bind-
ing energies, respectively. A shoulder at 934.6 eV (and
954.4 eV) of Cu arises from CuO 2p 3, (and CuO
2p1s2) and hints at the presence of oxidation. For Te,
peaks at 572.7 and 583.2 eV correspond to the Te 3ds/,
and Tes/, binding energies, respectively. Small bumps
at 576 and 586.3 eV, assigned to the Te*" 3d binding
energies, indicate oxidation in the form of TeO, [15].
Since the flakes are exposed to ambient conditions
after peeling off the sapphire from W, there is a pos-
sibility of localized oxygen presence on the surface. To
corroborate this, XPS depth profiling is conducted as
shown in figure S9, which shows the removal of oxy-
gen signal by 30 s of plasma exposure.

In order to minimize surface oxidation on the
flake used for device fabrication, the grown Cu,Te
samples were kept in the glove box until ready for
immediate use. Moreover, it is known that the con-
ductivity of Cu,Te depends significantly on Cu defi-
ciencies [34]. Therefore, to avoid exposure to solvents
and resists which can potentially react with the
flakes, we fabricated the Cu,Te devices using a dry
shadow mask-based technique. Elemental compos-
ition is confirmed afterwards using secondary ion
mass spectroscopy (SIMS) as shown in figure 4(a)
and S11 [35]. Variable temperature charge trans-
port measurements down to 6 K taken in an inert
environment are shown in figure S12. The extrac-
ted resistance shown in figure 4(b) clearly indicates
a non-linear resistance-temperature relationship. At
room temperature, the device shows a conductivity
of ~3 x 10* S cm™! (flake thickness is 250 nm). At
low temperatures, three distinct regions are observed
suggesting a phase transformation. The resistance
decreases with decreasing temperature from 300 K to
~200 K (region I) and from ~100 K to 6 K (region
III). In contrast, the resistance increases with decreas-
ing temperature from ~200 K to ~100 K (region II).

Regions I and III demonstrate metallic behavior
while region II demonstrates semiconducting beha-
vior. Band structure calculations are performed
using DFT to further corroborate the metallic
nature at room temperature. Figure 4(c) shows the
electronic structure in the vicinity of the Fermi
energy for the P3ml monolayer Cu,Te, which
indicates a metallic nature. The band structure
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Figure 3. Structural analysis of grown Cu,Te: (a) Raman spectra of as-grown Cu, Te on sapphire at various thicknesses. (b) Ratio
of ~90 cm™! and ~105 cm ™! phonon modes as extracted from (a) illustrates that the ratio can be used to determine flake
thicknesses. (c) AFM image of a clean, exfoliated Cu,Te on sapphire with inset showing line profile of 4 nm thickness. XPS spectra
of Cu, Te on sapphire and copper show the presence of (d) copper and (e) tellurium and surface oxidation.

.,
o I I

\
L]

i
\l
\
\

.

100 150 200 250

T(K)

200 K
A

220K
230K

Energy (eV)

i

300 K

50 160 15‘0 260 250
Wavenumber (cm-)
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is also calculated for different layers of Cu,S
(figure S13). Layer dependence and phase transition
in these 2D material systems thereby provide addi-
tional knobs for tuning the physical and electronic
structure.

In order to further probe the properties of the
low temperature semiconducting phase, we recorded
the transfer characteristics of the device (I,q vs V)
at 160 K. However, no gate-tunability was observed.
The lack of gate tunability may originate from sig-
nificant doping of Cu,Te from Cu vacancies, where
in fact Cu,Te was previously identified as degener-
ate semiconductor [36]. Cu,Te has recently shown a
similar phase transition from the P3m1 phase to the
P6/mmm at higher temperatures of 423 K, which we
confirmed in figure S14 [20]. However, to the best of
our knowledge, no transition at low temperatures has
been reported.

In order to corroborate the low temperature
transition, we conducted low temperature Raman
spectroscopy to observe any accompanying struc-
tural transition. There is an evident structural trans-
ition occurring between 230 and 220 K as shown
in figure 4(c). The spectra show the phonon mode
peaks of the P3ml phase from room temperature
down to 230 K. Below 220 K, a broad peak span-
ning between ~80 and ~140 cm~! appears as mul-
tiple low wavenumber phonon modes merge [19].
There is another broad peak at ~175 cm™!, which is
absent in the P3m1 phase. No further changes in the
Raman spectra are seen. Although there is a small dis-
crepancy in the transition temperature measured by
Raman and transport measurements, it is important
to note that the transition temperature can be differ-
ent depending on the shape, size, and thickness of the
crystals.

3. Summary and conclusion

In summary, we reported a reliable growth proced-
ure for synthesizing Cu,X (X = Te, Se, S) crystal
systems via vapor-liquid interface growth using a
stack of Al,O3/Cu/W. It is observed that liquid cop-
per plays a significant role in catalyzing the growth of
these 2D material systems, while sapphire assists with
lateral growth and exfoliation. Thickness depend-
ent phonon signatures are reported as a conveni-
ent method to estimate Cu,Te thickness. The crystal
structure of Cu,Te is found to be P3m1, which shows
room temperature metallic nature by both DFT cal-
culations and variable temperature charge transport
measurements. Interestingly, a transition to a semi-
conducting phase occurs at low temperatures before
a return to the metallic phase at even lower temper-
atures. This work not only presents a robust growth
mechanism for a single phase layered Cu,Te, but also
reveals an existing low temperature phase transition.

M A Shehzad et al

This transition can be leveraged for varying the elec-
tronic structure of Cu,Te from semiconducting to
metallic with applications beyond photovoltaics and
thermoelectrics to sensors, energy storage devices,
and nanoelectronics.

4. Experimental methods

4.1. CVD growth of Cu,X

Double side polished Cu foil (Alfa Aesar, 99.5% pur-
ity, ~10 um thick) was cut into 5 x 5 mm? pieces
and sandwiched between a W foil (Alfa Aesar, 99.99%
purity, ~100 pm thick) and a sapphire substrate
with similar dimensions. The stack was then placed
in an alumina boat in a fused quartz tube with an
inner diameter of 22 mm. Tellurium (Te) powder
(10-100 mg) was placed upstream 15 cm away from
the Al,O3/Cu/W substrate to reach the vaporization
temperature. Al,03/Cu/W substrates were heated to
1090 °C in a horizontal tube furnace (Lindberg Blue
M) under H; (10 sccm) and Ar (100 sccm) at the rate
of 20 °C min~'. The temperature was then dropped
to 1080 °C in 3 min for growth. The growth time var-
ied from 10 to 30 min to get different flake densities.
After the reaction, the samples were cooled down to
600 °C at a slower rate under Ar and H, flow. Then,
H, flow was turned off and samples were quickly
removed from the furnace to ensure rapid cooling to
room temperature. Similarly for the growth of other
crystals, Te powder was replaced by S and Se to get
Cu,S and Cu,Se, respectively.

4.2, Characterization

A Horiba LabRam Confocal Raman equipped with a
HJY detector was used to collect Raman spectra of all
samples in ambient conditions. A 473 nm laser with
1800 gr mm ™! grating and 25% ND filter was used. It
is important to note that the grown crystals are sens-
itive to laser power in that higher power may dam-
age the surface. Low and high temperature Raman
spectroscopy was performed using a Linkam liquid
nitrogen-based setup. Consistent flow of nitrogen is
used to control the temperature with a step size of
10 K. Argon flow is used to avoid any moisture on the
surface at low temperatures.

A Thermo Scientific ESCALAB 250Xi XPS instru-
ment was used to obtain XPS spectra at room temper-
ature using a 500 pum spot size with a monochromatic
Al Ka source. The spectra were referenced to the car-
bon peak at 284.5 eV.

A Bruker ICON AFM system was used in tapping
mode in air with a scan rate of 1 Hz.

Cross-sectional TEM samples were prepared
using a dual beam FEI Helios Nanolab SEM/FIB
with a Ga ion-source. Before FIB sample preparation,
flakes of Cu,Te on the sapphire substrate were trans-
ferred onto a Si/SiO; substrate (300 nm native oxide
layer) by mechanical exfoliation with Nitto polyvinyl
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chloride (PVC) tape and heated to 100 °C for 5 min.
Prior to lift-out, 200 nm of C was deposited with
the electron beam and then 1.5 ym of C was depos-
ited with the ion beam. Lift-out and thinning were
carried out with the ion beam at 30 kV. The sample
was cleaned with the ion beam first at 5 kV and then
at 2 kV.

TEM samples were prepared by wetting the
sapphire substrate with ethanol. Then a molyb-
denum TEM grid was used to gently swipe over the
grown crystals on sapphire. HRSTEM and SAED pat-
terns were obtained using a probe-corrected JEOL
ARM200CF microscope operated at 200 kV along the
out-of-plane direction (c-axis), which is parallel to
the [0001]-zone axis. STEM probe convergence angle
was set to 27.1 mrad and current of 40 pA. BF and
HAADF STEM images were collected using collection
angles ranging from 0 to 60 mrad and 90-370 mrad,
respectively, with 8 us dwell time.

SIMS measurements were performed using a dual
beam IONTOF M6 to analyze the elemental concen-
tration of grown crystals. Secondary ion measure-
ments were performed using a liquid bismuth ion
beam (Bi). A cesium ion gun with an energy of
500 eV was used to detect anions.

For electrical measurements, Cu,Te flakes were
transferred on Si/SiO; substrates (figure S14) and Au
contacts were evaporated through a shadow mask.
Variable temperature charge transport measurements
were performed using a Lakeshore CRX-4 K cryo-
probe in vacuum.

4.3. DFT

P3ml1 structure: All first-principles calculations
were based on DFT and were performed using the
Quantum ESPRESSO software package [37, 38] The
calculations utilized the generalized gradient approx-
imations of Perdew—Burke—Ernzerhoff [39] with
ultra-soft pseudopotentials [40]. Spin—orbit effects
were included for all band structure calculations.
Inclusion of Hubbard U was neglected in all calcu-
lations. A plane-wave cutoff of 50 Ry was used in
all calculations. For bulk calculations, the primitive
unit cell belongs to P3m1 and was sampled with a
Monkhorst-Pack k-mesh of 5 x 5 x 2. The primitive
unit cell dimensions are a = b = 8.37 &, c = 21.60 A.
Unless stated, all samples were relaxed prior to cal-
culation of electronic structure. During relaxation,
spin—orbit effects were neglected, and the primitive
unit cell was sampled with a Monkhorst-Pack k-mesh
of 2 x2 x 1.
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