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Introduction: The notion of a single localized store of word representations has
become increasingly less plausible as evidence has accumulated for the widely
distributed neural representation of wordform grounded in motor, perceptual,
and conceptual processes. Here, we attempt to combine machine learning
methods and neurobiological frameworks to propose a computational model of
brain systems potentially responsible for wordform representation. We tested the
hypothesis that the functional specialization of word representation in the brain
is driven partly by computational optimization. This hypothesis directly addresses
the unique problem of mapping sound and articulation vs. mapping sound and
meaning.

Results: We found that artificial neural networks trained on the mapping
between sound and articulation performed poorly in recognizing the mapping
between sound and meaning and vice versa. Moreover, a network trained on
both tasks simultaneously could not discover the features required for efficient
mapping between sound and higher-level cognitive states compared to the other
two models. Furthermore, these networks developed internal representations
reflecting specialized task-optimized functions without explicit training.

Discussion: Together, these findings demonstrate that different task-directed
representations lead to more focused responses and better performance of
a machine or algorithm and, hypothetically, the brain. Thus, we imply that
the functional specialization of word representation mirrors a computational
optimization strategy given the nature of the tasks that the human brain faces.

KEYWORDS

mental lexicon, word representation, neural networks, functional segregation, dorsal and
ventral streams, deep learning

1. Introduction

In 1865, Paul Broca declared the left-third frontal convolution of the brain to be the
“center of articulate speech”. In the years that have followed, cognitive neuroscientists have
embraced an increasingly granular and differentiated view of localized cognitive function.
Multiple brain regions have been associated with particular cognitive functions thanks to
advances in imaging techniques and the functional decomposition of cognitive processes.
Examples include the visual word form area (VWFA), which responds to orthographic
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2002; Dehaene and Cohen, 2011), the
fusiform face area (FFA), which is specialized for facial recognition
(Kanwisher et al., 1997), and the extrastriate body area (EBA),
which responds selectively to images of the human body (Downing

forms (Dehaene et al.,

et al., 2001). Even more recently, a neural population has been
identified in the human auditory cortex that shows selective
sensitivity to singing (Norman-Haignere et al., 2022). These
findings invite the question of why such narrow sensitivities
arise in the first place. In this paper, we investigate one such
localized function, the functional specialization of wordform
representation, by utilizing a neuro-inspired machine learning
approach. Our premise is that task-directed representations are
essential to perform a task (Bengio et al, 2013). We propose
that input data characteristics will force the machine/algorithm,
and hypothetically, the brain, to discover the representations
required for feature detection. Thus, we examine whether the
functional specialization of wordform representation is driven
partly by computational constraints that are inherent in the
mapping between spoken words and their evoked cognitive states.
Wordform representation, the stored representation of
the sound patterns of words, has been associated with the
bilateral posterior middle temporal gyrus (pMTG) and adjacent
posterior temporal regions (the ventral stream network)
addition to the supramarginal gyrus (SMG) and adjacent
inferior parietal areas (the dorsal stream network) (Hickok
and Poeppel, 2007; Gow, 2012) (see Figure 1). Words provide
a useful level of representation for organizing the processing
in both streams, but it is not clear why two distinct wordform
networks evolved. The development of speech and language
probably relied on neural systems that were already present
in other primates’ brains which are organized dually, similar
1998). Thus,
the division between dorsal and ventral processing streams

to those in the visual cortex (Rauschecker,

appears to predate the evolution of language in both visual and
auditory processing (Rauschecker and Scott, 2009; Sheth and
Young, 2016). This suggests that dorsal and ventral processing
divergences constrain the modern functional organization of
spoken language processing. In addition to these potential
anatomical constraints, we hypothesize that computational
constraints of input data shaped the development of parallel
wordform networks that rely on different featural representations
of words to mediate different mappings between sound and
higher-order linguistic representations.

Words play a crucial computational role in language by
mediating the mapping between sound patterns and cognitive
states. Elman (2004) and Gow (2012) describe the computational
role of words as being functionally equivalent to hidden nodes
in a neural network, providing representations that optimize
the mapping between signal structure and the cognitive traits
they evoke. In a sense, words are provisional representations in
service of understanding meaning and articulation. The dorsal
and ventral processing architecture impose two very different sets
of demands on wordform representation. While complex, the
dorsal stream mapping between sound and articulation is relatively
systematic, temporally contiguous, and primarily dependent on
identifying segmental units of the phoneme or syllable. In contrast,
the ventral stream mapping between sound and meaning is
partially systematic, largely arbitrary, and primarily dependent
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FIGURE 1

Cortical organization of wordform representation. The posterior
superior temporal gyrus (pSTG), shown in light blue, is the main area
of acoustic-phonetic processing of natural speech. The
supramarginal gyrus (SMG), shown in yellow, mediates the mapping
between acoustic-phonetic representations and articulation,
whereas the posterior middle temporal gyrus, shown in pink,
mediates the mapping between acoustic-phonetic representations
and meaning.

on identifying morphological units that frequently span multiple
segments. From the perspective of the dorsal stream, the words cats
and cast might be viewed as single-phoneme insertion neighbors
of cat. From the perspective of the ventral system, cat and cats
are closely related, while cat and cast are quite different. Given
these differences, we hypothesize that these mappings would
depend on different featural representations of wordform. In this
respect, the existence of two parallel networks raises the following
fundamental questions: How do computational constraints of
input data contribute to the emergence of these parallel streams?
Do the computational demands of dorsal vs. ventral stream
processing require different featural representations of wordform
to accomplish efficient mapping?

Neuro-inspired machine learning techniques such as artificial
neural networks (ANNSs) provide a useful tool for exploring these
questions (LeCun et al, 2015). These techniques are opening
up unprecedented ways of thinking about how the brain works,
specifically within the domains of perception, vision, and cognition
(Yamins and DiCarlo, 2016; Flesch et al., 2018; Geirhos et al.,
2018; Rajalingham et al., 2018; Zhou and Firestone, 2019; Golan
et al., 2020). One such example is reinforcement learning, a type
of machine learning inspired by the brain’s reward system that uses
positive and negative feedback to guide the learning process (Sutton
and Barto, 2018). Recent reviews also suggest that deep neural
networks (DNNs), which are composed of many hierarchically
organized layers of ANNG, have the potential to completely remodel
the way we think about neural computations (see Kriegeskorte,
2015; Marblestone et al., 2016; Bowers, 2017; Lake et al., 2017; Cichy
and Kaiser, 2019; Saxe et al., 2021). Algorithms, such as DNNG, use a
hierarchical combination of non-linear functions to transform raw
input into more complex features, allowing for the identification
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of new patterns and improved performance on tasks such as image
recognition and natural language processing (Bengio et al., 2013).

In the present study, we used long short-term memory
(LSTM) architectures (Hochreiter and Schmidhuber, 1997) to
test the hypothesis that the complex but systematic mapping
between sound and articulation in the dorsal stream places
different demands on feature sets than the more arbitrary mapping
between sound and meaning. Any system (either machine or
brain) learning to map sound to articulatory information vs.
sound to meaning will intrinsically develop a different feature
set because the characteristics of these mappings are different.
Namely, the dorsal mapping depends on identifying segmental
units (phonemes, syllables), whereas ventral mapping depends on
morphological units. We created three LSTM networks to test this
hypothesis and trained them independently on the same set of
auditory word tokens. A dorsal network was trained to map words
onto vectors representing whole-word articulatory properties so
that the level of linguistic description that it is capturing would
be phonological. In contrast, a ventral network was trained to
map words onto vectors reflecting broad distributional semantic
properties to capture semantic content. We also created a “fused”
model that was trained on both tasks simultaneously to provide
a direct comparison of the computational efficiency of parallel vs.
single-stream wordform mapping. All words had unique sparse
output representations. After training, we extracted patterns of
network activation from the hidden layer of each network and
tested how well the features extracted from one model supported
the classification of input based on articulatory vs. semantic
properties. We predict that: (i) Features from a dorsal LSTM
model trained on dorsal mappings should have an advantage for
articulatory categorization but not semantic categorization, (ii)
Features from a ventral LSTM model trained on ventral mappings
should have an advantage for semantic categorization but not
articulatory categorization, and (iii) Features from a fused LSTM
model trained on both dorsal and ventral mappings should not have
an advantage for categorization related to articulatory or semantic
categorization, compared to the specialized models. It should be
noted that this study does not use neural data to test the spatial
localization of wordform representation in the brain. Instead,
we use computational modeling to investigate the computational
constraints that could have caused the brain to develop two parallel
word processing systems.

2. Cortical organization of wordform
representation

In one of the founding works of the neurobiology of language,
Wernicke (1874/1969) inferred the existence of a wortshatz
(“treasury of words”) in the posterior superior temporal lobe
from an association between localized damage in aphasia and
impaired auditory speech comprehension. Wernicke’s concept
of the wortshatz is similar to Pustejovsky’s (1998) notion of
a sense enumeration model, in which words are bundles of
stored information describing meaning, syntactic function, and
phonological form. Within this framework, word recognition or
lexical comprehension deficits reflect the loss of this enumerated
knowledge. Rather than focusing on the role of the word
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as a mediating representation, work on the neural bases of
lexical knowledge focused mainly on the distributed localization
of lexically indexed semantic knowledge grounded in motor,
perceptual, and conceptual processes [see a review by Patterson
et al. (2007)] and possible dissociations between input and output
lexica (Jacquemot et al., 2007).

The search for a lexical interface area began with Hickok and
Poeppel (2004), who hypothesized the existence of a single sound-
meaning interface broadly localized to the left temporal, parietal,
and occipital cortex junction that maps semantic representations
to acoustic-phonetic representations. Later versions of the dual-
stream model postulated the bilateral posterior middle temporal
gyrus (pMTQG) as the lexical interface region (Hickok and Poeppel,
2007) and cortices adjacent to the posterior inferior temporal sulcus
(pITS) as components of the ventral stream. Hickok and Poeppel
associated this lexical interface region in the ventral stream with a
lemma level of representation. Bilateral pMTG has also been shown
to play a role in both regular and irregular morphological processes
(Joanisse and Seidenberg, 2005; Tyler et al., 2005; Yokoyama
et al., 2006). These findings contributed to conceptualizing this
region as a house of wordform representation with morphological
properties rather than a store of semantic knowledge. Hickok and
Poeppel propose that representations stored in bilateral pMTG
connect semantic representations and syntactic processes stored in
a broad, bilateral distributed network with the acoustic-phonetic
representations localized in bilateral posterior superior temporal
gyrus (pSTG). With hypothesized bidirectional information flow
within the ventral processing stream, this interface area plays a role
in both the production of spoken words to communicate meaning
and the interpretation of words spoken in context.

Evidence that the pMTG plays a role in ventral stream lexical
processing comes from transcortical sensory aphasia (TSA). TSA
generally occurs following posterior and/or inferior temporal
lobe damage and involves impaired auditory comprehension
with preserved syntactic and phonological abilities (Kertesz
et al, 1982). Furthermore, electrical stimulation studies of
speech/language abilities (Liiders et al., 1991), imaging studies of
semantic processing (Binder et al., 2000), studies finding word
comprehension deficits in Wernicke’s aphasia (Baker et al., 1981),
and neuropsychological studies that focus on word-level semantic
deficits (Hart and Gordon, 1990) support the ventral lexicon’s
aforementioned roles in mapping between sound and meaning [see
Hickok and Poeppel (2004) for a detailed review].

Gow (2012)’s dual lexicon model extends the dual-stream
model of language processing and synthesizes evidence from
aphasia, behavioral, and neural results to identify a second
wordform area. In the dorsal processing stream, the left SMG
(the inferior portion of Brodmann’s area 40 delineated by the
intraparietal sulcus, primary intermediate sulcus, the postcentral
sulcus, and the Sylvian fissure) and the adjacent parietal operculum
mediate the mapping between sound and word-level articulatory
representation. This dorsal lexicon is hypothesized to play
roles in speech production and perception, articulatory working
memory rehearsal, and storage of articulatory organized wordform
representations. Behavioral evidence for this claim includes the
separable effects of semantic and wordform priming (Gaskell and
Marslen-Wilson, 2002; Misiurski et al., 2005; Norris et al., 2006),
lexical biases in non-word repetition errors (Vitevitch and Luce,

frontiersin.org



Avcu et al.

2005), the influence of word-level properties including lexical
frequency (Vitevitch and Luce, 1998, 1999, 2005) and phonological
neighborhood properties on articulation (Munson and Solomon,
2004; Scarborough, 2004; Wright, 2004; Munson, 2007), and
syllabic encoding effects on speech production (Cholin et al., 2006).

Evidence from functional MRI studies investigating BOLD
sensitivity to whole word properties similarly shows that lexical
frequency and neighborhood (Shallice et al., 2000; Goldrick and
Rapp, 2007; Knobel et al., 2008; Romani et al., 2011), competitor
environment (Prabhakaran et al, 2006; Righi et al, 2010;
Peramunage et al., 2011), lexical suppression and enhancement
(Graves et al., 2007; Buchsbaum and D’Esposito, 2009), and word
learning (Cornelissen et al., 2004; Mechelli et al., 2004; Green et al.,
2007; Lee et al., 2007; Richardson et al., 2010) are modulated by
the inferior parietal lobe, particularly the SMG, in addition to
the area that Hickok and Poeppel (2007) hypothesized to be the
lexical interface. Within this framework, the lexically preserving
phonological paraphasias (Yamadori and Ikumura, 1975) seen in
reproduction conduction aphasia (Shallice and Warrington, 1970;
Vallar and Baddeley, 1984) following inferior parietal damage may
be attributed to the degradation of dorsal lexical representations,
just as semantic paraphasia seen in transcortical sensory aphasia
following damage to posterior middle temporal regions may be
attributed to the degradation of ventral lexical representations
(Wernicke, 1874/1969; Goldstein, 1948; Coslett et al., 1987).

To the extent that Gow’s dual lexicon model explains a wide
range of empirical results, it also raises a fundamental question:
Why do humans need stored representations of wordforms
in two parallel streams? We hypothesize that this seemingly
unparsimonious redundancy stems in part from the pre-language
evolution of separate dorsal and ventral auditory processing and the
general usefulness of words as units of meaning and articulation.
However, we also suspect that computational constraints imposed
by the structure of spoken language and the divergent goals of
the dorsal and ventral speech streams also contribute to this
organization. In summary, the primary function of the wordform
representations stored in the dorsal and ventral streams is to act as
an interface between low-level representations of sound and higher-
level representations of different aspects of linguistic knowledge,
such as meaning and articulation.

3. Computational rationale of the
model

While the term deep learning might be new, the use of
neural networks to test the theories of neural computation related
to language processing dates to the 1980s’ parallel distributed
processing models [see reviews by McClelland and Rogers (2003)].
Early models were used to explore the role of single vs. multi-
stream mapping related to problems including the reading of
words with regular vs. irregular orthography and the formation
of regular vs. irregular forms of the English past tense [see
McClelland and Patterson (2002), Pinker and Ullman (2002), and
Westermann and Ruh (2012) for an overview]|. These models
played a significant role in shaping these debates but were limited
in several respects. Chief among them was their reliance on
training sets that did not reflect the distributional properties of
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real-world input and empirically unsupported assumptions about
the form of input representations. Significantly, both limitations
had the potential to bias the computational adequacy of the
learning mechanisms that were the primary intended focuses of
the work.

Deep learning models have made recent substantial progress
in the perception and production of language, which is an ability
generally attributed to humans (Chomsky, 2006; Turing, 2009;
Dehaene et al., 2018). Transformer based models (Rothman, 2021),
in particular, can comprehend, condense, translate, and generate
text that closely aligns with the given prompt with a high degree
of precision (Vaswani et al, 2017; Devlin et al, 2019; Brown
et al., 2020; Floridi and Chiriatti, 2020). Moreover, deep learning
models have been shown to process linguistic units (syllables,
words, sentences) to the extent that is similar to the human
brain (Lake and Murphy, 2021; Caucheteux and King, 2022; Hale
et al., 2022). Such findings are only possible with the extraction
of task-directed representations. Representation learning models
acquire valuable representations, such as those that can be easily
understood, possess hidden characteristics, or can be applied in
transfer learning (Bengio et al., 2013).

Several recent studies have used convolutional neural networks
(CNNs) originally developed for image processing (Le Cun et al.,
1989; Gu et al,, 2018) to explore task-optimized feature spaces for
the classification of naturalistic inputs and their implications for
functional specificity in cortical processing [(Kell et al., 2018; Kell
and McDermott, 2019; Dobs et al., 2022; Kanwisher et al., 2023a);
see Kanwisher et al. (2023b) for a review]. Others have used LSTMs
to explore the emergent representation of temporally structured
inputs and have found essential convergences with human neural
representations (Magnuson et al., 2020).

Kell et al. (2018) investigated whether deep CNNs trained
on speech (identification of words presented in noise) and
music (identification of musical genre presented in noise) tasks
show human-like error patterns or predicted patterns of neural
response to the same stimuli. CNNs are a class of deep learning
models inspired by early neural visual processes and are typically
applied to image classification, object detection, text detection
and recognition, action recognition, and scene labeling (Le Cun
et al, 1989; Gu et al, 2018). By effectively spatializing the
temporal structure of auditory input by converting audio input into
psychophysically biased cochleagrams, Kell and colleagues were
able to take advantage of CNNs strengths as image classifiers.
Their models classified both types of input with high accuracy,
showing patterns of confusion that correlated strongly with human
performance. More importantly, their models predicted voxel-level
BOLD activation in human fMRI data, with a significant correlation
between activity at sequential layers of the model and analogous
regions in the auditory neural processing stream. These findings
reflect hierarchical auditory processing and differentiation between
higher-level processing of speech and non-speech stimuli. This
work is an important step toward capturing a more accurate view of
the computational problems posed by auditory word recognition.
By training their models on natural speech, Kell and colleagues
were able to capture critical aspects of the inherent variability of
the speech signal, including variability related to speaker and rate.
These results and subsequent related works have demonstrated
the potential of using deep learning methods to explore the role
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of task-optimal processing to generate and test hypotheses about
neural representations and the functional organization of the brain
(Kell et al., 2018; Kell and McDermott, 2019; Dobs et al., 2022;
Kanwisher et al., 2023a).

One area where this work falls short is in the handling of
the temporal structure of auditory speech. The transience of
the speech signal and the rate of spoken communication place
significant constraints on speech processing (Marslen-Wilson and
Tyler, 1980) that are not captured by CNN modeling. Magnuson
et al. (2020) address these limitations by using a two-layer LSTM
network (Hochreiter and Schmidhuber, 1997) trained on the
mapping of multiple-talker synthetic speech to pseudo-semantic
outputs. Like human listeners, LSTMs receive input moment-by-
moment and make continuous processing commitments based on
incomplete information. LSTMs are a type of recurrent neural
network (RNN) that solve the problems of vanishing or exploding
gradients (Bengio et al., 1994) using an architecture with three
internal gates and a storage output gate. This architecture helps
LSTMs find and exploit long-range temporal dependencies and
makes them natural models for temporally structured tasks like
speech recognition (Graves et al., 2004, 2013a,b). Magnuson et al.
(2020)’s shallow model demonstrated high accuracy on the problem
of recognizing individual words based on a speech from multiple
talkers. Furthermore, despite training their model with arbitrarily
distributed vectors to distinguish individual words, analysis of
hidden node activity revealed that their model discovered phonetic
features that corresponded closely to features represented in the
superior temporal gyrus. Elman (1990, 2004) reports similar results
related to the hidden unit sensitivities of simple recurrent networks
(sRNNs). Elman trained a sSRNN on a succession of sentences
where words were fed to the network one by one, and the
network’s task was to predict the next word. Although the network
was not explicitly trained to identify the grammatical class of
individual words, analyses of hidden node feature space revealed
clustering based on the grammatical and semantic properties of
individual words. Elman’s assumption was that the network used
distributional information to induce categories such as noun, verb,
or animacy.

4. Materials and methods

4.1. Training data

We used individual words as the input to the network rather
than words in sentences because we wanted to isolate discourse
level effects. We began with a set of 260 phonetically diverse
monomorphemic English words. Since our aim is to investigate
whether ventral stream mapping is dependent on identifying
morphological units, we introduced morphology into our lexicon.
We used 20 of the most commonly used English affixes (15 suffixes
and 5 prefixes) to generate inflected words derived from the
monomorphemic words (i.e., derived fathers from father using the
plural inflectional morpheme -s). At the end of this process, we
generated 1000 words: 260 monomorphemic words, 690 words in
root form with one affix, and 50 words in root form with two
affixes. To limit the variance that would be caused by the difference
between short words and long words, we applied a form length
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constraint between 2 to 10 phonemes and ended up with 883
words (mean form length 5.5) as the final lexicon (see Figure 2A
for distribution of words by phoneme length). These 883 words
included 252 roots, 604 words in root form with one affix (see
Figure 2B for the distribution of affixes by word), and 27 words
in root form with two affixes. This final lexicon includes each of
the 39 phonemes found in standard American English. We used
the Apple text-to-speech program Say to generate pronunciations
(audio) for all the words in our lexicon. This program provides
a library of potential voices and relies on a unit selection and
concatenation strategy to create naturalistic speech. This strategy
has the advantage of capturing differences between speakers that
might not be fully captured by parameter-based synthesis. We
used 10 different speakers (five females and five males) to ensure
a diverse set of tokens for each word (each word has 10 tokens,
making a total of 8,830 total training items). The mean utterance
duration was 684 ms (range: 335-1,130 ms).

We used cochleagrams of each sound file as the input to the
network (Kell et al., 2018; Feather et al., 2019). A cochleagram is
a spectrotemporal representation of an auditory signal designed to
capture cochlear frequency decomposition (i.e., it has overlapping
spectral filters whose width increases with center frequency). We
used cochleagrams to provide the input to the model in a format
similar to the way the brain gets the sound input (cochleagrams
are more physiologically realistic than spectrograms). To create
cochleagrams, we first trimmed any silence surrounding each word
(with a cutoff of —20 dB) from the audio files. Each sound clip
was passed through a bank of 203 bandpass filters that were zero-
phase with center frequencies ranging from 50 Hz to 8,000 Hz. To
perfectly tile the spectrum so that the summed squared response
across all frequencies was flat, four low-pass and four high-pass
filters were included [see Kell et al. (2018) for a detailed review],
which led to a total of 211 filters. After determining the longest
(in time) cochleagram in the set, we padded each input with empty
values, so all cochleagrams were of equal length; we used a masking
layer in the network that ignores any padded values (i.e., clamps the
activity during the pads). This process resulted in a cochleagram
representation of 226 x 211 (time x frequency) cells. See Figure 2C
for a schematic representation of audio to cochleagram conversion.
Cochleagrams were created in Python, using the numpy and scipy
libraries (Oliphant, 2007; Harris et al., 2020), with signal trimming
via librosa (McFee et al., 2015).

4.2. Training tasks

We created three separate LSTM models and trained them
independently on the same training data (8,830 tokens for 883
words). A “dorsal” network was trained to differentiate between
words using vectors representing articulatory properties, and
a “ventral” network was trained to distinguish words based
on semantic properties. In addition, a “fused” network was
trained to distinguish words based on combined articulatory and
semantic properties.

We chose the dorsal task to draw attention to whole-
word articulatory properties without explicitly requiring sublexical
segmentation into phonemes or syllables. To do this, we created
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RE- (v.tov) 22
UN- (adj. to adj) 8
FIGURE 2
Model input and structure. (A) Distribution of words by phoneme length.
1,007 (ventral) output vectors and 1,819 vectors for the fused network.

]

Most of the words had four or five phonemes. (B) Distribution of morphemes by word count. The most frequently used affix was the suffix —"ing” (v.
to v.) with 118 words and the least frequently used affix was “-ly” (n. to adv.) with 3 words. (C) Conversion of sample audio to a cochleagram. The
x-axis represents the time (1,130 ms) and time samples (226), and the y-axis represents the amplitude (dB) and frequency (211 Hz). (D) Frequency
distribution of the number of words a template admits and the number of templates a word matches. The number of words a template admitted was
at least 160, and the number of templates a word matched was at least 20. (E) The model architecture. The model was a standard recurrent LSTM
network with 512 fully recurrent hidden nodes. The output layer of the model was a dense layer with the sigmoid function, either with 812 (dorsal) or
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We had a total of 883 words with lengths varying from 2 to 10 phonemes.

target vectors using a variation on PatPho (Li and MacWhinney,
2002). PatPho is a slot-based system that represents words as an
initial consonant cluster (CCC) followed by VVCCC blocks for
each syllable. All vectors have as many blocks as are necessary
to encode the longest word. Each C and V slot in the word
is filled by a phonetic feature vector or a similarly sized vector
of zeros. The longest word in our lexicon has five syllables;
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therefore, the length of the longest word in the lexicon in terms
of the number of slots would be 28 (three slots for the initial
consonant cluster and 25 slots for each syllable). We used 29-
dimensional binary feature vectors for our encodings. In sum,
for the lexicon in our study, every word vector was of length
812 (29 X 28). For example, the word cable (/kabL/), in a
lexicon in which no words had more than one syllable, would
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be k00aObLO, where “0” means the appropriately sized vector
of zeros. Words shorter than the maximum syllable length have
trailing zeros to fill all remaining slots. In this way, the model
doesn’t get any temporal cues as to which parts of the vector
are active at which time. With such a task, the dorsal network
would use whole-word articulatory properties for efficient sound-
to-articulation mapping.

The ventral network was trained to differentiate between
words represented by sparse vectors derived from corpus-based
lexical co-occurrence statistics. Such vectors are widely used
as a surrogate for meaning representation in distributional
semantics (Mandera et al., 2017; Lenci, 2018) because semantically
similar words tend to occur in similar linguistic contexts.
Representations formed from distributional semantic models
(DSMs) via various transformations (such as reweighting) have
been shown to be better than raw count-based models (e.g., Bag-
Of-Words) (Baroni and Lenci, 2010). However, this unsupervised
and independent vector transformation process often produces
output vectors that are extremely large and very sparse. Word
embedding models [e.g., Word2Vec (Mikolov et al, 2013)],
another type of DSM based on learned (either supervised or
unsupervised) representations of meaning, resolve these limitations
by learning a distributed representation for words and produce
low-dimensional vectors with dense features. Baroni et al. (2014)
compared the performance of word embedding models with
count-vector-based distributional semantic models and concluded
that the former performed better on most tasks. Here, we
have not used supervised word embedding models because
we wanted our feature vectors to be dense but, at the same
time, more interpretable. Thus, we used a mixed approach that
created static word embeddings via a count-based approach
that tries to avoid exceedingly large vectors by providing a
more interpretable mapping between the sound input and its
distributional properties.

We constructed word templates using the Corpus of
Contemporary American English (COCA) n-grams data (Davies,
2010). We used 3-gram sequences to represent word meaning
instead of a full sentence because we wanted to limit co-occurrence
statistics to three words (a sentence can be longer or shorter
than three words). COCA includes 16.3 million within sentence
3-gram sequences. We treated each 3-gram phrase as a template
to constrain the place where a word can occur. Each template
took the form of a 3-gram slot, and the target word could fill
any of the three slots. For example, “__ as a” is a template that
admits words like “act” (i.e., “act as a” is a valid 3-gram in the
corpus). Each word in our lexicon can occur in the initial (i.e.,
“act as a”), middle (i.e., “to act for”), and final (i.e., “way to act”)
positions. Each word in our lexicon had a predefined grammatical
class (noun, verb, adjective, adverb) assignment based on its
most frequent grammatical class. We did not use templates that
have only variables. To control for sense ambiguity, we restricted
templates based on the grammatical class of the target word
within the template. If a word has more than one grammatical
class associated with it (i.e., act can be a noun and a verb), we
limited our templates to the most frequent grammatical class.
For example, only templates in which the word act served as a
verb were included in the set of 3-grams that defined the sparse
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vector for act. Moreover, since a word gets its meaning from the
context (template) in which it occurs, we control for polysemy
and homonymy.

Our 883 words occurred with more than forty thousand
templates. To limit the number of templates and encourage
generalization across words, we wanted each word to occur in at
least 20 templates, and we only used templates that admitted at
least 160 words (these limits were meaningful in our lexicon, but
for a different lexicon, these limits might change). This resulted in a
total of 1,007 templates; see Figure 2D for the distribution of words
by the template. These limits on templates ensure low-dimensional
vectors. For each word, we generated a sparse target vector with n
of 1,007 selected elements set to 1 (all other elements 0), where n is
the number of times a specific word pairs with a specific template
(the same target vector was used for each of the tokens of a word).
In the end, a vector space of length 1,007 represents the meaning
of a word in n different contexts. This way (using the most frequent
(1,007) global contexts based on word trigrams), we ensured denser
(compared to classic count-based models) and more interpretable
(compared to word embedding models) vectors. With this task, the
ventral network would use broad-level co-occurrence statistics of
words for efficient sound-to-meaning mapping.

The fused network was trained on combined dorsal and
ventral sparse vectors creating sparse vectors consisting of 1,819
elements (812 replicating dorsal encoding and 1,007 replicating
ventral encoding).

4.3. State-of-the-art comparison and
network architecture

While most recent approaches to modeling task-optimized
representations have utilized CNNs (Kell et al., 2018; Kell and
McDermott, 2019; Dobs et al., 2022; Kanwisher et al., 2023a,b),
we used LSTMs to model functional specialization of wordform
representation in the brain. This preference is mainly because of
the temporal structure of auditory speech data. LSTM is a type of
recurrent neural network that is designed to remember past inputs
and outputs for a longer period of time. This allows LSTMs to better
handle sequential data, such as time series data or natural language.
On the other hand, CNN is a type of neural network that is designed
to process images and other grid-like data. If the task at hand is to
model the visual processing system of the brain [i.e., the functional
specialization of face perception in the brain as in Dobs et al. (2022),
Kanwisher et al. (2023a,b)], then CNNs would be a better fit for the
task. However, LSTMs would be a better model when the task is
to capture long-term dependencies in language data. Additionally,
LSTMs have a mechanism called “gating” which allows them to
selectively choose which information to keep and which to discard
in a sequential manner, which is similar to the way the brain
processes and filters information. Finally, it has been shown that
shallow LSTM models demonstrated high accuracy on the task
of recognizing individual words based on a speech from multiple
talkers and discovered phonetic features that corresponded closely
to features represented in the STG of the brain (Magnuson et al.,
2020).
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There are many architectural and hyperparameter choices
when building neural networks. It has been shown that the
optimization of these hyperparameters can substantially affect the
training performance of the network (Pinto et al, 2009; Yamins
etal., 2014; Zoph et al,, 2017). Hyperparameter tuning may include
changing the number or types of layers, the choice of optimization
algorithm, the use of dropout or other forms of regularization,
tuning the learning rate/schedule, adjusting the batch size, and
several other factors. Choosing a model architecture that supports
accurate performance on a similar task is also important (Razavian
et al., 2014). To this end, the number of recurrent layers, as well as
the number of nodes in each layer, and numerous other parameters
were determined through extensive hyperparameter tuning (see
Supplementary Table S1 and Supplementary Figure S1 for details).
We present results for the single best hyperparameter setting.

The final model consisted of 3 layers: (i) a masking layer, (i)
a hidden layer with 512 LSTM nodes, and (iii) a dense layer with
random sparse vector outputs (812 for the dorsal, 1,007 for the
ventral, and 1,819 for the fused network). See Figure 2E for the final
structure of the network. The 226 x 211 cochleagrams were first
passed to a masking layer. For a model, the input data must be a
single tensor of shape batch_size x time x frequency. After padding,
all the cochleagrams had a uniform length. The masking layer
ensured that the sequence-processing layers ignored the padded
portions of each cochleagram. The second layer was an LSTM
layer with 512 hidden nodes that were fully recurrent. The final
layer was a dense layer that converted an input vector X into an
output vector Y of the length n, where n is the number of target
classes (812, 1,007, or 1,819). With the output layer, we used the
sigmoid activation function, which returns a value between 0 and
1 centered around 0.5. We used mean squared error loss (with a
batch size of 100) to compute the mean of squares of errors between
labels and predictions. For optimization during training, ADAM
(Adaptive Moment Estimation) (Kingma and Ba, 2014) was used
with a constant learning rate of 0.0001. Each word had ten tokens
(the same words produced by ten different speakers), and nine
of them were used for training and one for validation (nine-to-
one train/validation split). Moreover, the networks were trained for
10,000 epochs (full passes over the training set).

4.4. Testing

All models were run ten times to ensure replicability. During
the training, we checkpointed each of these ten iterations every 100
epochs to later reload the model and calculate accuracy metrics as
training time increased. We then computed the cosine similarity
(which ranges from 0 to 1) of the predicted target vector at the
final time step of each word to the true target vector to quantify
the distance between the predicted vector and the true vector of
the target word in the lexicon. We selected cosine similarity rather
than a simple binary cross-entropy threshold value because it is
more conservative and psychologically more relevant (Magnuson
et al, 2020). We reported the average cosine similarity (for all
words) for every 100 epochs for both training and validation data.
In addition, to test whether each model’s training and validation
accuracy was significantly different, we used the ANOVA function
in R (R Core Team, 2023) to perform a two-way ANOVA between
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accuracy rates (cosine similarity), network type (3 levels: Dorsal,
Fused, Ventral) and test type (2 levels: Training, Validation) with
an interaction term.

To report word identification accuracy (the number of words
the model correctly predicted), we also calculated the cosine
similarity of the predicted vector at the final timestep of each word
to all the other word vectors to quantify the distance between
the predicted vector at the final time step relative to all other
words in the lexicon. For every word in the training and validation
set, the output layer of a model using the sigmoid activation
function outputs a predicted vector. We took this output vector
and compared it to the true vectors of all the possible words in
the lexicon using cosine similarity. If the cosine similarity of the
predicted vector and true vector is higher than the cosine similarity
of all the comparisons, we deemed that the model correctly
predicted the target word. In other words, we operationalized an
accurate response as one in which the cosine similarity of the
predicted target vector to the true vector was greater than that of
all other words in the lexicon. For example, if the cosine similarity
between the predicted word and the target word is 0.95, but it is
not the highest cosine similarity (meaning that some other word
vector is more similar to the predicted vector) we did not count
it as a correctly predicted word. We aimed to show how accurate
the model is on identifying the words when there are very similar
candidates that compete with the target word. We reported this as
the number of words that a model correctly predicted.

4.5. Generalization tasks details

Our aim was to compare the degree to which the featural
representations of words discovered by the hidden layers of each
model reflected hypothesized dorsal vs. ventral stream properties.
We do not expect the fused network to be optimized for either
articulatory or semantic representation. We chose one task for
each featural representation. Articulatory properties, which we
hypothesized would be captured more directly by the dorsal
network, were examined using a classification based on the onset
phoneme of each word. Onsets play a crucial role in identifying
words through their articulatory features. Spoken word recognition
relies heavily on word onsets (Marslen-Wilson and Tyler, 1980;
Marslen-Wilson and Zwitserlood, 1989; Allopenna et al., 1998). We
classified onsets based on the manner of articulation as vowels,
voiced and voiceless stops, fricatives, nasals, liquids, and glides. We
could have created more classes by splitting the vowels or fricatives
into more classes (i.e., front, center back vowels or voiced, voiceless
fricatives), but we preferred to have more balanced sets. Thus, we
had seven categories in total.

Semantic properties, which we hypothesized would be captured
more directly by the ventral network, were examined using a
classification based on the part of speech category (POS) of each
word. The POS category of a word, also known as its syntactic
category, plays a crucial role in determining its meaning. POS
category of a word is closely related to its conceptual category,
or the category to which it belongs in the speaker’s mental
representation of the world (Lakoff, 1987; Jackendoff, 2002). We
categorized words into singular and plural nouns, adjectives and
comparative adjectives, base, past, gerund, and present verbs, and
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adverbs (nine categories in total). We chose to use nine categories
rather than four general POS classes (noun, verb, adjective,
adverb) because we wanted to test whether the networks learn
morphological cues and differentiate, for example, singular nouns
from plural nouns.

Analyses of generalization tasks were run based on the best
performing iteration of the model runs. We decoded the words
in our lexicon from the activations extracted from all three
networks to check whether representations optimized for one task
would support the other. Specifically, we extracted hidden layer
activation patterns for 8,830 words (cochleagrams) categorized into
7 (articulatory task) and 9 (semantic task) classes, respectively. The
features (hidden layer activations) were extracted from all three
models at every time point (0 to 225) and then were standardized
by removing the mean and scaling to unit variance. To quantify
the decoding accuracy of activations of each network, we used
Agglomerative Hierarchical Clustering with Euclidean distance and
Ward (Ward, 1963) linkage methods [see Maimon and Rokach
(2006) for a review of clustering methods] for each task. It is an
unsupervised learning technique that groups similar data points
using a bottom-up method, such that the points in the same
group are more similar to each other than the points in the
other groups. We used unsupervised learning to find patterns and
relationships in the data without assuming a clear relationship
between the input features (hidden unit activations) and any
given output label. Decoding (clustering) performance was then
evaluated using the adjusted Mutual Information score (AMI), a
measure of the similarity between the true and predicted labels
adjusted for chance (Vinh et al., 2010). The output ranges from
[0,1], where one indicates perfect similarity between two label
assignments, and random label assignments would produce a value
of zero. AMI is also adjusted for a chance so that unbalanced class
labels do not cause an issue. We used AMI over other clustering
accuracy metrics (i.e., silhouette score, rand index, etc.) because
it gave more robust results regardless of the number of clusters.
These decoding steps were done in Python using the numpy and
sklearn libraries (Pedregosa et al., 2011). Moreover, to test whether
each model’s decoding accuracy was significantly different, we
used the ANOVA function in R to perform a two-way ANOVA
between decoding accuracy rates (AMI), network type (3 levels:
Dorsal, Fused, Ventral), and generalization task type (2 levels:
Onset Phoneme Monitoring, Part of Speech Categorization) with
an interaction term.

4.6. Error analyses

We also examined the kinds of errors the three systems make
when asked to identify individual words and see whether they
break down as we might expect. We expect to see phonological
errors (e.g., saying mouse instead of house) from the dorsal network,
which mimics reproduction conduction aphasia following damage
to SMG due to the dorsal network being trained on the mapping
between sound and articulation. In contrast, we expect semantic
errors (e.g., saying fork instead of spoon) from the ventral network,
which correlates to transcortical sensory aphasia following damage
to the pMTG.
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To do this for each of the three network predictions, we used
the same definition of accuracy (based on cosine similarity to all the
words in the lexicon) described above in Section 4.4; the network
makes an error when its predicted vector has a higher cosine
similarity to a non-target word. We then calculated the Levenshtein
Distance (LD) (Levenshtein, 1965) (the minimum number of
addition, substitution, and deletion operations needed to transform
one string to the other) between the phonological transcriptions
of the true word and the incorrect word (a word with highest
cosine similarity to the output when it is not the target) as a metric
for phonological similarity. LD is a ratio that returns a number
between 0 (no similarity) and 1 (perfect similarity). For example,
when the true word is acted, and the predicted word is active,
the LD ratio between these two words would be 0.73, meaning
that these words are phonologically similar. As for the metric of
semantic similarity, we used 300-dimensional semantic vectors for
each word from a SkipGram (Mikolov et al., 2013) model trained on
a 1.9 billion token English corpus consisting of a blend of English
Wikipedia and the English Open Subtitles database (https://opus.
npl.eu). We then calculated the cosine similarity between the true
word’s SkipGram vector and the incorrect word’s SkipGram vector
as a metric for semantic similarity.

We predicted that phonological similarity (LD) between the
true word and error word would be higher for the dorsal network
but lower for the ventral. Similarly, the semantic similarity (cosine
similarity) between the true word’s SkipGram vector and the error
word’s SkipGram vector should be higher for the ventral network
but not for the dorsal. We also predicted that the fused network
would mix phonological and semantic errors equally.

4.7. Hidden unit selectivity analyses

We used two selectivity indices (SIs) to measure the degree
to which hidden units of each network encode information
related to phoneme and morpheme representation. As we noted
above, the dorsal stream mapping between sound and articulation
is dependent on identifying phonemes, and the ventral stream
mapping between sound and meaning is dependent on identifying
morphological units. Thus, we hypothesized that the dorsal
network’s mapping of speech input to words would create a
representation of phonemes in hidden units, and the ventral
network’s mapping would create a representation of morphemes.
Thus, the two SIs that we used tested these hypotheses about the
information content of hidden units.

The Phonemic Selectivity Index (PSI), adapted from Mesgarani
etal. (2014) and Magnuson et al. (2020), quantifies the hidden unit’s
response to a target phoneme relative to all the other phonemes. We
used consonant-vowel (CV) and vowel-consonant (VC) diphones
to extract each hidden units response to each of the 39 English
phonemes over a 0-100 ms time window after phoneme onset. The
Morpheme Selectivity Index (MSI) quantifies the selectivity of each
hidden unit’s response to a target morpheme relative to all the
other morphemes. We used all the root-plus-one-affix words in
our lexicon to extract each hidden unit’s response to each of the
20 morphemes over the full-time window.
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We extracted the hidden unit activations for each network
(dorsal, fused, and ventral) from the best-performing model’s epoch
with respect to validation accuracy. Selectivity indices were then
calculated for each hidden unit by counting the number of times
that a target member of a class of phonemes or morphemes
produced a response at least 0.3 activation units stronger than
the nearest activation for a non-target class token. Values were
standardized on a 0-1 scale based on the number of tokens
bearing the target in each class. Once we obtained these selectivity
matrices (of size item x hidden units), we used hierarchical
clustering with Ward linkage and Euclidean distance to analyze
them [see Magnuson et al. (2020) for a detailed overview of
methodological choices].

We used PSI values to cluster phonemes based on phonetic
features and tested whether the hierarchy of phonemes produced
by each model follows the Sonority Hierarchy (Clements, 1990),
where speech sounds are ranked based on their loudness (vowels >
glides > liquids > nasals > voiced fricatives > voiceless fricatives
= voiced stops > voiceless stops). We also compared the resulting
phoneme hierarchies (dendrograms) from each network to the
hierarchy of phonemes in English (Lee and Hon, 1989; Dekel et al.,
2004; Pfeifer and Balik, 2011) and obtained correlation values using
cophenetic correlation in the dendextend package (Galili, 2015)
in R.

We used MSI values to cluster morphemes based on the POS
category of the words that were created after the morphological
transformation. For example, the plural morpheme’ -s’ is an
inflectional morpheme attached to nouns and creates (plural)
nouns, whereas the suffix “-ment” is a derivational morpheme
and is attached to verbs to create nouns. Here, both morphemes
create nouns, and we tested whether the hierarchy of morphemes
produced by each model cluster morphemes that create the same
part of speech category together.

4.8. Replicability, hardware, and software

Replicability was confirmed by repeating the complete training
of all models (dorsal, ventral, and dual) ten times; only minor
variations were observed between iterations. Simulations were
conducted on a Linux workstation with an Intel(R) Xeon(R)
Gold 5218 CPU running at 2.30 GHz, with 98-GB of RAM,
and using an NVIDIA Quadro RTX 8000 (48-GB) graphics
card. Simulations were conducted using Python 3.6, TensorFlow
2.2.0, and Keras 2.4.3. Each model required approximately 48 h
(except the fused network, which took 96h) to train on this
workstation. The GitHub repository (https://github.com/enesavc/
Istm-lex) provides an up-to-date container with all necessary
explanations and jupyter notebooks for running our training code
and analyses.

5. Results

5.1. LSTM classification accuracy

All three models achieved high accuracy by the end of 10,000
training epochs (see Figure 3). The dorsal model’s performance
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reached a mean average cosine similarity of 0.97 (SD = 0.08) for
training and 0.89 (SD = 0.06) for validation. The model correctly
identified 8,397 out of 8,830 words (95% accuracy) in both the
training and validation sets combined, as assessed by the number
of words where the cosine similarity of the predicted output to
the target word was larger than the similarity to any other word
in the lexicon. The ventral model’s performance reached mean
average cosine similarity of 0.90 (SD = 0.09) (training) and 0.66
(SD = 0.03) (validation), correctly recognizing 8,217 words (93%
accuracy). The fused network reached a mean average cosine
similarity of 0.89 (SD = 0.11) (training) and 0.69 (SD = 0.04)
(validation), identifying 8,267 words (94% accuracy) correctly. It
should be noted that the average cosine similarity shows the degree
of similarity between the predicted vector and the true vector but is
not directly equal to the word recognition accuracy since accuracy
depends on the cosine similarity of the target word to all the words
in the lexicon.

ANOVA results showed that there was a statistically significant
difference in average accuracy by both network types (dorsal,
fused, ventral) (F(2) = 2608.4, p < 0.001) and by test type
(training, validation) (F(1) = 7956.4, p < 0.001). There was also an
interaction between the two variables (F(2) = 639.8, p < 0.001). A
Tukey post-hoc test revealed that the dorsal network showed higher
accuracy on average than the fused network (14.5% more accurate)
and a higher accuracy on average than the ventral network
(15.3% more accurate). In addition, the fused network showed
higher accuracy on average than the ventral network (0.08% more
accurate). Training and validation accuracy differences were also
significant, with training producing higher accuracy on average of
17.4% over validation. All pairwise comparisons were significant
with p < 0.001.

5.2. LSTM generalization accuracy

The aim of the generalization tasks was to determine whether
the dorsal and ventral networks or the fused network discovered
different features and whether those features were independently
optimized to support hypothesized dorsal vs. ventral stream
processing. Specifically for the fused network, we hypothesized
that being trained on both tasks simultaneously should be harder;
therefore, the fused network should not master individual tasks as
well as the other two models. We investigated whether the resulting
feature spaces of each network trained on one task would support
the other task by decoding the featural representation of each word
based on the activation patterns in the LSTM layer of each network.
For the onset phoneme monitoring task, activation patterns served
as the input to a clustering analysis to identify seven manner-
of-articulation classes (for testing dorsal function), or nine parts
of speech categories for the POS categorization task (for testing
ventral function).

Results showed that onset phonemes could accurately be
decoded from the dorsal network [mean decoding accuracy (AMI)
0f 0.36 (SD = 0.02)] and POS categories from the ventral network
[mean AMI score of 0.30 (SD = 0.02)]. At the same time, the
ventral network performed significantly worse [mean AMI score of
0.12 (SD = 0.02)] at onset phoneme discrimination than the dorsal
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FIGURE 3

Model performance during the training of three (dorsal, fused, and ventral) models. Training performance over epochs was represented with solid
(dorsal network with blue, fused network with yellow, and ventral network with red) lines and validation performance with dashed lines. Shaded areas
represent standard deviation from mean accuracy for ten iterations of the model. The average cosine similarity between the predicted vectors and
true vectors was computed for each model at every 100th epoch between 0 to 10,000 epochs.
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FIGURE 4

Decoding accuracy on generalization tasks. Decoding accuracy of dorsal, fused, and ventral networks on onset phoneme monitoring and POS
categorization tasks using activation patterns extracted from the LSTM layer. Error bars indicate standard error of the mean. While the fused network
(yellow) was moderately successful in each task, the dorsal network (blue) outperforms the ventral network (red) in onset phoneme monitoring and
vice versa for POS categorization. Thus, the representations learned for one task do not buttress the other. Decoding accuracy was calculated using
the AMI score (chance level 0%) for the overall time window (stacked all the temporal features up into one big vector in the shape of 1 X 226*512
from 0 to 225 (the offset of the cochleagram).

network and vice versa for POS categorization (dorsal network, = AMI score of 0.21 (SD = 0.06)] at onset phoneme discrimination
mean AMI score of 0.03 (SD = 0.01) (see Figure 4). Likewise, the =~ and worse than the ventral network [mean AMI score of 0.20
fused network performed worse than the dorsal network [mean  (SD = 0.02)] at POS categorization.
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ANOVA results showed that there was a statistically significant
difference in average decoding accuracy by generalization task
type (F(1) = 63.805, p < 0.001) and an interaction between the
network type and generalization task type (F(2) = 433.771, p <
0.001). A Tukey post-hoc test revealed that generalization task
type difference was significant (p < 0.001) with onset phoneme
monitoring resulting in a higher decoding accuracy on average
of 0.06 over part of speech categorization. The findings that
networks trained on whole word articulatory information (sound
to articulation) do not perform well on POS categorization, and
networks trained on semantic information (sound to meaning)
do not perform well on onset phoneme discrimination show
that task-specific representations are required for generalization.
Thus, the discovered features are not transferable. To perform
well on the POS categorization task, a network should discover
features that represent the POS category of a word in its
hidden units. Similarly, to perform well on the onset phoneme
discrimination task, a network should discover features that

10.3389/frai.2023.1062230

represent phonemes of a word in its hidden units. Our results on
generalization tasks showed that the dorsal network discovered the
category of onset phonemes, and the ventral network discovered
POS categories even though they were not trained on this
information directly. In other words, the dorsal features had
an advantage for categorization related to articulation but not
semantic categorization, whereas ventral features had an advantage
for semantic categorization but not categorization related to
articulation. As for the fused network, it performed equally on
both tasks: it was worse than the dorsal network but better
than the ventral network on onset phoneme discrimination and
vice versa on the POS categorization task. This finding implies
that the fused network could not discover task-specific features
compared to the other two networks. To sum up, generalization
tasks showed that the dorsal and ventral networks, but not the
fused network discovered unique features from the same sound
input; thus, representations developed for one task do not support
the other.
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Error analysis. Phonological similarity via LD and semantic similarity via cosine similarity (from SkipGram) were calculated using the dorsal, fused and
ventral errors. The x-axis of the plots shows the mean of the phonological and semantic similarity metric, and the y-axis shows the frequency
distribution. The dotted vertical lines represent the means.
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5.3. The error patterns of networks

Both the dorsal and ventral networks discovered task-specific
features and performed very well on their domain-specific
generalization tasks. However, that was not the case for the fused
network. The feature space discovered by the fused network did
not support high task performance on generalization tasks. To
better understand this performance difference, we analyzed the
error patterns of each network. For each network, we calculated
the phonological similarity (via normalized Levenshtein distance)
between each of the incorrectly predicted words (the cosine
similarity between the predicted vectors and true vectors was lower
for target words than for at least one competitor word) and their
true counterparts. The average phonological similarity between the
dorsal networks errors was 0.65 on a scale of 0 to 1, meaning
that the incorrectly predicted words tended to be phonologically
similar to the target. For the same set of words, the average
semantic similarity (cosine similarity between the vectors coming
from SkipGram) was 0.37 (Figure 5). These results demonstrate
that dorsal network errors were more on the phonological side
of the continuum, confirming our hypothesis with regard to the
dorsal network. The average phonological similarity for the ventral
network between the incorrect words and their true counterparts
was 0.58, and the average semantic similarity was 0.33. As for the
fused network, the average phonological similarity was 0.61, and

10.3389/frai.2023.1062230

the average semantic similarity was 0.35 (Figure 5). These results
show that the errors made by the ventral and fused networks were
also more phonological and less semantic, in contradiction to our
predictions based on the aphasia literature.

5.4. Hidden unit sensitivities

We have shown that each network could identify words
equally well, and decoding analysis showed that the dorsal network
discovered hypothesized articulatory features, whereas the ventral
network discovered semantic features. However, surprisingly each
network showed similar error patterns meaning that whenever a
model makes an incorrect prediction, it is phonologically similar
to the target word. We used selectivity indices (SIs) to examine the
inner mechanisms of the networks.

While the dorsal network learned to map auditory speech
input to vectors that represent phonological properties, the ventral
network learned to map the same speech input to vectors that
represent semantic properties. Our hypothesis was that once
learning was successful, the hidden units of networks would
discover some task-specific features. In particular, the dorsal
network’s mapping speech input to words might have created an
implicit representation of phonemes in hidden units. Similarly,
the ventral network might have developed representation for
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Phoneme hierarchies based on phoneme selectivity index (PSI). PSI values were used to cluster 39 English phonemes based on phonetic features.
Phonetic features are color-coded following the sonority hierarchy: Dark green represents Front vowels and dark purple represents Voiceless-Stops.
English phoneme hierarchy (left) were used as a baseline for the comparison of dorsal, fused, and ventral network's resulting phoneme hierarchies.
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Hierarchies based on morpheme selectivity index (MSI). MSI values were used to cluster 20 English phonemes based on POS categories of the word.
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hierarchy (left) were used as a baseline for the comparison of dorsal, fused, and ventral network’s resulting morpheme hierarchy.
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unique morphemes through morphological parsing of semantic
interpretation of words. The fused network, on the other hand,
would not be as task-specific as the other two networks because
learning the phonemes and morphemes simultaneously would be
hard. We tested these hypotheses using PSI and MSI measures of
hidden node selectivity in each model combined with hierarchical
clustering analyses of those measures. We then compared the
resulting clusters to English phoneme and morpheme hierarchies
to quantify the similarity.

PSI results in Figure 6 showed that while all three networks
developed some sense of phonetic information, the dorsal network
hidden unit activations clustered phonemes better than the other
two networks (dorsal phoneme hierarchy is more similar to English
phoneme hierarchy). To quantify how faithfully a cluster hierarchy
outputted by a model preserves the pairwise distances between
the English phoneme hierarchy, we used cophenetic correlation.
The results showed that the cophenetic correlation coefficient
between the dorsal networks phoneme hierarchy and the English
phoneme hierarchy was 0.72, implying that they were similar.
In contrast, it was 0.56 for the fused model’s hierarchy and
0.57 for the ventral model’s hierarchy (the cophenetic correlation
coefficient between the fused hierarchy and ventral hierarchy
was 0.88).

The ventral and fused networks clustered approximants and
nasals (sonorant sounds) together with obstruents rather than
vowels. In addition, the fused network hidden unit activations
wrongfully clustered the high front vowel (/i/) with voiced
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fricatives. The ventral network clustered the high front vowel (/i/)
with the glide or semi vowel /j/ under a more general cluster of
approximants and nasals. The dorsal and ventral networks perfectly
clustered the obstruents into two big categories as the voiced and
voiceless obstruents. This voiced vs. voiceless obstruent distinction
was not perfect in the fused network. Nevertheless, each model
showed a decent grouping of English phonemes following the
Sonority Hierarchy. The success of the models in the grouping of
phonemes might be related to the fact that they all received acoustic
input in the form of cochleagrams (see Supplementary Figure S2 for
the hidden unit activations from each network in response to 39
English phonemes).

The MSI results in Figure 7 showed fundamental differences
between the three models. MSI shows the selectivity of model
hidden units to the 20 morphemes, which were coded based
on the POS category of the word that was created after the
morphological transformation. The clustering of morphemes based
on dorsal hidden unit activations does not show a sensible
grouping of morphemes, whereas the cluster from the fused
network shows groupings of some nouns together. However,
among the three networks, the ventral hidden units showed the
best classification of the morphemes (based on the grammatical
category of the words they create), where all the nouns are
clustered together with adjectives (see Supplementary Figure S3 for
the hidden unit activations from each network in response to 20
English morphemes). This shows that ventral stream mapping is
dependent on identifying morphological units.
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6. Discussion

Spoken language processing is organized broadly into parallel
dorsal and ventral processing streams, and various lines of work
show that each stream might have its own lexical interface area
mediating mappings between acoustic-phonetic representation
and stream-specific processing. The purpose of this paper was
to determine why humans might have evolved two lexicons
rather than a single lexicon that interacts with both processing
streams. Specifically, we asked whether computational constraints
on the mapping between acoustic-phonetic input and articulation
vs. meaning create pressure for the development of different
computationally efficient featural representations of words in the
dorsal and ventral streams. Below, we discuss our results in the
context of recent similar findings in the auditory systems that
examine human speech recognition models and visual systems that
examine functional specialization.

Our results demonstrated that training the networks on
differently structured wordform representations produced different
featural representations at the hidden layer of each model and
that these emergent representations supported different patterns of
performance on generalization tasks. While vectors that represent
phonological properties were used as surrogates of articulatory
representation in the dorsal network, and vectors based on
patterns of lexical co-occurrence were used as surrogates of the
ventral network, training on both patterns supported accurate
identification of individual words (that each model showed
successful training and validation performance). Both dorsal and
ventral networks were successfully trained to map cochleagrams of
tokens of spoken words onto output vectors representing words
and to generalize that mapping from trained to untrained tokens.
The generalization capacity of both models was also high, making
the models predict more than half of the words in the validation
set correctly. To this extent, both models learned to recognize a
large set of spoken words produced by multiple talkers and map
each token to the correct type successfully. The fused network’s
training and validation accuracy were comparable to the ventral
network but worse than the dorsal network. Our interpretation
of this finding is that training the network simultaneously on two
different output vectors might have helped it to discover a feature
set that allows word identification, but at the same time, this feature
set is not as task-specific as the other two networks. Therefore, even
though the fused network identified wordforms comparable to the
other two networks, the representations it discovered were not as
well optimized for specific mappings as the specialist dorsal and
ventral models.

Despite being trained on output vectors that did not
explicitly require phonemic representation, the dorsal network
discovered a feature space that supported the classification of
word-initial phonemes by articulatory class. Furthermore, hidden
unit sensitivities of the dorsal network revealed that the model
discovered the phonetic features of English phonemes clustered in
a way that follows the sonority hierarchy. This result is consistent
with the findings reported by Bhaya-Grossman and Chang (2022)
examining human STG encoding distinct acoustic-phonetic and
prosodic features. Similar findings were also reported by the
EARSHOT model (Magnuson et al., 2020) in which hidden node
selective sensitivity to both phonemes and articulatorily referenced
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phonetic features were shown to pattern with selectivity found
in electrode recordings in human STG using similar input and
model architecture. Although the hidden unit sensitivities of
the fused and ventral networks also revealed the emergence of
phonetic feature sets, neither of the model’s features supported the
successful classification of word-initial phonemes by articulatory
classes as well as the dorsal network. We attribute the dorsal
model’s insensitivity to the POS categories to the failure to
create a task-specific feature space that supported semantic
mappings. This finding demonstrates the importance of task-
optimal representation. Decent phonemic representations emerged
spontaneously in each network trained on spoken words, but the
dorsal network trained on phonological properties showed better
generalization related to representations that are more rooted in
articulatory properties.

In the same vein, the ventral network discovered a feature
set that supported POS categories that play a critical role in
determining a word’s meaning despite having been trained on
output representations that did not explicitly describe grammatical
categories. Although the ventral network was trained on output
vectors with structures that reflect the overlapping distributional
patterns of individual words in meaningful contexts, the hidden
unit selectivity of the model showed the emergence of grammatical
classes of words. This finding is consistent with a broad body of
work in distributional semantics and the findings of Elman (2004),
whose recurrent network showed clustering in feature space that
reflected grammatical category after training on a word prediction
task. The finding that the ventral network outperformed the dorsal
network on grammatical category classification is not unexpected,
but it again demonstrates that task demands shape feature spaces
that are better suited for different types of generalization. In
addition, the ventral network showed better clustering than the
dorsal network with respect to the POS category of words created
by different derivational and inflectional morphemes. This shows
that the ventral stream mapping between sound and meaning is
more sensitive to morphological units.

We also closely investigated the kinds of errors models make
when asked to identify individual words to see whether they
pattern with dissociations in aphasia. Reproduction conduction
aphasia, caused by damage to the inferior parietal lobe, is an
acquired language disorder where phonological production shows
phonological errors in tasks requiring spoken output (Franklin
et al., 2002). This disorder is attributed to the degradation of
dorsal representations. Similarly, semantic paraphasia seen in
transcortical sensory aphasia following damage to posterior middle
temporal regions (Fridriksson et al., 2009) is attributed to the
degradation of ventral representations. We have found evidence
for this hypothesis in the type of errors our dorsal network made.
However, the error patterns of ventral and fused networks also
exhibited more phonological errors than semantic errors. For
example, all the models incorrectly predicted the target word
killing as killed (even though, as experimenters, we expected an
error like murdering for killing from the ventral network). While
the phonological similarity between killed and killing is 0.62, the
semantic similarity is 0.65. This example shows that since our
lexicon includes lots of morphological derivatives of base lemmas
(e.g., kill, killer, kills, killing, etc.), we are unlikely to find purely
phonological or purely semantic errors. When the dorsal network
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makes a phonological error, most of the time, it is a semantic
error as well; and when the ventral network makes a semantic
error, in many cases, it chooses a phonologically similar word. In
other words, if the model chooses the wrong form, then that error
is phonologically and semantically related to the correct word in
many cases, irrespective of what the model is optimized for during
training. Thus, we think that the morphological complexity of the
lexicon is what makes these error patterns look the way they do.

The fused network, although it performed very well during
training and validation, did not do well on onset phoneme or POS
categorization tasks. The goal of the onset phoneme categorization
task was to test the degree of sensitivity of a network in response to
the word-initial phoneme, which plays a key role in sound-to-form
mapping. The onset of a word has a special status in lexical access of
spoken words because it determines the level of activation between
the competitors in the lexicon (Marslen-Wilson and Zwitserlood,
1989; Jusczyk and Luce, 2002). On the other hand, with the POS
categorization task, we aimed to observe whether a network learns
the grammatical category of a word which plays a key role in the
mapping of sound to meaning [see Chiche and Yitagesu (2022)
for an overview of the importance of POS tagging in NLP and its
impact on meaning extraction]. The fused network’s performance
on these two tasks was worse than the other two networks. Is this
due to the lack of task-optimization or the specific nature of these
two tasks? We propose the possibility that the fused network could
not find a common feature space to solve both tasks (cf. Dobs
et al,, 2022). Although it may have formed representations that
are partially phonemic and partially semantic, the feature space
it built over the training process does not have the task-specific
information to eclipse the performance of the other two networks.
This behavior can be explained as an adaptation to increased
processing costs where the fused network is adapting its weights
to forget some of the phonemic representations in order to keep
and build semantic representations (or vice versa) concurrently. Of
course, future work that tests such a network on many different
tasks will ground these preliminary results.

Overall, the results on the generalization tasks and the hidden
unit SIs show that the dorsal features were more successful
on an articulatory task and the ventral features were more
successful on a semantic task indicating that representations
optimized for one task would not be transferable to the other.
One critical design feature of this study is that each network
gets the same sound input but is paired with different output
vectors. Therefore, each network is supposed to develop different
features in its hidden layer representation. The results showed
that the dorsal network discovered phonemes, and the ventral
network discovered morphemes without explicit training. And
both networks were successful on related tasks due to these task-
specific representations. If task-specific representations were not
discovered, both the dorsal and ventral networks would have
resulted in comparable performance on generalization tasks. For
example, the fused network, which was trained on both articulatory
and semantic information simultaneously, could not discover
task-specific features and showed comparable performance on
generalization tasks.

These results suggest that lexical interface areas in the
dorsal and ventral pathways of the brain may have arisen from
computational constraints for optimizing the primary mapping
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functions that support lexically organized processes in the dorsal
and ventral processing streams. Our results align with previous
research in the visual domain, demonstrating how computational
constraints can give rise to functional specialization. Dobs et al.
(2022) used deep CNN models to ask why are face and object
processing segregated in the human brain and test whether
functional specialization is a good design strategy in the first place.
They hypothesized that the functional specialization might be due
to three possibilities: (i) it resulted by accident of evolution, (ii) it
is the output of time selective modulation, and (iii) computational
reasons. They tested this third hypothesis and trained two separate
networks with the same architecture on the categorization of faces
and objects. The results revealed that the network trained on faces
performed worse on object categorization than the object-trained
network and vice versa. In sum, Dobs et al.’s results, together with
our results, support the claim that the optimization of features for a
specific task might be a design feature of the human brain [see also
Yang et al. (2019) for similar results on 20 different cognitive tasks
using recurrent neural networks].

7. Conclusion

This study aimed to characterize the functional specialization
of word representation and examine whether computational
constraints inherent in the mapping between sound and higher-
order linguistic representations (articulation vs. meaning) could
have shaped the development of parallel lexical interface areas
that rely on different featural representations. We showed that
task-specific features discovered by LSTMs trained on vectors
representing phonological properties supported articulatory
classification better than those trained on distributional semantics.
Conversely, featural representations of words from LSTMs trained
on distributional semantics supported semantic generalization
better than those trained on vectors representing phonological
properties. These results support the claim that different featural
projections of wordform may be needed to support efficient
processing in the dorsal and ventral speech streams. Thus, we
showed that the characteristics of the input data determine the
representations that the machine/algorithm (and potentially the
brain) must uncover for feature detection. In future work, we hope
to ground these analyses via direct comparisons between patterns
of human cortical and machine classifier hidden node responses to
spoken words.

8. Limitations of the work

This work was intended as a broad computational exploration
of computational factors shaping wordform representation and
not an explicit processing or neural model of human lexical
processing. Human lexical processing appears to depend on
interactive excitatory and inhibitory processes that we have not
attempted to implement. While our lexicon is similar in size
to those implemented word recognition models such as TRACE
(McClelland and Elman, 1986) or EARSHOT (Magnuson et al.,
2020), it is significantly smaller than the typical 20-100,000-word
lexicon of an adult native English speaker. A more realistically
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scaled lexicon would pose much denser perceptual and semantic
spaces, which might necessitate reliance on richer feature systems.
In contrast to previous work, we have used complex morphology
so that our lexicon reflects the English lexicon more naturally;
we believe this is a strength of our study. However, our error
analysis showed that including lemmas along with many of
their derivatives, worked against our predictions by inducing a
correlation between phonological and semantic similarity in the
lexicon. Using a larger, carefully controlled lexicon (controlling
phonotactic frequency, cohort size, phonetic saliency, phonological
neighborhood density, length of the word, and semantic similarity
of words) with natural speech might allow us to decouple
phonological and semantic errors. In addition to lexicon design,
we made a number of other choices to simplify implementation,
including the restriction of words that play multiple grammatical
roles (e.g., act can be a noun or a verb) to a single form in
ventral coding, the use of synthetic speech that does not show
naturalistic patterns of phonological reduction, and the use of
minimalist representations of articulatory or morphosyntactic
target vectors.

These choices allowed us to make an initial exploration of
computational forces that make wordform representation tractable,
but they preclude strong inferences about the neural representation
of specific wordforms. Fine-grained validation of these results
against neural data using methods such as representational
similarity analysis will be an essential step in understanding the
principles explored here. However, meaningful comparisons with
human data will depend on the development of more realistic
training sets and target representations. Our error analysis was a
modest qualitative step in that direction.

While the work aimed to explore computationally optimal
feature space, we recognize our models themselves may not have
been optimal in several respects. By testing and modifying model
parameters independently, our methods have failed to identify
optimal sets of interacting parameters. Furthermore, we used a
small subset of possible model architectures with loss, optimization,
learning rate, number of layers, and hidden nodes. Thus, it is a
possibility that a network with a different optimization strategy
(i.e., Bayesian optimization or grid search) might perform well
and show shared feature space for the mappings between sound to
articulation and sound to meaning.

Our study cannot prove why the human brain discovers
unique dorsal and ventral features for better speech perception.
Instead, we can only argue that given the tested circumstances, we
found functional specialization, which might reflect the functional
specialization of the human brain hypothetically. Last, our results
do not show anything about how the computational constraints
interacted with potential anatomical and evolutionary constraints.
Instead, we only showed the possibility that the computational
constraints in the input data might have shaped the development
of parallel wordform networks if they exist, as hypothesized by
Gow (2012) and previous work. We hope that the arguments and
hypotheses developed here will enable future cognitive scientists to
ask more fine-grained questions about the language in the brain,
considering the computational optimization as a design feature [see
Kanwisher et al. (2023a) for an argument of using ANNs to ask
“why” questions about the brain].
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