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Introduction: The notion of a single localized store of word representations has

become increasingly less plausible as evidence has accumulated for the widely

distributed neural representation of wordform grounded in motor, perceptual,

and conceptual processes. Here, we attempt to combine machine learning

methods and neurobiological frameworks to propose a computational model of

brain systems potentially responsible for wordform representation. We tested the

hypothesis that the functional specialization of word representation in the brain

is driven partly by computational optimization. This hypothesis directly addresses

the unique problem of mapping sound and articulation vs. mapping sound and

meaning.

Results: We found that artificial neural networks trained on the mapping

between sound and articulation performed poorly in recognizing the mapping

between sound and meaning and vice versa. Moreover, a network trained on

both tasks simultaneously could not discover the features required for e�cient

mapping between sound and higher-level cognitive states compared to the other

two models. Furthermore, these networks developed internal representations

reflecting specialized task-optimized functions without explicit training.

Discussion: Together, these findings demonstrate that di�erent task-directed

representations lead to more focused responses and better performance of

a machine or algorithm and, hypothetically, the brain. Thus, we imply that

the functional specialization of word representation mirrors a computational

optimization strategy given the nature of the tasks that the human brain faces.

KEYWORDS

mental lexicon, word representation, neural networks, functional segregation, dorsal and

ventral streams, deep learning

1. Introduction

In 1865, Paul Broca declared the left-third frontal convolution of the brain to be the

“center of articulate speech”. In the years that have followed, cognitive neuroscientists have

embraced an increasingly granular and differentiated view of localized cognitive function.

Multiple brain regions have been associated with particular cognitive functions thanks to

advances in imaging techniques and the functional decomposition of cognitive processes.

Examples include the visual word form area (VWFA), which responds to orthographic
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forms (Dehaene et al., 2002; Dehaene and Cohen, 2011), the

fusiform face area (FFA), which is specialized for facial recognition

(Kanwisher et al., 1997), and the extrastriate body area (EBA),

which responds selectively to images of the human body (Downing

et al., 2001). Even more recently, a neural population has been

identified in the human auditory cortex that shows selective

sensitivity to singing (Norman-Haignere et al., 2022). These

findings invite the question of why such narrow sensitivities

arise in the first place. In this paper, we investigate one such

localized function, the functional specialization of wordform

representation, by utilizing a neuro-inspired machine learning

approach. Our premise is that task-directed representations are

essential to perform a task (Bengio et al., 2013). We propose

that input data characteristics will force the machine/algorithm,

and hypothetically, the brain, to discover the representations

required for feature detection. Thus, we examine whether the

functional specialization of wordform representation is driven

partly by computational constraints that are inherent in the

mapping between spoken words and their evoked cognitive states.

Wordform representation, the stored representation of

the sound patterns of words, has been associated with the

bilateral posterior middle temporal gyrus (pMTG) and adjacent

posterior temporal regions (the ventral stream network) in

addition to the supramarginal gyrus (SMG) and adjacent

inferior parietal areas (the dorsal stream network) (Hickok

and Poeppel, 2007; Gow, 2012) (see Figure 1). Words provide

a useful level of representation for organizing the processing

in both streams, but it is not clear why two distinct wordform

networks evolved. The development of speech and language

probably relied on neural systems that were already present

in other primates’ brains which are organized dually, similar

to those in the visual cortex (Rauschecker, 1998). Thus,

the division between dorsal and ventral processing streams

appears to predate the evolution of language in both visual and

auditory processing (Rauschecker and Scott, 2009; Sheth and

Young, 2016). This suggests that dorsal and ventral processing

divergences constrain the modern functional organization of

spoken language processing. In addition to these potential

anatomical constraints, we hypothesize that computational

constraints of input data shaped the development of parallel

wordform networks that rely on different featural representations

of words to mediate different mappings between sound and

higher-order linguistic representations.

Words play a crucial computational role in language by

mediating the mapping between sound patterns and cognitive

states. Elman (2004) and Gow (2012) describe the computational

role of words as being functionally equivalent to hidden nodes

in a neural network, providing representations that optimize

the mapping between signal structure and the cognitive traits

they evoke. In a sense, words are provisional representations in

service of understanding meaning and articulation. The dorsal

and ventral processing architecture impose two very different sets

of demands on wordform representation. While complex, the

dorsal streammapping between sound and articulation is relatively

systematic, temporally contiguous, and primarily dependent on

identifying segmental units of the phoneme or syllable. In contrast,

the ventral stream mapping between sound and meaning is

partially systematic, largely arbitrary, and primarily dependent

FIGURE 1

Cortical organization of wordform representation. The posterior

superior temporal gyrus (pSTG), shown in light blue, is the main area

of acoustic-phonetic processing of natural speech. The

supramarginal gyrus (SMG), shown in yellow, mediates the mapping

between acoustic-phonetic representations and articulation,

whereas the posterior middle temporal gyrus, shown in pink,

mediates the mapping between acoustic-phonetic representations

and meaning.

on identifying morphological units that frequently span multiple

segments. From the perspective of the dorsal stream, the words cats

and cast might be viewed as single-phoneme insertion neighbors

of cat. From the perspective of the ventral system, cat and cats

are closely related, while cat and cast are quite different. Given

these differences, we hypothesize that these mappings would

depend on different featural representations of wordform. In this

respect, the existence of two parallel networks raises the following

fundamental questions: How do computational constraints of

input data contribute to the emergence of these parallel streams?

Do the computational demands of dorsal vs. ventral stream

processing require different featural representations of wordform

to accomplish efficient mapping?

Neuro-inspired machine learning techniques such as artificial

neural networks (ANNs) provide a useful tool for exploring these

questions (LeCun et al., 2015). These techniques are opening

up unprecedented ways of thinking about how the brain works,

specifically within the domains of perception, vision, and cognition

(Yamins and DiCarlo, 2016; Flesch et al., 2018; Geirhos et al.,

2018; Rajalingham et al., 2018; Zhou and Firestone, 2019; Golan

et al., 2020). One such example is reinforcement learning, a type

of machine learning inspired by the brain’s reward system that uses

positive and negative feedback to guide the learning process (Sutton

and Barto, 2018). Recent reviews also suggest that deep neural

networks (DNNs), which are composed of many hierarchically

organized layers of ANNs, have the potential to completely remodel

the way we think about neural computations (see Kriegeskorte,

2015;Marblestone et al., 2016; Bowers, 2017; Lake et al., 2017; Cichy

and Kaiser, 2019; Saxe et al., 2021). Algorithms, such as DNNs, use a

hierarchical combination of non-linear functions to transform raw

input into more complex features, allowing for the identification
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of new patterns and improved performance on tasks such as image

recognition and natural language processing (Bengio et al., 2013).

In the present study, we used long short-term memory

(LSTM) architectures (Hochreiter and Schmidhuber, 1997) to

test the hypothesis that the complex but systematic mapping

between sound and articulation in the dorsal stream places

different demands on feature sets than the more arbitrary mapping

between sound and meaning. Any system (either machine or

brain) learning to map sound to articulatory information vs.

sound to meaning will intrinsically develop a different feature

set because the characteristics of these mappings are different.

Namely, the dorsal mapping depends on identifying segmental

units (phonemes, syllables), whereas ventral mapping depends on

morphological units. We created three LSTM networks to test this

hypothesis and trained them independently on the same set of

auditory word tokens. A dorsal network was trained to map words

onto vectors representing whole-word articulatory properties so

that the level of linguistic description that it is capturing would

be phonological. In contrast, a ventral network was trained to

map words onto vectors reflecting broad distributional semantic

properties to capture semantic content. We also created a “fused”

model that was trained on both tasks simultaneously to provide

a direct comparison of the computational efficiency of parallel vs.

single-stream wordform mapping. All words had unique sparse

output representations. After training, we extracted patterns of

network activation from the hidden layer of each network and

tested how well the features extracted from one model supported

the classification of input based on articulatory vs. semantic

properties. We predict that: (i) Features from a dorsal LSTM

model trained on dorsal mappings should have an advantage for

articulatory categorization but not semantic categorization, (ii)

Features from a ventral LSTM model trained on ventral mappings

should have an advantage for semantic categorization but not

articulatory categorization, and (iii) Features from a fused LSTM

model trained on both dorsal and ventral mappings should not have

an advantage for categorization related to articulatory or semantic

categorization, compared to the specialized models. It should be

noted that this study does not use neural data to test the spatial

localization of wordform representation in the brain. Instead,

we use computational modeling to investigate the computational

constraints that could have caused the brain to develop two parallel

word processing systems.

2. Cortical organization of wordform
representation

In one of the founding works of the neurobiology of language,

Wernicke (1874/1969) inferred the existence of a wortshatz

(“treasury of words”) in the posterior superior temporal lobe

from an association between localized damage in aphasia and

impaired auditory speech comprehension. Wernicke’s concept

of the wortshatz is similar to Pustejovsky’s (1998) notion of

a sense enumeration model, in which words are bundles of

stored information describing meaning, syntactic function, and

phonological form. Within this framework, word recognition or

lexical comprehension deficits reflect the loss of this enumerated

knowledge. Rather than focusing on the role of the word

as a mediating representation, work on the neural bases of

lexical knowledge focused mainly on the distributed localization

of lexically indexed semantic knowledge grounded in motor,

perceptual, and conceptual processes [see a review by Patterson

et al. (2007)] and possible dissociations between input and output

lexica (Jacquemot et al., 2007).

The search for a lexical interface area began with Hickok and

Poeppel (2004), who hypothesized the existence of a single sound-

meaning interface broadly localized to the left temporal, parietal,

and occipital cortex junction that maps semantic representations

to acoustic-phonetic representations. Later versions of the dual-

stream model postulated the bilateral posterior middle temporal

gyrus (pMTG) as the lexical interface region (Hickok and Poeppel,

2007) and cortices adjacent to the posterior inferior temporal sulcus

(pITS) as components of the ventral stream. Hickok and Poeppel

associated this lexical interface region in the ventral stream with a

lemma level of representation. Bilateral pMTG has also been shown

to play a role in both regular and irregular morphological processes

(Joanisse and Seidenberg, 2005; Tyler et al., 2005; Yokoyama

et al., 2006). These findings contributed to conceptualizing this

region as a house of wordform representation with morphological

properties rather than a store of semantic knowledge. Hickok and

Poeppel propose that representations stored in bilateral pMTG

connect semantic representations and syntactic processes stored in

a broad, bilateral distributed network with the acoustic-phonetic

representations localized in bilateral posterior superior temporal

gyrus (pSTG). With hypothesized bidirectional information flow

within the ventral processing stream, this interface area plays a role

in both the production of spoken words to communicate meaning

and the interpretation of words spoken in context.

Evidence that the pMTG plays a role in ventral stream lexical

processing comes from transcortical sensory aphasia (TSA). TSA

generally occurs following posterior and/or inferior temporal

lobe damage and involves impaired auditory comprehension

with preserved syntactic and phonological abilities (Kertesz

et al., 1982). Furthermore, electrical stimulation studies of

speech/language abilities (Lüders et al., 1991), imaging studies of

semantic processing (Binder et al., 2000), studies finding word

comprehension deficits in Wernicke’s aphasia (Baker et al., 1981),

and neuropsychological studies that focus on word-level semantic

deficits (Hart and Gordon, 1990) support the ventral lexicon’s

aforementioned roles in mapping between sound and meaning [see

Hickok and Poeppel (2004) for a detailed review].

Gow (2012)’s dual lexicon model extends the dual-stream

model of language processing and synthesizes evidence from

aphasia, behavioral, and neural results to identify a second

wordform area. In the dorsal processing stream, the left SMG

(the inferior portion of Brodmann’s area 40 delineated by the

intraparietal sulcus, primary intermediate sulcus, the postcentral

sulcus, and the Sylvian fissure) and the adjacent parietal operculum

mediate the mapping between sound and word-level articulatory

representation. This dorsal lexicon is hypothesized to play

roles in speech production and perception, articulatory working

memory rehearsal, and storage of articulatory organized wordform

representations. Behavioral evidence for this claim includes the

separable effects of semantic and wordform priming (Gaskell and

Marslen-Wilson, 2002; Misiurski et al., 2005; Norris et al., 2006),

lexical biases in non-word repetition errors (Vitevitch and Luce,
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2005), the influence of word-level properties including lexical

frequency (Vitevitch and Luce, 1998, 1999, 2005) and phonological

neighborhood properties on articulation (Munson and Solomon,

2004; Scarborough, 2004; Wright, 2004; Munson, 2007), and

syllabic encoding effects on speech production (Cholin et al., 2006).

Evidence from functional MRI studies investigating BOLD

sensitivity to whole word properties similarly shows that lexical

frequency and neighborhood (Shallice et al., 2000; Goldrick and

Rapp, 2007; Knobel et al., 2008; Romani et al., 2011), competitor

environment (Prabhakaran et al., 2006; Righi et al., 2010;

Peramunage et al., 2011), lexical suppression and enhancement

(Graves et al., 2007; Buchsbaum and D’Esposito, 2009), and word

learning (Cornelissen et al., 2004; Mechelli et al., 2004; Green et al.,

2007; Lee et al., 2007; Richardson et al., 2010) are modulated by

the inferior parietal lobe, particularly the SMG, in addition to

the area that Hickok and Poeppel (2007) hypothesized to be the

lexical interface. Within this framework, the lexically preserving

phonological paraphasias (Yamadori and Ikumura, 1975) seen in

reproduction conduction aphasia (Shallice and Warrington, 1970;

Vallar and Baddeley, 1984) following inferior parietal damage may

be attributed to the degradation of dorsal lexical representations,

just as semantic paraphasia seen in transcortical sensory aphasia

following damage to posterior middle temporal regions may be

attributed to the degradation of ventral lexical representations

(Wernicke, 1874/1969; Goldstein, 1948; Coslett et al., 1987).

To the extent that Gow’s dual lexicon model explains a wide

range of empirical results, it also raises a fundamental question:

Why do humans need stored representations of wordforms

in two parallel streams? We hypothesize that this seemingly

unparsimonious redundancy stems in part from the pre-language

evolution of separate dorsal and ventral auditory processing and the

general usefulness of words as units of meaning and articulation.

However, we also suspect that computational constraints imposed

by the structure of spoken language and the divergent goals of

the dorsal and ventral speech streams also contribute to this

organization. In summary, the primary function of the wordform

representations stored in the dorsal and ventral streams is to act as

an interface between low-level representations of sound and higher-

level representations of different aspects of linguistic knowledge,

such as meaning and articulation.

3. Computational rationale of the
model

While the term deep learning might be new, the use of

neural networks to test the theories of neural computation related

to language processing dates to the 1980s’ parallel distributed

processing models [see reviews by McClelland and Rogers (2003)].

Early models were used to explore the role of single vs. multi-

stream mapping related to problems including the reading of

words with regular vs. irregular orthography and the formation

of regular vs. irregular forms of the English past tense [see

McClelland and Patterson (2002), Pinker and Ullman (2002), and

Westermann and Ruh (2012) for an overview]. These models

played a significant role in shaping these debates but were limited

in several respects. Chief among them was their reliance on

training sets that did not reflect the distributional properties of

real-world input and empirically unsupported assumptions about

the form of input representations. Significantly, both limitations

had the potential to bias the computational adequacy of the

learning mechanisms that were the primary intended focuses of

the work.

Deep learning models have made recent substantial progress

in the perception and production of language, which is an ability

generally attributed to humans (Chomsky, 2006; Turing, 2009;

Dehaene et al., 2018). Transformer based models (Rothman, 2021),

in particular, can comprehend, condense, translate, and generate

text that closely aligns with the given prompt with a high degree

of precision (Vaswani et al., 2017; Devlin et al., 2019; Brown

et al., 2020; Floridi and Chiriatti, 2020). Moreover, deep learning

models have been shown to process linguistic units (syllables,

words, sentences) to the extent that is similar to the human

brain (Lake and Murphy, 2021; Caucheteux and King, 2022; Hale

et al., 2022). Such findings are only possible with the extraction

of task-directed representations. Representation learning models

acquire valuable representations, such as those that can be easily

understood, possess hidden characteristics, or can be applied in

transfer learning (Bengio et al., 2013).

Several recent studies have used convolutional neural networks

(CNNs) originally developed for image processing (Le Cun et al.,

1989; Gu et al., 2018) to explore task-optimized feature spaces for

the classification of naturalistic inputs and their implications for

functional specificity in cortical processing [(Kell et al., 2018; Kell

and McDermott, 2019; Dobs et al., 2022; Kanwisher et al., 2023a);

see Kanwisher et al. (2023b) for a review]. Others have used LSTMs

to explore the emergent representation of temporally structured

inputs and have found essential convergences with human neural

representations (Magnuson et al., 2020).

Kell et al. (2018) investigated whether deep CNNs trained

on speech (identification of words presented in noise) and

music (identification of musical genre presented in noise) tasks

show human-like error patterns or predicted patterns of neural

response to the same stimuli. CNNs are a class of deep learning

models inspired by early neural visual processes and are typically

applied to image classification, object detection, text detection

and recognition, action recognition, and scene labeling (Le Cun

et al., 1989; Gu et al., 2018). By effectively spatializing the

temporal structure of auditory input by converting audio input into

psychophysically biased cochleagrams, Kell and colleagues were

able to take advantage of CNNs’ strengths as image classifiers.

Their models classified both types of input with high accuracy,

showing patterns of confusion that correlated strongly with human

performance. More importantly, their models predicted voxel-level

BOLD activation in human fMRI data, with a significant correlation

between activity at sequential layers of the model and analogous

regions in the auditory neural processing stream. These findings

reflect hierarchical auditory processing and differentiation between

higher-level processing of speech and non-speech stimuli. This

work is an important step toward capturing amore accurate view of

the computational problems posed by auditory word recognition.

By training their models on natural speech, Kell and colleagues

were able to capture critical aspects of the inherent variability of

the speech signal, including variability related to speaker and rate.

These results and subsequent related works have demonstrated

the potential of using deep learning methods to explore the role
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of task-optimal processing to generate and test hypotheses about

neural representations and the functional organization of the brain

(Kell et al., 2018; Kell and McDermott, 2019; Dobs et al., 2022;

Kanwisher et al., 2023a).

One area where this work falls short is in the handling of

the temporal structure of auditory speech. The transience of

the speech signal and the rate of spoken communication place

significant constraints on speech processing (Marslen-Wilson and

Tyler, 1980) that are not captured by CNN modeling. Magnuson

et al. (2020) address these limitations by using a two-layer LSTM

network (Hochreiter and Schmidhuber, 1997) trained on the

mapping of multiple-talker synthetic speech to pseudo-semantic

outputs. Like human listeners, LSTMs receive input moment-by-

moment and make continuous processing commitments based on

incomplete information. LSTMs are a type of recurrent neural

network (RNN) that solve the problems of vanishing or exploding

gradients (Bengio et al., 1994) using an architecture with three

internal gates and a storage output gate. This architecture helps

LSTMs find and exploit long-range temporal dependencies and

makes them natural models for temporally structured tasks like

speech recognition (Graves et al., 2004, 2013a,b). Magnuson et al.

(2020)’s shallowmodel demonstrated high accuracy on the problem

of recognizing individual words based on a speech from multiple

talkers. Furthermore, despite training their model with arbitrarily

distributed vectors to distinguish individual words, analysis of

hidden node activity revealed that their model discovered phonetic

features that corresponded closely to features represented in the

superior temporal gyrus. Elman (1990, 2004) reports similar results

related to the hidden unit sensitivities of simple recurrent networks

(sRNNs). Elman trained a sRNN on a succession of sentences

where words were fed to the network one by one, and the

network’s task was to predict the next word. Although the network

was not explicitly trained to identify the grammatical class of

individual words, analyses of hidden node feature space revealed

clustering based on the grammatical and semantic properties of

individual words. Elman’s assumption was that the network used

distributional information to induce categories such as noun, verb,

or animacy.

4. Materials and methods

4.1. Training data

We used individual words as the input to the network rather

than words in sentences because we wanted to isolate discourse

level effects. We began with a set of 260 phonetically diverse

monomorphemic English words. Since our aim is to investigate

whether ventral stream mapping is dependent on identifying

morphological units, we introduced morphology into our lexicon.

We used 20 of the most commonly used English affixes (15 suffixes

and 5 prefixes) to generate inflected words derived from the

monomorphemic words (i.e., derived fathers from father using the

plural inflectional morpheme –s). At the end of this process, we

generated 1000 words: 260 monomorphemic words, 690 words in

root form with one affix, and 50 words in root form with two

affixes. To limit the variance that would be caused by the difference

between short words and long words, we applied a form length

constraint between 2 to 10 phonemes and ended up with 883

words (mean form length 5.5) as the final lexicon (see Figure 2A

for distribution of words by phoneme length). These 883 words

included 252 roots, 604 words in root form with one affix (see

Figure 2B for the distribution of affixes by word), and 27 words

in root form with two affixes. This final lexicon includes each of

the 39 phonemes found in standard American English. We used

the Apple text-to-speech program Say to generate pronunciations

(audio) for all the words in our lexicon. This program provides

a library of potential voices and relies on a unit selection and

concatenation strategy to create naturalistic speech. This strategy

has the advantage of capturing differences between speakers that

might not be fully captured by parameter-based synthesis. We

used 10 different speakers (five females and five males) to ensure

a diverse set of tokens for each word (each word has 10 tokens,

making a total of 8,830 total training items). The mean utterance

duration was 684ms (range: 335–1,130 ms).

We used cochleagrams of each sound file as the input to the

network (Kell et al., 2018; Feather et al., 2019). A cochleagram is

a spectrotemporal representation of an auditory signal designed to

capture cochlear frequency decomposition (i.e., it has overlapping

spectral filters whose width increases with center frequency). We

used cochleagrams to provide the input to the model in a format

similar to the way the brain gets the sound input (cochleagrams

are more physiologically realistic than spectrograms). To create

cochleagrams, we first trimmed any silence surrounding each word

(with a cutoff of −20 dB) from the audio files. Each sound clip

was passed through a bank of 203 bandpass filters that were zero-

phase with center frequencies ranging from 50Hz to 8,000Hz. To

perfectly tile the spectrum so that the summed squared response

across all frequencies was flat, four low-pass and four high-pass

filters were included [see Kell et al. (2018) for a detailed review],

which led to a total of 211 filters. After determining the longest

(in time) cochleagram in the set, we padded each input with empty

values, so all cochleagrams were of equal length; we used a masking

layer in the network that ignores any padded values (i.e., clamps the

activity during the pads). This process resulted in a cochleagram

representation of 226 x 211 (time x frequency) cells. See Figure 2C

for a schematic representation of audio to cochleagram conversion.

Cochleagrams were created in Python, using the numpy and scipy

libraries (Oliphant, 2007; Harris et al., 2020), with signal trimming

via librosa (McFee et al., 2015).

4.2. Training tasks

We created three separate LSTM models and trained them

independently on the same training data (8,830 tokens for 883

words). A “dorsal” network was trained to differentiate between

words using vectors representing articulatory properties, and

a “ventral” network was trained to distinguish words based

on semantic properties. In addition, a “fused” network was

trained to distinguish words based on combined articulatory and

semantic properties.

We chose the dorsal task to draw attention to whole-

word articulatory properties without explicitly requiring sublexical

segmentation into phonemes or syllables. To do this, we created
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FIGURE 2

Model input and structure. (A) Distribution of words by phoneme length. We had a total of 883 words with lengths varying from 2 to 10 phonemes.

Most of the words had four or five phonemes. (B) Distribution of morphemes by word count. The most frequently used a�x was the su�x –“ing” (v.

to v.) with 118 words and the least frequently used a�x was “-ly” (n. to adv.) with 3 words. (C) Conversion of sample audio to a cochleagram. The

x-axis represents the time (1,130ms) and time samples (226), and the y-axis represents the amplitude (dB) and frequency (211Hz). (D) Frequency

distribution of the number of words a template admits and the number of templates a word matches. The number of words a template admitted was

at least 160, and the number of templates a word matched was at least 20. (E) The model architecture. The model was a standard recurrent LSTM

network with 512 fully recurrent hidden nodes. The output layer of the model was a dense layer with the sigmoid function, either with 812 (dorsal) or

1,007 (ventral) output vectors and 1,819 vectors for the fused network.

target vectors using a variation on PatPho (Li and MacWhinney,

2002). PatPho is a slot-based system that represents words as an

initial consonant cluster (CCC) followed by VVCCC blocks for

each syllable. All vectors have as many blocks as are necessary

to encode the longest word. Each C and V slot in the word

is filled by a phonetic feature vector or a similarly sized vector

of zeros. The longest word in our lexicon has five syllables;

therefore, the length of the longest word in the lexicon in terms

of the number of slots would be 28 (three slots for the initial

consonant cluster and 25 slots for each syllable). We used 29-

dimensional binary feature vectors for our encodings. In sum,

for the lexicon in our study, every word vector was of length

812 (29 X 28). For example, the word cable (/kabL/), in a

lexicon in which no words had more than one syllable, would
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be k00a0bL0, where “0” means the appropriately sized vector

of zeros. Words shorter than the maximum syllable length have

trailing zeros to fill all remaining slots. In this way, the model

doesn’t get any temporal cues as to which parts of the vector

are active at which time. With such a task, the dorsal network

would use whole-word articulatory properties for efficient sound-

to-articulation mapping.

The ventral network was trained to differentiate between

words represented by sparse vectors derived from corpus-based

lexical co-occurrence statistics. Such vectors are widely used

as a surrogate for meaning representation in distributional

semantics (Mandera et al., 2017; Lenci, 2018) because semantically

similar words tend to occur in similar linguistic contexts.

Representations formed from distributional semantic models

(DSMs) via various transformations (such as reweighting) have

been shown to be better than raw count-based models (e.g., Bag-

Of-Words) (Baroni and Lenci, 2010). However, this unsupervised

and independent vector transformation process often produces

output vectors that are extremely large and very sparse. Word

embedding models [e.g., Word2Vec (Mikolov et al., 2013)],

another type of DSM based on learned (either supervised or

unsupervised) representations ofmeaning, resolve these limitations

by learning a distributed representation for words and produce

low-dimensional vectors with dense features. Baroni et al. (2014)

compared the performance of word embedding models with

count-vector-based distributional semantic models and concluded

that the former performed better on most tasks. Here, we

have not used supervised word embedding models because

we wanted our feature vectors to be dense but, at the same

time, more interpretable. Thus, we used a mixed approach that

created static word embeddings via a count-based approach

that tries to avoid exceedingly large vectors by providing a

more interpretable mapping between the sound input and its

distributional properties.

We constructed word templates using the Corpus of

Contemporary American English (COCA) n-grams data (Davies,

2010). We used 3-gram sequences to represent word meaning

instead of a full sentence because we wanted to limit co-occurrence

statistics to three words (a sentence can be longer or shorter

than three words). COCA includes 16.3 million within sentence

3-gram sequences. We treated each 3-gram phrase as a template

to constrain the place where a word can occur. Each template

took the form of a 3-gram slot, and the target word could fill

any of the three slots. For example, “__ as a” is a template that

admits words like “act” (i.e., “act as a” is a valid 3-gram in the

corpus). Each word in our lexicon can occur in the initial (i.e.,

“act as a”), middle (i.e., “to act for”), and final (i.e., “way to act”)

positions. Each word in our lexicon had a predefined grammatical

class (noun, verb, adjective, adverb) assignment based on its

most frequent grammatical class. We did not use templates that

have only variables. To control for sense ambiguity, we restricted

templates based on the grammatical class of the target word

within the template. If a word has more than one grammatical

class associated with it (i.e., act can be a noun and a verb), we

limited our templates to the most frequent grammatical class.

For example, only templates in which the word act served as a

verb were included in the set of 3-grams that defined the sparse

vector for act. Moreover, since a word gets its meaning from the

context (template) in which it occurs, we control for polysemy

and homonymy.

Our 883 words occurred with more than forty thousand

templates. To limit the number of templates and encourage

generalization across words, we wanted each word to occur in at

least 20 templates, and we only used templates that admitted at

least 160 words (these limits were meaningful in our lexicon, but

for a different lexicon, these limits might change). This resulted in a

total of 1,007 templates; see Figure 2D for the distribution of words

by the template. These limits on templates ensure low-dimensional

vectors. For each word, we generated a sparse target vector with n

of 1,007 selected elements set to 1 (all other elements 0), where n is

the number of times a specific word pairs with a specific template

(the same target vector was used for each of the tokens of a word).

In the end, a vector space of length 1,007 represents the meaning

of a word in n different contexts. This way (using the most frequent

(1,007) global contexts based on word trigrams), we ensured denser

(compared to classic count-based models) and more interpretable

(compared to word embedding models) vectors. With this task, the

ventral network would use broad-level co-occurrence statistics of

words for efficient sound-to-meaning mapping.

The fused network was trained on combined dorsal and

ventral sparse vectors creating sparse vectors consisting of 1,819

elements (812 replicating dorsal encoding and 1,007 replicating

ventral encoding).

4.3. State-of-the-art comparison and
network architecture

While most recent approaches to modeling task-optimized

representations have utilized CNNs (Kell et al., 2018; Kell and

McDermott, 2019; Dobs et al., 2022; Kanwisher et al., 2023a,b),

we used LSTMs to model functional specialization of wordform

representation in the brain. This preference is mainly because of

the temporal structure of auditory speech data. LSTM is a type of

recurrent neural network that is designed to remember past inputs

and outputs for a longer period of time. This allows LSTMs to better

handle sequential data, such as time series data or natural language.

On the other hand, CNN is a type of neural network that is designed

to process images and other grid-like data. If the task at hand is to

model the visual processing system of the brain [i.e., the functional

specialization of face perception in the brain as in Dobs et al. (2022),

Kanwisher et al. (2023a,b)], then CNNs would be a better fit for the

task. However, LSTMs would be a better model when the task is

to capture long-term dependencies in language data. Additionally,

LSTMs have a mechanism called “gating” which allows them to

selectively choose which information to keep and which to discard

in a sequential manner, which is similar to the way the brain

processes and filters information. Finally, it has been shown that

shallow LSTM models demonstrated high accuracy on the task

of recognizing individual words based on a speech from multiple

talkers and discovered phonetic features that corresponded closely

to features represented in the STG of the brain (Magnuson et al.,

2020).
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There are many architectural and hyperparameter choices

when building neural networks. It has been shown that the

optimization of these hyperparameters can substantially affect the

training performance of the network (Pinto et al., 2009; Yamins

et al., 2014; Zoph et al., 2017). Hyperparameter tuning may include

changing the number or types of layers, the choice of optimization

algorithm, the use of dropout or other forms of regularization,

tuning the learning rate/schedule, adjusting the batch size, and

several other factors. Choosing a model architecture that supports

accurate performance on a similar task is also important (Razavian

et al., 2014). To this end, the number of recurrent layers, as well as

the number of nodes in each layer, and numerous other parameters

were determined through extensive hyperparameter tuning (see

Supplementary Table S1 and Supplementary Figure S1 for details).

We present results for the single best hyperparameter setting.

The final model consisted of 3 layers: (i) a masking layer, (ii)

a hidden layer with 512 LSTM nodes, and (iii) a dense layer with

random sparse vector outputs (812 for the dorsal, 1,007 for the

ventral, and 1,819 for the fused network). See Figure 2E for the final

structure of the network. The 226 x 211 cochleagrams were first

passed to a masking layer. For a model, the input data must be a

single tensor of shape batch_size x time x frequency. After padding,

all the cochleagrams had a uniform length. The masking layer

ensured that the sequence-processing layers ignored the padded

portions of each cochleagram. The second layer was an LSTM

layer with 512 hidden nodes that were fully recurrent. The final

layer was a dense layer that converted an input vector X into an

output vector Y of the length n, where n is the number of target

classes (812, 1,007, or 1,819). With the output layer, we used the

sigmoid activation function, which returns a value between 0 and

1 centered around 0.5. We used mean squared error loss (with a

batch size of 100) to compute the mean of squares of errors between

labels and predictions. For optimization during training, ADAM

(Adaptive Moment Estimation) (Kingma and Ba, 2014) was used

with a constant learning rate of 0.0001. Each word had ten tokens

(the same words produced by ten different speakers), and nine

of them were used for training and one for validation (nine-to-

one train/validation split). Moreover, the networks were trained for

10,000 epochs (full passes over the training set).

4.4. Testing

All models were run ten times to ensure replicability. During

the training, we checkpointed each of these ten iterations every 100

epochs to later reload the model and calculate accuracy metrics as

training time increased. We then computed the cosine similarity

(which ranges from 0 to 1) of the predicted target vector at the

final time step of each word to the true target vector to quantify

the distance between the predicted vector and the true vector of

the target word in the lexicon. We selected cosine similarity rather

than a simple binary cross-entropy threshold value because it is

more conservative and psychologically more relevant (Magnuson

et al., 2020). We reported the average cosine similarity (for all

words) for every 100 epochs for both training and validation data.

In addition, to test whether each model’s training and validation

accuracy was significantly different, we used the ANOVA function

in R (R Core Team, 2023) to perform a two-way ANOVA between

accuracy rates (cosine similarity), network type (3 levels: Dorsal,

Fused, Ventral) and test type (2 levels: Training, Validation) with

an interaction term.

To report word identification accuracy (the number of words

the model correctly predicted), we also calculated the cosine

similarity of the predicted vector at the final timestep of each word

to all the other word vectors to quantify the distance between

the predicted vector at the final time step relative to all other

words in the lexicon. For every word in the training and validation

set, the output layer of a model using the sigmoid activation

function outputs a predicted vector. We took this output vector

and compared it to the true vectors of all the possible words in

the lexicon using cosine similarity. If the cosine similarity of the

predicted vector and true vector is higher than the cosine similarity

of all the comparisons, we deemed that the model correctly

predicted the target word. In other words, we operationalized an

accurate response as one in which the cosine similarity of the

predicted target vector to the true vector was greater than that of

all other words in the lexicon. For example, if the cosine similarity

between the predicted word and the target word is 0.95, but it is

not the highest cosine similarity (meaning that some other word

vector is more similar to the predicted vector) we did not count

it as a correctly predicted word. We aimed to show how accurate

the model is on identifying the words when there are very similar

candidates that compete with the target word. We reported this as

the number of words that a model correctly predicted.

4.5. Generalization tasks details

Our aim was to compare the degree to which the featural

representations of words discovered by the hidden layers of each

model reflected hypothesized dorsal vs. ventral stream properties.

We do not expect the fused network to be optimized for either

articulatory or semantic representation. We chose one task for

each featural representation. Articulatory properties, which we

hypothesized would be captured more directly by the dorsal

network, were examined using a classification based on the onset

phoneme of each word. Onsets play a crucial role in identifying

words through their articulatory features. Spoken word recognition

relies heavily on word onsets (Marslen-Wilson and Tyler, 1980;

Marslen-Wilson and Zwitserlood, 1989; Allopenna et al., 1998). We

classified onsets based on the manner of articulation as vowels,

voiced and voiceless stops, fricatives, nasals, liquids, and glides. We

could have created more classes by splitting the vowels or fricatives

into more classes (i.e., front, center back vowels or voiced, voiceless

fricatives), but we preferred to have more balanced sets. Thus, we

had seven categories in total.

Semantic properties, which we hypothesized would be captured

more directly by the ventral network, were examined using a

classification based on the part of speech category (POS) of each

word. The POS category of a word, also known as its syntactic

category, plays a crucial role in determining its meaning. POS

category of a word is closely related to its conceptual category,

or the category to which it belongs in the speaker’s mental

representation of the world (Lakoff, 1987; Jackendoff, 2002). We

categorized words into singular and plural nouns, adjectives and

comparative adjectives, base, past, gerund, and present verbs, and
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adverbs (nine categories in total). We chose to use nine categories

rather than four general POS classes (noun, verb, adjective,

adverb) because we wanted to test whether the networks learn

morphological cues and differentiate, for example, singular nouns

from plural nouns.

Analyses of generalization tasks were run based on the best

performing iteration of the model runs. We decoded the words

in our lexicon from the activations extracted from all three

networks to check whether representations optimized for one task

would support the other. Specifically, we extracted hidden layer

activation patterns for 8,830 words (cochleagrams) categorized into

7 (articulatory task) and 9 (semantic task) classes, respectively. The

features (hidden layer activations) were extracted from all three

models at every time point (0 to 225) and then were standardized

by removing the mean and scaling to unit variance. To quantify

the decoding accuracy of activations of each network, we used

Agglomerative Hierarchical Clustering with Euclidean distance and

Ward (Ward, 1963) linkage methods [see Maimon and Rokach

(2006) for a review of clustering methods] for each task. It is an

unsupervised learning technique that groups similar data points

using a bottom-up method, such that the points in the same

group are more similar to each other than the points in the

other groups. We used unsupervised learning to find patterns and

relationships in the data without assuming a clear relationship

between the input features (hidden unit activations) and any

given output label. Decoding (clustering) performance was then

evaluated using the adjusted Mutual Information score (AMI), a

measure of the similarity between the true and predicted labels

adjusted for chance (Vinh et al., 2010). The output ranges from

[0,1], where one indicates perfect similarity between two label

assignments, and random label assignments would produce a value

of zero. AMI is also adjusted for a chance so that unbalanced class

labels do not cause an issue. We used AMI over other clustering

accuracy metrics (i.e., silhouette score, rand index, etc.) because

it gave more robust results regardless of the number of clusters.

These decoding steps were done in Python using the numpy and

sklearn libraries (Pedregosa et al., 2011). Moreover, to test whether

each model’s decoding accuracy was significantly different, we

used the ANOVA function in R to perform a two-way ANOVA

between decoding accuracy rates (AMI), network type (3 levels:

Dorsal, Fused, Ventral), and generalization task type (2 levels:

Onset Phoneme Monitoring, Part of Speech Categorization) with

an interaction term.

4.6. Error analyses

We also examined the kinds of errors the three systems make

when asked to identify individual words and see whether they

break down as we might expect. We expect to see phonological

errors (e.g., sayingmouse instead of house) from the dorsal network,

which mimics reproduction conduction aphasia following damage

to SMG due to the dorsal network being trained on the mapping

between sound and articulation. In contrast, we expect semantic

errors (e.g., saying fork instead of spoon) from the ventral network,

which correlates to transcortical sensory aphasia following damage

to the pMTG.

To do this for each of the three network predictions, we used

the same definition of accuracy (based on cosine similarity to all the

words in the lexicon) described above in Section 4.4; the network

makes an error when its predicted vector has a higher cosine

similarity to a non-target word.We then calculated the Levenshtein

Distance (LD) (Levenshtein, 1965) (the minimum number of

addition, substitution, and deletion operations needed to transform

one string to the other) between the phonological transcriptions

of the true word and the incorrect word (a word with highest

cosine similarity to the output when it is not the target) as a metric

for phonological similarity. LD is a ratio that returns a number

between 0 (no similarity) and 1 (perfect similarity). For example,

when the true word is acted, and the predicted word is active,

the LD ratio between these two words would be 0.73, meaning

that these words are phonologically similar. As for the metric of

semantic similarity, we used 300-dimensional semantic vectors for

each word from a SkipGram (Mikolov et al., 2013)model trained on

a 1.9 billion token English corpus consisting of a blend of English

Wikipedia and the English Open Subtitles database (https://opus.

npl.eu). We then calculated the cosine similarity between the true

word’s SkipGram vector and the incorrect word’s SkipGram vector

as a metric for semantic similarity.

We predicted that phonological similarity (LD) between the

true word and error word would be higher for the dorsal network

but lower for the ventral. Similarly, the semantic similarity (cosine

similarity) between the true word’s SkipGram vector and the error

word’s SkipGram vector should be higher for the ventral network

but not for the dorsal. We also predicted that the fused network

would mix phonological and semantic errors equally.

4.7. Hidden unit selectivity analyses

We used two selectivity indices (SIs) to measure the degree

to which hidden units of each network encode information

related to phoneme and morpheme representation. As we noted

above, the dorsal stream mapping between sound and articulation

is dependent on identifying phonemes, and the ventral stream

mapping between sound and meaning is dependent on identifying

morphological units. Thus, we hypothesized that the dorsal

network’s mapping of speech input to words would create a

representation of phonemes in hidden units, and the ventral

network’s mapping would create a representation of morphemes.

Thus, the two SIs that we used tested these hypotheses about the

information content of hidden units.

The Phonemic Selectivity Index (PSI), adapted fromMesgarani

et al. (2014) andMagnuson et al. (2020), quantifies the hidden unit’s

response to a target phoneme relative to all the other phonemes.We

used consonant-vowel (CV) and vowel-consonant (VC) diphones

to extract each hidden unit’s response to each of the 39 English

phonemes over a 0–100ms time window after phoneme onset. The

Morpheme Selectivity Index (MSI) quantifies the selectivity of each

hidden unit’s response to a target morpheme relative to all the

other morphemes. We used all the root-plus-one-affix words in

our lexicon to extract each hidden unit’s response to each of the

20 morphemes over the full-time window.
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We extracted the hidden unit activations for each network

(dorsal, fused, and ventral) from the best-performingmodel’s epoch

with respect to validation accuracy. Selectivity indices were then

calculated for each hidden unit by counting the number of times

that a target member of a class of phonemes or morphemes

produced a response at least 0.3 activation units stronger than

the nearest activation for a non-target class token. Values were

standardized on a 0–1 scale based on the number of tokens

bearing the target in each class. Once we obtained these selectivity

matrices (of size item x hidden units), we used hierarchical

clustering with Ward linkage and Euclidean distance to analyze

them [see Magnuson et al. (2020) for a detailed overview of

methodological choices].

We used PSI values to cluster phonemes based on phonetic

features and tested whether the hierarchy of phonemes produced

by each model follows the Sonority Hierarchy (Clements, 1990),

where speech sounds are ranked based on their loudness (vowels >

glides > liquids > nasals > voiced fricatives > voiceless fricatives

= voiced stops > voiceless stops). We also compared the resulting

phoneme hierarchies (dendrograms) from each network to the

hierarchy of phonemes in English (Lee and Hon, 1989; Dekel et al.,

2004; Pfeifer and Balik, 2011) and obtained correlation values using

cophenetic correlation in the dendextend package (Galili, 2015)

in R.

We used MSI values to cluster morphemes based on the POS

category of the words that were created after the morphological

transformation. For example, the plural morpheme’ -s’ is an

inflectional morpheme attached to nouns and creates (plural)

nouns, whereas the suffix “-ment” is a derivational morpheme

and is attached to verbs to create nouns. Here, both morphemes

create nouns, and we tested whether the hierarchy of morphemes

produced by each model cluster morphemes that create the same

part of speech category together.

4.8. Replicability, hardware, and software

Replicability was confirmed by repeating the complete training

of all models (dorsal, ventral, and dual) ten times; only minor

variations were observed between iterations. Simulations were

conducted on a Linux workstation with an Intel(R) Xeon(R)

Gold 5218 CPU running at 2.30 GHz, with 98-GB of RAM,

and using an NVIDIA Quadro RTX 8000 (48-GB) graphics

card. Simulations were conducted using Python 3.6, TensorFlow

2.2.0, and Keras 2.4.3. Each model required approximately 48 h

(except the fused network, which took 96 h) to train on this

workstation. The GitHub repository (https://github.com/enesavc/

lstm-lex) provides an up-to-date container with all necessary

explanations and jupyter notebooks for running our training code

and analyses.

5. Results

5.1. LSTM classification accuracy

All three models achieved high accuracy by the end of 10,000

training epochs (see Figure 3). The dorsal model’s performance

reached a mean average cosine similarity of 0.97 (SD = 0.08) for

training and 0.89 (SD = 0.06) for validation. The model correctly

identified 8,397 out of 8,830 words (95% accuracy) in both the

training and validation sets combined, as assessed by the number

of words where the cosine similarity of the predicted output to

the target word was larger than the similarity to any other word

in the lexicon. The ventral model’s performance reached mean

average cosine similarity of 0.90 (SD = 0.09) (training) and 0.66

(SD = 0.03) (validation), correctly recognizing 8,217 words (93%

accuracy). The fused network reached a mean average cosine

similarity of 0.89 (SD = 0.11) (training) and 0.69 (SD = 0.04)

(validation), identifying 8,267 words (94% accuracy) correctly. It

should be noted that the average cosine similarity shows the degree

of similarity between the predicted vector and the true vector but is

not directly equal to the word recognition accuracy since accuracy

depends on the cosine similarity of the target word to all the words

in the lexicon.

ANOVA results showed that there was a statistically significant

difference in average accuracy by both network types (dorsal,

fused, ventral) (F(2) = 2608.4, p < 0.001) and by test type

(training, validation) (F(1)= 7956.4, p < 0.001). There was also an

interaction between the two variables (F(2) = 639.8, p < 0.001). A

Tukey post-hoc test revealed that the dorsal network showed higher

accuracy on average than the fused network (14.5% more accurate)

and a higher accuracy on average than the ventral network

(15.3% more accurate). In addition, the fused network showed

higher accuracy on average than the ventral network (0.08% more

accurate). Training and validation accuracy differences were also

significant, with training producing higher accuracy on average of

17.4% over validation. All pairwise comparisons were significant

with p < 0.001.

5.2. LSTM generalization accuracy

The aim of the generalization tasks was to determine whether

the dorsal and ventral networks or the fused network discovered

different features and whether those features were independently

optimized to support hypothesized dorsal vs. ventral stream

processing. Specifically for the fused network, we hypothesized

that being trained on both tasks simultaneously should be harder;

therefore, the fused network should not master individual tasks as

well as the other two models. We investigated whether the resulting

feature spaces of each network trained on one task would support

the other task by decoding the featural representation of each word

based on the activation patterns in the LSTM layer of each network.

For the onset phoneme monitoring task, activation patterns served

as the input to a clustering analysis to identify seven manner-

of-articulation classes (for testing dorsal function), or nine parts

of speech categories for the POS categorization task (for testing

ventral function).

Results showed that onset phonemes could accurately be

decoded from the dorsal network [mean decoding accuracy (AMI)

of 0.36 (SD = 0.02)] and POS categories from the ventral network

[mean AMI score of 0.30 (SD = 0.02)]. At the same time, the

ventral network performed significantly worse [mean AMI score of

0.12 (SD= 0.02)] at onset phoneme discrimination than the dorsal
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FIGURE 3

Model performance during the training of three (dorsal, fused, and ventral) models. Training performance over epochs was represented with solid

(dorsal network with blue, fused network with yellow, and ventral network with red) lines and validation performance with dashed lines. Shaded areas

represent standard deviation from mean accuracy for ten iterations of the model. The average cosine similarity between the predicted vectors and

true vectors was computed for each model at every 100th epoch between 0 to 10,000 epochs.

FIGURE 4

Decoding accuracy on generalization tasks. Decoding accuracy of dorsal, fused, and ventral networks on onset phoneme monitoring and POS

categorization tasks using activation patterns extracted from the LSTM layer. Error bars indicate standard error of the mean. While the fused network

(yellow) was moderately successful in each task, the dorsal network (blue) outperforms the ventral network (red) in onset phoneme monitoring and

vice versa for POS categorization. Thus, the representations learned for one task do not buttress the other. Decoding accuracy was calculated using

the AMI score (chance level 0%) for the overall time window (stacked all the temporal features up into one big vector in the shape of 1 X 226*512

from 0 to 225 (the o�set of the cochleagram).

network and vice versa for POS categorization (dorsal network,

mean AMI score of 0.03 (SD = 0.01) (see Figure 4). Likewise, the

fused network performed worse than the dorsal network [mean

AMI score of 0.21 (SD = 0.06)] at onset phoneme discrimination

and worse than the ventral network [mean AMI score of 0.20

(SD= 0.02)] at POS categorization.
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ANOVA results showed that there was a statistically significant

difference in average decoding accuracy by generalization task

type (F(1) = 63.805, p < 0.001) and an interaction between the

network type and generalization task type (F(2) = 433.771, p <

0.001). A Tukey post-hoc test revealed that generalization task

type difference was significant (p < 0.001) with onset phoneme

monitoring resulting in a higher decoding accuracy on average

of 0.06 over part of speech categorization. The findings that

networks trained on whole word articulatory information (sound

to articulation) do not perform well on POS categorization, and

networks trained on semantic information (sound to meaning)

do not perform well on onset phoneme discrimination show

that task-specific representations are required for generalization.

Thus, the discovered features are not transferable. To perform

well on the POS categorization task, a network should discover

features that represent the POS category of a word in its

hidden units. Similarly, to perform well on the onset phoneme

discrimination task, a network should discover features that

represent phonemes of a word in its hidden units. Our results on

generalization tasks showed that the dorsal network discovered the

category of onset phonemes, and the ventral network discovered

POS categories even though they were not trained on this

information directly. In other words, the dorsal features had

an advantage for categorization related to articulation but not

semantic categorization, whereas ventral features had an advantage

for semantic categorization but not categorization related to

articulation. As for the fused network, it performed equally on

both tasks: it was worse than the dorsal network but better

than the ventral network on onset phoneme discrimination and

vice versa on the POS categorization task. This finding implies

that the fused network could not discover task-specific features

compared to the other two networks. To sum up, generalization

tasks showed that the dorsal and ventral networks, but not the

fused network discovered unique features from the same sound

input; thus, representations developed for one task do not support

the other.

FIGURE 5

Error analysis. Phonological similarity via LD and semantic similarity via cosine similarity (from SkipGram) were calculated using the dorsal, fused and

ventral errors. The x-axis of the plots shows the mean of the phonological and semantic similarity metric, and the y-axis shows the frequency

distribution. The dotted vertical lines represent the means.
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5.3. The error patterns of networks

Both the dorsal and ventral networks discovered task-specific

features and performed very well on their domain-specific

generalization tasks. However, that was not the case for the fused

network. The feature space discovered by the fused network did

not support high task performance on generalization tasks. To

better understand this performance difference, we analyzed the

error patterns of each network. For each network, we calculated

the phonological similarity (via normalized Levenshtein distance)

between each of the incorrectly predicted words (the cosine

similarity between the predicted vectors and true vectors was lower

for target words than for at least one competitor word) and their

true counterparts. The average phonological similarity between the

dorsal network’s errors was 0.65 on a scale of 0 to 1, meaning

that the incorrectly predicted words tended to be phonologically

similar to the target. For the same set of words, the average

semantic similarity (cosine similarity between the vectors coming

from SkipGram) was 0.37 (Figure 5). These results demonstrate

that dorsal network errors were more on the phonological side

of the continuum, confirming our hypothesis with regard to the

dorsal network. The average phonological similarity for the ventral

network between the incorrect words and their true counterparts

was 0.58, and the average semantic similarity was 0.33. As for the

fused network, the average phonological similarity was 0.61, and

the average semantic similarity was 0.35 (Figure 5). These results

show that the errors made by the ventral and fused networks were

also more phonological and less semantic, in contradiction to our

predictions based on the aphasia literature.

5.4. Hidden unit sensitivities

We have shown that each network could identify words

equally well, and decoding analysis showed that the dorsal network

discovered hypothesized articulatory features, whereas the ventral

network discovered semantic features. However, surprisingly each

network showed similar error patterns meaning that whenever a

model makes an incorrect prediction, it is phonologically similar

to the target word. We used selectivity indices (SIs) to examine the

inner mechanisms of the networks.

While the dorsal network learned to map auditory speech

input to vectors that represent phonological properties, the ventral

network learned to map the same speech input to vectors that

represent semantic properties. Our hypothesis was that once

learning was successful, the hidden units of networks would

discover some task-specific features. In particular, the dorsal

network’s mapping speech input to words might have created an

implicit representation of phonemes in hidden units. Similarly,

the ventral network might have developed representation for

FIGURE 6

Phoneme hierarchies based on phoneme selectivity index (PSI). PSI values were used to cluster 39 English phonemes based on phonetic features.

Phonetic features are color-coded following the sonority hierarchy: Dark green represents Front vowels and dark purple represents Voiceless-Stops.

English phoneme hierarchy (left) were used as a baseline for the comparison of dorsal, fused, and ventral network’s resulting phoneme hierarchies.
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FIGURE 7

Hierarchies based on morpheme selectivity index (MSI). MSI values were used to cluster 20 English phonemes based on POS categories of the word.

POS categories are color-coded: Light blue represents adjectives, purple for nouns, red for verbs, and green for adverbs. English morpheme

hierarchy (left) were used as a baseline for the comparison of dorsal, fused, and ventral network’s resulting morpheme hierarchy.

unique morphemes through morphological parsing of semantic

interpretation of words. The fused network, on the other hand,

would not be as task-specific as the other two networks because

learning the phonemes and morphemes simultaneously would be

hard. We tested these hypotheses using PSI and MSI measures of

hidden node selectivity in each model combined with hierarchical

clustering analyses of those measures. We then compared the

resulting clusters to English phoneme and morpheme hierarchies

to quantify the similarity.

PSI results in Figure 6 showed that while all three networks

developed some sense of phonetic information, the dorsal network

hidden unit activations clustered phonemes better than the other

two networks (dorsal phoneme hierarchy is more similar to English

phoneme hierarchy). To quantify how faithfully a cluster hierarchy

outputted by a model preserves the pairwise distances between

the English phoneme hierarchy, we used cophenetic correlation.

The results showed that the cophenetic correlation coefficient

between the dorsal network’s phoneme hierarchy and the English

phoneme hierarchy was 0.72, implying that they were similar.

In contrast, it was 0.56 for the fused model’s hierarchy and

0.57 for the ventral model’s hierarchy (the cophenetic correlation

coefficient between the fused hierarchy and ventral hierarchy

was 0.88).

The ventral and fused networks clustered approximants and

nasals (sonorant sounds) together with obstruents rather than

vowels. In addition, the fused network hidden unit activations

wrongfully clustered the high front vowel (/i/) with voiced

fricatives. The ventral network clustered the high front vowel (/i/)

with the glide or semi vowel /j/ under a more general cluster of

approximants and nasals. The dorsal and ventral networks perfectly

clustered the obstruents into two big categories as the voiced and

voiceless obstruents. This voiced vs. voiceless obstruent distinction

was not perfect in the fused network. Nevertheless, each model

showed a decent grouping of English phonemes following the

Sonority Hierarchy. The success of the models in the grouping of

phonemes might be related to the fact that they all received acoustic

input in the form of cochleagrams (see Supplementary Figure S2 for

the hidden unit activations from each network in response to 39

English phonemes).

The MSI results in Figure 7 showed fundamental differences

between the three models. MSI shows the selectivity of model

hidden units to the 20 morphemes, which were coded based

on the POS category of the word that was created after the

morphological transformation. The clustering of morphemes based

on dorsal hidden unit activations does not show a sensible

grouping of morphemes, whereas the cluster from the fused

network shows groupings of some nouns together. However,

among the three networks, the ventral hidden units showed the

best classification of the morphemes (based on the grammatical

category of the words they create), where all the nouns are

clustered together with adjectives (see Supplementary Figure S3 for

the hidden unit activations from each network in response to 20

English morphemes). This shows that ventral stream mapping is

dependent on identifying morphological units.
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6. Discussion

Spoken language processing is organized broadly into parallel

dorsal and ventral processing streams, and various lines of work

show that each stream might have its own lexical interface area

mediating mappings between acoustic-phonetic representation

and stream-specific processing. The purpose of this paper was

to determine why humans might have evolved two lexicons

rather than a single lexicon that interacts with both processing

streams. Specifically, we asked whether computational constraints

on the mapping between acoustic-phonetic input and articulation

vs. meaning create pressure for the development of different

computationally efficient featural representations of words in the

dorsal and ventral streams. Below, we discuss our results in the

context of recent similar findings in the auditory systems that

examine human speech recognition models and visual systems that

examine functional specialization.

Our results demonstrated that training the networks on

differently structured wordform representations produced different

featural representations at the hidden layer of each model and

that these emergent representations supported different patterns of

performance on generalization tasks. While vectors that represent

phonological properties were used as surrogates of articulatory

representation in the dorsal network, and vectors based on

patterns of lexical co-occurrence were used as surrogates of the

ventral network, training on both patterns supported accurate

identification of individual words (that each model showed

successful training and validation performance). Both dorsal and

ventral networks were successfully trained to map cochleagrams of

tokens of spoken words onto output vectors representing words

and to generalize that mapping from trained to untrained tokens.

The generalization capacity of both models was also high, making

the models predict more than half of the words in the validation

set correctly. To this extent, both models learned to recognize a

large set of spoken words produced by multiple talkers and map

each token to the correct type successfully. The fused network’s

training and validation accuracy were comparable to the ventral

network but worse than the dorsal network. Our interpretation

of this finding is that training the network simultaneously on two

different output vectors might have helped it to discover a feature

set that allows word identification, but at the same time, this feature

set is not as task-specific as the other two networks. Therefore, even

though the fused network identified wordforms comparable to the

other two networks, the representations it discovered were not as

well optimized for specific mappings as the specialist dorsal and

ventral models.

Despite being trained on output vectors that did not

explicitly require phonemic representation, the dorsal network

discovered a feature space that supported the classification of

word-initial phonemes by articulatory class. Furthermore, hidden

unit sensitivities of the dorsal network revealed that the model

discovered the phonetic features of English phonemes clustered in

a way that follows the sonority hierarchy. This result is consistent

with the findings reported by Bhaya-Grossman and Chang (2022)

examining human STG encoding distinct acoustic-phonetic and

prosodic features. Similar findings were also reported by the

EARSHOT model (Magnuson et al., 2020) in which hidden node

selective sensitivity to both phonemes and articulatorily referenced

phonetic features were shown to pattern with selectivity found

in electrode recordings in human STG using similar input and

model architecture. Although the hidden unit sensitivities of

the fused and ventral networks also revealed the emergence of

phonetic feature sets, neither of the model’s features supported the

successful classification of word-initial phonemes by articulatory

classes as well as the dorsal network. We attribute the dorsal

model’s insensitivity to the POS categories to the failure to

create a task-specific feature space that supported semantic

mappings. This finding demonstrates the importance of task-

optimal representation. Decent phonemic representations emerged

spontaneously in each network trained on spoken words, but the

dorsal network trained on phonological properties showed better

generalization related to representations that are more rooted in

articulatory properties.

In the same vein, the ventral network discovered a feature

set that supported POS categories that play a critical role in

determining a word’s meaning despite having been trained on

output representations that did not explicitly describe grammatical

categories. Although the ventral network was trained on output

vectors with structures that reflect the overlapping distributional

patterns of individual words in meaningful contexts, the hidden

unit selectivity of the model showed the emergence of grammatical

classes of words. This finding is consistent with a broad body of

work in distributional semantics and the findings of Elman (2004),

whose recurrent network showed clustering in feature space that

reflected grammatical category after training on a word prediction

task. The finding that the ventral network outperformed the dorsal

network on grammatical category classification is not unexpected,

but it again demonstrates that task demands shape feature spaces

that are better suited for different types of generalization. In

addition, the ventral network showed better clustering than the

dorsal network with respect to the POS category of words created

by different derivational and inflectional morphemes. This shows

that the ventral stream mapping between sound and meaning is

more sensitive to morphological units.

We also closely investigated the kinds of errors models make

when asked to identify individual words to see whether they

pattern with dissociations in aphasia. Reproduction conduction

aphasia, caused by damage to the inferior parietal lobe, is an

acquired language disorder where phonological production shows

phonological errors in tasks requiring spoken output (Franklin

et al., 2002). This disorder is attributed to the degradation of

dorsal representations. Similarly, semantic paraphasia seen in

transcortical sensory aphasia following damage to posterior middle

temporal regions (Fridriksson et al., 2009) is attributed to the

degradation of ventral representations. We have found evidence

for this hypothesis in the type of errors our dorsal network made.

However, the error patterns of ventral and fused networks also

exhibited more phonological errors than semantic errors. For

example, all the models incorrectly predicted the target word

killing as killed (even though, as experimenters, we expected an

error like murdering for killing from the ventral network). While

the phonological similarity between killed and killing is 0.62, the

semantic similarity is 0.65. This example shows that since our

lexicon includes lots of morphological derivatives of base lemmas

(e.g., kill, killer, kills, killing, etc.), we are unlikely to find purely

phonological or purely semantic errors. When the dorsal network
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makes a phonological error, most of the time, it is a semantic

error as well; and when the ventral network makes a semantic

error, in many cases, it chooses a phonologically similar word. In

other words, if the model chooses the wrong form, then that error

is phonologically and semantically related to the correct word in

many cases, irrespective of what the model is optimized for during

training. Thus, we think that the morphological complexity of the

lexicon is what makes these error patterns look the way they do.

The fused network, although it performed very well during

training and validation, did not do well on onset phoneme or POS

categorization tasks. The goal of the onset phoneme categorization

task was to test the degree of sensitivity of a network in response to

the word-initial phoneme, which plays a key role in sound-to-form

mapping. The onset of a word has a special status in lexical access of

spoken words because it determines the level of activation between

the competitors in the lexicon (Marslen-Wilson and Zwitserlood,

1989; Jusczyk and Luce, 2002). On the other hand, with the POS

categorization task, we aimed to observe whether a network learns

the grammatical category of a word which plays a key role in the

mapping of sound to meaning [see Chiche and Yitagesu (2022)

for an overview of the importance of POS tagging in NLP and its

impact on meaning extraction]. The fused network’s performance

on these two tasks was worse than the other two networks. Is this

due to the lack of task-optimization or the specific nature of these

two tasks? We propose the possibility that the fused network could

not find a common feature space to solve both tasks (cf. Dobs

et al., 2022). Although it may have formed representations that

are partially phonemic and partially semantic, the feature space

it built over the training process does not have the task-specific

information to eclipse the performance of the other two networks.

This behavior can be explained as an adaptation to increased

processing costs where the fused network is adapting its weights

to forget some of the phonemic representations in order to keep

and build semantic representations (or vice versa) concurrently. Of

course, future work that tests such a network on many different

tasks will ground these preliminary results.

Overall, the results on the generalization tasks and the hidden

unit SIs show that the dorsal features were more successful

on an articulatory task and the ventral features were more

successful on a semantic task indicating that representations

optimized for one task would not be transferable to the other.

One critical design feature of this study is that each network

gets the same sound input but is paired with different output

vectors. Therefore, each network is supposed to develop different

features in its hidden layer representation. The results showed

that the dorsal network discovered phonemes, and the ventral

network discovered morphemes without explicit training. And

both networks were successful on related tasks due to these task-

specific representations. If task-specific representations were not

discovered, both the dorsal and ventral networks would have

resulted in comparable performance on generalization tasks. For

example, the fused network, which was trained on both articulatory

and semantic information simultaneously, could not discover

task-specific features and showed comparable performance on

generalization tasks.

These results suggest that lexical interface areas in the

dorsal and ventral pathways of the brain may have arisen from

computational constraints for optimizing the primary mapping

functions that support lexically organized processes in the dorsal

and ventral processing streams. Our results align with previous

research in the visual domain, demonstrating how computational

constraints can give rise to functional specialization. Dobs et al.

(2022) used deep CNN models to ask why are face and object

processing segregated in the human brain and test whether

functional specialization is a good design strategy in the first place.

They hypothesized that the functional specialization might be due

to three possibilities: (i) it resulted by accident of evolution, (ii) it

is the output of time selective modulation, and (iii) computational

reasons. They tested this third hypothesis and trained two separate

networks with the same architecture on the categorization of faces

and objects. The results revealed that the network trained on faces

performed worse on object categorization than the object-trained

network and vice versa. In sum, Dobs et al.’s results, together with

our results, support the claim that the optimization of features for a

specific task might be a design feature of the human brain [see also

Yang et al. (2019) for similar results on 20 different cognitive tasks

using recurrent neural networks].

7. Conclusion

This study aimed to characterize the functional specialization

of word representation and examine whether computational

constraints inherent in the mapping between sound and higher-

order linguistic representations (articulation vs. meaning) could

have shaped the development of parallel lexical interface areas

that rely on different featural representations. We showed that

task-specific features discovered by LSTMs trained on vectors

representing phonological properties supported articulatory

classification better than those trained on distributional semantics.

Conversely, featural representations of words from LSTMs trained

on distributional semantics supported semantic generalization

better than those trained on vectors representing phonological

properties. These results support the claim that different featural

projections of wordform may be needed to support efficient

processing in the dorsal and ventral speech streams. Thus, we

showed that the characteristics of the input data determine the

representations that the machine/algorithm (and potentially the

brain) must uncover for feature detection. In future work, we hope

to ground these analyses via direct comparisons between patterns

of human cortical and machine classifier hidden node responses to

spoken words.

8. Limitations of the work

This work was intended as a broad computational exploration

of computational factors shaping wordform representation and

not an explicit processing or neural model of human lexical

processing. Human lexical processing appears to depend on

interactive excitatory and inhibitory processes that we have not

attempted to implement. While our lexicon is similar in size

to those implemented word recognition models such as TRACE

(McClelland and Elman, 1986) or EARSHOT (Magnuson et al.,

2020), it is significantly smaller than the typical 20–100,000-word

lexicon of an adult native English speaker. A more realistically
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scaled lexicon would pose much denser perceptual and semantic

spaces, which might necessitate reliance on richer feature systems.

In contrast to previous work, we have used complex morphology

so that our lexicon reflects the English lexicon more naturally;

we believe this is a strength of our study. However, our error

analysis showed that including lemmas along with many of

their derivatives, worked against our predictions by inducing a

correlation between phonological and semantic similarity in the

lexicon. Using a larger, carefully controlled lexicon (controlling

phonotactic frequency, cohort size, phonetic saliency, phonological

neighborhood density, length of the word, and semantic similarity

of words) with natural speech might allow us to decouple

phonological and semantic errors. In addition to lexicon design,

we made a number of other choices to simplify implementation,

including the restriction of words that play multiple grammatical

roles (e.g., act can be a noun or a verb) to a single form in

ventral coding, the use of synthetic speech that does not show

naturalistic patterns of phonological reduction, and the use of

minimalist representations of articulatory or morphosyntactic

target vectors.

These choices allowed us to make an initial exploration of

computational forces that make wordform representation tractable,

but they preclude strong inferences about the neural representation

of specific wordforms. Fine-grained validation of these results

against neural data using methods such as representational

similarity analysis will be an essential step in understanding the

principles explored here. However, meaningful comparisons with

human data will depend on the development of more realistic

training sets and target representations. Our error analysis was a

modest qualitative step in that direction.

While the work aimed to explore computationally optimal

feature space, we recognize our models themselves may not have

been optimal in several respects. By testing and modifying model

parameters independently, our methods have failed to identify

optimal sets of interacting parameters. Furthermore, we used a

small subset of possible model architectures with loss, optimization,

learning rate, number of layers, and hidden nodes. Thus, it is a

possibility that a network with a different optimization strategy

(i.e., Bayesian optimization or grid search) might perform well

and show shared feature space for the mappings between sound to

articulation and sound to meaning.

Our study cannot prove why the human brain discovers

unique dorsal and ventral features for better speech perception.

Instead, we can only argue that given the tested circumstances, we

found functional specialization, which might reflect the functional

specialization of the human brain hypothetically. Last, our results

do not show anything about how the computational constraints

interacted with potential anatomical and evolutionary constraints.

Instead, we only showed the possibility that the computational

constraints in the input data might have shaped the development

of parallel wordform networks if they exist, as hypothesized by

Gow (2012) and previous work. We hope that the arguments and

hypotheses developed here will enable future cognitive scientists to

ask more fine-grained questions about the language in the brain,

considering the computational optimization as a design feature [see

Kanwisher et al. (2023a) for an argument of using ANNs to ask

“why” questions about the brain].
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