This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022 1

Data Distribution for Heterogeneous
Storage Systems

Jiang Zhou, Yong Chen, Mai Zheng, and Weiping Wang

Abstract—The exponential growth of data in many science and engineering domains poses significant challenges to storage systems.
Data distribution is a critical component in large-scale distributed storage systems and plays a vital role in placing petabytes of data and
beyond, among tens to hundreds of thousands of storage devices. Meantime, heterogeneous storage systems, such as those having
devices with hard disk drives (HDDs) and storage class memories (SCMs), have become increasingly popular for massive data storage
due to their distinct and complement characteristics. This paper presents a new data distribution algorithm called SUORA (Scalable
and Uniform storage via Optimally-adaptive and Random number Addressing) specifically for heterogeneous devices to maximize
the benefits of them. SUORA provides a fully symmetric, highly efficient methodology to distribute data across a hybrid and tiered
storage cluster. It divides heterogeneous devices into different buckets and segments, and adopts pseudo-random functions to map data
onto them with the balanced consideration of capacity, performance and life-time. By analyzing hotness and access patterns, SUORA
gradually moves hot data from HDDs to SCMs to optimize the throughput, and moves cold data reversely for load balance. It combines
data replication with migration to significantly reduce movement overhead while making data placement more adaptive to different
workloads. Extensive evaluations on simulation and Sheepdog storage system show that, with considering distinct characteristics of
various devices thoroughly, SUORA improves the overall performance efficiency of heterogeneous storage systems.

Index Terms—Parallel/distributed file systems, data distribution, data placement, heterogeneous storage, data replication

<+

1 INTRODUCTION

T HE exponential growth of data volume in many science and
engineering domains poses constant challenges to storage
systems. Many high-performance computing systems and cloud
data centers have built infrastructures to host hundreds petabytes
of data to accommodate growing needs of their applications. One
of the critical challenges large-scale data centers face today is the
management of data on a large number of storage nodes. Tradi-
tional parallel/distributed file systems, like GPFS [1]], Ceph [2],
and GFS [3], are widely used to achieve high-performance 1/O.
Data are striped over storage nodes so that read and write oper-
ations can take advantage of high concurrency for better band-
width. Storage systems usually have dedicated metadata servers
to decouple the metadata service (e.g., the namespace service)
from data store for better scalability [3}[2]. However, massive data
management remains a critical challenge that often limits the I/O
performance and storage scalability.

On the other hand, large-scale storage systems often use
a heterogeneous setup. Hard disk drives (HDDs) are still the
dominant storage devices, but are notorious for long seek time and
rotational latency. The storage class memory (SCM) devices gone
through tremendous advances in recent years with the develop-
ment of non-volatile memory (NVM) technologies. For instance,
the high-bandwidth, low-latency, and mechanical-component-free
characteristics of flash-based Solid State Drives (SSDs) make
them rapidly adopted in many storage systems. Further, other
NVM technologies, such as phase change memory (PCM) [4],

o Jiang Zhou and Weiping Wang are with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China. Yong Chen
is with the Department of Computer Science, Texas Tech University,
Lubbock, Texas, USA. Mai Zheng is with the Department of Electrical and
Computer Engineering, lowa State University, Ames, lowa, USA.

E-mail: {zhoujiang, — wangweiping}@iie.ac.cn, yong.chen@ttu.edu,
mai@iastate.edu.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

spin-transfer torque RAM (STTRAM) [5], and the recent 3D
XPoint [6], are considered a competitive additional tier of storage
hierarchy in the near future. All these types of storage devices
will form a heterogeneous storage hierarchy. Table [I] shows a
comparison of characteristics of NVM, SSD, and HDD storage
devices with reference to the common product specifications.
Although devices exhibit different performance based on the usage
of the system, we use the average access time for a consistent
comparison among them. Arguably, it is strongly desired to design
and develop an efficient heterogeneous storage solution to take
advantages of a variety of devices, which has a significant impact
on future storage systems too.

TABLE 1: Characteristics of heterogeneous storage devices

Device Avg. latency Capacity' Endurance’ Cost
NVM (STT-RAM) 5~10ns <32GBIs 1012 Highest
NVM (PCM) 50ns~15us | <256GB/s 1012 $2-8/GB
SSD 35~350ps <ITB/s 10° — 10° $0.5-2/GB
HDD 3.5~5ms >1TB/s > 106 $0.06-0.3/GB

! Capacity indicates the common maximum capacity of a single memory
stick/SSD/HDD disk.
2 Endurance indicates average write times for the life-time of the device.
The key component in data management is the distribution
of data among devices (or nodes). The data distribution (or data
placement) strategy establishes the mapping between datasets and
devices [7]. It needs to meet objectives such as efficient decision,
small amount of data movement, and load balance. For instance,
GPFES [1] and numerous other parallel/distributed file systems
divide a file into equal-size blocks and place consecutive blocks
on different disks in a round-robin fashion. Consistent hashing [8]]
or pseudo-random algorithms [9]] are also popular for mapping
data or objects onto devices efficiently, and are widely used in
systems like Sheepdog [10] and GlusterFS [11]. They achieve
data balance well and only a small amount of data migration
occurs when node addition or removal happens. Although these

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022

strategies can distribute data into storage devices evenly, they
are not designed to differentiate characteristics of distinct devices
in a heterogeneous environment and place data accordingly and
efficiently. Some recent studies attempted to approach this issue
but they either focus on file stripe management [12] or perfor-
mance improvement by exploring fast devices (e.g., SSDs) [13]],
or essentially adopt traditional hash functions among devices with
homogeneous capacity and weight [9].

Data placement in a heterogeneous environment is quite dif-
ferent from a homogeneous environment. Our research studies in
this field suggest that a desired data distribution algorithm for
heterogeneous storage systems should achieve additional goals.
First, it should provide a uniform and adaptive data distribution
by considering distinct characteristics of heterogeneous devices. It
should combine the performance and endurance of SCMs with
the capacity and economic efficiency of HDDs. Second, it is
desired to achieve optimally-adaptive placement among devices
while reducing data movement cost. Third, it is desired to consider
changed access patterns of different applications. For instance,
a study [14] shows that hot-data identification for flash-memory
storage systems (around 20% as “hot data”) strongly affects the
performance of flash-memory access and its life-time. Last but not
the least, time and space complexity are important considerations
too. Less compute time and lower memory footprint will help
speed up applications on the system.

In this paper, we introduce a new data distribution algorithm
called SUORA (Scalable and Uniform storage via Optimally-
adaptive and Random number Addressing) to address challenges
and to achieve goals in heterogeneous environments as discussed
above. SUORA is a pseudo-random algorithm that uniformly
distributes data across a hybrid and tiered storage cluster. It
manages heterogeneous devices with buckets and segments, and
uses pseudo-random functions to distribute data on them with a
balance among capacity utilization, performance efficiency, and
wear leveling. Data replication and movement are performed for
optimally-adaptive placement according to data-access hotness
and pattern. SUORA is designed to efficiently reorganize data and
reduce data migration when the access pattern or device member
changes. It achieves load balance and has minor memory footprint
too. Compared with traditional algorithms such as consistent
hashing [8] and ASURA [15], the average read throughput is
improved by more than 1.5 and 2 times, respectively, in our
evaluation tests. The contribution of this study includes:

e We present a new pseudo-random method to efficiently
place data cross a hybrid and tiered storage cluster in a
fully symmetric, uniform manner.

e We design a novel data distribution algorithm that uni-
fies the management of heterogeneous devices, and uses
pseudo-random functions to distribute data among them
by taking full consideration of capacity, performance and
life-time.

e We introduce hotness awareness to achieve an adaptive
data placement, which gradually moves hot data from
HDDs to SCMs according to hotness and access patterns
to improve read throughput, and moves cold data reversely
for load balance.

e We combine data replication with migration to signif-
icantly reduce movement cost and read congestion on
SCMs, while also achieving efficient write performance
under different patterns.

e We conduct extensive tests based on simulation and
Sheepdog storage system to analyze and study the impact

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2

on overall system performance. We further compare the
proposed SUORA algorithm with representative distribu-
tion algorithms including consistent hashing, CRUSH and
ASURA, to show the efficiency.

The rest of this paper is organized as follows. Section 2]
discusses the background of this study and related work. Sec-
tion [3| introduces the SUORA algorithm. Section |4| analyzes the
SUORA algorithm and presents the evaluation results. Section []
summarizes this research and outlines further possible work.

2 BACKGROUND AND RELATED WORK

Numerous studies have been conducted in recent years on distri-
bution algorithms for storage systems. We discuss existing work
and analyze their merits and shortcomings in this section.

Table-based management method. To establish the position
relation between data and storage nodes, a mapping table is widely
adopted in file systems, such as GFS [3] and HDFS [16]. In
this method, the mapping between data and storage nodes is
memorized in a management table. When accessing data, the
table is searched and the corresponding node is located. Mapping
table management can easily distribute data among nodes, but its
memory footprint will significantly increase with the exponentially
growth of data. Besides, if only management nodes keep that
table, every storage node must communicate with the management
nodes for data access. Thus, the management nodes can potentially
become the performance bottleneck.

Hash-based management method. In contrast to table-based
management, the hash-based management methods do not need to
reserve and manage such a large mapping table. These methods
rely on specialized hash algorithms to determine the node corre-
sponding to any data.

Consistent hashing [8]] is a data distribution algorithm that has
been widely used in parallel/distributed file systems [[17, 10, [11]. It
is based on hash functions to construct a hash ring, a hypothetical
data structure that contains a list of hash values, for data and
nodes mapping on the ring. As consistent hashing distributes
data randomly, virtual nodes are generated to place data more
uniformly. Each physical node may have multiple virtual nodes,
which are responsible for multiple positions assigned along the
hash ring. If a virtual node is selected, the physical node associated
with that virtual node is used for data placement. The node
capacity can also be considered by adjusting virtual node numbers
or hash values [10]. When a node is added or deleted on the
ring, only the data nearby its range will be affected. Although
consistent hashing achieves impressive data load balance and data
movement when the node scale changes, it is primarily designed
for a homogeneous environment.

CRUSH is a scalable and pseudo-random data distribution
function designed for Ceph system [9} [2]. It divides the cluster into
buckets, which can contain any number of devices or other buckets
in a storage hierarchy. CRUSH provides four types of buckets, and
adopts different hash functions for flexible data mapping. Figure
describes the paradigm of straw buckets in CRUSH. With straw
buckets, each node has an individual hash value for a data item,
and data are stored in the node having the largest hash value for
the data. It achieves a small amount of data movement when nodes
are added or removed. Although CRUSH provides uniform data
placement in a hierarchical cluster, it lacks an effective measure to
distinguish the device heterogeneity in buckets.

Other typical algorithms include SPOCA [18]], ASURA [15],
etc [19]. ASURA is a data distribution algorithm that relies on
pseudo random numbers [20] in which the general idea is first

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022

NodeA
Datal 3

NodeB NodeC

(&]
Q>

| 10

NodeD

Data2 48

Data3

36

41

*@II

Value = Factor (node weight) *
Hash (data ID, replicas, node ID)

 Stored in the node with
the largest hash value

Fig. 1: Function selection of straw buckets in CRUSH

introduced in [18]. ASURA assigns a segment or a series of
segments to represent a storage node. A segment is basically a
range in a one-directional number line that starts with an integer.
The total length of all the segments that are associated with a node
represents the capacity of it. For storing data, ASURA generates
pseudo-random numbers within a range till one lies within a
segment that has been mapped to a server. Figure [2] shows a
sample assignment of the ASURA hash map, where a data object
is initially hashed to an empty space, and when hashed again, it
is assigned to segmentl. These algorithms can distribute data on
heterogeneous nodes, but they mainly focus on one factor (such
as capacity) and lack an efficient method to consider multiple
characteristics of different devices in a holistic way.

Hash (Hash(data ID)) Hash (data ID)
segment0 segmentl segment2 segment3
Hash space | i ‘ ‘ ‘I ﬂl >
1 2 3 4

Fig. 2: A sample assignment of the ASURA/SPOCA hash map

Hybrid method. Numerous algorithms have also been pro-
posed as an attempt to address data placement in a heterogeneous
environment. Welch et. al. [21] propose to allocate metadata and
small files onto SSDs whereas using the much cheaper HDD
storage for large files. HICH [22] manages data with hierarchical
consistent hashing rings, in which the SSD ring is used as cache
to hold the first copy of data and the HDD ring contains the rest
replicas. It uses consistent hashing to evenly distribute data on
HDDs or SSDs, and may cause frequent data replacement (i.e.,
cold data eviction from cache) due to the capacity limitation of
SSD ring. OctopusFS [23] stores file blocks on tiered storage,
and strikes a trade-off with the consideration of different storage
media features via multi-objective optimization. It maintains a
mapping table on the metadata server, and moves data if they
are over-replicated on some particular tier. HARL [24] presents
heterogeneity-aware data layout scheme for parallel file systems.
It determines the optimized stripe sizes on HDD servers and SSD
servers based on data access cost model. With data replication,
HARL can redirect file requests to proper replicas with the lowest
access costs. H2DP [23]] further devises a dynamic data migration
strategy, which moves cold data from hybrid servers to HDD
servers and hot data reversely. PRS [26] focuses on replication
optimization in heterogeneous environments. It selectively repli-
cates data based on I/O correlation of data accesses, where the first
and second replicas of data are placed with default data placement
(i.e., via consistent hashing), and the rest are created based on
identified patterns. It then adopts the pseudo-random algorithm
to proportionally distribute replicas among nodes according to
performance.

Different from them, the proposed SUORA algorithm provides
a unified and efficient solution for data distribution in hybrid,
tiered storage. SUORA uses a pseudo-random based bucket al-

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

gorithm for data placement. It first divides heterogeneous devices
into buckets by considering device performance, then it assigns
devices in each bucket to segments based on their capacity. With
the pseudo-random mapping, SUORA distributes data among
buckets and devices with a comprehensive consideration of capac-
ity, performance and life-time. With replication, SUORA initially
places data on slow buckets and then conducts data migration
according to access pattern analysis. Through comparing hotness
and learned bucket thresholds, it gradually moves replicas of hot
data from slow buckets to appropriate fast buckets, and distributes
them on SCMs according to capacity and life-time. By combining
data replication with migration, SUORA can take full advantages
of SCMs for performance efficiency while significantly reducing
read congestion and movement cost. Cold data migration will
also occur for load balance. The evaluation results show that
SUORA can make better use of heterogeneous devices and adapt
to different workloads. A preliminary study of this research has
appeared in [27], and this paper significantly extends the previ-
ous research in data distribution, replication and migration and
presents a complete study of this subject.

3 THE SUORA ALGORITHM

Our goal is to build a unified storage management for a hetero-
geneous environment where data is distributed among a variety of
devices (or nodes). In this section, we will introduce the design
and implementation of the SUORA algorithm.

3.1 Algorithm Model
3.1.1 Heterogeneous Devices Management

We define a multi-dimension model for SUORA to uniformly
manage devices and distribute data in a heterogeneous environ-
ment. This model divides heterogeneous storage devices into
different types of buckets and considers each bucket as a dimen-
sion. One bucket represents a performance tier with homogeneous
devices (with the same throughput/latency), such as HDDs or
SSDs. For each bucket, it is further divided into various seg-
ments in which a device is assigned to one or more segments
according to the device’s capacity. Each segment has a range
(the range length is calculated in equation (1) as discussed in
Section and the range of all segments forms a number line,
where each range is ordered with the start value, 0. Assuming in
a heterogeneous storage system, the storage devices are divided
into m buckets as {bo, b1, ..., by—1}. For the bucket b;, it
has a number line corresponding with it, where there are n
segments {3i07 Sily een si(n,l)}, with their segment length as
{li[)u li1> ceey ll(nfl)}

Figure 3 shows the model of the proposed SUORA algo-
rithm. As shown in Figure 3(a), there are multiple buckets: from
by (HDDg bucket) to bg (ReRAM bucket), which represent
different types/classes of devices. Note that by and b; are both
H DD buckets (the similar setting for SSD buckets and PC M
buckets) because it is also possible for the same type of devices
to have different performance specification. For example, SSDs
with PCle and SATA interfaces can have very different bandwidth
and latency, thus they fall into different buckets in our model.
The device performance of each bucket increases in the clockwise
direction. The bucket with the lowest performance is the “bottom
bucket”, i.e. HDDy bucket in the figure. In each bucket, the
devices are assigned to segments (denoted as “seg”) according
to their capacity. For example, bucket bo has four segments (as
shown by rectangle) with different range where the maximum
range length for each segment is 1. The storage system can scale
up or scale down by adding or removing devices and buckets.

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022 4
by by
(PCM,) (PCMy)

x]

O, b b,

1 2 3 4(ReRAM) (SSDy) 4

vy

b b,

N . 2 \ ! bg
3 4(ReRAM) (SSDy)4

3 4(ReRAM)

1 2

oo
Ve

""" # hot data movement direction

<« cold data movement direction

(a) Bucket and segment assignment for heteroge- (b) Data mapping and replication on heterogeneous
neous devices devices, e.g., data 1 and x2 have three replicas

(c) Data movement among different buckets

Fig. 3: Model of SUORA algorithm. In (a) and (b), SUORA divides heterogeneous devices into different types of buckets for
performance feature (throughput/latency), with one directed axial coordinate (a number line) representing one bucket. The bucket
represents a class of devices with same performance, such as HDDg, or HH D1, or SSDy class of devices. For each bucket, it
is further divided into various segments in which a specific device is assigned to one or more segments for capacity feature (e.g.,
four segments in the SSDy class of devices with their range being [0, 1), [1, 2), [2, 3), and [3, 4)). Each segment has different
lengths with the maximum length set to 1, representing the device capacity size. Data are distributed on buckets and segments via
pseudo-random hash functions. In (c), hot data will move from slow bucket to fast bucket in the clockwise direction, and cold data
(infrequently accessed) will move in the counter-clockwise direction. Each bucket is associated with a threshold, such as vg for by and

vy for by, and the threshold is used to decide data movement according to workloads.

3.1.2 Data Mapping in Heterogeneous Devices

Based on the bucket and segment management for heterogeneous
devices, SUORA distributes data in two steps. First, given a data
with ID 2, SUORA selects buckets for the data. If a data item
has only one copy, it is initially placed in the slow bucket for
capacity utilization goal, such as by in Figure 3(a). If a data item
has rep copies, SUORA selects rep buckets from the bottom
bucket walking clockwise in the model and makes replicas with a
replication algorithm in Section [3.6] The bucket selection will not
compromise the performance goal because the data will migrate
to fast bucket if it is frequently accessed. It can also reduce data
search overhead after data movement as described later.

Second, SUORA utilizes a series of pseudo-random number
generators to map the data on one segment in bucket. A hash
function f(x, e) is used to generate random numbers in the range
[u, w), where e is the seed, and v and w are lower and upper
bound of distribution, respectively. It generates a random number
sequence R = {rg, 71, ..., "—1} for the data until it is mapped
to one segment. When making replication, SUORA will output
multiple buckets and segments for replica placement with a same
sequence R. Figure 3(b) shows the data mapping and replication
in heterogeneous devices. It can be seen that data 1 and data z2
have three replicas that are placed from H DDy bucket to SS Dy
bucket and from PC M bucket to Re RAM bucket, respectively.
Note that data 2 has no replicas on the slow buckets (e.g. H D Dy
and H DD buckets) with the rationale discussed in detail below.

3.1.3 Data Movement Between Devices

With the bucket and segment assignment, SUORA manages het-
erogeneous devices in a unified way and places data on them. To
make full use of the performance of fast devices, it is critical to
consider data-access patterns in different workloads. For instance,
“cold” datasets that are not frequently accessed should be stored
in slow HDDs while “hot” datasets are placed in fast SCMs. Thus,
SUORA moves data between buckets according to their hotness.
This means when a data item is frequently accessed and becomes
hot, it will be moved from a slow bucket to a fast one. However,

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

moving all hot data to fast devices will cause other problems:
congestion in I/O accesses and wear leveling on these flash-based
devices. To address this issue, SUORA defines a threshold for each
bucket to limit the amount of data movement, and considers device
life-time when moving data to fast buckets. The data will migrate
between buckets by comparing data-access frequency with bucket
thresholds, which makes data with different hotness be adaptively
distributed on different devices according to real workloads.

Given m buckets, each bucket has its threshold with the values
as {vo, v1, ..., Um—1}, respectively. The threshold indicates a
limit for the current bucket, in which the data will move from
a previous bucket to it in the clockwise direction if the data
hotness h exceeds the threshold. The threshold of each bucket can
be set according to device specification and data-access patterns
(discussed in Section [A.3). An appropriate threshold will reduce
the overhead for data movement among different buckets.

Figure 3(c) shows an example of data movement across dif-
ferent buckets. The hot data will move clockwise from H DD
bucket to ReRAM bucket, in which the bucket thresholds are
{vg, v1, ..., vg}, where vy is set to 0. For example, the data in
H DDy bucket will move to HD D bucket if the hotness h is
larger than v;. The data can be mapped into segments of the new
bucket according to the same random number sequence R. As
these frequently accessed data are placed in devices with higher
performance, such an approach can improve the read performance
for the storage system.

The SUORA algorithm and its model differ from using fast
storage devices as multi-level cache store. In most multi-level
storage cache designs, all writes (even not replicas) to a lower level
in the hierarchy will go through intermediate cache levels (SSDs
or SCMs), which can reduce the life-time of them [28]. Some
exclusive cache store provide a hierarchy in which the contents
of different levels are exclusive. However, the lower level cache
contains only victim or copy-back cache data that are ejected from
the higher level due to conflict misses [29]. In contrast, SUORA
distributes data among heterogeneous devices by considering their

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022
TABLE 2: Node assignment for buckets and segments

Node Bucket Capacity Assigned segments and range
A bo 1TB (s00, 0, 1)
B b() 1.5TB (501, 17 2), (S()27 2, 2.5)
C bo 0.8TB (so3, 3, 3.8)
D by 0.6TB (s10, 0, 1)
E by 0.3TB (s11, 1, 1.5)
F bl 0.8TB (512, 27 3), (513, 37 33)

distinct characteristics. It initially places data in slow buckets,
and gradually moves replicas of hot data to fast buckets based
on access patterns for performance benefits.

3.2 Algorithm Design

The SUORA algorithm divides heterogeneous devices into buckets
and places data among them. For convenience and simplicity, we
use two buckets to illustrate the design of the algorithm. Suppose
the storage system is equipped with one type of HDD and one
type of SSD, the algorithm takes steps for data distribution.

First, these storage devices are divided into two buckets: HDD
bucket by and SSD bucket b;. Each bucket is associated with a
number line containing all devices in one particular type, with
the same bandwidth/latency characteristics (the capacity can be
different though).

Second, all devices (or nodes) in the bucket are assigned to
segments in the number line. To simplify the mapping, the segment
begins with the point of an integer number with the maximal
length set to 1 (an example is shown in Figure [d). Each node is
assigned to one or more segments considering its capacity through
dividing it by a capacity parameter p that can be predefined, e.g.
the average capacity of nodes in bucket or a specified value. If the
segment length of a node exceeds one segment, it is assigned to
a new consecutive one with the smallest segment number in the
number line.

Segment length = M (1)

The assignment of segments for storage nodes is performed
when the system starts up. Upon starting up, the segments are
assigned through the total capacity of the node. During data
placement, the data will be distributed proportionally in different
segments. For each time a node is added, we adjust the parameter
p to calculate its segment length, such as using the average value
of remaining capacity of nodes in bucket. Compared to previous
nodes, the new node will have larger segment length if they
are the same capacity size. The segments of new nodes will be
added along the number line of bucket, where the previous nodes
still keep their original segment ranges. As such, the added node
will contain more new data, which makes data distribution more
proportional to the capacity. When there is no enough space in
one bucket, cold data movement will occur for the load balance
purpose (see Section [3.4). Table [2] shows an example and the
corresponding mapping of nodes and segments. For instance,
(s00, 0, 1) means that node A is assigned to segment Sqg in
bucket by with length range lopo(0, 1). More specifically, the
segment length of each node is computed by the formula with
the p being 1TB in by and 0.6TB in b;.

Third, data are distributed among nodes with pseudo-random
hash functions. Assuming there are no replicas, all items are
initially placed in the HDD bucket by for capacity utilization
(the replication algorithm is discussed in Section [3.6). This is not
subject to performance degradation because the data will move
from HDDs to SSDs in future. As there may be gaps between

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

I

.. So03 So2 1 Soi S0, S0 S, S12 |S13,
H—— s >
8 25 I 15
B8 5 @9, i : p @9

by

2 3 4

0
Fig. 4: Mapping of nodes and segments. Two arrowed axes in the
opposite directions indicate two buckets by and b;. Each node is
assigned to one or more segments in the bucket.

nodes in the segment (as the segment length is different or the

node may be removed), a random number sequence in a given

range is generated according to the data ID till it fits the range of

one segment.

Data
| S03 i_S(Jz So1

S0 Si0 S11 Si2 |S1

| v
| vo

\

=

by

[
3 @9, 1

(1.5) 3.

I
Le
1
I
| 1 2 3 4

| [

£
0

Fig. 5: Initial distribution in HDD bucket, where data; to datay

are mapped to segments/nodes with pseudo-random generated
number sequence.

Figure 5] shows an example of the initial distribution, in which
four data items with IDs 1 to 4 belong to different segments. With
the pseudo-random generators, the random number sequence R
of each data item is shown as below. The numbers are generated
until the hash value matches one segment in the number line of by.
For instance, when generating the number sequence R for data,
the first number 4.2 does not map to any segment range. Then the
second number 0.9 is generated, which makes data; be assigned
to Sgo. Algorithm E] details the initial data distribution in HDD
buckgt without replication.

@datal = 427 0.9

Ridata2 = 27a 1.6

Raataz = 4.8, 2.8, 2.1

Rigtaa = 3.9, 4.6, 3.5

ALGORITHM 1: Initial data distribution in the bottom
bucket by
Input: data ID z, segment number n, seed e;
seg[n] = segments set
val <= hash(z, e)
while x does not belong to any segment do
>generate new val in R
if val € range of segli] then
segli] < x
end
end

0 N AU AR W N -

At last, data distribution is automatically adjusted between
the HDD and SSD buckets according to the hotness and bucket
threshold. The node assigned to each data may change with
different access patterns. These frequently accessed data will move
from by to by when its hotness exceeds SSD bucket threshold
v1. When migrating from the HDD to SSD bucket, the data is
mapped to a new segment according to the same random number
sequence R. Figure 6 shows the placement of data before and
after their hotness reaches a threshold. From the figure, it can
be seen that datal and data2 with hotness value exceeding the
thresholds are moved. With the previous generated ﬁ the first
mapped segment of them in b1 is s1¢ (1 = 0.9 for datal) and

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022
__..—-migrate-.._

Hot ™~ «Hot

Su, S12 |S13, |
by '1] 'i | »b,
1 a3 2 3(3'3) 4
(a) Data movement from HDD bucket to SSD bucket
Data HT—I
b I | So3 | rsg.i So1 | S00 ! Si0 |4E,1l | S12 |S|3l | .
B8 5 @9) 1 I Las) HEO!

|
0

(b) Data placement after movement

Fig. 6: Data movement for hot data. Data; and datas move from
bo to b1, where each data is assigned to a new segment with its
original number sequence.

s12 (fp = 2.7 for data2)), respectively. If no random number
matches any segments or the mapped segment/device is worn out
prematurely, new numbers will be generated subsequently until
they fit one segment. For instance, in the SSD bucket, if the total
bytes written (TBW) in one device exceeds a threshold, SUORA
will not select the device and continue generating random numbers
for the next appropriate one. As such, SUORA tends to move
hot data to the bucket with higher performance, and reduces the
overhead for recalculation with the same random number sequence
R when mapping data.

3.3 Hotness Table

As a large-scale storage system maintaining petabytes of data
and beyond, it is a non-trivial problem to identify and maintain
data hotness efficiently. Numerous methods or functions can be
used for hotness computation [30], including the bloom filter [31]].
Compared with other methods, such as a flat array search [14]], the
bloom-filter method has two advantages. First, it can test data
set quickly. The insertion and search operations have constant
time complexity, based solely on the number of hash functions,
unrelated with the data number in the set. Second, it has a low
space footprint in implementation. However, one shortcoming for
bloom filter is that it may provide a false positive which gives
the wrong answer on whether a given key is in the set or not.
Fortunately, the false positive can be reduced to a very low level
by adjusting parameters (e.g., bloom filter size, the number of
hashing functions) [32]]. It will not affect the computation of hot
data and can be used in our algorithm.

Based on above analysis, we adopt a multi-bloom-filter based
technique (we call it hotness table in our study) for hotness
identification. First, SUORA looks up the hotness table to find the
correct bucket for the data by comparing the data hotness value
with bucket threshold. Second, it maps the data to the segment
with pseudo-random hash functions.

Figure [7] depicts how the hotness table is combined with
bucket thresholds in SUORA for hot data identification and data
movement. The hotness table uses multiple hash functions (four
functions in the example) and multi-bit counters (4-bits but can
be larger depending on data scale) for each bit position of the
bloom filter. For a data item x, four hash functions generate four
positions in the hotness table. Each counter of these four positions

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6

is initially set to 0 and is incremented atomically by one to keep
data consistent when recording a read data access. All replicas of
data = shares the same counters.

Hotness Table

Hash Functions (1) } i } 8} (1) Bucket Threshold
0101
1[0]1]1
1101
1[0]1]1
1/0/0]1
0111
1[0]1]0
0[1][0]0
1[1]0]1
1010[+1
0[0]1]0

Fig. 7: Hot data identification for a data item by comparing multi-
bit counters with bucket threshold, where four hash functions and
4-bit counters are used in the hotness table.

To query data hotness, these four hash functions will generate
four positions in the hotness table, but do not increment the
counters. Instead, the counts of these four positions are retrieved.
If all counts fall into a bucket threshold range v; to v;41, which
are pre-defined, the data will migrate to bucket ¢. For example,
in Figure [/| all read counters of data = are larger than threshold
vg. Thus data x will migrate from its original bucket to bucket bs.
Depending on the hotness and thresholds, SUORA also allows the
data bypass buckets and move to a destination bucket directly.

The hotness table can be implemented and maintained inde-
pendently in storage nodes with negligible computation overhead.
After data is placed on fast devices, the hotness can also be
used by the devices for I/O optimizations. For instance, one SSD
device can separate hot/cold data to be written in flash memory
to improve the performance efficiency of address mapping and
garbage collection through its flash translation layer [33].

3.4 Data Migration
3.4.1 Migration for load balance

With the hotness table, SUORA selects the hot data and moves
them from slow buckets to fast buckets. The read performance can
be improved because these frequently accessed data are placed on
fast devices, such as SCMs. The data movement can be performed
by periodically comparing data hotness with bucket thresholds.
However, one problem is that fast buckets may not have enough
space to store the increasing amount of hot data. This is usually
true because faster storage devices have smaller capacity. To
address it, SUORA will also periodically move data that becomes
cold from fast buckets to slow buckets for load/capacity balance.

To reduce the impact on I/O performance, SUORA is designed
to trigger cold data migration at idle service time if there is no
sufficient space on one bucket. It moves data in batch from the
fast bucket to slow bucket. The data migration stops when there is
enough free space on the bucket. Otherwise, it would compromise
the performance of the heterogeneous storage system since much
of capacity in fast buckets remains unused, which conflicts with
our design principle discussed before. When the cold data moves,
its new bucket position can be decided by the read counter and
bucket thresholds.

For each bucket, SUORA uses two watermarks, W,, and W,
to decide the start and finish time of data migration. The W, and
W, are upper and lower bound of data occupying on the bucket’s
total capacity. The optimal watermarks are adjustable in a real
storage system depending on the device setting. To void the full

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022

use of space, W, can be set to a value near to 1, such as 90%. The
W, can be set to make data proportionally distributed on different
buckets according to the bucket capacity.

With these two thresholds, SUORA sorts read counters in
each bucket and selects a percentage (the value is W,, — W})
of data as the cold data whose hotness counters are in the lower
portion. If there are multiple hash functions, SUORA calculates
the average value of all read counters for a data item because
each hash function has a read counter on the data. During the
movement process, SUORA modifies the hotnesss table to reflect
the migration of data. When the data in bucket b; migrates to its
previous bucket b; 1, all read counters will be decreased by v;_1.

Hotness Table

1717071 Average Read

0[1[0]0 Counter Bucket Threshold
vi|0101 : v ‘
-vi [1 O]T 1
-vi|1 101
-v; [1 O[T O

1]0]0]1
2vil01 1 1=<——4=y Datay ¥¥-----

1707110
-v; [0 1[0 0

17101
v 1010

0[0]1]0

Fig. 8: Update on hotness table for cold data migration by
comparing average read counter with bucket threshold.

Figure [§] illustrates the update on hotness table for cold data
migration. It can be seen that data x and data y are cold due
to their small average read counters. Both of them will move
from bucket b to bucket by. Simultaneously, all read counters in
hotness table will be decreased by the threshold vy of bucket b .
Note that the counter (“0111”) in hotness table are decreased twice
by v1 because one hashing value of both data = and y are mapped
to the same bit position. The corresponding cold data migration
algorithm is described in Algorithm P} In this manner, SUORA
can maximize the performance benefit of SCMs and avoid under-
utilization of the capacity of HDDs.

ALGORITHM 2: Cold data migration between buckets

Input: upper watermark W,,, lower watermark 1,
hotness table H;, bucket number m;

1fori=m—1;i>0;i——do
J data_amount

2 W ol capacity oy 5; > Wu then

3 >sort data in b; by average read counter

in an ascending order
: data amount
4 while total capacity of b, > Wl do

5 >get a data item in order from the
sorted data in b;

6 move(data,b; — b;_1)

7 H, — decrease(read counter(data),v;_1)
8 end

9 end

10 end

3.4.2 Migration for node membership change

Besides data movement between different buckets, the data may
also migrate when devices (or nodes) are added or removed in
the same bucket. This scenario occurs when new storage devices
are added into the system or current devices are taken out of the
system. For each bucket, data movement only occurs inside it.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7
migrate-
“"'g@‘?}ii il 1?
v [
I So4 So3 S02 So1 Soo S10 'E’l Si2 |S13 }‘m’l I
T T Tan | Tas 1 Tay Las
33
47 4(348) 3 (25)2 | ! " (1.5)2 3() 4 4.5) 5
0
(a) Data movement when node addition occurs
migrate with new randon_l number
| !
| | So2 So1 S0 4. Sio S12|S13, |
boe | i i' 'i' ! | »b,
2.5 3.3
4 3 ()2 1 | 1 2 @3 4

0

(b) Data movement when node removal occurs

Fig. 9: Data movement when node addition and removal occur.
In (a), two nodes sg4 and s14 are added, which cause data4 and
datal to move to them. In (b), two nodes sg3 and s1; are removed,
which cause data4 to move to a new node.

When adding a new node, if there is a random number in the ﬁ
pointing to the new segment prior to the current segment, the
corresponding data will move to the new segment. Otherwise,
the data keep its original position. When removing a node, new
random numbers are generated for moving data to other nodes.

Figure 9 shows data movement when node addition and
removal occurs after the placement described in Figure 6(b). In
Figure 9(a), two nodes, sg4 and s14, are added in by and by with
each occupying one segment length lg4(4, 4.7) and 114(4, 4.5),
respectively. Note that datal and data4 are moved because their
random numbers (o = 4.2 for datal and 7, = 4.6 for data4)
fall into the new segments when the new nodes are added. In
Figure 9(b), node C (segment sgp3) and node E (segment s11) are
removed from buckets by and by. It can be seen that data4 in the
segment so3 moves to the segment s with a new random number
73 = 0.8 as its R does not fall into any current segment.

Such an approach achieves appropriate data distribution in
accordance with nodes’ capacity in a bucket and reduces data
movement when nodes are added or removed [15]].

3.5 Random Number Functions

As mentioned above, SUORA assigns devices onto segments in
each bucket and maps data with pseudo-equally data distribution.
SUORA uses the pseudo-random function to generate a random
number sequence R for each data till it falls into one device. It
is based on the data ID = and seed e to generate the Rin a
given range [u, w). The pseudo-random number generator has
the homogeneity characteristics [15], as described below.

1. If the data x and _s;:ed s are the same, the same random
number sequence .S is generated.
2. If the seed s for the data_‘o: is not the same, a different
random number sequence .S is generated.
3. The random numbers in S are homogeneously distributed
and can be used to map segments in all dimensions.
~ With device addition or removal in the bucket, the range of
R may change to fit segments as the segments cover a wider or
narrower area. Simultaneously, the hot data may be migrated from
one bucket to another with different segment lengths. Different
from ASURA, our algorithm extends or shrinks the number range

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022

by multiple pseudo-random number generators among buckets.
Each generator uses different seeds to generate 1? in a range. When
the number in R is larger or less than the given range, it will
be substituted by other numbers in the corresponding range. The
order of the original random numbers remains unchanged, which
ensures a homogeneous distribution in the number line. Suppose
the number line of by in Figure 3 is extended from [0, 4) to [0, 8)
and [0, 12) for twice. Data5 has its initial 1 and is placed in
so1 of by. When it is moved to b, there is no a matching number
to map its segment. Then two other random number sequences are
generated as below to extend the range for fitting segments in b;.

Rlqtas = 3.9, 1.6 € [0, 4)

R24qta5 = 7.8, 1.4, 5.8 € [0, 8)

R34atas = 11.6, 2.3, 10.1, 3.6, 8.2, 4.5 € [0, 12)

Combining these three random number sequences, the final R
in range [0, 12) for data5 is as below. Among them, number 7.8
and 5.8 come from R?2 and 3.9 comes from R1.

Riates = 11.6, 7.8, 10.1, 3.9, 8.2, 5.8

In this way, the random number sequence can be extended to
different segments and buckets for distribution. When the device
is removed and the random number is shrunk, only unnecessary
pseudo-random number generators and sequences are eliminated.
It ensures the scalability of data placement when the device scale
changes.

3.6 Replication Algorithm

Replication is a common approach to enhancing data availability
in storage systems. When supporting replication, SUORA places
replicas in diverse buckets and maps them onto segments/devices
via pseudo-random functions. It moves data between HDDs and
SCMs to achieve a trade-off among different desired features. In
this section, we describe the replication strategy in SUORA, and
combine it with data migration to illustrate data distribution on
heterogeneous devices.

Suppose there are m buckets with their performance from low
to high. Given the replication factor of rep, SUORA will place
data on original clockwise rep buckets {bg, b1, ..., brep—1}, as
shown in Figure 3. Each bucket has one copy of stored data,
where the data are mapped onto devices with the consideration of
capacity and life-time. By access pattern analysis, data movement
only occurs if the hotness exceeds the bucket threshold vy.p.
In each migration, SUORA will move one copy of all hot data
from original buckets to new buckets. For the first migration
process, SUORA will move hot data from bucket by.cp—1 to new
buckets by¢p, brept1; --., bm—1. The new bucket in which to move
depends on the data hotness and bucket threshold. One hot data
can directly move from bucket b,..,_1 to bucket by, if the hotness
exceeds the vy, (rep < k < m). In the second migration process,
SUORA will select available replicas of hot data on buckets
brep—1 and by.cp—2, and move them to new buckets. Consecutively,
SUORA will gradually move hot data from original buckets to new
buckets.

For instance, given three replicas and five buckets, SUORA
will first move one copy of hot data x from bucket by to bs.
If data x is accessed frequently, it will continue increasing the
read counter in hotness table (the replicas of one data share same
counters). For the next migration, if the hotness of data = exceeds
the threshold of b4, SUORA will directly move the replica of data
x on by to by. Note that data will not migrate to reduce cost if the
target bucket already has the replica of it. With hot data movement,
SUORA will make full use of fast devices, while releasing space
of slow devices to accommodate replicas of new data. It can

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

8

also move cold data from fast buckets to slow buckets for load
balance. Algorithm [3| shows the pseudo-code of data distribution
with replication and migration. The replication consistency is not
the focus of this study and can be achieved using existing methods,
e.g., a two-phase commit protocol [34].

ALGORITHM 3: Data distribution with replication and
migration

Input: data set D, bucket number m, segment number 7,
replica number rep, seed e;
1 seg[m][n] = segment array of buckets
2 foreach data x € D do
3 >initial distribution for replication

4 fori=10;1 <rep;, i+ + do

5 val < hash(x,e)

6 while x does not belong to any segment do

7 >generate new val in R

8 if val € range of segli][j] and
segli][7] is mot worn out then

9 seglillj] < =

10 end

1 end

12 end

13 >distribution adjustment for migration

14 fori =rep—1;9>0;,71— —do

15 if x has replica on b; and hotness > vj, then

16 move(x,b; — by)

17 end

18 end

19 >cold data movement as in Algorithm
20 end

The replication algorithm determines the write strategy. For
data read, SUORA will retrieve a copy of the data from storage
nodes. As mentioned before, SUORA uses a two-step mapping to
determine a bucket and the position in the bucket with pseudo-
random functions. It reads data from the bucket according to data
hotness, which means it prefers reading data from the bucket of
higher performance to benefit from SCMs. As the replicas of hot
data may move to multiple new buckets, SUORA can request them
from different fast devices to significantly reduce read congestion
on single device.

3.7 Algorithm Implementation

We have implemented the SUORA algorithm based on Sheep-
dog [[10], a typical, distributed object storage system for virtual
machine storage in data centers. It adopts a fully symmetric
design, and mainly contains the client (QEMU block driver) and
a storage node cluster. When storing an VDI (virtual disk image),
the client will divide it into fixed-size objects and send I/O requests
to storage nodes. Each storage node can be regarded as a gateway
to receive client requests, make data mapping, forward requests to
target nodes or directly read/write dedicated object files on local
file system of nodes.

Specifically, Sheepdog mainly has two types of objects: data
object and VDI object. There can be numerous data objects, which
contain actual data of virtual disk image. The VDI object is a
single object that contains the metadata of virtual disk image,
such as image name, disk size, creation time and data object IDs
belonging to the image. Relevant VDI objects can be generated
for snapshot and cloning operations. As Sheepdog uses consistent
hashing to decide data position, the metadata of an VDI object

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022 9
TABLE 3: Analysis of different algorithms
Algorithm Computation time Memory usage Uniform distribution Adaptive placement

Prepare stage Distribution stage Homogeneous Heterogeneous Node changes Hot data
Consistent hashing [8] O((uv) xlog(uv)) O(log(uv)) O(uv) Sair Sair excellent poor
CRUSH [9] negligible O(u) O(u) good fair excellent poor
ASURA/SPOCA [13 18] negligible O(1) O(u) good Sair excellent poor

SUORA negligible O(1) O(u + ¢€) good excellent excellent excellent

will not change at most time. It will be updated in cases of image
operations, such as creating, deleting, snapshotting and cloning an
image (these operations rarely occur). The VDI object can also be
updated for new data object creation. If the written data exceeds
the size of an object, the client will create a new data object in
Sheepdog. At this time, Sheepdog will assign device space for the
new data object and update the metadata. It will store the new data
object ID to the ID array of the inode structure in a VDI object.
The updated metadata will then be written to the VDI object file
in target nodes. Sheepdog supports object management and can
perform read/write/create/delete operations to objects according
to object IDs (similar to simple key-value operations).

For the SUORA algorithm, we use the storage nodes as gate-
way to collect I/O traces, maintain buckets/segments for devices,
and perform data mapping. Each gateway node is modified to have
an independent hotness table, using four hash functions and 32-
bit counter, to trace read counter for all data requests through the
node. When data read or migration happens, atomic operations are
achieved for lock on the hotness table to increase or decrease the
counter. There is little synchronization overhead between hotness
tables. The reason is two-fold. First, multiple virtual machine
clients cannot share the same VDI. Second, different VDIs will
generate distinct object IDs. As such, the hotness value of objects
belonging to one VDI will be identified and kept in the hotness
table on the same gateway node once the client connects to it.
As multiple storage nodes can be used as gateway, the hotness
table will not be a hotspot or prevent scaling in storage system. If
one gateway node fails, the client can connect to another gateway
node, which will recount the hotness value in its hotness table.

The replicas and data movement are performed periodically
in the background to minimize the impact on system perfor-
mance. From our I/O traces, it shows that there are few VDI
object requests compared to data I/O operations. The reason is
that Sheepdog uses SUORA (or default consistent hashing) to
make data placement, and can directly perform data read/write.
Moreover, metadata operations depend on object size, which is set
to 64MB to further reduce metadata update overhead. As such, the
metadata operations can have little impact on I/O performance.

4 EVALUATION

In this section, we present the evaluation results of the proposed
SUORA algorithm by comparing it with typical data distribu-
tion algorithms, including consistent hashing [8], CRUSH (straw
buckets) [9], and ASURA/SPOCA [15, [18]]. We first conducted
the evaluation with trace-based simulation, similar to the evalu-
ation mechanism in the CRUSH and ASURA studies. Then we
performed tests based on the Sheepdog storage system. We use
the original Sheepdog system as the baseline system. We also
implemented the CRUSH (straw buckets) algorithm on Sheepdog
for performance comparison. Two typical benchmarks, FIO [35]
and Filebench [36]] are used to generate workloads. The Sheepdog
tests were conducted on a local cluster with 30 nodes, which are
divided into three 10-node buckets, including two HDD buckets

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

and one SSD bucket. In the HDD buckets, each node has one WD
hard disk (500GB WD1200BEVE) or Seagate SATA hard disk
(500GB ST9500620NS), respectively. The SSD bucket nodes are
equipped with Intel SSDs (200GB SSDSC2BA200G3T). Some
device performance can refer to the specification in Table] and
the segment length is calculated following the equation (1). The
Sheepdog storage cluster was connected via 10GbE, and formed
with a default replication factor of 2 and object size of 64MB.

4.1 Algorithm Analysis

In this subsection, we evaluate different algorithms based on the
analysis from four aspects as described below. Table 3] summarizes
the analysis results and algorithm comparison, where the param-
eter u denotes physical node numbers and v denotes virtual node
number (in consistent hashing).

1) Computation time. We analyze the algorithm complexity
from two aspects: preparation stage and distribution stage. The
consistent hashing algorithm calculates the hash values of nodes in
the preparation stage, and sorts them (i.e., quicksort) to construct
a hash ring. It then calculates the hash value of a data object
in the distribution stage, and search for the target node, such
as using a binary tree search. Thus, the time complexity of
preparation stage and distribution stage for consistent hashing are
O((uv) x log(uv)) and O(log(uv)), respectively. The CRUSH
(straw buckets) algorithm calculates the hash values of nodes from
data IDs and node IDs. It selects the node that has the largest hash
value for the data on the fly, in which the time complexity is
O(u). For ASURA and SUORA algorithms, they assign buckets
or segments to devices in the preparation stage. The calculation
time for assignment is negligible. Both of them achieve nearly
O(1) for data distribution because the maximum expectation
number of times that random numbers need to be generated to
fit a segment depends on a constant value [15]. For SUORA, it
maintains the hotnesss number for data placement additionally.
The time is negligible because the hotness value is calculated with
hash function time, and is compared with a certain number of
bucket thresholds at runtime.

2) Memory consumption. To distribute data, the algorithm
needs to keep relevant information in memory. For consistent
hashing, it will maintain node and virtual node IDs and their hash
values, in which the space complexity is O(uv). The CRUSH
(straw buckets) algorithm memorizes © node ID and u node
weight, with the space complexity O(u). In ASURA algorithm,
the node ID and its segment length are kept to map data. The ran-
dom number sequence can be generated when necessary, in which
the space requirement is O(u). The SUORA algorithm places
data on multiple buckets, where each bucket maintains different
device and segment information. Besides, SUORA maintains read
counters in the hotness table. Thus, the memory requirement of
SUORA is O(u + €), where O(e) is the memory consumption
mainly for hotness table.

3) Distribution uniformity. In consistent hashing, the hash
values of both nodes and data have variations (i.e., double vari-

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022

ability), which have impact on data distribution in a homoge-
neous environment. For three other algorithms, they suffer from
single variability due to the variation of either hash values or
the random numbers. When in a heterogeneous environment,
consistent hashing, CRUSH and ASURA can provide a fair data
placement according to capacity. Compared to them, the SUORA
algorithm can achieve more efficient data distribution with the
comprehensive consideration of various device features and data-
access patterns.

4) Adaptive placement. All algorithms can avoid unnecessary
data movement when node addition or removal happens. Among
them, only the SUORA algorithm considers the data hotness, and
migrates data among buckets to achieve an adaptive placement for
heterogeneous devices.

4.2 Compute Time and Memory Footprint

This subsection focuses on understanding the performance of
different algorithms. In data distribution, as the random number
can be considered as a hash number from a specified seed, it
can also be used for a hash value. For a fair comparison, we
choose SIMD-oriented Fast Mersenne Twister (SFMT) [37], a
fast pseudo-random number algorithm, to generate both random
numbers and hash values. The simulation was performed in one
node with the assumed devices as listed in Table [4] where the
average device throughput is measured with a short I/O-intensive
test with IOZONE benchmark.

TABLE 4: The specification of devices in the cluster

Device name Bucket type Capacity Avg. throughput
(GB) (MB/s)

Raw WD hard disk bo 4000 95

Raw Seagate hard disk by 2000 176

WD Red RAIDS5 with 4 disks ba 1000 263

Intel S3700 SSD bs 512 500

Intel P3500 SSD ba 400 1800

Figure 10 shows the algorithm performance with assuming
that the node number varies from 1 to 100,000. Different IDs of
data items are generated by the pseudo-random number generator.
For ASURA and SUORA algorithms, the nodes are assigned to
segments in a number line sequentially in which the latter uses
two buckets with each having half nodes. The range of random
numbers is initially set to [0, 16) and doubled to extend each
time. The consistent hashing-v means each node has v virtual
nodes. All the data are placed with one replica.

First, we analyze the calculation time of different algorithms.
From Figure 10(a), it can be seen that the calculation time of
CRUSH (straw buckets) increases linearly with the addition of
node numbers. This is because it recalculates the hash value for
each data item when adding a new node. Compared with consistent
hashing, there is a little performance degradation in the ASURA
and SUORA algorithms. Random number regeneration for range
extension spends more time on the computation. The proposed
SUORA algorithm spends less time than ASURA as it places all
data on half nodes (in the bottom bucket) for data distribution.
It reduces the times of random number regeneration, and takes
advantage of device characteristics, such as half nodes having
larger capacity.

Second, we analyze the memory consumption for data dis-
tribution. Suppose there is a total of 10PB data (nearly 0.15
billion data items with 64MB each), as described in Figure
10(b), all algorithms require a low memory footprint less than
700MB with both the node ID and hash number have 4 bytes.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

SUORA ~—ASURA
|-8-CRUSH (straw buckets) —=-Consistent Hashin
Consistent Hashin

5
5
3

—+Consistent Hashing-10

Memory Useage (MB) -

Consistent Consistent Consistent CRUSH ASURA SUORA
hashing-1 hashing-10 hashing-100
Algorithms

Average Calculation Time (ps)
w
«

1 1,000 X
Node Number

(a) Calculation time (b) Memory consumption

Fig. 10: Calculation time and memory footprint of different
algorithms. In (a), the results of SUORA include calculation time
of hash values for accessing hotness table. In (b), the vertical axis
is in logarithmic scale.

For consistent hashing, it generates virtual nodes so that the
memory consumption increases with the addition of virtual nodes.
The CRUSH (straw buckets) algorithm maintains 4(u) bytes of
node ID (assuming with more 1(u) bytes of node weight), and
needs additional same space when computing the hash value. The
ASURA and SUORA algorithms use node IDs and correspond-
ing segment length to place data, which is nearly 0.8MB. For
SUORA, it needs additional memory to maintain read counter,
which occupies nearly 630MB space given 32-bit counter. In
the implementation of SUORA on Sheepdog storage system, the
memory for maintaining node IDs and segment length will be
resident on each gateway node. For the memory cost of tracing
hotness counter, they will be distributed among multiple gateway
nodes as each of them has an independent hotness table. Thus,
SUORA has a small amount of memory footprint.

4.3 Data Distribution Analysis

In this subsection, we simulate data distribution uniformity and
throughput in a heterogeneous environment. As the calculation
time of CRUSH (straw buckets) grows significantly with the
increase of nodes, we mainly compare among the other three
algorithms.

In these tests, we set the bucket threshold values according
to real data-access pattern. To trace the data-access pattern, we
deployed the Sheepdog [10]] storage system, and traced I/O re-
quests on gateway. Table [5] shows the data-access patterns under
different benchmarks. Each benchmark uses a 10GB file as input
and sets 4KB for block or record size. The hotness and percentage
indicate read times and the proportion of data with related hotness,
respectively. In our experiment, the nodes are divided into five
buckets from by to by, where each bucket consists of one type of
devices as shown in Table [d] Suppose there is enough bandwidth,
the bucket thresholds are set according to the data-access patterns
as listed in Table [5} For consistent hashing and ASURA, they do
not move data for the consideration of access patterns. Thus, they
keep a constant data layout during data placement. For SUORA,
it initially distributes data on heterogeneous devices, and then will
migrate data between buckets and devices according to hotness.

To understand the statistics, we first formulate the equation
for data distribution. Given the total data amount in each type of
bucket as dy, dy, ..., dpy—1, the data items on node or segment
k (the device is not worn out) in bucket b; is:

Lik

-1
Z?:o Lij

Suppose that each type of bucket has devices with the same
average throughput, which is tg, t1, ..., t,,—1. For the data d;

in bucket b;, different hotness percentages and hotness value are
Pios Dils - Pi(u—1) and hio, hi1, ..., Ryu—1), Where u is

2

Dsyora = d; X

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

m

This article has been accepted for publicai?onsin I actiops|on

Ci

puters.
: Gita jon infc

This is th?i:m's version which has not been fully edited and

content may chainge pri ! ublication %ﬁul DOl 10.1109/TC.2022.3223302
- 0 PN e I e . o
IEEE TRANSACTIONS ON COMPUTERS, 2022 bl b2 b3 b4 11
Bucket Type
——SUORA-VO

g 8 —+—SUORA-v1 o
3 7 b —#-SUORA-v2 1200 - - - E 8 ~4-SUORA-v0 Consistent hashing-v0
3 —<SUORA-v3 . B Consistent Hashing-b0-10 zZ 70 ——SUORA-v1 — Consistent hashing-v4
g 6 —#-SUORA-v4 Z1000 5 ASURA 5 ~#-SUORA-v2 ——ASURA-vO
= 5 - Consistent hashing-v0 S = SUORA = 6 —<SUORA-v3 ASURA-v4
g 2 N S —— | Consistent hashing-v4 =) 800 @ =#-SUORA-v4
s34 | ASURA-VO g £S5
s Z S 2 v 4
En 3 b ASURA-v4 g 600 = 4+
@ =1 3
2 = a3k

G S 400)
X 1 k S s 20
s PECHNY, Nt a &
S X X 4 S
=0 T 1 T —— T) & 200 = < 1 o o [VIR

500 3000 5500 8000 2 F@ ﬁ% BN .

Node Number 0 ‘ - ‘ g0
b2 b3 b4 500 3000 5500 8000
Bucket Type Bucket Type Node Number
(a) Data distribution under different patterns (b) Data distribution under different patterns (c) Average data amount at each node with differ-

(1&9@090 nodes, 1PB, 3 ; Eiﬂnaistem Hashing-h0-10

(100,000 nodes, 100PB, 1 replica)

ent hotness value (10,000 nodes, 1PB, 3 replicas)

© ~4+-SUORA-v0

2 50p ~-SUORA-v1

s 45 aa -#-SUORA-v2 Algorithm ~ Config

5 40 -<SUORA-v3 Consistent Hashing-b0-10 - Consistent hashing-b0-10-6:6:9:9:4]

® 351 --SUORA-v4 - .) o

z 0l Consistent hashing-b0-10-vC ASURA I Consistent hashing-b0-10-5:4:3:2:2}7]

2 Consistent hashing-b0-10-v4 SUORA-FIO-randread = it e

g 57 ASURA-vO E ASURA-6:6:9:9:4 T77]

% 20 ASURA-v4 SUORA-FIO-randwrite £ asURA S22k

En 15+ SUORA-FIO-randrw

g 10+ o, . . SUORA-6:6:9:9:4 i ey

< . X TOR-read

T I) z I ——— [0ZONE-read .- | SUORA-5:4:3:2:2 [

T 5000 30,000 55000 80,000 0 200 400 600 800 1000 0 200 400 600 800 1000
Node Number Average Read Throughput (MB/s) Average Read Throughput (MB/s)

(d) Average data amount at each node with dit- (e) Average read throughput under different pat- (f) Average read thmoaghypmnimexder different con-

ferent hotness value (100,000 nodes, 100PB, 1 terns (100,000 nodes, 100PB, 1 replica)

replica)

figuration (100,000 nodes, 100PB, 1 replica)

Fig. 11: Data distribution and throughput for different algorithms with algorithm analysis and simulation

the number of hotness threshold types. The SUORA algorithm
can place data according to the hotness and bucket threshold.
Consider the various throughput of devices and read times of data,
the average read throughput of the storage is:

m—1 u—1
Zi:o Zj:o di X pij X hyj
Zm—l S YTy dixpigxhi;
i=0 T

3)

T(we'rage =

Figure 11 shows the results of different algorithms, where each
data size is set to 64MB. Except in Figure 11(f), every bucket has
the same node number. ASURA and consistent hashing algorithms
do not distinguish buckets but use the same node setting. Figures
11(a)-(d) show final data distribution of different algorithms. In
Figure 11(a), as each data item has 64MB size, the total data
amount is about 47 million. For consistent hashing-1, it evenly
places data on devices in each bucket (nearly 9 million data) but
stores excessive data on devices with less capacity. The ASURA
algorithm proportionally distributes data among different devices
according to the capacity, but does not consider the performance.
For SUORA, it initially places data on buckets by, by and by. As
each bucket has one data replica, the data amount on every bucket
is nearly 15.5 million. According to the data-access patterns in
Table [5] and migration strategy, hot data (nearly 6% of total data
amount) will move from original bucket by to new buckets b3
or by. Thus, in the final data distribution, SUORA has different
data amount on buckets. Similarly, Figure 11(b) show results in
the case of 100,000 nodes and 100PB data. The difference is that
for consistent hashing-by-10, each physical node has 10 virtual
nodes in bucket bg. It means that the data amount on bucket by
will be 10 times of that on buckets b; to by. Since one replica
is used, SUORA will migrate more data from bucket by to other
buckets because of hotness. Compared with other two algorithms,
SUORA can place data on buckets according to device capacity
and life-time, while mapping the frequently read data on buckets
with higher throughput.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

For SUORA, there are few fluctuations for data distribution
when access patterns are changed as Table 5] (the series “SUORA”
y error bars illustrate changes of data amount moved from slow
buckets to fast buckets). The later evaluations on Sheepdog
storage system further show the performance efficiency under
different workload patterns. To make the algorithm more adaptive
to workload changes, the thresholds can be tuned during data
placement. For instance, by tracing and analyzing data accesses
in previous time window, SUORA can periodically adjust the
thresholds for a VDI on the gateway node. As the tuning will
make the threshold values change over time, the client may not
locate desired data with the data placement decision. SUORA will
find the data by searching it among fast buckets in the clockwise
direction. Moreover, we can store pre-known hot data in fast
buckets according to the hotness and bucket thresholds. It will
make full use of SCMs at initial data distribution while avoiding
future data movement.

To further understand the algorithm uniformity, we count the
final average data amount on each node under FIO-randread
pattern, as shown in Figure 11(c)-(d). For SUORA, it initially
places data among devices in buckets with respect to capacity,
as described in Equation (2). In our setting, each bucket consists
of one type of devices. Thus, the data will be evenly distributed
on devices of bucket. After data migration, the moved data will be
placed on new bucket nodes according to equation (2). For original
buckets, the remaining data on each device depends on the number
of moved data. The data move according to bucket thresholds from
vg = 0 to vg = 306, e.g., SUORA-vy means data placement with
hotness value between vy = 0 and v1 = 1 in SUORA. The similar
denotation is used for ASURA and consistent hashing algorithms.

It can be seen that SUORA achieves a more efficient and
adaptive distribution compared with others. It distributes most
frequently read data (hotness > v4) in by bucket (node number is
from 8, 000 to 10, 000 and from 80, 000 to 100, 000, respectively)
to improve the read performance. In Figure 11(c), both by, by

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has@o_;t
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022
TABLE 5: Data access patterns

FIO-randread® |_PS-% | 5538 | 198 7.99 9.93 6.70
hotness o 1-257 | 26-280 | 281-305 | 306-659
FIO-randrw pet. % 65 17.73 .28 476 423
hotness 0 1-18 | 19-280 | 281-300 | 301-792
[OZONE.read |_Pt% | 6428 | 1829 4.49 7.67 5.27
hotness 0 120 | 21-50 51-75 76-812
[OR-read pct. % | 63.94 | 16.33 7.41 8.25 4.07
hotness 0 1-20 | 21-100 | 101-150 | 151819 |

1'0 means 55.58% data are not accessed.

2 1-25 means there is 19.8% data with the read number between 1 and 2¢
which is also used as setting for bucket threshold values in this pattern.

3 In FIO-randread trace, the bucket thresholds of {bg, b1, ba, b3, bs} ca
be set to {0, 1, 26, 281, 306}.

and by have data with different read frequency. It is because tt
SUORA places replicas on them and only migrates data from

to bs or by until the hotness exceeds v3. This significantly reduc
the data movement amount. In contrast, consistent hashing even
places the data among all devices regardless of hotness. Althou,_
there is a little fluctuation in data placement for frequency, the
ASURA algorithm lacks an effective method to distinguish differ-
ent devices.

Figure 11(e)-(f) show the average read throughput under
different patterns and configurations. Obviously, the average per-
formance is related with the throughput of each bucket. In Figure
11(e), it can be seen that SUORA achieves the best performance.
The average read throughput of SUORA is nearly improved from
3.9 to 8.5 times compared to consistent hashing and ASURA
algorithms. This is because that SUORA uses the devices with the
best performance to store data that are read most. The throughput
of consistent hashing and ASURA algorithms is uncorrelated with
data patterns. For them, the performance is mainly affected by
virtual node numbers and device capacity, respectively. Figure
11(f) shows the performance when using different configurations
under FIO-randwrite pattern. For example, SUORA-6:6:9:9:4
means the ratio of node number in each bucket is 6:6:9:9:4. Except
the ASURA algorithm, the change of node configuration does not
affect the overall performance. Evaluation results show that the
SUORA algorithm significantly improves the overall performance
in different scenarios.

4.4 Data Migration Evaluation

In this subsection, we simulate the data migration of different
algorithms. For SUORA, data movement can occur in one bucket
for node addition and removal, or between buckets due to the
change of hotness. We conducted two sets of tests and analyzed
the cost of data movement.

For the first set of tests, we use the setting in bucket by, where
we assume to have 100 nodes and 1 million data items. Figure
12(a) shows the data movement when a new node is added for
different algorithms. We calculate the total number of data that
will move to the newly added node, as seen in the vertical axis.
These tests indicate that all algorithms achieved similar results.
Consistent hashing and CRUSH (straw buckets) algorithms evenly
distribute data across all nodes, and they can achieve small data
movement when node changes. Suppose there are u nodes, nearly
1/(u+1) data will move to the newly added node. Compared with
these two algorithms, SUORA and ASURA use pseudo-random
functions to distribute data on nodes. They achieved small data
movement too. Similar results can be observed when a node is
removed.

For the second set of tests, we evaluate data movement
between buckets in SUORA. We use five buckets (from bg to by,

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

e’n fu
Consistent Straw Buckets ASURA
Hashing-100 Algorithms

ly edirg‘c};rnd

SUORA

12

w >
IS

N
w

IS

10-x Data Items Moved
o

10-x Data Items Moved
)

B

3 replica

o

suo

CRUSH ASURA
Algorithms

Consistent
Hashing-100

2 replica

1 replica
SUORA Algorithm

(a) Data movement when a node 1s (b) Data movement using different
added replicas

: The cost of data movement for different algorithms

Ethe|same as in Section[4.3) and 1 million data items for initial data

Zdistribution. We late the total number of data that will move
gbet e r the IOR-read pattern. Figure 12(b) shows
Zthe results using di eplicas. It can be seen that there is a

ount of d:) tlwith one replica, which is about
35% of the total,ainim.of Jata" The high cost is because all data
are initially placed in the by bucket and will move to other buckets
when they are accessed more often. On the contrary, with the
increase of the number of replicas, there are significant reduction
of data movement cost. For instance, when using three replicas, the
amount of data movement is less than 12.5% of the total amount
of data, which is nearly one third of the case with one replica. The
significant reduction of data movement is because SUORA does
not migrate data to a bucket if the target bucket already has a copy
of it. These tests verified that SUORA can use replication strategy
to achieve efficient data movement between buckets with a small
amount of cost.

4.5 FIO Performance

We further tested the read performance of different algorithms
with FIO benchmark on the 30-node Sheepdog storage system. We
used multiple virtual machine clients on different nodes to launch
FIO benchmark. For SUORA algorithm, the nodes are divided into
three buckets, including two HDD buckets and one SSD bucket.
More specifically, their thresholds are set as {0, 1, 30} according
to the statistics in Table [5] SUORA initially places data on HDD
buckets, where each bucket has one copy of stored data. The data
distribution among devices in bucket complies with equation (2).
According to the data-access patterns, nearly 20% of total data
moved from HDD buckets to SSD bucket at the end of benchmark.

Figure 13(a) and (b) report the FIO test results of different
algorithms. For comparison, we also test the I/O performance of
Sheepdog by only using 10 SSD nodes as storage nodes, namely
consistent hashing-SSD. We run 8 clients on different nodes, in
which each client launches one FIO instance with 8 jobs and
request sizes from 4K B to 1M B. The bandwidth was aggregated
by adding each client. As seen from the figures, the performance
of all algorithms increases with the increase of request size.
Consistent hashing and CRUSH achieved the similar bandwidth
because both of them distribute data evenly on different nodes.
Compared to consistent hashing, SUORA and consistent hashing-
SSD achieved better bandwidth by 112% to 246%. The reason is
that they can take advantage of the performance benefit of SSDs.
For SUORA, it can move hot data to fast buckets, and access the
data replica from the SSD devices. The performance advantage
of SUORA is as expected. These tests and observations confirm
the efficiency of the SUORA algorithm in a heterogeneous storage
system.

The SUORA algorithm uses hotness table to detect hot data
and access them from fast buckets. To validate the effectiveness,
we use unbalanced data accesses as the workload for evaluation.

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publicatﬁn in IEE

content may change Brior fo ‘ﬁe bu |c‘at&o‘{k'nat|o'n£
Request Size

IEEE TRANSACTIONS ON COMPUTERS, 2022

1€ 0r's version which has not been fully edited and
.1109/TC.2022.3223302

13

22400 0 Consistent hashing — & Consistent hashing — . 250
E @ CRUSH (straw buckets) 200 I CRUSH (straw buckets) : O Consistent hashing
2000 CSUORA) = BSUORA P 2200 L B CRUSH (straw buckets)
£ = Consistent hashing-SSD 2150 I Consistent hashing-SSD L E = SUORA
= L = = = 3 H
21600] : :] T Bs0 L ©ISUORA-SSD
g 1200 | 2100 . §
: g £ 2100
< 800 250 “ %
o0 A
%:24007 0 L = ?:?‘[_H_L?\ 50 B
< =] x - . fileserver ~ varmail webserver videoserver randomrw m_‘_‘
"0 s 125 175 225 Applications ‘ ‘ videoserver
E . . . N fileserver varmail webserver videoserver randomrw
Zipf Distribution 4K 64K S12K - 1024K Applications
neyucsy vize Request Size pn e m e an
(a) Random read performance M\ Qammantial raad narfarmanca (c) Ramdom read with increasing skewness
250 6000
= O Consistent hashing O Consistent hashing = HConsistent hashing
52"00 gg&ggg (straw buckets) 2 2000 B CRUSH (straw buckets) 5000+ “| EICRUSH (straw buckets)
§2000 £ Consistent hashing-SSD E o Sgg;’: ssb 4000} E :Egii SsD
2 = = = <] - 2 -
21600 |] g * g 1501 é
= ~ -
21200 | k| g 00
] 2 100 g
Z 800 ¢ 5 2 20001
g S 501 be
& 400 | z N H—I‘h 10001 1
< = = e S o :
0 : . m—m . . . oL i R L !_ﬁ—ﬂ M
05 1.25 1.75 2.25 fileserver varmail webserver videoserver randomrw fileserver ~ varmail webserver videoserver randomrw
Zipf Distribution Applications Applications

(d) Sequential read with increasing skewness

(e) Average latency

(f) 1/O operations per seconds

Fig. 13: I/O Performance comparison for algorithms under different workloads and applications. (a)-(d) are FIO read performance with
different request sizes or skewness workloads; (e) and (f) are file system application performance with mixed read/write workloads.

We run FIO to measure read operations with increasingly skewed
data access distribution, namely Zipf distribution [38]. The FIO
benchmark generates more skewed data distribution with the
increase of Zipf parameter, meaning that a proportion of data are
more frequently accessed than others.

Figure 13(c) and (d) show the read performance with 512K B
request size in different Zipf distributions. It can be observed that
both SUORA and consistent hashing-SSD achieved better perfor-
mance. Moreover, SUORA has higher bandwidth with increasing
skewness. This is because when more data become hot, SUORA
has more chances to access the hot data replicas on fast buckets.
Thus the performance of SUORA in a heterogeneous cluster is
close to consistent hashing-SSD. On the other hand, consistent
hashing evenly distributes data among different storage nodes.
Although there is slow performance increase with larger skewness,
consistent hashing can not leverage the benefits of SSDs well.

4.6 File System Workload Evaluation

For performance evaluation, we also conduct tests with the
Filebench benchmark, which emulates file system level workloads
of different real applications. We selected five types of applications
in Filebench with the specification described in Table [§] where
WF means reading or writing a whole file. From fileserver to
videoserver applications, we emulated sequential access to files
(or append to files). For the randomrw application, we emulated
random access to files (includes partial write). We generated
various data sets with repeated accesses, and set read/write ratio
from 1:1 to 10:1. For the watermarks, we set W,, and W} to 20%
and 10% to trigger cold data movement. We launched one client
running on one virtual machine on the Sheepdog.

TABLE 6: The specification of emulated file system workloads

Application| Average File Size | I/O size Data Access
fileserver 256KB WF sequential
varmail 32KB WF sequential
webserver 256KB WF sequential
videoserver 1GB IMB sequential
randomrw 128KB 64KB random

Figure 13(e) and (f) report the performance results of different
algorithms under five workloads. We also test SUORA-SSD for

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

comparison, which only uses the SSD bucket nodes for storage.
As seen from these figures, SUORA achieved close performance
to SUORA-SSD, in which both of them behaved better than other
algorithms. This is because SUORA can distinguish the perfor-
mance difference between slow and fast buckets. It will move
data among buckets and access hot data from fast buckets, such
as SSDs. SUORA can also improve the entire I/O performance
while maintaining load balance for data movement by considering
device capacity. In contrast, the consistent hashing and CRUSH
algorithms evenly placed data among different devices without
being aware of their distinct characteristics. Additionally, SUORA
favored high performance like SUORA-SSD on the randomrw
application, which accessed data with small and random 1I/O sizes.
The results further confirm the efficacy of the SUORA algorithm
in a heterogeneous environment.

For write traffic, the gateway in Sheepdog calculates the target
nodes with distribution algorithm, and sends write requests to
all of the target nodes. As the virtual machines cannot share the
same VDI at the same time, there is no write-write conflicts. The
write optimization is often more complicated in storage systems
due to object cache layer, replica consistency, asynchronous 1/O
behaivor, etc. In our evaluation, it was also observed that SUORA
achieved better access performance over the existing replication
schemes due to the fact that it well considers distinct throughput
of heterogeneous devices.

4.7 System Overhead

200
2180
=
g 160 -
=]
=
= 140
=
5 —-SUORA without hotness table
= 120 -

-=-SUORA
100024 8§ 16 32 64 128 256 512

Number of processes

Fig. 14: System overhead for sequential read

The SUORA algorithm uses hotness table to identify hot data
and locate the data on buckets. When reading data, it maintains

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

IEEE TRANSACTIONS ON COMPUTERS, 2022 14

read counters and compare the counters with bucket thresholds. [19] J. Lamping and E. Veach, “A fast, minimal memory, consistent hash

Besides this, SUORA updates the hotness table for cold data |, alvor;\t,}g?s’urglogxgnﬁr ef{’”%é{%ﬁ‘r’aoé'%%%’ri%ﬁ wister: A 623-

movement. To measure the overhead caused by these operations, dimensionally equidistributed uniform pseudo-random number genera-

. . tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3-30, 1998.
we evaluated the impact of hotness table in SUORA. [21] B. Welch and Gﬁ Noer, “Optimizing a hybrid SSD/HDD HPC storage
H ; ; system based on file size distributions,” in Proc. MSST Conf., 2013.

. Flgure @ shows the sequenFlal read performance with one [22] J.Zhou, W. Xie, Q. Gu, and Y. Chen, “Hierarchical consistent hashing for
client running on Sheepdog, which uses two HDD buckets and heterogeneous oIt_)Iiect-based storage,” in Proc. ISPA Conf., 2016.

[23] E. Kakoulli and H. Herodotou, “OctopusFS: A distributed file system with

one SSD bucket as storage nodes. Th.e C?SC of SUORA without tiered storage management,” in Proc. ACM Int. Conf. Manage. Data, 2017.
hotness table means the hotness table is disabled so that the data [24] S. He, Y. Wang, X_ Sun, and C. Xu, “HARL: Optimizing parallel file

. . St ith het ity- ion-level data 1 t,” IEEE Trans.
are directly stored in the bucket. The results show that the overhead Sc}:)gnf n,llsz ,W\:ol. 666,e ;%g%r}eioyl ?w Afe region-ievel dula Tyon “

: i 3 H Toi [25] S. He, Z. Li, J. Zhou, Y. Yin, X. Xu, Y. Chen, and X. Sun, “A holistic
of maintaining hotness table is very minor and negligible. heterogeneity-aware data placement scheme for hybrid parallel I/O sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4, 2020

5 CONCLUSIONS [26] J. Zhou, Y. Chen, W. Xie, D. Dai, S. He, and W. Wang, “Prs: A pattern-
directed replicgation schel:r%e9 for Eetzeé‘i)geneous object-based storage,”

: _ : : : _ IEEE Trans. Comput., vol. 69, no. 4, .
The adgptl'on of new non-volatile memory dev1c§s has intro [27] J. Zhou, W. Xie, J. Noble, K. Echo, and Y. Chen, “SUORA: A scalable and
duced significant challenges for data management in large-scale uniform data distribution algorithm for heterogeneous storage systems,” in

llel/distributed fil In thi h Proc. NAS Conf., 2016.
parallel/distribute e systems. In this research, we propose a 28] K. Ganesh, Y. Kim, M. Debnath, S. Park, and J. Lee, “LAWC: Optimizing
novel data distribution algorithm called SUORA, which considers write C%Ghe us;ngzha?;)ut-aware 1/0 scheduling for all flash storage,” IEEE
.. . R . . rans. Comput., .
distinct device features (capacity, performance and life-time) and [29] A. Ja]e%]’ {1 .NUZYE%‘H» ? Moga, S. Cl;lsteffly’ Ranld I, Emeri “High perform-
_ 3 1ng cache hierarchies 1or server workloads: kRelaxing inclusion to capture
data-access patterns (haness anfi learned thresholds) to unlformly the latency benefits of exclusive caches.” in Proc. HPCA Conf., 2015,
place data cross a hybrid and tiered storage cluster. It combines [30] Q. Li, L. Shi, C. Gao, Y. Di, and C. Xue, “Access characteristic guided
data replication with migration to make full use of storage-class rgﬁ,‘i a,?f, f,v(fit%e%lga{lf n281118t.1ash based storage systems,” [EEE Trans.

memory devices for performance efficiency, while maintainin [31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable er-
y P ¥ . & rors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.
load balance and very small movement cost. Evaluation results [32] D. Park and D. Du, “Hot data identification for flash-based storage sys-

: : : : tems using multiple bloom filters,” in Proc. MSST Conf., 2011.
show th.at SUORA achieved hlghly efficient data. mapping and [33] W. Xie, Y. Chen, and P. C. Roth, “Exploiting internal parallelism for
largely improved the I/O bandwidth compared against other data addr4ess “*11“%18‘&56’1%“ solid-state drives,” ACM Trans. Storage, vol. 14,
. no. 4, pp. 1-30, .
distribution algorithms in a heterogeneous environment. [34] M. T. Ozsu and P. Valduriez, “Principles of distributed database systems,”

[35] 2 flin%flroscTienlceBand}? USiiesszl(\)/llesd la[’oTeiCh‘]Rsf" 2101£1 :; |http:/freecod

“The ool Benchmark,” . [Online]. Available: http://freecode.

ACKNOWLEDGMENTS . com/projects/fio : e o i

. “The File System Benchmark,” . nline]. Available: http:

ThlS research is supported in part by the National Science Founda- 36] Tlsourceforge.net/projects/filebench [.] P

tion under grant CCF-1718336, CCF-1853714 and CNS-1817094. [37] “Simd-oriented fast mersenne twister: a 128-bit pseudorandom number
generator,” 2017. [Online]. Available: http://www.math.sci.hiroshima-u.
ac.jp/~m-mat/MT/SFMT/index.html

REFERENCES [38] “Zipt Distribution,” 2017. [Online]. Available: [hitps:/en.wikipedia.org/
[1]1 F. Schmuck and R. Haskin, “GPFS: A shared-disk file sgstem for large wiki/Zipf’s_law.

computing clusters,” in Proc. FAST Conf., 2002, P 231-244. Jiang Zhou is an Associate Professor in the
[2] S. A. Weil, S. A. Brandt, E. L. Miller, and D.

o fite Systenli;, Ell}rg‘;gw%‘jgg(Institute of Information Engineering, Chinese

: Academy of Sciences. His research interests
include file and storage systems, parallel and
distributed computing, metadata management,
1/O optimization, and cloud computing.

A scalable, high-performance distribut
Oper. Syst. Des. Implementation, 2006, pp. 307-320.

[3] S. Ghemawat, H. é)obioff, and S. T. Leung, “The Google file system,” in
Proc. ACM Symp. Oper. Syst. Principles, 2003, pp. 29-43.

[4] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran,
M. Asheghi, and K. Goodson, “Phase change memory,” Proc. IEEE,
vol. 98, pp. 2201-2227, 2010.

[5] Z. Diao, E Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L. Wang, and
Y. Huai, “Spin-transfer torque switching in magnetic tunnel junctions
and spin-transfer torq1 e random access memory,” Journal of Physics:
Condensed Matter, vol. 16, no. 19, 2007.

[6] “Intel and Micron produce breakthrough memory technology,”
2015. [Online]. Available: https://newsroom.intel.com/news-releases/
intel-and-micron-produce-breakthrough-memory-technology/

[7] S. He and X. Sun, “A cost-effective distribution-aware data replication
scheme for parallel I/O systems,” IEEE Trans. Comput., vol. 67, no. 10,

2018.

[8] D. l%arger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy, “Consistent hashing and random trees: distributed caching proto-
cols for relieving hot spots on the World Wide Web,” in Proc. Annual ACM
Symp. Theory Comput., 1997.

S. K Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,” in Proc.
ACM/IEEE Conf. SL’t’percomputing, 2006, pf). 654-663.

Yong Chen is an Associate Professor and Di-
rector of the Data-Intensive Scalable Computing
Laboratory in the Computer Science Department
of Texas Tech University. His research interests
include data-intensive computing, parallel and
distributed computing, high-performance com-
puting, and cloud computing.

9 . .
1 Mai Zheng is an Assistant Professor at lowa

State University. His research interests include

[10] ;‘()S/l;ﬁggggg;roject, 2018. [Online]. Available: https://sheepdog.github. file systems, non-volatile memories, key-value
[11] “Glusterfs file system project,” 2018. [Online]. Available: http://www. stores, data infrastructures, data-intensive com-
gluster.org/ puting.

[12] S.He, X. Sun, and A. Haider, “HAS: Heterogeneity-aware selective layout
scheme for parallel file systems on hybrid servers,” in Proc. Int. Paralel
Distrib. Process. Symp., 2}615.

[13] S. Ma, H. Chen, Y. Shen, H. Lu, B. Wei, and P. He, “Providing hybrid
block storage for virtual machines using object-based storage,” in Proc.
IEEE ICPDS Conf., 2014, pp. 150-157.

[14] J. W. Hsieh, L. P. Change, and T. W. Kuo, “Efficient identification of hot
data for flash memory storage systems,” ACM Trans. Storage, vol. 2, no. 1,

. 22-40, 2006.

[15] K. I. Ishikawa, “ASURA: Scalable and uniform data distribution algo-
rithm for storage clusters,” arXiv preprint arXiv:1309.7720, 2013.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Proc. MSST Conf., 2010, pp. 1-10.

[17] A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
a e1 system,” ACM SIGOPS Oper. Syst. Review, vol. 44, no. 2, pp. 3540,

. Chawla, B. Reed, K. Juhnke, and G. Syed, “Semantics of caching
with SPOCA: A stateless, proportional, ogtlmally-consistent addressing
algorithm,” in Proc. USENIX ATC Conf., 2011

Weiping Wang received the Ph.D. degree in
computer science from Harbin Institute of Tech-
nology, China, in 2008. He is a Professor in
the Institute of Information Engineering, Chinese
Academy of Sciences. His research interests in-
clude database and storage systems.

[18

. . © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

https://newsroom.intel.com/news-releases/intel-and-micron- produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron- produce-breakthrough-memory-technology/
https://sheepdog.github.io/sheepdog/
https://sheepdog.github.io/sheepdog/
http://www.gluster.org/
http://www.gluster.org/
http://freecode.com/projects/fio
http://freecode.com/projects/fio
http://sourceforge.net/projects/filebench
http://sourceforge.net/projects/filebench
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
https://en.wikipedia.org/wiki/Zipf's_law.
https://en.wikipedia.org/wiki/Zipf's_law.

	Introduction
	Background and Related Work
	The SUORA Algorithm
	Algorithm Model
	Heterogeneous Devices Management
	Data Mapping in Heterogeneous Devices
	Data Movement Between Devices

	Algorithm Design
	Hotness Table
	Data Migration
	Migration for load balance
	Migration for node membership change

	Random Number Functions
	Replication Algorithm
	Algorithm Implementation

	Evaluation
	Algorithm Analysis
	Compute Time and Memory Footprint
	Data Distribution Analysis
	Data Migration Evaluation
	FIO Performance
	File System Workload Evaluation
	System Overhead

	Conclusions
	Biographies
	
	
	
	

