
IEEE TRANSACTIONS ON COMPUTERS, 2022 1

Data Distribution for Heterogeneous
Storage Systems

Jiang Zhou, Yong Chen, Mai Zheng, and Weiping Wang

Abstract—The exponential growth of data in many science and engineering domains poses significant challenges to storage systems.

Data distribution is a critical component in large-scale distributed storage systems and plays a vital role in placing petabytes of data and

beyond, among tens to hundreds of thousands of storage devices. Meantime, heterogeneous storage systems, such as those having

devices with hard disk drives (HDDs) and storage class memories (SCMs), have become increasingly popular for massive data storage

due to their distinct and complement characteristics. This paper presents a new data distribution algorithm called SUORA (Scalable

and Uniform storage via Optimally-adaptive and Random number Addressing) specifically for heterogeneous devices to maximize

the benefits of them. SUORA provides a fully symmetric, highly efficient methodology to distribute data across a hybrid and tiered

storage cluster. It divides heterogeneous devices into different buckets and segments, and adopts pseudo-random functions to map data

onto them with the balanced consideration of capacity, performance and life-time. By analyzing hotness and access patterns, SUORA

gradually moves hot data from HDDs to SCMs to optimize the throughput, and moves cold data reversely for load balance. It combines

data replication with migration to significantly reduce movement overhead while making data placement more adaptive to different

workloads. Extensive evaluations on simulation and Sheepdog storage system show that, with considering distinct characteristics of

various devices thoroughly, SUORA improves the overall performance efficiency of heterogeneous storage systems.

Index Terms—Parallel/distributed file systems, data distribution, data placement, heterogeneous storage, data replication

F

1 INTRODUCTION

T HE exponential growth of data volume in many science and

engineering domains poses constant challenges to storage

systems. Many high-performance computing systems and cloud

data centers have built infrastructures to host hundreds petabytes

of data to accommodate growing needs of their applications. One

of the critical challenges large-scale data centers face today is the

management of data on a large number of storage nodes. Tradi-

tional parallel/distributed file systems, like GPFS [1], Ceph [2],

and GFS [3], are widely used to achieve high-performance I/O.

Data are striped over storage nodes so that read and write oper-

ations can take advantage of high concurrency for better band-

width. Storage systems usually have dedicated metadata servers

to decouple the metadata service (e.g., the namespace service)

from data store for better scalability [3, 2]. However, massive data

management remains a critical challenge that often limits the I/O

performance and storage scalability.

On the other hand, large-scale storage systems often use

a heterogeneous setup. Hard disk drives (HDDs) are still the

dominant storage devices, but are notorious for long seek time and

rotational latency. The storage class memory (SCM) devices gone

through tremendous advances in recent years with the develop-

ment of non-volatile memory (NVM) technologies. For instance,

the high-bandwidth, low-latency, and mechanical-component-free

characteristics of flash-based Solid State Drives (SSDs) make

them rapidly adopted in many storage systems. Further, other

NVM technologies, such as phase change memory (PCM) [4],

• Jiang Zhou and Weiping Wang are with the Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China. Yong Chen

is with the Department of Computer Science, Texas Tech University,

Lubbock, Texas, USA. Mai Zheng is with the Department of Electrical and

Computer Engineering, Iowa State University, Ames, Iowa, USA.

E-mail: {zhoujiang, wangweiping}@iie.ac.cn, yong.chen@ttu.edu,

mai@iastate.edu.

spin-transfer torque RAM (STTRAM) [5], and the recent 3D

XPoint [6], are considered a competitive additional tier of storage

hierarchy in the near future. All these types of storage devices

will form a heterogeneous storage hierarchy. Table 1 shows a

comparison of characteristics of NVM, SSD, and HDD storage

devices with reference to the common product specifications.

Although devices exhibit different performance based on the usage

of the system, we use the average access time for a consistent

comparison among them. Arguably, it is strongly desired to design

and develop an efficient heterogeneous storage solution to take

advantages of a variety of devices, which has a significant impact

on future storage systems too.

TABLE 1: Characteristics of heterogeneous storage devices

Device Avg. latency Capacity1 Endurance2 Cost

NVM (STT-RAM) 5∼10ns <32GB/s 1012 Highest

NVM (PCM) 50ns∼15µs <256GB/s 1012 $2-8/GB

SSD 35∼350µs <1TB/s 105 − 106 $0.5-2/GB

HDD 3.5∼5ms >1TB/s > 1016 $0.06-0.3/GB

1 Capacity indicates the common maximum capacity of a single memory
stick/SSD/HDD disk.

2 Endurance indicates average write times for the life-time of the device.

The key component in data management is the distribution

of data among devices (or nodes). The data distribution (or data

placement) strategy establishes the mapping between datasets and

devices [7]. It needs to meet objectives such as efficient decision,

small amount of data movement, and load balance. For instance,

GPFS [1] and numerous other parallel/distributed file systems

divide a file into equal-size blocks and place consecutive blocks

on different disks in a round-robin fashion. Consistent hashing [8]

or pseudo-random algorithms [9] are also popular for mapping

data or objects onto devices efficiently, and are widely used in

systems like Sheepdog [10] and GlusterFS [11]. They achieve

data balance well and only a small amount of data migration

occurs when node addition or removal happens. Although these

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 2

strategies can distribute data into storage devices evenly, they

are not designed to differentiate characteristics of distinct devices

in a heterogeneous environment and place data accordingly and

efficiently. Some recent studies attempted to approach this issue

but they either focus on file stripe management [12] or perfor-

mance improvement by exploring fast devices (e.g., SSDs) [13],

or essentially adopt traditional hash functions among devices with

homogeneous capacity and weight [9].
Data placement in a heterogeneous environment is quite dif-

ferent from a homogeneous environment. Our research studies in

this field suggest that a desired data distribution algorithm for

heterogeneous storage systems should achieve additional goals.

First, it should provide a uniform and adaptive data distribution

by considering distinct characteristics of heterogeneous devices. It

should combine the performance and endurance of SCMs with

the capacity and economic efficiency of HDDs. Second, it is

desired to achieve optimally-adaptive placement among devices

while reducing data movement cost. Third, it is desired to consider

changed access patterns of different applications. For instance,

a study [14] shows that hot-data identification for flash-memory

storage systems (around 20% as “hot data”) strongly affects the

performance of flash-memory access and its life-time. Last but not

the least, time and space complexity are important considerations

too. Less compute time and lower memory footprint will help

speed up applications on the system.
In this paper, we introduce a new data distribution algorithm

called SUORA (Scalable and Uniform storage via Optimally-

adaptive and Random number Addressing) to address challenges

and to achieve goals in heterogeneous environments as discussed

above. SUORA is a pseudo-random algorithm that uniformly

distributes data across a hybrid and tiered storage cluster. It

manages heterogeneous devices with buckets and segments, and

uses pseudo-random functions to distribute data on them with a

balance among capacity utilization, performance efficiency, and

wear leveling. Data replication and movement are performed for

optimally-adaptive placement according to data-access hotness

and pattern. SUORA is designed to efficiently reorganize data and

reduce data migration when the access pattern or device member

changes. It achieves load balance and has minor memory footprint

too. Compared with traditional algorithms such as consistent

hashing [8] and ASURA [15], the average read throughput is

improved by more than 1.5 and 2 times, respectively, in our

evaluation tests. The contribution of this study includes:

• We present a new pseudo-random method to efficiently

place data cross a hybrid and tiered storage cluster in a

fully symmetric, uniform manner.

• We design a novel data distribution algorithm that uni-

fies the management of heterogeneous devices, and uses

pseudo-random functions to distribute data among them

by taking full consideration of capacity, performance and

life-time.

• We introduce hotness awareness to achieve an adaptive

data placement, which gradually moves hot data from

HDDs to SCMs according to hotness and access patterns

to improve read throughput, and moves cold data reversely

for load balance.

• We combine data replication with migration to signif-

icantly reduce movement cost and read congestion on

SCMs, while also achieving efficient write performance

under different patterns.

• We conduct extensive tests based on simulation and

Sheepdog storage system to analyze and study the impact

on overall system performance. We further compare the

proposed SUORA algorithm with representative distribu-

tion algorithms including consistent hashing, CRUSH and

ASURA, to show the efficiency.

The rest of this paper is organized as follows. Section 2

discusses the background of this study and related work. Sec-

tion 3 introduces the SUORA algorithm. Section 4 analyzes the

SUORA algorithm and presents the evaluation results. Section 5

summarizes this research and outlines further possible work.

2 BACKGROUND AND RELATED WORK

Numerous studies have been conducted in recent years on distri-

bution algorithms for storage systems. We discuss existing work

and analyze their merits and shortcomings in this section.

Table-based management method. To establish the position

relation between data and storage nodes, a mapping table is widely

adopted in file systems, such as GFS [3] and HDFS [16]. In

this method, the mapping between data and storage nodes is

memorized in a management table. When accessing data, the

table is searched and the corresponding node is located. Mapping

table management can easily distribute data among nodes, but its

memory footprint will significantly increase with the exponentially

growth of data. Besides, if only management nodes keep that

table, every storage node must communicate with the management

nodes for data access. Thus, the management nodes can potentially

become the performance bottleneck.

Hash-based management method. In contrast to table-based

management, the hash-based management methods do not need to

reserve and manage such a large mapping table. These methods

rely on specialized hash algorithms to determine the node corre-

sponding to any data.

Consistent hashing [8] is a data distribution algorithm that has

been widely used in parallel/distributed file systems [17, 10, 11]. It

is based on hash functions to construct a hash ring, a hypothetical

data structure that contains a list of hash values, for data and

nodes mapping on the ring. As consistent hashing distributes

data randomly, virtual nodes are generated to place data more

uniformly. Each physical node may have multiple virtual nodes,

which are responsible for multiple positions assigned along the

hash ring. If a virtual node is selected, the physical node associated

with that virtual node is used for data placement. The node

capacity can also be considered by adjusting virtual node numbers

or hash values [10]. When a node is added or deleted on the

ring, only the data nearby its range will be affected. Although

consistent hashing achieves impressive data load balance and data

movement when the node scale changes, it is primarily designed

for a homogeneous environment.

CRUSH is a scalable and pseudo-random data distribution

function designed for Ceph system [9, 2]. It divides the cluster into

buckets, which can contain any number of devices or other buckets

in a storage hierarchy. CRUSH provides four types of buckets, and

adopts different hash functions for flexible data mapping. Figure

1 describes the paradigm of straw buckets in CRUSH. With straw

buckets, each node has an individual hash value for a data item,

and data are stored in the node having the largest hash value for

the data. It achieves a small amount of data movement when nodes

are added or removed. Although CRUSH provides uniform data

placement in a hierarchical cluster, it lacks an effective measure to

distinguish the device heterogeneity in buckets.

Other typical algorithms include SPOCA [18], ASURA [15],

etc [19]. ASURA is a data distribution algorithm that relies on

pseudo random numbers [20] in which the general idea is first

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 3

3 69 32

NodeA NodeB NodeC NodeD

Data1

7648 90Data2

1036 41Data3

88

112

57

Value = Factor (node weight) *

Hash (data ID, replicas, node ID)

Stored in the node with

the largest hash value

Fig. 1: Function selection of straw buckets in CRUSH

introduced in [18]. ASURA assigns a segment or a series of

segments to represent a storage node. A segment is basically a

range in a one-directional number line that starts with an integer.

The total length of all the segments that are associated with a node

represents the capacity of it. For storing data, ASURA generates

pseudo-random numbers within a range till one lies within a

segment that has been mapped to a server. Figure 2 shows a

sample assignment of the ASURA hash map, where a data object

is initially hashed to an empty space, and when hashed again, it

is assigned to segment1. These algorithms can distribute data on

heterogeneous nodes, but they mainly focus on one factor (such

as capacity) and lack an efficient method to consider multiple

characteristics of different devices in a holistic way.

segment0 segment1 segment2 segment3

Hash (data ID)Hash (Hash(data ID))

0 1 2 3 4
Hash space

Fig. 2: A sample assignment of the ASURA/SPOCA hash map

Hybrid method. Numerous algorithms have also been pro-

posed as an attempt to address data placement in a heterogeneous

environment. Welch et. al. [21] propose to allocate metadata and

small files onto SSDs whereas using the much cheaper HDD

storage for large files. HiCH [22] manages data with hierarchical

consistent hashing rings, in which the SSD ring is used as cache

to hold the first copy of data and the HDD ring contains the rest

replicas. It uses consistent hashing to evenly distribute data on

HDDs or SSDs, and may cause frequent data replacement (i.e.,

cold data eviction from cache) due to the capacity limitation of

SSD ring. OctopusFS [23] stores file blocks on tiered storage,

and strikes a trade-off with the consideration of different storage

media features via multi-objective optimization. It maintains a

mapping table on the metadata server, and moves data if they

are over-replicated on some particular tier. HARL [24] presents

heterogeneity-aware data layout scheme for parallel file systems.

It determines the optimized stripe sizes on HDD servers and SSD

servers based on data access cost model. With data replication,

HARL can redirect file requests to proper replicas with the lowest

access costs. H2DP [25] further devises a dynamic data migration

strategy, which moves cold data from hybrid servers to HDD

servers and hot data reversely. PRS [26] focuses on replication

optimization in heterogeneous environments. It selectively repli-

cates data based on I/O correlation of data accesses, where the first

and second replicas of data are placed with default data placement

(i.e., via consistent hashing), and the rest are created based on

identified patterns. It then adopts the pseudo-random algorithm

to proportionally distribute replicas among nodes according to

performance.
Different from them, the proposed SUORA algorithm provides

a unified and efficient solution for data distribution in hybrid,

tiered storage. SUORA uses a pseudo-random based bucket al-

gorithm for data placement. It first divides heterogeneous devices

into buckets by considering device performance, then it assigns

devices in each bucket to segments based on their capacity. With

the pseudo-random mapping, SUORA distributes data among

buckets and devices with a comprehensive consideration of capac-

ity, performance and life-time. With replication, SUORA initially

places data on slow buckets and then conducts data migration

according to access pattern analysis. Through comparing hotness

and learned bucket thresholds, it gradually moves replicas of hot

data from slow buckets to appropriate fast buckets, and distributes

them on SCMs according to capacity and life-time. By combining

data replication with migration, SUORA can take full advantages

of SCMs for performance efficiency while significantly reducing

read congestion and movement cost. Cold data migration will

also occur for load balance. The evaluation results show that

SUORA can make better use of heterogeneous devices and adapt

to different workloads. A preliminary study of this research has

appeared in [27], and this paper significantly extends the previ-

ous research in data distribution, replication and migration and

presents a complete study of this subject.

3 THE SUORA ALGORITHM

Our goal is to build a unified storage management for a hetero-

geneous environment where data is distributed among a variety of

devices (or nodes). In this section, we will introduce the design

and implementation of the SUORA algorithm.

3.1 Algorithm Model

3.1.1 Heterogeneous Devices Management

We define a multi-dimension model for SUORA to uniformly

manage devices and distribute data in a heterogeneous environ-

ment. This model divides heterogeneous storage devices into

different types of buckets and considers each bucket as a dimen-

sion. One bucket represents a performance tier with homogeneous

devices (with the same throughput/latency), such as HDDs or

SSDs. For each bucket, it is further divided into various seg-

ments in which a device is assigned to one or more segments

according to the device’s capacity. Each segment has a range

(the range length is calculated in equation (1) as discussed in

Section 3.2) and the range of all segments forms a number line,

where each range is ordered with the start value, 0. Assuming in

a heterogeneous storage system, the storage devices are divided

into m buckets as {b0, b1, ..., bm−1}. For the bucket bi, it

has a number line corresponding with it, where there are n
segments

{

si0, si1, ..., si(n−1)

}

, with their segment length as
{

li0, li1, ..., li(n−1)

}

.
Figure 3 shows the model of the proposed SUORA algo-

rithm. As shown in Figure 3(a), there are multiple buckets: from

b0 (HDD0 bucket) to b6 (ReRAM bucket), which represent

different types/classes of devices. Note that b0 and b1 are both

HDD buckets (the similar setting for SSD buckets and PCM
buckets) because it is also possible for the same type of devices

to have different performance specification. For example, SSDs

with PCIe and SATA interfaces can have very different bandwidth

and latency, thus they fall into different buckets in our model.

The device performance of each bucket increases in the clockwise

direction. The bucket with the lowest performance is the “bottom

bucket”, i.e. HDD0 bucket in the figure. In each bucket, the

devices are assigned to segments (denoted as “seg”) according

to their capacity. For example, bucket b2 has four segments (as

shown by rectangle) with different range where the maximum

range length for each segment is 1. The storage system can scale

up or scale down by adding or removing devices and buckets.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 4

1 2 3

b2

(SSD0) 41234

1

2

3

0

b3

(SSD1)
4

b4

(PCM0)

b5

(PCM1)

seg
b6

(ReRAM)

b0

(HDD0)

b1

(HDD1)

segseg seg

(a) Bucket and segment assignment for heteroge-
neous devices

b2

(SSD0) 1234

1

2

3

0

b3

(SSD1)
4

b4

(PCM0)

b5

(PCM1)

b0

(HDD0)

b1

(HDD1)

x1

x2

1 2 3 4

b6

(ReRAM)

(b) Data mapping and replication on heterogeneous
devices, e.g., data x1 and x2 have three replicas

b2

(SSD0) 1234

1

2

3

0

b3

(SSD1)
4

b4

(PCM0)

b5

(PCM1)

b0

(HDD0)

b1

(HDD1)
v0

v1

v2

v3 v4

v5

1 2 3 4

b6

(ReRAM)

hot data movement direction

cold data movement direction

v6

(c) Data movement among different buckets

Fig. 3: Model of SUORA algorithm. In (a) and (b), SUORA divides heterogeneous devices into different types of buckets for

performance feature (throughput/latency), with one directed axial coordinate (a number line) representing one bucket. The bucket

represents a class of devices with same performance, such as HDD0, or HHD1, or SSD0 class of devices. For each bucket, it

is further divided into various segments in which a specific device is assigned to one or more segments for capacity feature (e.g.,

four segments in the SSD0 class of devices with their range being [0, 1), [1, 2), [2, 3), and [3, 4)). Each segment has different

lengths with the maximum length set to 1, representing the device capacity size. Data are distributed on buckets and segments via

pseudo-random hash functions. In (c), hot data will move from slow bucket to fast bucket in the clockwise direction, and cold data

(infrequently accessed) will move in the counter-clockwise direction. Each bucket is associated with a threshold, such as v0 for b0 and

v1 for b1, and the threshold is used to decide data movement according to workloads.

3.1.2 Data Mapping in Heterogeneous Devices

Based on the bucket and segment management for heterogeneous

devices, SUORA distributes data in two steps. First, given a data

with ID x, SUORA selects buckets for the data. If a data item

has only one copy, it is initially placed in the slow bucket for

capacity utilization goal, such as b0 in Figure 3(a). If a data item

has rep copies, SUORA selects rep buckets from the bottom

bucket walking clockwise in the model and makes replicas with a

replication algorithm in Section 3.6. The bucket selection will not

compromise the performance goal because the data will migrate

to fast bucket if it is frequently accessed. It can also reduce data

search overhead after data movement as described later.
Second, SUORA utilizes a series of pseudo-random number

generators to map the data on one segment in bucket. A hash

function f(x, e) is used to generate random numbers in the range

[u, w), where e is the seed, and u and w are lower and upper

bound of distribution, respectively. It generates a random number

sequence ~R = {r0, r1, ..., rn−1} for the data until it is mapped

to one segment. When making replication, SUORA will output

multiple buckets and segments for replica placement with a same

sequence ~R. Figure 3(b) shows the data mapping and replication

in heterogeneous devices. It can be seen that data x1 and data x2
have three replicas that are placed from HDD0 bucket to SSD0

bucket and from PCM0 bucket to ReRAM bucket, respectively.

Note that data x2 has no replicas on the slow buckets (e.g. HDD0

and HDD1 buckets) with the rationale discussed in detail below.

3.1.3 Data Movement Between Devices

With the bucket and segment assignment, SUORA manages het-

erogeneous devices in a unified way and places data on them. To

make full use of the performance of fast devices, it is critical to

consider data-access patterns in different workloads. For instance,

“cold” datasets that are not frequently accessed should be stored

in slow HDDs while “hot” datasets are placed in fast SCMs. Thus,

SUORA moves data between buckets according to their hotness.

This means when a data item is frequently accessed and becomes

hot, it will be moved from a slow bucket to a fast one. However,

moving all hot data to fast devices will cause other problems:

congestion in I/O accesses and wear leveling on these flash-based

devices. To address this issue, SUORA defines a threshold for each

bucket to limit the amount of data movement, and considers device

life-time when moving data to fast buckets. The data will migrate

between buckets by comparing data-access frequency with bucket

thresholds, which makes data with different hotness be adaptively

distributed on different devices according to real workloads.

Given m buckets, each bucket has its threshold with the values

as {v0, v1, ..., vm−1}, respectively. The threshold indicates a

limit for the current bucket, in which the data will move from

a previous bucket to it in the clockwise direction if the data

hotness h exceeds the threshold. The threshold of each bucket can

be set according to device specification and data-access patterns

(discussed in Section 4.3). An appropriate threshold will reduce

the overhead for data movement among different buckets.

Figure 3(c) shows an example of data movement across dif-

ferent buckets. The hot data will move clockwise from HDD0

bucket to ReRAM bucket, in which the bucket thresholds are

{v0, v1, ..., v6}, where v0 is set to 0. For example, the data in

HDD0 bucket will move to HDD1 bucket if the hotness h is

larger than v1. The data can be mapped into segments of the new

bucket according to the same random number sequence ~R. As

these frequently accessed data are placed in devices with higher

performance, such an approach can improve the read performance

for the storage system.

The SUORA algorithm and its model differ from using fast

storage devices as multi-level cache store. In most multi-level

storage cache designs, all writes (even not replicas) to a lower level

in the hierarchy will go through intermediate cache levels (SSDs

or SCMs), which can reduce the life-time of them [28]. Some

exclusive cache store provide a hierarchy in which the contents

of different levels are exclusive. However, the lower level cache

contains only victim or copy-back cache data that are ejected from

the higher level due to conflict misses [29]. In contrast, SUORA

distributes data among heterogeneous devices by considering their

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 5

TABLE 2: Node assignment for buckets and segments

Node Bucket Capacity Assigned segments and range

A b0 1TB (s00, 0, 1)

B b0 1.5TB (s01, 1, 2), (s02, 2, 2.5)

C b0 0.8TB (s03, 3, 3.8)

D b1 0.6TB (s10, 0, 1)

E b1 0.3TB (s11, 1, 1.5)

F b1 0.8TB (s12, 2, 3), (s13, 3, 3.3)

distinct characteristics. It initially places data in slow buckets,

and gradually moves replicas of hot data to fast buckets based

on access patterns for performance benefits.

3.2 Algorithm Design

The SUORA algorithm divides heterogeneous devices into buckets

and places data among them. For convenience and simplicity, we

use two buckets to illustrate the design of the algorithm. Suppose

the storage system is equipped with one type of HDD and one

type of SSD, the algorithm takes steps for data distribution.

First, these storage devices are divided into two buckets: HDD

bucket b0 and SSD bucket b1. Each bucket is associated with a

number line containing all devices in one particular type, with

the same bandwidth/latency characteristics (the capacity can be

different though).

Second, all devices (or nodes) in the bucket are assigned to

segments in the number line. To simplify the mapping, the segment

begins with the point of an integer number with the maximal

length set to 1 (an example is shown in Figure 4). Each node is

assigned to one or more segments considering its capacity through

dividing it by a capacity parameter p that can be predefined, e.g.

the average capacity of nodes in bucket or a specified value. If the

segment length of a node exceeds one segment, it is assigned to

a new consecutive one with the smallest segment number in the

number line.

Segment length =
Node capacity

p
(1)

The assignment of segments for storage nodes is performed

when the system starts up. Upon starting up, the segments are

assigned through the total capacity of the node. During data

placement, the data will be distributed proportionally in different

segments. For each time a node is added, we adjust the parameter

p to calculate its segment length, such as using the average value

of remaining capacity of nodes in bucket. Compared to previous

nodes, the new node will have larger segment length if they

are the same capacity size. The segments of new nodes will be

added along the number line of bucket, where the previous nodes

still keep their original segment ranges. As such, the added node

will contain more new data, which makes data distribution more

proportional to the capacity. When there is no enough space in

one bucket, cold data movement will occur for the load balance

purpose (see Section 3.4). Table 2 shows an example and the

corresponding mapping of nodes and segments. For instance,

(s00, 0, 1) means that node A is assigned to segment s00 in

bucket b0 with length range l00(0, 1). More specifically, the

segment length of each node is computed by the formula with

the p being 1TB in b0 and 0.6TB in b1.

Third, data are distributed among nodes with pseudo-random

hash functions. Assuming there are no replicas, all items are

initially placed in the HDD bucket b0 for capacity utilization

(the replication algorithm is discussed in Section 3.6). This is not

subject to performance degradation because the data will move

from HDDs to SSDs in future. As there may be gaps between

1 2 3 4

s03

0

(1.5)

s11

(3.3)

s13

(3.8) (2.5)

s02 s01 s00 s10 s12

b0 b1

4 3 2 1

Fig. 4: Mapping of nodes and segments. Two arrowed axes in the

opposite directions indicate two buckets b0 and b1. Each node is

assigned to one or more segments in the bucket.

nodes in the segment (as the segment length is different or the

node may be removed), a random number sequence in a given

range is generated according to the data ID till it fits the range of

one segment.

1 2 3 4
0

(1.5) (3.3)(3.8) (2.5)

1234Data

b0

4 3 2 1

b1

s03 s02 s01 s00 s11 s13s10 s12

Fig. 5: Initial distribution in HDD bucket, where data1 to data4
are mapped to segments/nodes with pseudo-random generated

number sequence.

Figure 5 shows an example of the initial distribution, in which

four data items with IDs 1 to 4 belong to different segments. With

the pseudo-random generators, the random number sequence ~R
of each data item is shown as below. The numbers are generated

until the hash value matches one segment in the number line of b0.

For instance, when generating the number sequence ~R for data1,

the first number 4.2 does not map to any segment range. Then the

second number 0.9 is generated, which makes data1 be assigned

to s00. Algorithm 1 details the initial data distribution in HDD

bucket without replication.
~Rdata1 = 4.2, 0.9
~Rdata2 = 2.7, 1.6
~Rdata3 = 4.8, 2.8, 2.1
~Rdata4 = 3.9, 4.6, 3.5

ALGORITHM 1: Initial data distribution in the bottom

bucket b0
Input: data ID x, segment number n, seed e;

1 seg[n] = segments set

2 val ⇐ hash(x, e)
3 while x does not belong to any segment do

4 �generate new val in ~R
5 if val ∈ range of seg[i] then

6 seg[i] ⇐ x
7 end

8 end

At last, data distribution is automatically adjusted between

the HDD and SSD buckets according to the hotness and bucket

threshold. The node assigned to each data may change with

different access patterns. These frequently accessed data will move

from b0 to b1 when its hotness exceeds SSD bucket threshold

v1. When migrating from the HDD to SSD bucket, the data is

mapped to a new segment according to the same random number

sequence ~R. Figure 6 shows the placement of data before and

after their hotness reaches a threshold. From the figure, it can

be seen that data1 and data2 with hotness value exceeding the

thresholds are moved. With the previous generated ~R, the first

mapped segment of them in b1 is s10 ((~r1 = 0.9 for data1) and

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 6

1 2 3 4
0

(1.5) (3.3)(3.8) (2.5)

34Data
Hot

migrate
12 1 2

migrate

Hot

b0 b1

4 3 2 1

s03 s02 s01 s00 s11 s13s10 s12

(a) Data movement from HDD bucket to SSD bucket

1 2 3 4
0

(1.5) (3.3)(3.8) (2.5)

34Data 1 2

b0 b1

4 3 2 1

s03 s02 s01 s00 s11 s13s10 s12

(b) Data placement after movement

Fig. 6: Data movement for hot data. Data1 and data2 move from

b0 to b1, where each data is assigned to a new segment with its

original number sequence.

s12 (~r0 = 2.7 for data2)), respectively. If no random number

matches any segments or the mapped segment/device is worn out

prematurely, new numbers will be generated subsequently until

they fit one segment. For instance, in the SSD bucket, if the total

bytes written (TBW) in one device exceeds a threshold, SUORA

will not select the device and continue generating random numbers

for the next appropriate one. As such, SUORA tends to move

hot data to the bucket with higher performance, and reduces the

overhead for recalculation with the same random number sequence
~R when mapping data.

3.3 Hotness Table

As a large-scale storage system maintaining petabytes of data

and beyond, it is a non-trivial problem to identify and maintain

data hotness efficiently. Numerous methods or functions can be

used for hotness computation [30], including the bloom filter [31].

Compared with other methods, such as a flat array search [14], the

bloom-filter method has two advantages. First, it can test data

set quickly. The insertion and search operations have constant

time complexity, based solely on the number of hash functions,

unrelated with the data number in the set. Second, it has a low

space footprint in implementation. However, one shortcoming for

bloom filter is that it may provide a false positive which gives

the wrong answer on whether a given key is in the set or not.

Fortunately, the false positive can be reduced to a very low level

by adjusting parameters (e.g., bloom filter size, the number of

hashing functions) [32]. It will not affect the computation of hot

data and can be used in our algorithm.

Based on above analysis, we adopt a multi-bloom-filter based

technique (we call it hotness table in our study) for hotness

identification. First, SUORA looks up the hotness table to find the

correct bucket for the data by comparing the data hotness value

with bucket threshold. Second, it maps the data to the segment

with pseudo-random hash functions.

Figure 7 depicts how the hotness table is combined with

bucket thresholds in SUORA for hot data identification and data

movement. The hotness table uses multiple hash functions (four

functions in the example) and multi-bit counters (4-bits but can

be larger depending on data scale) for each bit position of the

bloom filter. For a data item x, four hash functions generate four

positions in the hotness table. Each counter of these four positions

is initially set to 0 and is incremented atomically by one to keep

data consistent when recording a read data access. All replicas of

data x shares the same counters.

Hash Functions
F1(x)

F2(x)

F3(x)

F4(x)

x
Data ID

1 1 0 1
0 1 0 0

1 0 1 1

1 0 1 1
1 0 0 1

1 0 1 0
0 1 0 0
1 1 0 1

0 0 1 0

Hotness Table

0 1 0 1 b0

⁞

v2

v1

v0

vm-1

larger than

Bucket Threshold

1 1 0 1

0 1 1 1

1 0 1 0

b1

b2

bm-1

⁞

+1

+1

+1

+1

Fig. 7: Hot data identification for a data item by comparing multi-

bit counters with bucket threshold, where four hash functions and

4-bit counters are used in the hotness table.

To query data hotness, these four hash functions will generate

four positions in the hotness table, but do not increment the

counters. Instead, the counts of these four positions are retrieved.

If all counts fall into a bucket threshold range vi to vi+1, which

are pre-defined, the data will migrate to bucket i. For example,

in Figure 7, all read counters of data x are larger than threshold

v2. Thus data x will migrate from its original bucket to bucket b2.

Depending on the hotness and thresholds, SUORA also allows the

data bypass buckets and move to a destination bucket directly.

The hotness table can be implemented and maintained inde-

pendently in storage nodes with negligible computation overhead.

After data is placed on fast devices, the hotness can also be

used by the devices for I/O optimizations. For instance, one SSD

device can separate hot/cold data to be written in flash memory

to improve the performance efficiency of address mapping and

garbage collection through its flash translation layer [33].

3.4 Data Migration

3.4.1 Migration for load balance

With the hotness table, SUORA selects the hot data and moves

them from slow buckets to fast buckets. The read performance can

be improved because these frequently accessed data are placed on

fast devices, such as SCMs. The data movement can be performed

by periodically comparing data hotness with bucket thresholds.

However, one problem is that fast buckets may not have enough

space to store the increasing amount of hot data. This is usually

true because faster storage devices have smaller capacity. To

address it, SUORA will also periodically move data that becomes

cold from fast buckets to slow buckets for load/capacity balance.

To reduce the impact on I/O performance, SUORA is designed

to trigger cold data migration at idle service time if there is no

sufficient space on one bucket. It moves data in batch from the

fast bucket to slow bucket. The data migration stops when there is

enough free space on the bucket. Otherwise, it would compromise

the performance of the heterogeneous storage system since much

of capacity in fast buckets remains unused, which conflicts with

our design principle discussed before. When the cold data moves,

its new bucket position can be decided by the read counter and

bucket thresholds.

For each bucket, SUORA uses two watermarks, Wu and Wl,

to decide the start and finish time of data migration. The Wu and

Wl are upper and lower bound of data occupying on the bucket’s

total capacity. The optimal watermarks are adjustable in a real

storage system depending on the device setting. To void the full

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 7

use of space, Wu can be set to a value near to 1, such as 90%. The

Wl can be set to make data proportionally distributed on different

buckets according to the bucket capacity.

With these two thresholds, SUORA sorts read counters in

each bucket and selects a percentage (the value is Wu − Wl)

of data as the cold data whose hotness counters are in the lower

portion. If there are multiple hash functions, SUORA calculates

the average value of all read counters for a data item because

each hash function has a read counter on the data. During the

movement process, SUORA modifies the hotnesss table to reflect

the migration of data. When the data in bucket bi migrates to its

previous bucket bi−1, all read counters will be decreased by vi−1.

Data x

Average Read
Counter

1 1 0 1
0 1 0 0

1 0 0 1

1 0 1 0

1 1 0 1

0 0 1 0

Hotness Table

0 1 0 1 b0

⁞

v2

v1

v0

vm-1

Bucket Threshold

1 1 0 1

0 1 1 1

b1

b2

bm-1

⁞

-v1

Data y

⁞
-v1

-v1

-v1

-2v1

-v1

-v1

1 0 1 1

1 0 1 0

0 1 0 0

1 0 1 0

Migrate

Fig. 8: Update on hotness table for cold data migration by

comparing average read counter with bucket threshold.

Figure 8 illustrates the update on hotness table for cold data

migration. It can be seen that data x and data y are cold due

to their small average read counters. Both of them will move

from bucket b2 to bucket b1. Simultaneously, all read counters in

hotness table will be decreased by the threshold v1 of bucket b1.

Note that the counter (“0111”) in hotness table are decreased twice

by v1 because one hashing value of both data x and y are mapped

to the same bit position. The corresponding cold data migration

algorithm is described in Algorithm 2. In this manner, SUORA

can maximize the performance benefit of SCMs and avoid under-

utilization of the capacity of HDDs.

ALGORITHM 2: Cold data migration between buckets

Input: upper watermark Wu, lower watermark Wl,

hotness table Ht, bucket number m;

1 for i = m− 1; i > 0; i−− do

2 if data amount
total capacity of bi

> Wu then

3 �sort data in bi by average read counter
in an ascending order

4 while data amount
total capacity of bi

> Wl do

5 �get a data item in order from the
sorted data in bi

6 move(data, bi → bi−1)
7 Ht → decrease(read counter(data), vi−1)
8 end

9 end

10 end

3.4.2 Migration for node membership change

Besides data movement between different buckets, the data may

also migrate when devices (or nodes) are added or removed in

the same bucket. This scenario occurs when new storage devices

are added into the system or current devices are taken out of the

system. For each bucket, data movement only occurs inside it.

1 2 3 4
0

(1.5) (3.3)(3.8) (2.5)

34 11 2

migrate

(4.7) 5

4Data migrate

(4.5)
b0 b1

5 4 3 2 1

s03 s02 s01 s00s04 s11 s13s10 s12 s14

(a) Data movement when node addition occurs

1 2 3 4
0

(2.5)

34Data 4 1 2

migrate with new random number

(3.3)
b0 b1

4 3 2 1

s02 s01 s00 s13s10 s12

(b) Data movement when node removal occurs

Fig. 9: Data movement when node addition and removal occur.

In (a), two nodes s04 and s14 are added, which cause data4 and

data1 to move to them. In (b), two nodes s03 and s11 are removed,

which cause data4 to move to a new node.

When adding a new node, if there is a random number in the ~R
pointing to the new segment prior to the current segment, the

corresponding data will move to the new segment. Otherwise,

the data keep its original position. When removing a node, new

random numbers are generated for moving data to other nodes.

Figure 9 shows data movement when node addition and

removal occurs after the placement described in Figure 6(b). In

Figure 9(a), two nodes, s04 and s14, are added in b0 and b1 with

each occupying one segment length l04(4, 4.7) and l14(4, 4.5),
respectively. Note that data1 and data4 are moved because their

random numbers ~R (~r0 = 4.2 for data1 and ~r1 = 4.6 for data4)

fall into the new segments when the new nodes are added. In

Figure 9(b), node C (segment s03) and node E (segment s11) are

removed from buckets b0 and b1. It can be seen that data4 in the

segment s03 moves to the segment s00 with a new random number

~r3 = 0.8 as its ~R does not fall into any current segment.

Such an approach achieves appropriate data distribution in

accordance with nodes’ capacity in a bucket and reduces data

movement when nodes are added or removed [15].

3.5 Random Number Functions

As mentioned above, SUORA assigns devices onto segments in

each bucket and maps data with pseudo-equally data distribution.

SUORA uses the pseudo-random function to generate a random

number sequence ~R for each data till it falls into one device. It

is based on the data ID x and seed e to generate the ~R in a

given range [u, w). The pseudo-random number generator has

the homogeneity characteristics [15], as described below.

1. If the data x and seed s are the same, the same random

number sequence ~S is generated.

2. If the seed s for the data x is not the same, a different

random number sequence ~S is generated.

3. The random numbers in ~S are homogeneously distributed

and can be used to map segments in all dimensions.

With device addition or removal in the bucket, the range of
~R may change to fit segments as the segments cover a wider or

narrower area. Simultaneously, the hot data may be migrated from

one bucket to another with different segment lengths. Different

from ASURA, our algorithm extends or shrinks the number range

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 8

by multiple pseudo-random number generators among buckets.

Each generator uses different seeds to generate ~R in a range. When

the number in ~R is larger or less than the given range, it will

be substituted by other numbers in the corresponding range. The

order of the original random numbers remains unchanged, which

ensures a homogeneous distribution in the number line. Suppose

the number line of b2 in Figure 3 is extended from [0, 4) to [0, 8)
and [0, 12) for twice. Data5 has its initial ~R1 and is placed in

s01 of b0. When it is moved to b1, there is no a matching number

to map its segment. Then two other random number sequences are

generated as below to extend the range for fitting segments in b1.
~R1data5 = 3.9, 1.6 ∈ [0, 4)
~R2data5 = 7.8, 1.4, 5.8 ∈ [0, 8)
~R3data5 = 11.6, 2.3, 10.1, 3.6, 8.2, 4.5 ∈ [0, 12)

Combining these three random number sequences, the final ~R
in range [0, 12) for data5 is as below. Among them, number 7.8
and 5.8 come from ~R2 and 3.9 comes from ~R1.

~Rdata5 = 11.6, 7.8, 10.1, 3.9, 8.2, 5.8
In this way, the random number sequence can be extended to

different segments and buckets for distribution. When the device

is removed and the random number is shrunk, only unnecessary

pseudo-random number generators and sequences are eliminated.

It ensures the scalability of data placement when the device scale

changes.

3.6 Replication Algorithm

Replication is a common approach to enhancing data availability

in storage systems. When supporting replication, SUORA places

replicas in diverse buckets and maps them onto segments/devices

via pseudo-random functions. It moves data between HDDs and

SCMs to achieve a trade-off among different desired features. In

this section, we describe the replication strategy in SUORA, and

combine it with data migration to illustrate data distribution on

heterogeneous devices.
Suppose there are m buckets with their performance from low

to high. Given the replication factor of rep, SUORA will place

data on original clockwise rep buckets {b0, b1, ..., brep−1}, as

shown in Figure 3. Each bucket has one copy of stored data,

where the data are mapped onto devices with the consideration of

capacity and life-time. By access pattern analysis, data movement

only occurs if the hotness exceeds the bucket threshold vrep.

In each migration, SUORA will move one copy of all hot data

from original buckets to new buckets. For the first migration

process, SUORA will move hot data from bucket brep−1 to new

buckets brep, brep+1, ..., bm−1. The new bucket in which to move

depends on the data hotness and bucket threshold. One hot data

can directly move from bucket brep−1 to bucket bk if the hotness

exceeds the vk (rep ≤ k < m). In the second migration process,

SUORA will select available replicas of hot data on buckets

brep−1 and brep−2, and move them to new buckets. Consecutively,

SUORA will gradually move hot data from original buckets to new

buckets.
For instance, given three replicas and five buckets, SUORA

will first move one copy of hot data x from bucket b2 to b3.

If data x is accessed frequently, it will continue increasing the

read counter in hotness table (the replicas of one data share same

counters). For the next migration, if the hotness of data x exceeds

the threshold of b4, SUORA will directly move the replica of data

x on b1 to b4. Note that data will not migrate to reduce cost if the

target bucket already has the replica of it. With hot data movement,

SUORA will make full use of fast devices, while releasing space

of slow devices to accommodate replicas of new data. It can

also move cold data from fast buckets to slow buckets for load

balance. Algorithm 3 shows the pseudo-code of data distribution

with replication and migration. The replication consistency is not

the focus of this study and can be achieved using existing methods,

e.g., a two-phase commit protocol [34].

ALGORITHM 3: Data distribution with replication and

migration

Input: data set D, bucket number m, segment number n,

replica number rep, seed e;

1 seg[m][n] = segment array of buckets

2 foreach data x ∈ D do

3 �initial distribution for replication
4 for i = 0; i < rep; i++ do

5 val ⇐ hash(x, e)
6 while x does not belong to any segment do

7 �generate new val in ~R
8 if val ∈ range of seg[i][j] and

seg[i][j] is not worn out then

9 seg[i][j] ⇐ x
10 end

11 end

12 end

13 �distribution adjustment for migration
14 for i = rep− 1; i ≥ 0; i−− do

15 if x has replica on bi and hotness ≥ vk then

16 move(x, bi → bk)
17 end

18 end

19 �cold data movement as in Algorithm 2
20 end

The replication algorithm determines the write strategy. For

data read, SUORA will retrieve a copy of the data from storage

nodes. As mentioned before, SUORA uses a two-step mapping to

determine a bucket and the position in the bucket with pseudo-

random functions. It reads data from the bucket according to data

hotness, which means it prefers reading data from the bucket of

higher performance to benefit from SCMs. As the replicas of hot

data may move to multiple new buckets, SUORA can request them

from different fast devices to significantly reduce read congestion

on single device.

3.7 Algorithm Implementation

We have implemented the SUORA algorithm based on Sheep-

dog [10], a typical, distributed object storage system for virtual

machine storage in data centers. It adopts a fully symmetric

design, and mainly contains the client (QEMU block driver) and

a storage node cluster. When storing an VDI (virtual disk image),

the client will divide it into fixed-size objects and send I/O requests

to storage nodes. Each storage node can be regarded as a gateway

to receive client requests, make data mapping, forward requests to

target nodes or directly read/write dedicated object files on local

file system of nodes.

Specifically, Sheepdog mainly has two types of objects: data

object and VDI object. There can be numerous data objects, which

contain actual data of virtual disk image. The VDI object is a

single object that contains the metadata of virtual disk image,

such as image name, disk size, creation time and data object IDs

belonging to the image. Relevant VDI objects can be generated

for snapshot and cloning operations. As Sheepdog uses consistent

hashing to decide data position, the metadata of an VDI object

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 9

TABLE 3: Analysis of different algorithms

Algorithm
Computation time

Memory usage
Uniform distribution Adaptive placement

Prepare stage Distribution stage Homogeneous Heterogeneous Node changes Hot data

Consistent hashing [8] O((uv)×log(uv)) O(log(uv)) O(uv) fair fair excellent poor

CRUSH [9] negligible O(u) O(u) good fair excellent poor

ASURA/SPOCA [15, 18] negligible O(1) O(u) good fair excellent poor

SUORA negligible O(1) O(u + ε) good excellent excellent excellent

will not change at most time. It will be updated in cases of image

operations, such as creating, deleting, snapshotting and cloning an

image (these operations rarely occur). The VDI object can also be

updated for new data object creation. If the written data exceeds

the size of an object, the client will create a new data object in

Sheepdog. At this time, Sheepdog will assign device space for the

new data object and update the metadata. It will store the new data

object ID to the ID array of the inode structure in a VDI object.

The updated metadata will then be written to the VDI object file

in target nodes. Sheepdog supports object management and can

perform read/write/create/delete operations to objects according

to object IDs (similar to simple key-value operations).

For the SUORA algorithm, we use the storage nodes as gate-

way to collect I/O traces, maintain buckets/segments for devices,

and perform data mapping. Each gateway node is modified to have

an independent hotness table, using four hash functions and 32-

bit counter, to trace read counter for all data requests through the

node. When data read or migration happens, atomic operations are

achieved for lock on the hotness table to increase or decrease the

counter. There is little synchronization overhead between hotness

tables. The reason is two-fold. First, multiple virtual machine

clients cannot share the same VDI. Second, different VDIs will

generate distinct object IDs. As such, the hotness value of objects

belonging to one VDI will be identified and kept in the hotness

table on the same gateway node once the client connects to it.

As multiple storage nodes can be used as gateway, the hotness

table will not be a hotspot or prevent scaling in storage system. If

one gateway node fails, the client can connect to another gateway

node, which will recount the hotness value in its hotness table.

The replicas and data movement are performed periodically

in the background to minimize the impact on system perfor-

mance. From our I/O traces, it shows that there are few VDI

object requests compared to data I/O operations. The reason is

that Sheepdog uses SUORA (or default consistent hashing) to

make data placement, and can directly perform data read/write.

Moreover, metadata operations depend on object size, which is set

to 64MB to further reduce metadata update overhead. As such, the

metadata operations can have little impact on I/O performance.

4 EVALUATION

In this section, we present the evaluation results of the proposed

SUORA algorithm by comparing it with typical data distribu-

tion algorithms, including consistent hashing [8], CRUSH (straw

buckets) [9], and ASURA/SPOCA [15, 18]. We first conducted

the evaluation with trace-based simulation, similar to the evalu-

ation mechanism in the CRUSH and ASURA studies. Then we

performed tests based on the Sheepdog storage system. We use

the original Sheepdog system as the baseline system. We also

implemented the CRUSH (straw buckets) algorithm on Sheepdog

for performance comparison. Two typical benchmarks, FIO [35]

and Filebench [36] are used to generate workloads. The Sheepdog

tests were conducted on a local cluster with 30 nodes, which are

divided into three 10-node buckets, including two HDD buckets

and one SSD bucket. In the HDD buckets, each node has one WD

hard disk (500GB WD1200BEVE) or Seagate SATA hard disk

(500GB ST9500620NS), respectively. The SSD bucket nodes are

equipped with Intel SSDs (200GB SSDSC2BA200G3T). Some

device performance can refer to the specification in Table 4, and

the segment length is calculated following the equation (1). The

Sheepdog storage cluster was connected via 10GbE, and formed

with a default replication factor of 2 and object size of 64MB.

4.1 Algorithm Analysis

In this subsection, we evaluate different algorithms based on the

analysis from four aspects as described below. Table 3 summarizes

the analysis results and algorithm comparison, where the param-

eter u denotes physical node numbers and v denotes virtual node

number (in consistent hashing).

1) Computation time. We analyze the algorithm complexity

from two aspects: preparation stage and distribution stage. The

consistent hashing algorithm calculates the hash values of nodes in

the preparation stage, and sorts them (i.e., quicksort) to construct

a hash ring. It then calculates the hash value of a data object

in the distribution stage, and search for the target node, such

as using a binary tree search. Thus, the time complexity of

preparation stage and distribution stage for consistent hashing are

O((uv) × log(uv)) and O(log(uv)), respectively. The CRUSH

(straw buckets) algorithm calculates the hash values of nodes from

data IDs and node IDs. It selects the node that has the largest hash

value for the data on the fly, in which the time complexity is

O(u). For ASURA and SUORA algorithms, they assign buckets

or segments to devices in the preparation stage. The calculation

time for assignment is negligible. Both of them achieve nearly

O(1) for data distribution because the maximum expectation

number of times that random numbers need to be generated to

fit a segment depends on a constant value [15]. For SUORA, it

maintains the hotnesss number for data placement additionally.

The time is negligible because the hotness value is calculated with

hash function time, and is compared with a certain number of

bucket thresholds at runtime.

2) Memory consumption. To distribute data, the algorithm

needs to keep relevant information in memory. For consistent

hashing, it will maintain node and virtual node IDs and their hash

values, in which the space complexity is O(uv). The CRUSH

(straw buckets) algorithm memorizes u node ID and u node

weight, with the space complexity O(u). In ASURA algorithm,

the node ID and its segment length are kept to map data. The ran-

dom number sequence can be generated when necessary, in which

the space requirement is O(u). The SUORA algorithm places

data on multiple buckets, where each bucket maintains different

device and segment information. Besides, SUORA maintains read

counters in the hotness table. Thus, the memory requirement of

SUORA is O(u + ε), where O(ε) is the memory consumption

mainly for hotness table.

3) Distribution uniformity. In consistent hashing, the hash

values of both nodes and data have variations (i.e., double vari-

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 10

ability), which have impact on data distribution in a homoge-

neous environment. For three other algorithms, they suffer from

single variability due to the variation of either hash values or

the random numbers. When in a heterogeneous environment,

consistent hashing, CRUSH and ASURA can provide a fair data

placement according to capacity. Compared to them, the SUORA

algorithm can achieve more efficient data distribution with the

comprehensive consideration of various device features and data-

access patterns.

4) Adaptive placement. All algorithms can avoid unnecessary

data movement when node addition or removal happens. Among

them, only the SUORA algorithm considers the data hotness, and

migrates data among buckets to achieve an adaptive placement for

heterogeneous devices.

4.2 Compute Time and Memory Footprint

This subsection focuses on understanding the performance of

different algorithms. In data distribution, as the random number

can be considered as a hash number from a specified seed, it

can also be used for a hash value. For a fair comparison, we

choose SIMD-oriented Fast Mersenne Twister (SFMT) [37], a

fast pseudo-random number algorithm, to generate both random

numbers and hash values. The simulation was performed in one

node with the assumed devices as listed in Table 4, where the

average device throughput is measured with a short I/O-intensive

test with IOZONE benchmark.

TABLE 4: The specification of devices in the cluster

Device name Bucket type Capacity
(GB)

Avg. throughput
(MB/s)

Raw WD hard disk b0 4000 95

Raw Seagate hard disk b1 2000 176

WD Red RAID5 with 4 disks b2 1000 263

Intel S3700 SSD b3 512 500

Intel P3500 SSD b4 400 1800

Figure 10 shows the algorithm performance with assuming

that the node number varies from 1 to 100,000. Different IDs of

data items are generated by the pseudo-random number generator.

For ASURA and SUORA algorithms, the nodes are assigned to

segments in a number line sequentially in which the latter uses

two buckets with each having half nodes. The range of random

numbers is initially set to [0, 16) and doubled to extend each

time. The consistent hashing-v means each node has v virtual

nodes. All the data are placed with one replica.

First, we analyze the calculation time of different algorithms.

From Figure 10(a), it can be seen that the calculation time of

CRUSH (straw buckets) increases linearly with the addition of

node numbers. This is because it recalculates the hash value for

each data item when adding a new node. Compared with consistent

hashing, there is a little performance degradation in the ASURA

and SUORA algorithms. Random number regeneration for range

extension spends more time on the computation. The proposed

SUORA algorithm spends less time than ASURA as it places all

data on half nodes (in the bottom bucket) for data distribution.

It reduces the times of random number regeneration, and takes

advantage of device characteristics, such as half nodes having

larger capacity.

Second, we analyze the memory consumption for data dis-

tribution. Suppose there is a total of 10PB data (nearly 0.15

billion data items with 64MB each), as described in Figure

10(b), all algorithms require a low memory footprint less than

700MB with both the node ID and hash number have 4 bytes.

2

2.5

3

3.5

4

4.5

5

1 1,000 10,000 100,000

A
v

er
a

g
e

C
a

lc
u

la
ti

o
n

 T
im

e
(μ

s)

Node Number

ASURA

Consistent Hashing-1

SUORA

CRUSH (straw buckets)
Consistent Hashing-10 Consistent Hashing-100

(a) Calculation time

0

1

1,000

M
em

o
ry

 U
se

a
g

e
(M

B
)

Algorithms

Consistent
hashing-1

Consistent
hashing-10

Consistent
hashing-100

CRUSH ASURA SUORA

(b) Memory consumption

Fig. 10: Calculation time and memory footprint of different

algorithms. In (a), the results of SUORA include calculation time

of hash values for accessing hotness table. In (b), the vertical axis

is in logarithmic scale.

For consistent hashing, it generates virtual nodes so that the

memory consumption increases with the addition of virtual nodes.

The CRUSH (straw buckets) algorithm maintains 4(u) bytes of

node ID (assuming with more 1(u) bytes of node weight), and

needs additional same space when computing the hash value. The

ASURA and SUORA algorithms use node IDs and correspond-

ing segment length to place data, which is nearly 0.8MB. For

SUORA, it needs additional memory to maintain read counter,

which occupies nearly 630MB space given 32-bit counter. In

the implementation of SUORA on Sheepdog storage system, the

memory for maintaining node IDs and segment length will be

resident on each gateway node. For the memory cost of tracing

hotness counter, they will be distributed among multiple gateway

nodes as each of them has an independent hotness table. Thus,

SUORA has a small amount of memory footprint.

4.3 Data Distribution Analysis

In this subsection, we simulate data distribution uniformity and

throughput in a heterogeneous environment. As the calculation

time of CRUSH (straw buckets) grows significantly with the

increase of nodes, we mainly compare among the other three

algorithms.
In these tests, we set the bucket threshold values according

to real data-access pattern. To trace the data-access pattern, we

deployed the Sheepdog [10] storage system, and traced I/O re-

quests on gateway. Table 5 shows the data-access patterns under

different benchmarks. Each benchmark uses a 10GB file as input

and sets 4KB for block or record size. The hotness and percentage

indicate read times and the proportion of data with related hotness,

respectively. In our experiment, the nodes are divided into five

buckets from b0 to b4, where each bucket consists of one type of

devices as shown in Table 4. Suppose there is enough bandwidth,

the bucket thresholds are set according to the data-access patterns

as listed in Table 5. For consistent hashing and ASURA, they do

not move data for the consideration of access patterns. Thus, they

keep a constant data layout during data placement. For SUORA,

it initially distributes data on heterogeneous devices, and then will

migrate data between buckets and devices according to hotness.
To understand the statistics, we first formulate the equation

for data distribution. Given the total data amount in each type of

bucket as d0, d1, ..., dm−1, the data items on node or segment

k (the device is not worn out) in bucket bi is:

DSUORA = di ×
lik

∑n−1
j=0 lij

(2)

Suppose that each type of bucket has devices with the same

average throughput, which is t0, t1, ..., tm−1. For the data di
in bucket bi, different hotness percentages and hotness value are

pi0, pi1, ..., pi(u−1) and hi0, hi1, ..., hi(u−1), where u is

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 11

0

5

10

15

20

25

b0 b1 b3 b4

1
0

-6
×

D
a

ta
 I

te
m

s
o

n
 B
uc
ke
ts

b2

Consistent Hashing-1
ASURA

SUORA

0

200

400

600

800

1000

1200

b0 b1 b2 b3 b4

1
0

-6
×

D
a

ta
It

e
m

s
o

n
D

e
v

ic
e
s

Bucket Type

Consistent Hashing-b0-10

ASURA

SUORA

Bucket Type

(a) Data distribution under different patterns
(10,000 nodes, 1PB, 3 replicas)

0

5

b0 b1 b2 b3 b4

1
0

-6
×

D
a

Bucket Type

0

200

400

600

800

1000

1200

b0 b1 b3 b4

1
0

-6
×

D
a
ta

 I
te

m
s

o
n

 B
uc
ke
ts

b2

Consistent Hashing-b0-10
ASURA

SUORA

Bucket Type

(b) Data distribution under different patterns
(100,000 nodes, 100PB, 1 replica)

0

1

2

3

4

5

6

7

8

500 3000 5500 8000

1
0

-3
×

A
v

er
a

g
e

D
a

ta
 I

te
m

s
a

t
E

a
ch

 N
o

d
e

Node Number

SUORA-v0

SUORA-v1

SUORA-v2

SUORA-v3

SUORA-v4

0

5

10

15

20

25

30

35

40

45

50

5,000 30,000 55,000 80,000

1
0

-3
×

A
v

er
a

g
e

D
a

ta
 I

te
m

s
a

t
E

a
ch

N
o

d
e

Node Number

SUORA-v0

SUORA-v1

SUORA-v2

SUORA-v3

SUORA-v4

Consistent hashing-b0-10-v0

Consistent hashing-b0-10-v4

ASURA-v0

ASURA-v4

Consistent hashing-v0

Consistent hashing-v4

ASURA-v0

ASURA-v4

(c) Average data amount at each node with differ-
ent hotness value (10,000 nodes, 1PB, 3 replicas)

0

1

2

3

4

5

6

7

8

500 3000 5500 8000

1
0

-3
×

A
v
er

a
g
e

D
a
ta

 I
te

m
s

a
t

E
a
ch

N
o

d
e

Node Number

SUORA-v0

SUORA-v1

SUORA-v2

SUORA-v3

SUORA-v4

Consistent hashing-v0

Consistent hashing-v4

ASURA-v0

ASURA-v4

0

5

10

15

20

25

30

35

40

45

50

5,000 30,000 55,000 80,000

1
0

-3
×

A
v
er

a
g
e

D
a
ta

 I
te

m
s

a
t

E
a
ch

 N
o

d
e

Node Number

SUORA-v0

SUORA-v1

SUORA-v2

SUORA-v3

SUORA-v4
Consistent hashing-b0-10-v0

Consistent hashing-b0-10-v4

ASURA-v0

ASURA-v4

(d) Average data amount at each node with dif-
ferent hotness value (100,000 nodes, 100PB, 1
replica)

0 200 400 600 800 1000

IOZONE-read

IOR-read

SUORA-FIO-randrw

SUORA-FIO-randwrite

SUORA-FIO-randread

ASURA

Consistent Hashing-b0-10

Average Read Throughput (MB/s)

Algorithm

(e) Average read throughput under different pat-
terns (100,000 nodes, 100PB, 1 replica)

0 200 400 600 800 1000

SUORA-5:4:3:2:2

SUORA-6:6:9:9:4

ASURA-5:4:3:2:2

ASURA-6:6:9:9:4

Consistent hashing-b0-10-5:4:3:2:2

Consistent hashing-b0-10-6:6:9:9:4

Average Read Throughput (MB/s)

Config

(f) Average read throughput under different con-
figuration (100,000 nodes, 100PB, 1 replica)

Fig. 11: Data distribution and throughput for different algorithms with algorithm analysis and simulation

the number of hotness threshold types. The SUORA algorithm

can place data according to the hotness and bucket threshold.

Consider the various throughput of devices and read times of data,

the average read throughput of the storage is:

Taverage =

∑m−1
i=0

∑u−1
j=0 di × pij × hij

∑m−1
i=0

∑u−1

j=0
di×pij×hij

ti

(3)

Figure 11 shows the results of different algorithms, where each

data size is set to 64MB. Except in Figure 11(f), every bucket has

the same node number. ASURA and consistent hashing algorithms

do not distinguish buckets but use the same node setting. Figures

11(a)-(d) show final data distribution of different algorithms. In

Figure 11(a), as each data item has 64MB size, the total data

amount is about 47 million. For consistent hashing-1, it evenly

places data on devices in each bucket (nearly 9 million data) but

stores excessive data on devices with less capacity. The ASURA

algorithm proportionally distributes data among different devices

according to the capacity, but does not consider the performance.

For SUORA, it initially places data on buckets b0, b1 and b2. As

each bucket has one data replica, the data amount on every bucket

is nearly 15.5 million. According to the data-access patterns in

Table 5 and migration strategy, hot data (nearly 6% of total data

amount) will move from original bucket b2 to new buckets b3
or b4. Thus, in the final data distribution, SUORA has different

data amount on buckets. Similarly, Figure 11(b) show results in

the case of 100,000 nodes and 100PB data. The difference is that

for consistent hashing-b0-10, each physical node has 10 virtual

nodes in bucket b0. It means that the data amount on bucket b0
will be 10 times of that on buckets b1 to b4. Since one replica

is used, SUORA will migrate more data from bucket b0 to other

buckets because of hotness. Compared with other two algorithms,

SUORA can place data on buckets according to device capacity

and life-time, while mapping the frequently read data on buckets

with higher throughput.

For SUORA, there are few fluctuations for data distribution

when access patterns are changed as Table 5 (the series “SUORA”

y error bars illustrate changes of data amount moved from slow

buckets to fast buckets). The later evaluations on Sheepdog

storage system further show the performance efficiency under

different workload patterns. To make the algorithm more adaptive

to workload changes, the thresholds can be tuned during data

placement. For instance, by tracing and analyzing data accesses

in previous time window, SUORA can periodically adjust the

thresholds for a VDI on the gateway node. As the tuning will

make the threshold values change over time, the client may not

locate desired data with the data placement decision. SUORA will

find the data by searching it among fast buckets in the clockwise

direction. Moreover, we can store pre-known hot data in fast

buckets according to the hotness and bucket thresholds. It will

make full use of SCMs at initial data distribution while avoiding

future data movement.

To further understand the algorithm uniformity, we count the

final average data amount on each node under FIO-randread

pattern, as shown in Figure 11(c)-(d). For SUORA, it initially

places data among devices in buckets with respect to capacity,

as described in Equation (2). In our setting, each bucket consists

of one type of devices. Thus, the data will be evenly distributed

on devices of bucket. After data migration, the moved data will be

placed on new bucket nodes according to equation (2). For original

buckets, the remaining data on each device depends on the number

of moved data. The data move according to bucket thresholds from

v0 = 0 to v4 = 306, e.g., SUORA-v0 means data placement with

hotness value between v0 = 0 and v1 = 1 in SUORA. The similar

denotation is used for ASURA and consistent hashing algorithms.

It can be seen that SUORA achieves a more efficient and

adaptive distribution compared with others. It distributes most

frequently read data (hotness > v4) in b4 bucket (node number is

from 8, 000 to 10, 000 and from 80, 000 to 100, 000, respectively)

to improve the read performance. In Figure 11(c), both b0, b1

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 12

TABLE 5: Data access patterns

FIO-randread3 pct. % 55.58 19.8 7.99 9.93 6.70

hotness 01 1-252 26-280 281-305 306-659

FIO-randrw
pct. % 65 17.73 8.28 4.76 4.23

hotness 0 1-18 19-280 281-300 301-792

IOZONE-read
pct. % 64.28 18.29 4.49 7.67 5.27

hotness 0 1-20 21-50 51-75 76-812

IOR-read
pct. % 63.94 16.33 7.41 8.25 4.07

hotness 0 1-20 21-100 101-150 151-819

1 0 means 55.58% data are not accessed.
2 1-25 means there is 19.8% data with the read number between 1 and 25,

which is also used as setting for bucket threshold values in this pattern.
3 In FIO-randread trace, the bucket thresholds of {b0, b1, b2, b3, b4} can

be set to {0, 1, 26, 281, 306}.

and b2 have data with different read frequency. It is because that

SUORA places replicas on them and only migrates data from b2
to b3 or b4 until the hotness exceeds v3. This significantly reduces

the data movement amount. In contrast, consistent hashing evenly

places the data among all devices regardless of hotness. Although

there is a little fluctuation in data placement for frequency, the

ASURA algorithm lacks an effective method to distinguish differ-

ent devices.

Figure 11(e)-(f) show the average read throughput under

different patterns and configurations. Obviously, the average per-

formance is related with the throughput of each bucket. In Figure

11(e), it can be seen that SUORA achieves the best performance.

The average read throughput of SUORA is nearly improved from

3.9 to 8.5 times compared to consistent hashing and ASURA

algorithms. This is because that SUORA uses the devices with the

best performance to store data that are read most. The throughput

of consistent hashing and ASURA algorithms is uncorrelated with

data patterns. For them, the performance is mainly affected by

virtual node numbers and device capacity, respectively. Figure

11(f) shows the performance when using different configurations

under FIO-randwrite pattern. For example, SUORA-6:6:9:9:4

means the ratio of node number in each bucket is 6:6:9:9:4. Except

the ASURA algorithm, the change of node configuration does not

affect the overall performance. Evaluation results show that the

SUORA algorithm significantly improves the overall performance

in different scenarios.

4.4 Data Migration Evaluation

In this subsection, we simulate the data migration of different

algorithms. For SUORA, data movement can occur in one bucket

for node addition and removal, or between buckets due to the

change of hotness. We conducted two sets of tests and analyzed

the cost of data movement.

For the first set of tests, we use the setting in bucket b0, where

we assume to have 100 nodes and 1 million data items. Figure

12(a) shows the data movement when a new node is added for

different algorithms. We calculate the total number of data that

will move to the newly added node, as seen in the vertical axis.

These tests indicate that all algorithms achieved similar results.

Consistent hashing and CRUSH (straw buckets) algorithms evenly

distribute data across all nodes, and they can achieve small data

movement when node changes. Suppose there are u nodes, nearly

1/(u+1) data will move to the newly added node. Compared with

these two algorithms, SUORA and ASURA use pseudo-random

functions to distribute data on nodes. They achieved small data

movement too. Similar results can be observed when a node is

removed.

For the second set of tests, we evaluate data movement

between buckets in SUORA. We use five buckets (from b0 to b4,

0

2

4

6

8

10

Consistent

Hashing-100

CRUSH ASURA SUORA

1
0

-3
×

 D
a

ta
 I

te
m

s
M

o
v

ed

Algorithms

0

1

2

3

4

1 replica 2 replica 3 replica

1
0

-5
×

D
a

ta
 I

te
m

s
m

o
v

ed

SUORA Algorithm

(a) Data movement when a node is
added

0

2

Consistent

Hashing-100

Straw Buckets ASURA SUORA

1
0

-3
×

Algorithms

0

1

2

3

4

1 replica 3 replica

1
0

-5
×

 D
a

ta
 I

te
m

s
M

o
v

ed

2 replica
SUORA Algorithm

(b) Data movement using different
replicas

Fig. 12: The cost of data movement for different algorithms

the same as in Section 4.3) and 1 million data items for initial data

distribution. We calculate the total number of data that will move

between buckets under the IOR-read pattern. Figure 12(b) shows

the results using different replicas. It can be seen that there is a

large amount of data movement with one replica, which is about

35% of the total amount of data. The high cost is because all data

are initially placed in the b0 bucket and will move to other buckets

when they are accessed more often. On the contrary, with the

increase of the number of replicas, there are significant reduction

of data movement cost. For instance, when using three replicas, the

amount of data movement is less than 12.5% of the total amount

of data, which is nearly one third of the case with one replica. The

significant reduction of data movement is because SUORA does

not migrate data to a bucket if the target bucket already has a copy

of it. These tests verified that SUORA can use replication strategy

to achieve efficient data movement between buckets with a small

amount of cost.

4.5 FIO Performance

We further tested the read performance of different algorithms

with FIO benchmark on the 30-node Sheepdog storage system. We

used multiple virtual machine clients on different nodes to launch

FIO benchmark. For SUORA algorithm, the nodes are divided into

three buckets, including two HDD buckets and one SSD bucket.

More specifically, their thresholds are set as {0, 1, 30} according

to the statistics in Table 5. SUORA initially places data on HDD

buckets, where each bucket has one copy of stored data. The data

distribution among devices in bucket complies with equation (2).

According to the data-access patterns, nearly 20% of total data

moved from HDD buckets to SSD bucket at the end of benchmark.

Figure 13(a) and (b) report the FIO test results of different

algorithms. For comparison, we also test the I/O performance of

Sheepdog by only using 10 SSD nodes as storage nodes, namely

consistent hashing-SSD. We run 8 clients on different nodes, in

which each client launches one FIO instance with 8 jobs and

request sizes from 4KB to 1MB. The bandwidth was aggregated

by adding each client. As seen from the figures, the performance

of all algorithms increases with the increase of request size.

Consistent hashing and CRUSH achieved the similar bandwidth

because both of them distribute data evenly on different nodes.

Compared to consistent hashing, SUORA and consistent hashing-

SSD achieved better bandwidth by 112% to 246%. The reason is

that they can take advantage of the performance benefit of SSDs.

For SUORA, it can move hot data to fast buckets, and access the

data replica from the SSD devices. The performance advantage

of SUORA is as expected. These tests and observations confirm

the efficiency of the SUORA algorithm in a heterogeneous storage

system.

The SUORA algorithm uses hotness table to detect hot data

and access them from fast buckets. To validate the effectiveness,

we use unbalanced data accesses as the workload for evaluation.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 13

0

400

800

1200

1600

2000

4K 64K 512K 1024K

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request Size

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

0

400

800

1200

1600

2000

2400

4K 64K 512K 1024K

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request Size

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

(a) Random read performance

0

400

4K 64K 512K 1024K

A
g

g
r

Request Size

0

400

800

1200

1600

2000

2400

4K 64K 512K 1024K

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request Size

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

(b) Sequential read performance

0

400

800

1200

1600

2000

2400

0 0.5 1.25 1.75 2.25

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Zipf Distribution

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

0

400

800

1200

1600

2000

2400

0 0.5 1.25 1.75 2.25

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Zipf Distribution

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

(c) Ramdom read with increasing skewness

0

400

800

1200

1600

2000

2400

0 0.5 1.25 1.75 2.25

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Zipf Distribution

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

0

400

800

1200

1600

2000

2400

0 0.5 1.25 1.75 2.25

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Zipf Distribution

Consistent hashing
CRUSH (straw buckets)
SUORA
Consistent hashing-SSD

(d) Sequential read with increasing skewness

0

50

100

150

200

250

fileserver varmail webserver videoserver randomrw

Av
er

ag
e l

ate
nc

y (
ms

)

Applications

Consistent hashing

CRUSH (straw buckets)

SUORA

Consistent hashing-SSD

0

50

100

150

200

250

Av
er

ag
e l

ate
nc

y (
ms

)

Applications

Consistent hashing

CRUSH (straw buckets)

SUORA

SUORA-SSD

fileserver varmail webserver videoserver randomrw

(e) Average latency

0

50

100

150

200

250

fileserver varmail webserver videoserver randomrw

A
v

er
a

g
e

la
te

n
cy

(m
s)

Applications

Consistent hashing

CRUSH (straw buckets)

SUORA

SUORA-SSD

Consistent hashing

CRUSH (straw buckets)

SUORA

SUORA-SSD

fileserver varmail webserver videoserver randomrw
Applications

0

1000

2000

3000

4000

5000

6000

IO
PS

 (o
p/s

)

(f) I/O operations per seconds

Fig. 13: I/O Performance comparison for algorithms under different workloads and applications. (a)-(d) are FIO read performance with

different request sizes or skewness workloads; (e) and (f) are file system application performance with mixed read/write workloads.

We run FIO to measure read operations with increasingly skewed

data access distribution, namely Zipf distribution [38]. The FIO

benchmark generates more skewed data distribution with the

increase of Zipf parameter, meaning that a proportion of data are

more frequently accessed than others.
Figure 13(c) and (d) show the read performance with 512KB

request size in different Zipf distributions. It can be observed that

both SUORA and consistent hashing-SSD achieved better perfor-

mance. Moreover, SUORA has higher bandwidth with increasing

skewness. This is because when more data become hot, SUORA

has more chances to access the hot data replicas on fast buckets.

Thus the performance of SUORA in a heterogeneous cluster is

close to consistent hashing-SSD. On the other hand, consistent

hashing evenly distributes data among different storage nodes.

Although there is slow performance increase with larger skewness,

consistent hashing can not leverage the benefits of SSDs well.

4.6 File System Workload Evaluation

For performance evaluation, we also conduct tests with the

Filebench benchmark, which emulates file system level workloads

of different real applications. We selected five types of applications

in Filebench with the specification described in Table 6, where

WF means reading or writing a whole file. From fileserver to

videoserver applications, we emulated sequential access to files

(or append to files). For the randomrw application, we emulated

random access to files (includes partial write). We generated

various data sets with repeated accesses, and set read/write ratio

from 1:1 to 10:1. For the watermarks, we set Wu and Wl to 20%
and 10% to trigger cold data movement. We launched one client

running on one virtual machine on the Sheepdog.

TABLE 6: The specification of emulated file system workloads

Application Average File Size I/O size Data Access
fileserver 256KB WF sequential
varmail 32KB WF sequential
webserver 256KB WF sequential
videoserver 1GB 1MB sequential
randomrw 128KB 64KB random

Figure 13(e) and (f) report the performance results of different

algorithms under five workloads. We also test SUORA-SSD for

comparison, which only uses the SSD bucket nodes for storage.

As seen from these figures, SUORA achieved close performance

to SUORA-SSD, in which both of them behaved better than other

algorithms. This is because SUORA can distinguish the perfor-

mance difference between slow and fast buckets. It will move

data among buckets and access hot data from fast buckets, such

as SSDs. SUORA can also improve the entire I/O performance

while maintaining load balance for data movement by considering

device capacity. In contrast, the consistent hashing and CRUSH

algorithms evenly placed data among different devices without

being aware of their distinct characteristics. Additionally, SUORA

favored high performance like SUORA-SSD on the randomrw

application, which accessed data with small and random I/O sizes.

The results further confirm the efficacy of the SUORA algorithm

in a heterogeneous environment.
For write traffic, the gateway in Sheepdog calculates the target

nodes with distribution algorithm, and sends write requests to

all of the target nodes. As the virtual machines cannot share the

same VDI at the same time, there is no write-write conflicts. The

write optimization is often more complicated in storage systems

due to object cache layer, replica consistency, asynchronous I/O

behaivor, etc. In our evaluation, it was also observed that SUORA

achieved better access performance over the existing replication

schemes due to the fact that it well considers distinct throughput

of heterogeneous devices.

4.7 System Overhead

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512

 B

a
n

d
w

id
th

 (M
B

/s
)

Number of processes

SUORA without hotness table

SUORA

Fig. 14: System overhead for sequential read

The SUORA algorithm uses hotness table to identify hot data

and locate the data on buckets. When reading data, it maintains

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, 2022 14

read counters and compare the counters with bucket thresholds.

Besides this, SUORA updates the hotness table for cold data

movement. To measure the overhead caused by these operations,

we evaluated the impact of hotness table in SUORA.

Figure 14 shows the sequential read performance with one

client running on Sheepdog, which uses two HDD buckets and

one SSD bucket as storage nodes. The case of SUORA without

hotness table means the hotness table is disabled so that the data

are directly stored in the bucket. The results show that the overhead

of maintaining hotness table is very minor and negligible.

5 CONCLUSIONS

The adoption of new non-volatile memory devices has intro-

duced significant challenges for data management in large-scale

parallel/distributed file systems. In this research, we propose a

novel data distribution algorithm called SUORA, which considers

distinct device features (capacity, performance and life-time) and

data-access patterns (hotness and learned thresholds) to uniformly

place data cross a hybrid and tiered storage cluster. It combines

data replication with migration to make full use of storage-class

memory devices for performance efficiency, while maintaining

load balance and very small movement cost. Evaluation results

show that SUORA achieved highly efficient data mapping and

largely improved the I/O bandwidth compared against other data

distribution algorithms in a heterogeneous environment.

ACKNOWLEDGMENTS

This research is supported in part by the National Science Founda-

tion under grant CCF-1718336, CCF-1853714 and CNS-1817094.

REFERENCES
[1] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large

computing clusters,” in Proc. FAST Conf., 2002, pp. 231–244.
[2] S. A. Weil, S. A. Brandt, E. L. Miller, and D. D. E. Long, “Ceph:

A scalable, high-performance distributed file system,” in Proc. USENIX
Oper. Syst. Des. Implementation, 2006, pp. 307–320.

[3] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file system,” in
Proc. ACM Symp. Oper. Syst. Principles, 2003, pp. 29–43.

[4] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran,
M. Asheghi, and K. Goodson, “Phase change memory,” Proc. IEEE,
vol. 98, pp. 2201–2227, 2010.

[5] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L. Wang, and
Y. Huai, “Spin-transfer torque switching in magnetic tunnel junctions
and spin-transfer torque random access memory,” Journal of Physics:
Condensed Matter, vol. 16, no. 19, 2007.

[6] “Intel and Micron produce breakthrough memory technology,”
2015. [Online]. Available: https://newsroom.intel.com/news-releases/
intel-and-micron-produce-breakthrough-memory-technology/

[7] S. He and X. Sun, “A cost-effective distribution-aware data replication
scheme for parallel I/O systems,” IEEE Trans. Comput., vol. 67, no. 10,
2018.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy, “Consistent hashing and random trees: distributed caching proto-
cols for relieving hot spots on the World Wide Web,” in Proc. Annual ACM
Symp. Theory Comput., 1997.

[9] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH:
Controlled, scalable, decentralized placement of replicated data,” in Proc.
ACM/IEEE Conf. Supercomputing, 2006, pp. 654–663.

[10] “Sheepdog Project,” 2018. [Online]. Available: https://sheepdog.github.
io/sheepdog/

[11] “Glusterfs file system project,” 2018. [Online]. Available: http://www.
gluster.org/

[12] S. He, X. Sun, and A. Haider, “HAS: Heterogeneity-aware selective layout
scheme for parallel file systems on hybrid servers,” in Proc. Int. Paralel
Distrib. Process. Symp., 2015.

[13] S. Ma, H. Chen, Y. Shen, H. Lu, B. Wei, and P. He, “Providing hybrid
block storage for virtual machines using object-based storage,” in Proc.
IEEE ICPDS Conf., 2014, pp. 150–157.

[14] J. W. Hsieh, L. P. Change, and T. W. Kuo, “Efficient identification of hot
data for flash memory storage systems,” ACM Trans. Storage, vol. 2, no. 1,
pp. 22–40, 2006.

[15] K. I. Ishikawa, “ASURA: Scalable and uniform data distribution algo-
rithm for storage clusters,” arXiv preprint arXiv:1309.7720, 2013.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Proc. MSST Conf., 2010, pp. 1–10.

[17] A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
age system,” ACM SIGOPS Oper. Syst. Review, vol. 44, no. 2, pp. 35–40,
2010.

[18] A. Chawla, B. Reed, K. Juhnke, and G. Syed, “Semantics of caching
with SPOCA: A stateless, proportional, optimally-consistent addressing
algorithm,” in Proc. USENIX ATC Conf., 2011.

[19] J. Lamping and E. Veach, “A fast, minimal memory, consistent hash
algorithm,” in arXiv preprint arXiv:1406.2294, 2014.

[20] M. Matsumoto and T. Nichimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.

[21] B. Welch and G. Noer, “Optimizing a hybrid SSD/HDD HPC storage
system based on file size distributions,” in Proc. MSST Conf., 2013.

[22] J. Zhou, W. Xie, Q. Gu, and Y. Chen, “Hierarchical consistent hashing for
heterogeneous object-based storage,” in Proc. ISPA Conf., 2016.

[23] E. Kakoulli and H. Herodotou, “OctopusFS: A distributed file system with
tiered storage management,” in Proc. ACM Int. Conf. Manage. Data, 2017.

[24] S. He, Y. Wang, X. Sun, and C. Xu, “HARL: Optimizing parallel file
systems with heterogeneity-aware region-level data layout,” IEEE Trans.
Comput., vol. 66, no. 6, 2017.

[25] S. He, Z. Li, J. Zhou, Y. Yin, X. Xu, Y. Chen, and X. Sun, “A holistic
heterogeneity-aware data placement scheme for hybrid parallel I/O sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4, 2020.

[26] J. Zhou, Y. Chen, W. Xie, D. Dai, S. He, and W. Wang, “Prs: A pattern-
directed replication scheme for heterogeneous object-based storage,”
IEEE Trans. Comput., vol. 69, no. 4, 2019.

[27] J. Zhou, W. Xie, J. Noble, K. Echo, and Y. Chen, “SUORA: A scalable and
uniform data distribution algorithm for heterogeneous storage systems,” in
Proc. NAS Conf., 2016.

[28] K. Ganesh, Y. Kim, M. Debnath, S. Park, and J. Lee, “LAWC: Optimizing
write cache using layout-aware I/O scheduling for all flash storage,” IEEE
Trans. Comput., 2017.

[29] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer, “High perform-
ing cache hierarchies for server workloads: Relaxing inclusion to capture
the latency benefits of exclusive caches,” in Proc. HPCA Conf., 2015.

[30] Q. Li, L. Shi, C. Gao, Y. Di, and C. Xue, “Access characteristic guided
read and write regulation on flash based storage systems,” IEEE Trans.
Comput., vol. 67, no. 12, 2018.

[31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[32] D. Park and D. Du, “Hot data identification for flash-based storage sys-
tems using multiple bloom filters,” in Proc. MSST Conf., 2011.

[33] W. Xie, Y. Chen, and P. C. Roth, “Exploiting internal parallelism for
address translation in solid-state drives,” ACM Trans. Storage, vol. 14,
no. 4, pp. 1–30, 2018.

[34] M. T. Ozsu and P. Valduriez, “Principles of distributed database systems,”
Springer Science and Business Media, Tech. Rep., 2011.

[35] “The FIO Tool Benchmark,” 2015. [Online]. Available: http://freecode.
com/projects/fio

[36] “The File System Benchmark,” 2018. [Online]. Available: http:
//sourceforge.net/projects/filebench

[37] “Simd-oriented fast mersenne twister: a 128-bit pseudorandom number
generator,” 2017. [Online]. Available: http://www.math.sci.hiroshima-u.
ac.jp/~m-mat/MT/SFMT/index.html

[38] “Zipf Distribution,” 2017. [Online]. Available: https://en.wikipedia.org/
wiki/Zipf’s_law.

Jiang Zhou is an Associate Professor in the
Institute of Information Engineering, Chinese
Academy of Sciences. His research interests
include file and storage systems, parallel and
distributed computing, metadata management,
I/O optimization, and cloud computing.

Yong Chen is an Associate Professor and Di-
rector of the Data-Intensive Scalable Computing
Laboratory in the Computer Science Department
of Texas Tech University. His research interests
include data-intensive computing, parallel and
distributed computing, high-performance com-
puting, and cloud computing.

Mai Zheng is an Assistant Professor at Iowa
State University. His research interests include
file systems, non-volatile memories, key-value
stores, data infrastructures, data-intensive com-
puting.

Weiping Wang received the Ph.D. degree in
computer science from Harbin Institute of Tech-
nology, China, in 2008. He is a Professor in
the Institute of Information Engineering, Chinese
Academy of Sciences. His research interests in-
clude database and storage systems.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3223302

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on December 15,2022 at 22:38:39 UTC from IEEE Xplore. Restrictions apply.

https://newsroom.intel.com/news-releases/intel-and-micron- produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron- produce-breakthrough-memory-technology/
https://sheepdog.github.io/sheepdog/
https://sheepdog.github.io/sheepdog/
http://www.gluster.org/
http://www.gluster.org/
http://freecode.com/projects/fio
http://freecode.com/projects/fio
http://sourceforge.net/projects/filebench
http://sourceforge.net/projects/filebench
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
https://en.wikipedia.org/wiki/Zipf's_law.
https://en.wikipedia.org/wiki/Zipf's_law.

	Introduction
	Background and Related Work
	The SUORA Algorithm
	Algorithm Model
	Heterogeneous Devices Management
	Data Mapping in Heterogeneous Devices
	Data Movement Between Devices

	Algorithm Design
	Hotness Table
	Data Migration
	Migration for load balance
	Migration for node membership change

	Random Number Functions
	Replication Algorithm
	Algorithm Implementation

	Evaluation
	Algorithm Analysis
	Compute Time and Memory Footprint
	Data Distribution Analysis
	Data Migration Evaluation
	FIO Performance
	File System Workload Evaluation
	System Overhead

	Conclusions
	Biographies
	
	
	
	

