2022 IEEE High Performance Extreme Computing Conference (HPEC) | 978-1-6654-9786-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/HPEC55821.2022.9926292

RaiderSTREAM: Adapting the STREAM
Benchmark to Modern HPC Systems

Michael Beebe*, Brody Williams*T, Stephen Devaney*, John Leidel*¥, Yong Chen*, Steve Poole?

*Texas Tech University, Lubbock, Texas
TNVIDIA Corporation, Santa Clara, California
Tactical Computing Laboratories, Muenster, Texas
§Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract—Sustaining high memory bandwidth utilization is a
common bottleneck to maximizing the performance of scien-
tific applications, with the dominating factor of the runtime
being the speed at which data can be loaded from memory
into the CPU and results can be written back to memory,
particularly for increasingly critical data-intensive workloads.
The prevalence of irregular memory access patterns within
these applications, exemplified by kernels such as those found
in sparse matrix and graph applications, significantly degrade
the achievable performance of a system’s memory hierarchy. As
such, it is highly desirable to be able to accurately measure
a given memory hierarchy’s sustainable memory bandwidth
when designing applications as well as future high-performance
computing (HPC) systems. STREAM is a de facto standard
benchmark for measuring sustained memory bandwidth and
has garnered widespread adoption. In this work, we discuss
current limitations of the STREAM benchmark in the context of
high-performance and scientific computing. We then introduce a
new version of STREAM, called RaiderSTREAM, built on the
OpenSHMEM and MPI programming models in tandem with
OpenMP, that include additional kernels which better model
irregular memory access patterns in order to address these
shortcomings.

Index Terms—Benchmarking, Memory Bandwidth, Irregular
Memory Access Patterns, High-Performance Computing

I. INTRODUCTION

In recent decades, the STREAM benchmark [16], [17]
has become the industry standard for measuring sustainable
memory bandwidth. The STREAM benchmark is a simple, yet
powerful synthetic benchmark program that measures memory
bandwidth (in MB/s) and the corresponding computation rate
for simple vector kernels [16]. However, there are two primary
limitations to the current STREAM benchmark that make
it less applicable to modern high-performance computing.
First, the STREAM vector kernels only demonstrate sequential
memory access patterns and therefore provide an estimation
of theoretical peak performance only in “ideal conditions”,
where memory accesses are sequential and consecutive. Such
conditions often do not hold nowadays on HPC systems
because a wide spectrum of workloads, such as sparse matrix,
graph computing, data mining, data analysis, etc., make irreg-
ular memory accesses a new norm. Furthermore, STREAM
was originally designed to measure the achievable memory
bandwidth of a single-node system and is thus parallelized
using only OpenMP [19]. Arguably, given the increasing scale
and complexity of HPC systems, we are often much more

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

interested in understanding the memory subsystem perfor-
mance as a coherent whole infrastructure, instead of disjoint,
individual nodes.

In this work, we introduce a new design and associated
implementation of the STREAM memory bandwidth bench-
mark [7] that better models real-world HPC scenarios (called
RaiderSTREAM). The fundamental idea is two-fold. First,
the new benchmark considers irregular memory accesses as
a norm, characterizes such behaviors as part of its DNA,
and measures the memory subsystem performance given such
behaviors. Second, the new RaiderSTREAM benchmark fo-
cuses on measuring the collective memory bandwidth across
many nodes to mimic real-world HPC workloads. The end
result could be a much more realistic and useful benchmark
tool for HPC systems. Given this new design philosophy,
we provide a new implementation that specifically focuses
on two representative memory access patterns, gather and
scatter. In other words, our newly introduced benchmark
contains gather and scatter kernels that are constructed to
mimic the irregular memory accesses patterns characteristic
of scientific computing. Moreover, we have added benchmark
variants built upon the OpenSHMEM [21] and MPI [11]
programming models, together with OpenMP [19], to gauge
aggregate memory bandwidth performance as a collective,
coherent memory subsystem instead of separate and individual
nodes.

The contribution of this research and development is sum-
marized as follows. First, we review and identify limitations
of the existing, widely-used STREAM benchmark in the
context of modern HPC workloads. Second, we provide a
new benchmark design with considering both irregular and
regular memory accesses, as well as considering memory
subsystem collectively. Third, we provide an implementation
for gather and scatter patterns and their variants. The new
implementation is publicly available from [7].

II. BACKGROUND AND MOTIVATION

For decades, performance improvements in CPUs have been
realized at a much higher rate than those to memory subsys-
tems. This phenomenon, wherein application performance is
limited by a given system’s sustainable memory bandwidth
capabilities, is commonly referred to as the memory wall
problem [25]. When the so-called memory wall is reached,

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

application execution time becomes almost entirely dependent
on the speed at which the memory system can send data to
the CPU, as opposed to the computational capabilities of the
CPU itself. Many applications today demonstrate this effect.
As a result, continued CPU performance improvements alone
do not necessarily yield system-wide performance boosts. This
is also known as the Von Neumann bottleneck effect [12]. Due
to the memory wall problem and its ramifications on system
performance, continued improvement of sustainable memory
bandwidth is critical for continued system performance in-
creases. As a consequence of this need, we have seen a rise
in different memory technologies that seek to improve mem-
ory bandwidth, particularly in high-performance computing
environments. Some examples of these technologies include
3D stacked memory devices such as high bandwidth memory
(HBM) [14] and hybrid memory cubes (HMC) [20].

The desire to design improved memory technologies im-
plies the need for benchmarks that are capable of accurately
measuring “real-world” sustainable memory bandwidth when
evaluating a system’s performance capabilities and identifying
bottlenecks, particularly for memory-intensive applications.
Benchmarks such as High-Performance LINPACK (HPL) [10]
and its variants can be considered misleading with respect to
memory behaviors, and thus, a system’s overall performance
because they apply sequential kernels that result in few cache
misses and fail to stress the system’s memory hierarchy
or indicate DRAM performance. HPCG (High Performance
Conjugate Gradients) benchmark has been introduced to over-
come the limitations of HPL and has attracted increasing
attention since its debut. However, the HPC community still
lacks a powerful benchmark for memory subsystems that can
characterize a variety of real-world HPC workloads’ access
patterns.

The STREAM benchmark has become the de facto mem-
ory bandwidth benchmark and garnered widespread adop-
tion. However, the original STREAM benchmark has two
primary limitations that make it unsuitable for modern high-
performance computing systems and scientific applications.
First, the original STREAM kernels demonstrate only se-
quential memory access patterns and therefore provide an
estimation of theoretical peak performance only in “ideal
conditions”. However, modern scientific codes most often
exhibit real-world behavior that is characterized by irregular
memory access patterns, which are not well modeled by the
current benchmark implementation. As a memory subsystem’s
bandwidth performance can be expected to vary significantly
different across memory access patterns, benchmark kernels
that replicate these different behaviors would provide a more
realistic understanding of a given system’s performance capa-
bilities. Second, STREAM was originally designed to measure
the achievable memory bandwidth of a single-node system and
is thus parallelized using OpenMP. This is a limitation with
respect to modern HPC as most large-scale HPC applications
are run across multiple nodes in tandem. It is therefore desir-
able to have to have a variation of STREAM that can measure
aggregate memory bandwidth performance across nodes in an
HPC cluster. In section III, we detail the contributions we have

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

made to the STREAM benchmark in order to rectify these
limitations.

III. DESIGN AND IMPLEMENTATION

In this section, we introduce the design and implementation
of RaiderSTREAM in order to make a memory subsystem
benchmark more applicable to modern HPC systems.

A. Irregular Memory Access Patterns

The first contribution of RaiderSTREAM is the introduction
of new benchmark kernels that mimic irregular memory access
patterns. One of the limitations of the STREAM benchmark is
that the kernels are sequential, giving users of the benchmark
a picture of their system’s “best case scenario” memory band-
width. In our new design, we introduce irregularity by way
of gather and scatter [8] variations of the original STREAM
kernels. Our gather and scatter kernels are implemented in a
nondeterministic fashion through utilization of randomized in-
dex arrays. The index arrays are populated with non-repeating
values in order to avert race conditions. This nondeterminism,
in turn, is used to simulate sparsity, which is a common
characteristic of data-intensive HPC workloads. Herein, we
utilize these randomly populated IDX arrays, passed as array
subscripts, to read from and write randomly to otherwise
contiguous memory spaces.

The gather and scatter benchmark kernels are similar in
that they both provide insight into the real-world performance
one can expect from a given system in a scientific computing
setting. However, there are differences between these two
memory access patterns that should be understood. The gather
memory access pattern is characterized by randomly indexed
loads coupled with sequential stores. This can help give us
an understanding of read performance from sparse datasets
such as arrays or matrices. The scatter memory access pattern
can be considered the inverse of its gather counterpart, and is
characterized by the combination of sequential loads coupled
together with randomly indexed stores. This pattern can give
us an understanding of write performance to sparse datasets.
Fig. 1 illustrates the gather and scatter irregular memory access
patterns through an example, where the index arrays have
values of 3, 7, 2, and 0.

0 1 2 3 & & 6 7 8 9

(Gater | [3 [5] 6 o [7]2]0]2]s]1]

3 7|2 0 Values:‘9‘2 6 3‘

M% -

‘ScatterHS 5‘6 9‘7‘2‘9‘2‘3‘1‘

1DX:

0 1 2 3 & & 6 7 8]

Fig. 1: Gather and Scatter Irregular Memory Access Patterns

B. Multi-Node Support

The second contribution of RaiderSTREAM is the introduc-
tion of multi-node support for the STREAM benchmark. One

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

of the limitations of the original STREAM implementation is
that it was parallelized only using OpenMP and is thus limited
to running on a single node. However, HPC systems are be-
coming increasingly heterogeneous and consist of many CPU
sockets across many nodes. As such, when evaluating an HPC
system’s performance capabilities, it is highly desirable for
system administrators and architects to be able to measure the
scalability of memory bandwidth utilization for a given system
as the number of nodes being used for a particular problem
is increased.In order to address this need, we introduce two
additional kernels that incorporate the MPI and OpenSHMEM
parallel programming paradigms, allowing RaiderSTREAM to
run across multiple nodes using both conventional distributed
memory and partitioned global address space (PGAS) pro-
gramming models, respectively. Notably, our modified kernels
do not utilize any inter-process communication (IPC) routines
such as MPI__SEND or SHMEM_PUT during execution because
they have a much higher and disproportionate latency. Doing
so results in the benchmark execution time being dominated
by inter-process communication, dwarfing the significance of
the system’s memory bandwidth capabilities in the bench-
mark’s reported output. Instead, as shown in Fig. 2, we use

oshrun -np 4 -DSTREAM_ARRAY_SIZE=1000000

Jstream
250,000 250,000 250,000 250,000
elements elements elements elements
1 H t
afj] = cfj] afj] = cfi] alj] = cfi] afj] = cfj]
PE O PE1 PE 2 PE3

Fig. 2: Illustration of Multi-Node Support

MPI and OpenSHMEM to distribute segments of the arrays
across a user-specified number of processing elements (PEs),
effectively leveraging these programming models as a resource
allocator. During benchmark execution, each PE utilizes its
own array segment for kernel computation and writes its result
back to the same array segments. Users can utilize a job
scheduler such as Slurm [13] or compiler flags to customize
with a fine degree of granularity how the benchmark is run.
For example, PEs can be assigned as individual nodes, CPU
sockets within a node, cores within a socket, etc.

C. Benchmark Kernels

Table I shows all twelve kernels included in our new bench-
mark. The first four entries represent the original STREAM
kernels. In these benchmark kernels, consecutive memory
blocks are loaded in a sequential manner. This behavior results
in frequent cache hits with the only cache misses being
compulsory misses when a new memory block is referenced
and capacity misses when the problem size exceeds cache
capacity. The following eight table entries represent our newly
introduced gather and scatter kernels that exhibit irregular

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

memory access patterns. These new kernels are variations of
the original STREAM kernels wherein the only significant
differences are the order in which elements of the arrays are
accessed with respect to the memory load and store instruc-
tions. As shown in Fig. 1, the irregular kernels access memory
locations in a random, or non-sequential manner, causing
the CPU to reference memory addresses that are far apart
from one another, often outside of cache. This characteristic
results in much more frequent cache misses and lower memory
bandwidth, but provides a more accurate portrayal of real-
world performance.

TABLE I: Modified STREAM Benchmark Kernels

COPY: ali] = b[i] 16 0
SCALE: ali] = q*b[i] 16 1
SUM: afi] = bli] + c[i] 24 1
TRIAD: ali] = bli] + q*cli] 24 2
GATHER COPY: ali] = b[IDX[i]] 16 0
GATHER SCALE: ali] = ¢*b[IDX[i]] 16 1
GATHER SUM: ali] = bli] + c[IDXIi]] 24 1
GATHER TRIAD: | a[i] = b[i] + q*c[IDX[i]] 24 2
SCATTER COPY: a[IDX([i]] = b[i] 16 0
SCATTER SCALE: a[IDX[i]] = q*bli] 16 1
SCATTER SUM: a[IDX[i]] = bfi] + c[i] 24 1
SCATTER TRIAD: | a[IDX[i]] = bli] + g*c[i] 24 2

D. Counting Bytes

STREAM records the number of bytes read from, and writ-
ten to, memory during kernel execution in order to calculate
effective memory bandwidth. However, the number of memory
accesses necessary across kernels varies depending on the
kernel in question. The effect of ALU operations, which occur
three of the four kernels, are not represented in this metric
but instead are characterized the by different behavior of each
kernel operation As an example, while the copy operation does
no arithmetic, its bytes are counted those of other operations.
Table I shows how many bytes and FLOPS are counted for
each iteration of the STREAM loops by kernel, assuming
that the STREAM_TYPE environment variable is set to the
default data type of double. Equation 1 shows the formula used
for calculating bandwidth (MB/s), where « is the number of
memory accesses per iteration of the main STREAM loops,
v is the size in bytes of the STREAM_TYPE, and A is the
problem size, or STREAM_ARRAY_SIZE.

1.OE6 x a x v x \)/1€?

Bandwidth(MB/s) = (—y
mintime

)

As shown in Table I, there is some variation in the number
of bytes counted for each iteration of the main loops within the
benchmark. This is because STREAM take into account the
number of memory accesses that occur each time the kernels
are executed to ensure that the results are normalized across all
kernels. For example, each variation of the sum kernel counts
twenty-four bytes per iteration because the kernel accesses
three eight byte memory locations.

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

E. Validation

The purpose of validation within the benchmark is to
reproduce the kernel operations outside of the timer, and then
compare the reproduced (expected) results with the actual
values of the arrays. Doing so ensures that results from the
parallelized kernels produce the same array values as when
the kernels are executed sequentially. Since our additional
gather and scatter Kernels use the same arrays and array values
as the original/sequential kernels, the validation process in
our new benchmark remains, for the most part, unchanged
from the original implementation. The only difference is
that the additional eight kernel operations are included when
calculating the expected values of the elements within the
arrays. If any of the expected values do not match the observed
values of the arrays, the benchmark run will be considered
“invalid”.

FE. Run Rules

STREAM is intended to measure the bandwidth from
main memory. However, it can be used to measure cache
bandwidth as well by the adjusting the environment variable
STREAM_ARRAY_SIZE such that the memory needed to
allocate the arrays can fit in the cache level of interest. The
general rule for STREAM_ARRAY_SIZE is that each array
must be at least 4x the size of the sum of all the last-level
caches, or 1 million elements — whichever is larger [16].
The NTIMES environment variable can be used to specify
the number of times the benchmark is run, and the “best”
bandwidth in the unit of MB/s is recorded across all NTIMES
runs. The STREAM_TYPE environment variable can be used
to change the data type of the elements within the STREAM
arrays used throughout the benchmark kernels. Different data
types will have different data sizes, but the change in data size
should not affect the benchmark results as this is accounted
for in the bandwidth formula, as shown in Equation 1.

IV. EVALUATION

In order to assess the efficacy of our RaiderSTREAM, we
ran extensive tests across two different HPC clusters: Texas
Tech University’s Nocona cluster and a cluster hosted by the
HPC Advisory Council called Thor. A detailed description of
nodes within these two systems is shown in Table II. It is
worth noting the significant differences of the CPU and cache
configurations between these two systems. The Nocona system
utilizes dual AMD Epyc 7702 processors with 64 cores per
socket, 1 thread per core, and a base clock rate of 2.0 GHz
while the the Thor system employs dual Intel Xeon E5-2697A
v4 processors with only 16 cores per socket, 1 thread per core,
and a base clock rate of 2.6 GHz. Furthermore, the Nocona
system has a 32 KiB L1 d/i cache, a 512 KiB L2 cache, and
a 16 MiB L3 cache, giving the system a total cache size of
approximately 17,367 KiB, or 17,367,040 bytes.

Following the run rules discussed in Section III-F, we can
find the proper problem size, or STREAM_ARRAY_SIZE by
simply multiplying the total cache size by 4 and dividing
the quotient by the size in bytes of STREAM_TYPE. Let
sizeof (STREAM_TYPE) = & bytes, that gives us an

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

TABLE II: System Information

ISA x86_64 x86_64
2x AMD Epyc 7702 2x Intel Xeon
CPU 64 cores/socket E5-2697A v4
1 thread/core 16 cores/socket
1 thread/core
Main 512 GiB DDR4, 256 GiB DDR4,
Memory 3200 MHz 2400 MHz
Cache L1 d/i: 32 KiB, L1 d/i: 32 KiB,
Configuration L2: 512 KiB, L2: 256 KiB,
L3: 16 MiB L3: 40 MiB
Interconnect Infiniband HDR 200G | Infiniband HDR 200G
Operating System CentOS 8.1 Rocky Linux 8.6
Compiler GCC 10.1.0 GCC 8.5.0
MPI OpenMPI 4.0.4 OpenMPI 4.1.0
OpenSHMEM OpenSHMEM 4.0.4 OpenSHMEM 4.1.0

approximate STREAM_ARRAY_SIZE of 4x17,367,040/8 =
8,683,520, or 8.7 million for the sake of simplicity. The Thor
system has a 32 KiB L1 d/i cache, a 256 KiB L2 cache,
and a 40 MiB L3 cache giving it a much larger total cache
size of approximately 42,271 KiB, or 42,270,720 bytes. The
STREAM_ARRAY_ SIZE for an official STREAM run on Thor
can be calculated as 4 x 42,270, 720/8 = 21,135, 360, or 22
million for the sake of simplicity.

Next, we will discuss our performance evaluations on a
single-core basis to demonstrate continuity and correctness
as well as multi-node performance to demonstrate scalability.
The double datatype, which has a size of 8 bytes, is used
throughout all of the tests done in this section. Each of the
results shown in our evaluation figures represent the average
results over five runs.

A. Single Core Performance

In order to demonstrate the performance divergence be-
tween sequential and irregular memory access patterns, we
used our OpenSHMEM implementation of STREAM and
all twelve of its benchmark kernels to produce Fig. 3 and
Fig. 4. As expected, the sequential kernels outperformed the
gather and scatter kernels by a great deal due to the gather
and scatter kernels’ frequent cache misses and references to
DRAM. Markedly, on both systems, copy and scale marginally
outperform add and triad in the gather variation of the
kernels while the inverse is true for the scatter variation.
This observation tells us that both of these systems have a
slightly higher capacity to complete memory accesses fo sparse
arrays when doing arithmetic than from. In the context of
high-performance computing, this could be useful information
when writing scientific applications that make optimal use of
the memory system. Although this performance difference in
Fig. 3 and Fig. 4 is relatively small, with much larger real-
world problem sizes and a higher number of memory accesses,
the performance gains from writing applications with this
characteristic in mind can be consequential.

In order to demonstrate correctness and continuity across
each benchmark implementation within RaiderSTREAM, we

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

25000 STREAM_ARRAY_SIZE = 8.7M

21000
17000
0
2 13000
=
9000

—_—
]
]
]
]
—
—_—
]
]
—
—
—_—
]
]
—
—
—_—
_—
5000 _—
]
]
]
1
1
B

Z
|

QOQ\!

4NM=xZlEN

%o’a\e Psdd f\(\’&d o Oo?‘l o e ‘pbde r“\'b; 009‘l
(_:)0\‘(\ Ga\‘\ [cis (‘,’b“(\ o’b\ e

1000

S S
@ p f\(\"‘
\’\e" S 0'8‘\6‘

Fig. 3: Single Core Performance (All Kernels) - Nocona

STREAM_ARRAY_SIZE = 22M
10000
9000
8000
7000
6000
5000
4000
3000

MB/s

2000
1000

\
§
\
\
\
\

oW o2® W <®
T
o

Wm= 7m=§

Q‘! & a oY

c O c_ s *(00 e
‘(\ \(\8 et et \’.\

G'b\ Oa\ QQQ\"\ o 'a“ 50") ‘E

Fig. 4: Single Core Performance (All Kernels) - Thor

have done a series of performance tests with different problem
sizes using a single CPU core on each of the systems outlined
in Table II. In this series of tests, as shown in Fig. 5 and
Fig. 6, we started with a STREAM_ARRAY_SIZE of 2 million
elements, and the STREAM_ARRAY_ SIZE was halved during
each subsequent trial.

—0
e—

80000 —
,";____.“4
R s

=@+ OpenMP - Triad
=#= OpenMP - Gather Triad
¢+ OpenMP - Scatter Triad
=e: MPI - Triad
#' =¥ MPI - Gather Triad
¢
—
—
¢

** MPI - Scatter Triad

+ OpenSHMEM - Triad
OpenSHMEM - Gather Triad

+ OpenSHMEM - Scatter Triad

20000

500K 250k
STREAM_ARRAY_SIZE

125k

Fig. 5: Single Core Performance by Problem Size - Nocona

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

B0 o~ S e — o
30000 ,f" =t
Iﬁ —e-- OpenMP - Triad
25000 I‘ =%-- OpenMP - Gather Triad
'I' ¢+ OpenMP - Scatter Triad
/ —o:- MPI - Triad
» 20000 / =3 MPI - Gather Triad
o) / ¢+ MPI - Scatter Triad
= 15000 y —o:- OpenSHMEM - Triad
=% - OpenSHMEM - Gather Triad
=+¢-+ OpenSHMEM - Scatter Triad
10000

“.zmu FLeey o e 9

5000

2M ™ 500K 250k

STREAM_ARRAY_SIZE

Fig. 6: Single Core Performance by Problem Size - Thor

The single-core cache analysis reflected in Fig. 5 and Fig.
6 includes our OpenMP, MPI, and OpenSHMEM implemen-
tations of each variation of the triad kernel. On both systems,
these tests show a significant performance increase as we
decrease the problem size. This is because as the problem
size is reduced, more of it fits in the CPU cache, which has
much higher memory bandwidth than DRAM. On the Nocona
system, we observe performance increases at each increment
on the x-axis with a significant jump when decreasing the
problem size from one million to five-hundred thousand array
elements. In contrast, Thor hits its performance peak for most
kernels when the problem size is reduced to 1 million array
elements. This is because the Thor system has a much larger
cache that can fit larger problem sizes than the cache of
Nocona. As expected, particularly on a single-core basis due
to the fact that there is no inter-process communication in
the MPI and OpenSHMEM benchmark implementations, the
performance of each variation of the friad kernels is consistent
across all three programming models. Notably, the sequential
kernels receive a far more substantial performance increase
than their irregular counterparts as the problem size is reduced.
This can be explained by the behavior of the memory access
patterns exhibited by the kernels. Since the gather and scatter
kernels are referencing sparse memory locations resulting in
a greater number of cache misses, the memory accesses still
take a considerable amount longer than sequential memory
access patterns, giving them less of a performance benefit from
problem size reduction.

B. Multi-Node Performance

Since one of the contributions of RaiderSTREAM is the
addition of multi-node support to STREAM, we have included
a multi-node analysis to demonstrate memory bandwidth scal-
ability as the number of nodes used at execution time is in-
creased. The results are reported in Fig. 7 and Fig. 8. For each
multi-node test, we ran our hybrid OpenSHMEM + OpenMP
implementation using two, four, six, eight, and ten nodes,
wherein each processing element (PE) is assigned to a distinct
single node, and an individual OpenMP thread is used for each
individual CPU core. The same problem sizes of 8.7 million
and 22 million for Nocona and Thor, respectively, were bor-
rowed from our first set of tests. Although these problem sizes

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

are meant for single CPUs on these systems under the guidance
of section III-F, we use the same STREAM_ARRAY_SIZEs
throughout these tests to demonstrate how sustained memory
bandwidth scales as we apply an increasing amount of nodes
and CPUs to the same problem size, with segments of the
problem size distributed evenly across processing elements.
As expected, the sustainable memory bandwidth is somewhat
linearly scalable for all kernels as the number of nodes is
increased with strong scaling, with the exception being a slight
decrease in scalability as we increase the number of nodes
from eight to ten.

STREAM_ARRAY_SIZE = 8.7M
200000

—e-- Triad = o
175000 ~—*- Gather Triad e
++A-- Scatter Triad /‘/
150000 -
-
125000 //_/"
& 100000 o
= -
-
75000 T e .
50000 P S S :
A e we T A
25000 e A- ----- T :
g asmsEEEEo-s -
256 512 768 1024 1280
of Cores

Fig. 7: Multi-Node Performance (Strong Scaling) - Nocona

STREAM_ARRAY_SIZE = 22M

85000 —o-- Triad /‘/.
77000 -#- Gather Triad e
69000 "*A'r Scatter Triad -
-
61000 -
53000 =
» =
3 45000 -
= 37000 /./,-
29000 -
~
21000 ¢
13000 Areenmrrnrrnitttt ‘,--...--._--—--_-::-:
5000 ..-u:::-_-:'_':‘.f:‘_':::_‘:::'_,. ________ e
64 128 192 256 320
of Cores

Fig. 8: Multi-Node Performance (Strong Scaling) - Thor

V. RELATED WORK

There have been similar efforts to improve on the STREAM
benchmark such as BabelSTREAM [4], [9], which measures
memory transfer rates to and from global device memory on
GPUs with the use of several different programming models
including OpenCL [22], CUDA [18], HIP [5], OpenACC [1],
and more as well as support for a variety of programming lan-
guages. However, Babel[STREAM only includes the sequential
STREAM kernels, and thus does not measure real-world
performance. Spatter [3], [15] is another memory bandwidth
benchmark that looks specifically at gather and scatter mem-
ory access pattern performance on CPUs and GPUs, also with
support for a variety of programming models. Both Babel-
STREAM and Spatter have made significant contributions with
respect to memory bandwidth evaluation on heterogeneous

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

devices across multiple uses cases. However, both of these
benchmark tools lack multi-node support, which makes it im-
possible to measure or verify scalability across nodes. One of
the limitations of RaiderSTREAM is the lack of inter-process
communications in our benchmark kernels, which are nearly
ubiquitous in the execution of scientific applications in a high-
performance computing environment. An existing benchmark
that does this is the Ohio State University Network-Based
Computing Laboratory’s micro-benchmarks for inter-process
communications [6] with both MPI and OpenSHMEM.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced RaiderSTREAM, our
novel HPC-optimized versions of the STREAM benchmark
built on the OpenMP, MPI, and OpenSHMEM programming
models with supplementary gather and scatter kernels for
measuring memory bandwidth when implementing irregular
access patterns. Even with the contributions laid out in this
work, there is still much to be done to improve the applicability
of our new benchmark implementations. We will in part rely
on community utilization and feedback to identify areas for
future improvement. However, we have identified some future
directions for this research. One limitation of RaiderSTREAM
is the lack of customizability with respect to memory access
patterns. In RaiderSTREAM, we simulate sparsity and irregu-
larity in our gather and scatter kernels by way of randomness.
This is done in the source code by populating IDX arrays with
randomly generated non-repeating integer values ranging from
0 to STREAM_ARRAY_SIZE. The issue with this approach is
that users do not have the ability to specify how the IDX arrays
are populated without making changes to the source code. In
future work, we plan to add functionality to read in memory
access patterns via a user-specified input file, allowing users
to tailor the benchmark to match their specific use case.

Another future direction for RaiderSTREAM is the incor-
poration of inter-process communication routines within the
benchmark kernels. Our MPI and OpenSHMEM benchmark
implementations can partition the arrays across processing
elements. However, measuring inter-process communication
coupled with irregular memory access would paint a more full
picture of system-wide performance and scalability. Another
area in which we can improve the benchmark is adding
functionality that will simulate hot-spot memory behavior as
opposed to total randomness. This would provide insight into
memory bandwidth capabilities for applications that frequently
access the same memory locations, and can simply be enabled
by way of a compilation flag. Furthermore, we can continue
improving the versatility of RaiderSTREAM by adding ad-
ditional memory access patterns such as the stride-1, stride-
N, pointer-chase and central patterns found in the CircusTent
benchmark suite [2], [23], [24].

ACKNOWLEDGEMENTS

The research reported in this paper was supported by a Los
Alamos National Laboratory membership contribution to the
U.S. National Science Foundation Industry-University Coop-
erative Research Center on Cloud and Autonomic Computing

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

(CNS-1939140), and authorized for release under LA-UR-22-
29091. This research is also supported in part by the National
Science Foundation under grant OAC-1835892. The authors
would also like to thank colleagues at the HPC Advisory
Council for allowing us to use their Thor system as well
colleagues at the Texas Tech University High-Performance
Computing Center for allowing us to use their Nocona system.

[1]
[2]

[3]
[4]

[5]
[6]
[7]
[8]

[9]

[10]

[11]

(23]

REFERENCES
“OpenACC,” 2011. [Online]. Available: https://www.openacc.org/
specification
“CircusTent Benchmark Suite Repository,”

https://github.com/tactcomplabs/circustent, 2019.

“Spatter Repository,” https://github.com/hpcgarage/spatter, 2021.
“BabelSTREAM Repository,” https://github.com/UoB-
HPC/BabelStream, 2022.

“HIP Repository,” https://github.com/ROCm-Developer-Tools/HIP,
2022.

“OSuU Micro-Benchmarks,”
state.edu/benchmarks/, 2022.
“STREAM Code Repository,”
beebe/stream.git, 2022.

A. Mallon, Damian and Taboada, Guillermo and Koesterke, Lars,
“MPI and UPC broadcast, scatter and gather algorithms in Xeon Phi,”
Concurrency and Computation: Practice and Experience, vol. 28, 05
2015.

T. Deakin, J. Price, M. Martineau, and S. Mclntosh-Smith, “Evalu-
ating attainable memory bandwidth of parallel programming models
via babelstream,” International Journal of Computational Science and
Engineering, vol. 17, p. 247, 01 2018.

J. Dongarra, P. Luszczek, and A. Petite, “The linpack benchmark:
Past, present and future,” Concurrency and Computation: Practice
Experience, vol. 15, no. 9, pp. 803-820, Aug. 2003.

M. P. I. Forum, “MPI: A Message-Passing Interface Standard Version
4.0,” 09 2012, chapter author for Collective Communication, Process
Topologies, and One Sided Communications.

B. Williams, J. Leidel, X. Wang, D. Donofrio, and Y. Chen, “Circustent:
A benchmark suite for atomic memory operations,” in The International
Symposium on Memory Systems, ser. MEMSYS 2020. New York,

http://mvapich.cse.ohio-

https://github.com/michael-

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[24]

[25]

J. Hennessy and D. Patterson, Computer Architecture - A Quantitative
Approach, 01 2007.

M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Simple linux
utility for resource management,” in In Lecture Notes in Computer Sci-
ence: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer-Verlag, 2002, pp. 44-60.

J. Kim and Y. Kim, “Hbm: Memory solution for bandwidth-hungry
processors,” in 2014 IEEE Hot Chips 26 Symposium (HCS), 2014, pp.
1-24.

P. Lavin, J. Young, R. Vuduc, J. Riedy, A. Vose, and D. Ernst,
“Evaluating gather and scatter performance on cpus and gpus,” 09 2020,
pp. 209-222.

J. D. McCalpin, “STREAM: Sustainable Memory Bandwidth in
High Performance Computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated technical
report. http://www.cs.virginia.edu/stream/. [Online]. Available: http:
/Iwww.cs.virginia.edu/stream/

McCalpin, J. D., “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” IEEE Technical Committee on Computer
Architecture (TCCA) Newsletter, Dec 1995.

NVIDIA, P. Vingelmann, and F. H. Fitzek, “CUDA,” 2020. [Online].
Available: https://developer.nvidia.com/cuda-toolkit

OpenMP Architecture Review Board, “OpenMP application program
interface version 5.1,” 2020. [Online]. Available: https://www.openmp.
org/specifications/

J. T. Pawlowski, “Hybrid memory cube (hmce),” in 2011 IEEE Hot Chips
23 Symposium (HCS), 2011, pp. 1-24.

S. W. Poole, O. Hernandez, J. A. Kuehn, G. M. Shipman, A. Curtis,
and K. Feind, OpenSHMEM - Toward a Unified RMA Model. Boston,
MA: Springer US, 2011, pp. 1379-1391.

Stone, John E. and Gohara, David and Shi, Guochun, “OpenCL: A
Parallel Programming Standard for Heterogeneous Computing Systems,”
Computing in Science Engineering, vol. 12, no. 3, pp. 66-73, 2010.
NY, USA: Association for Computing Machinery, 2020, p. 144-157.
[Online]. Available: https://doi.org/10.1145/3422575.3422789

B. Williams, J. D. Leidel, X. Wang, D. Donofrio, and Y. Chen,
“CircusTent: A Tool for Measuring the Performance of Atomic Memory
Operations on Emerging Architectures,” in Workshop on OpenSHMEM
and Related Technologies. Springer, 2021.

W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious. sigarch comput. archit. news 23, 1 (1995), 20-24,” 1995.

Authorized licensed use limited to: University of North Texas. Downloaded on November 11,2022 at 19:03:15 UTC from IEEE Xplore. Restrictions apply.

