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Abstract

Theories of efficient coding propose that the auditory system is optimized for the statistical
structure of natural sounds, yet the transformations underlying optimal acoustic representa-
tions are not well understood. Using a database of natural sounds including human speech
and a physiologically-inspired auditory model, we explore the consequences of peripheral
(cochlear) and mid-level (auditory midbrain) filter tuning transformations on the representa-
tion of natural sound spectra and modulation statistics. Whereas Fourier-based sound
decompositions have constant time-frequency resolution at all frequencies, cochlear and
auditory midbrain filters bandwidths increase proportional to the filter center frequency. This
form of bandwidth scaling produces a systematic decrease in spectral resolution and
increase in temporal resolution with increasing frequency. Here we demonstrate that
cochlear bandwidth scaling produces a frequency-dependent gain that counteracts the ten-
dency of natural sound power to decrease with frequency, resulting in a whitened output
representation. Similarly, bandwidth scaling in mid-level auditory filters further enhances the
representation of natural sounds by producing a whitened modulation power spectrum
(MPS) with higher modulation entropy than both the cochlear outputs and the conventional
Fourier MPS. These findings suggest that the tuning characteristics of the peripheral and
mid-level auditory system together produce a whitened output representation in three
dimensions (frequency, temporal and spectral modulation) that reduces redundancies and
allows for a more efficient use of neural resources. This hierarchical multi-stage tuning strat-
egy is thus likely optimized to extract available information and may underlies perceptual
sensitivity to natural sounds.

Author summary

Theory suggests that the auditory system evolved to optimally encode salient structure in
natural sounds—maximizing perceptual capabilities while minimizing metabolic
demands. Here, using a multi-stage model of the auditory system and a collection of envi-
ronmental sounds, including vocalizations such as speech, we demonstrate how auditory
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responses may be optimized for equalizing the power distribution of natural sounds at
two levels. This processing strategy may improve the allocation of resources throughout
the auditory pathway, while ensuring that a broad range of auditory features can be
detected and perceived. Such a multi-stage strategy for processing natural sounds likely
contributes to human perceptual capabilities and adopting such a code could enhance the
performance of auditory prosthetics and machine systems for sound recognition.

Introduction

The cochlea decomposes sounds into distinct frequency channels and produces patterned fluc-
tuations or modulations across both time and frequency that serve as input to the central audi-
tory system. For natural sounds, these spectro-temporal modulations are not uniformly
distributed, but encompass a limited set of all possible sound patterns [1,2], much as natural
images encompass a restricted subset of visual patterns [3,4]. After being transmitted out of
the cochlea and along the auditory nerve, modulations in the envelope of natural sounds are
further decomposed by the central auditory system, where neurons in mid-level structures
such as the auditory midbrain (inferior colliculus) are selectively tuned for a unique subset of
spectro-temporal modulations [5-7]. This secondary decomposition into modulation compo-
nents resembles the modulation power spectrum (MPS) analysis that has been used to charac-
terize and to identify salient features in natural sounds [1,2,8,9].

Both spectral and temporal modulations in the envelope of speech and other natural sounds
are perceptually salient cues that are critical for perception and recognition of sounds [1,10].
Temporal modulations in natural sounds can span several orders of magnitude. Relatively
slow temporal fluctuations in the rhythm range (<25 Hz), for instance, are critical for parsing
speech and vocalizations sequences and for musical rhythm perception [11,12]. Intermediate
temporal modulations (~50-100 Hz) contribute to the perception of roughness, and the fastest
temporal modulations (~80-1000 Hz) contribute to perceived pitch [13,14]. Similarly, in the
frequency domain, spectral modulations also convey critical information about the sound con-
tent and can contribute to timbre and pitch perception [1,15]. In speech, for instance, har-
monic structure created by vocal fold vibration during voiced speech generates high-
resolution spectral modulations (resolved harmonics) that can indicate voice quality, gender
identity, and overall voice pitch [1]. On the other hand, resonances generated by the postural
configuration of the vocal tract produce broader spectral modulations (e.g., formants) that can
contribute towards the identity of vowels [15]. Evidence also suggests that spectral modula-
tions contribute towards the perception of timbre in music and are critical for instrument
identification [16,17].

How the auditory system extracts and utilizes spectral and temporal modulations and how
neural computations contribute towards basic perceptual tasks is not well understood. Follow-
ing the efficient coding hypothesis originally proposed by Barlow for visual coding [18], it’s
plausible that the auditory filter computations are optimized to efficiently encode and extract
available information in the envelope of natural sounds. Indeed, several studies have shown
that spectral and temporal modulations in natural sounds are highly structured [2,8] and that
neural tuning properties at various stages of the auditory pathway appear to be optimized to
extract available acoustic information [8,19-24]. Using a generative encoding model, the opti-
mal frequency decomposition of natural sounds resembles a cochlear decomposition in which
the filter tuning exhibits bandwidth scaling, that is, bandwidths increase proportional to the fil-
ter best frequency [23,25]. Thus, the initial decomposition might be optimized to extract and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010862 February 14, 2023

2/32


https://doi.org/10.1371/journal.pcbi.1010862

PLOS COMPUTATIONAL BIOLOGY Bandwidth scaling drives efficient auditory coding

represent available information in natural sounds. Similarly, the second-order decomposition
of sounds into spectro-temporal modulation components observed in the auditory midbrain is
predicted by computational models designed to optimally encode spectrographic information
with a sparse representation [24]. Once again, as for the cochlear filters, auditory modulation
filters perform a multi-scale decomposition, but do so with respect to the second-order sound
modulations. Both the spectral and temporal modulation filter bandwidths for this scheme
scale proportional to the modulation frequency of each filter. Intriguingly, modulation filter
bandwidth scaling has been observed physiologically [8] and is also consistent with human
perception of modulated sounds [26,27].

Although the bandwidth scaling characteristics of peripheral (carrier decomposition) and
mid-level (modulation decomposition) auditory pathway tuning are well described physiologi-
cally, the consequences of this dual tuning strategy, both computationally and perceptually, are
not fully understood. In particular, it is unclear why bandwidth scaling is evident in peripheral
and mid-level auditory structures and how it impacts auditory feature representations for nat-
ural sounds. We demonstrate that, in contrast to widely used Fourier sound decompositions
which preserve the original power distribution of natural sounds, the scaling characteristics of
the peripheral and mid-level auditory filters serve to whiten the neural outputs of the cochlea
and midbrain, and hence, increase the available entropy in natural sounds. This dual-tuning
strategy is consistent with efficient coding principles and provides a normative framework for
understanding perception of natural sounds.

Methods
Natural sound ensembles and analysis

To study the role of auditory filter tuning and the neural transformations for representing nat-
ural sounds, we analyzed the modulation statistics of natural sound ensembles using a physio-
logically-inspired auditory model. The model consists of a peripheral filterbank stage that
models the initial, cochlear decomposition of a sound waveform into spectro-temporal com-
ponents. A second mid-level modulation filterbank stage decomposes the cochlear spectro-
gram of each sound into modulation components and is inspired by the modulation
decomposition thought to occur in the auditory midbrain [28,29] (Fig 1). Both the peripheral
and mid-level model filters are designed to match tuning characteristics observed physiologi-
cally and perceptually [8,26,27]. For comparison, we also analyze natural sounds using Fou-
rier-based spectrographic and modulation decompositions widely used for sound analysis,
synthesis, and sound recognition applications. All of the models were implemented in
MATLAB and are available via GitHub (https://doi.org/10.5281/zenodo.7245908).

The selected sounds were chosen to represent two broad classes of sounds: background envi-
ronmental sounds and animal vocalizations. Sounds within each category were divided into sub-
categories representing the specific source of the background sound or the species generating the
vocalization. In all, we analyzed 29 sound categories, including 10 background sound categories,
18 vocalization categories and white noise as a reference. Example natural background sound cat-
egories included crackling fire, running water, and wind, while vocalization categories included
human, parrot, and new world monkey speech/vocalizations. Each category contained 3 to 60
sound recordings lasting between 5 seconds and 203.8 seconds (average = 38.1s). The length of
each recording was limited by the recorded media, but we required a total minimum category
length of 90 seconds for each category to assure that sufficient averaging could be performed to
adequately assess the modulation statistics. In total, we analyzed 457 sound segments totaling 4.8
hours of recording. All sounds were sampled at 44.1kHz. The complete list of the sound categories
and media sources is provided in S1 Table and S1 Text.
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Fig 1. Using a multi-stage auditory system model to measure the modulation power spectrum of natural sounds. A cochlear filterbank stage first
decomposes the sound pressure waveform (show for speech) into a spectro-temporal output representation (cochleogram). The cochleogram is then
decomposed into modulation bands by a bank of spectro-temporal receptive fields (STRFs) of varying resolution modeled after the principal auditory midbrain
nucleus (inferior colliculus). The resulting multi-dimensional output represents the sounds in frequency, time, temporal modulation, and spectral modulation.
The modulation power spectrum (MPS), as measured through this auditory midbrain-inspired representation, is generated by measuring and plotting the
power in each of the modulation band outputs versus temporal and spectral modulation frequency.

https://doi.org/10.1371/journal.pchi.1010862.9001

Auditory model decomposition

Cochlear spectrogram. The first stage of auditory model consists of a peripheral filter-
bank that models the frequency decomposition and envelope extraction performed by the
cochlea. The resulting output, referred to as the cochlear spectrogram or cochleogram, captures
the spectro-temporal modulations of the sound as represented through the cochlear model.
The sound waveform, s(#), is first convolved with a set of N = 664 tonotopically arranged
gamma-tone filters

se(£) = Ry (2)  s(t) (1)
with impulse response
h(t) = A-t"" - cos(2nfit) - e Py t) (2)

where f; represents the k'™ filter characteristic frequency (CF), b(f;) is the filter bandwidth, u(t)
is the unit step function, * is the convolution operator and the filter gain, 4, is selected to
achieve unity maximum gain in the frequency domain. The filter characteristic frequencies
(CF) are ordered logarithmically between 100 Hz and 10 kHz (0.01 octave spacing) to model
the approximate logarithmic position vs. frequency relationship in the cochlea [30,31]. Fur-
thermore, bandwidths scale according to

b(f) =24.7- (4.37 : ﬁ + 1) Hz, (3)

such that bandwidths increase with filter CF [32,33]. Next, we computed the Hilbert transform
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magnitude to extract the envelope of each channel
ei(t) = [s(t) +i- H{s,()}], (4)

where H{-} is the Hilbert transform operator and i = V-1. Finally, to account for the fact that
synaptic filtering at the hair-cell synapse limits the temporal synchronization and modulation
sensitivity of auditory nerve fibers [34,35], the final cochlear outputs were derived by convolv-
ing the impulse response of a synaptic lowpass filter (h;;,qps(t)) with the sound envelope of
each cochlear channel (e(t))

Sc(ts xi) = €(t) % . (2) (5)

where x; = log,(f,/100) is the frequency in units of octaves above 100 Hz for the k-th filter
channel. For each of the cochlear channels, this synaptic filter is modeled as a B-spline lowpass
filter with a lowpass cutoff frequency of 750 Hz. Altogether, Sc(t, x), provides a decomposition
of the original sound in terms of spectro-temporal modulations using a filterbank model of the
auditory periphery.

Mid-Level modulation decomposition. Following the peripheral cochlear decomposi-
tion, we use a mid-level filterbank to extract spectral and temporal modulations in the cochleo-
gram. In this second stage of the model, the cochlear spectrograms are passed through a multi-
resolution bank of two-dimensional filters designed to model spectro-temporal receptive fields
(STRFs) in the auditory midbrain. Here, STRFs contain both excitatory and inhibitory (or sup-
pressive) integration components and STREF filters are designed to match the tuning properties
reported physiologically in the inferior colliculus [8]. The STREF filters are modeled using a
Gabor-alpha function that captures the structure of auditory midbrain receptive fields [36]:

STRE(t,x;f,,, )

—A . t e*([%)e(_z'ﬁ) cos(2nQx + 2xf, ,t + P)u(t), (6)

where f,,0 and Q are the best temporal and spectral modulation frequency parameters of each
individual STREF, respectively. These primary receptive field parameters determine the modu-
lation tuning of each model neuron and are varied systematically on an octave scale between
fmo =-512 to 512 Hz (0.25 octave steps) and Q, = 0.1 to 3.6 cycles/oct (0.1 octave steps). We
choose octave spacing for these primary receptive field parameters because both mapping and
modulation processing studies [28,29,37] indicate that modulation preferences are roughly
evenly distributed when plotted on an octave scale. Secondary receptive field parameters
include the receptive field phase (¢, which accounts for the alignment of excitation and inhibi-
tion), the temporal receptive field decay time-constant (7, which determines the temporal
duration of the STRF) and the spectral bandwidth (bw, which determines the spectral spread
of the STRF in octaves). These secondary parameters are selected based on physiologically
measured trends for inferior colliculus that are described subsequently (Selecting Physiologi-
cally Plausible Modulation Tuning Parameters). Finally, the receptive field amplitude,

A o4t (7)
mJmee bw-t?

is selected so that the filters have a constant peak gain of 1 in the modulation domain.
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The mid-level modulation filterbank output to a particular sound, Sy, is obtained by
convolving the model STRFs with the sound cochleogram according to

Sult, %5 foos QU) = STREF(t, x; Fuos QU) * *Sc(tv x) (8)

where ** is a two-dimensional convolution operator (across time and frequency). This opera-
tion decomposes the cochleogram into different modulation resolutions determined by the
model STRFs (Fig 1). This decomposition is conceptually similar to the cortical decomposition
of sounds into spectro-temporal modulation components [10], although in this case, the
decomposition accounts for substantially faster temporal modulations and is designed to cap-
ture physiological distributions and receptive field characteristics of the auditory midbrain
[5,8,36].

Selecting physiologically plausible modulation tuning parameters. While the periph-
eral decomposition of sounds by the cochlea selectively filters the frequency content of natural
sounds, the secondary decomposition performed by the auditory midbrain selectively extracts
and filters the modulation content. Physiologically, the measured modulation filters have a
quality factor of ~1 (Q, defined in the modulation domain: the ratio of best modulation fre-
quency to modulation bandwidth; Q, = f,,,/BW, ; Q= Q;/BW,,), such that modulation
bandwidths scale proportional to the best modulation frequencies [8]. Similarly, human modu-
lation bandwidths, which are derived using perceptual measurements, also scale with modula-
tion frequency [26,27].

To match these physiological observations, we set the temporal modulation bandwidths
equal to the best temporal modulation frequency (BW, = f, ) and set spectral modulation
bandwidths equal to the spectral modulation frequencies (BWq, = €)y). As observed physiologi-
cally these modulation domain parameters (B W, and BWg) are intimately related to the

STREF parameters (7 and bw) [5,8,36], and for the model STRF of Eq 6 it can be shown that:

vva-1 1
n Joo

©)

and

2-In(2)
bw=2"r—- 10
w 0, (10)
(Proofs in S1 Text). Collectively, by combining Eqs 6, 9 and 10, the model STRFs exhibit
tuning profiles that follow trends in auditory midbrain and perceptual measurements where
the spectro-temporal modulation bandwidths scale with best modulation frequencies.

Fourier spectrographic decomposition

In addition to decomposing natural sounds through a physiologically inspired auditory model,
we also decomposed sounds through a conventional Fourier-based spectrographic decomposi-
tion (i.e., short-term Fourier transform). Here the modulations of natural sounds are extracted
using a short-term Fourier transform, equivalent to using a constant resolution Gabor filter-
bank. Although both the Fourier and cochlear spectrogram representations describe the spec-
tro-temporal envelopes of natural sounds, each decomposition uses a unique set of filters with
different time-frequency resolution patterns (constant resolution for the Fourier spectrogram
versus approximately proportional resolution for the cochleogram) thus yielding uniquely dif-
ferent spectro-temporal representations.
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For each sound, the spectrographic representation is given by taking short-term Fourier
transform

s(t,f) = /s(r)w(t —1)e ™ dr (11)

and computing the envelope magnitude: S(¢, f) = |s(¢, f)|. In the above, w(¢), is a Gaussian win-
dow with standard deviation o that localizes the sound in time to the vicinity of t prior to com-
puting the Fourier transform. Alternately, the short-term Fourier transform can be viewed as a
filterbank decomposition in which complex Gabor filters of the form w(t—7) e~*"" are con-
volved with the stimulus, s(7) [38]. The filters have center frequency fand a constant band-
width that is inversely related to ¢ [38]. This follows from the uncertainty principle which
dictates that the spectral and temporal resolution of a filter are inversely related as described
below.

Spectro-temporal resolution and uncertainty principle

To characterize the time-frequency resolution of the cochlear and Gabor filterbanks and to
subsequently characterize the structure of the resulting spectro-temporal decompositions, we
measured the temporal and spectral resolution of each filter for both filterbanks. The uncer-
tainty principle requires that

o,- 0, > 1/4m, (12)

where equality holds for the Gabor filter case [38]. Here 7 and o7 are the normalized second-

order moments of the filter impulse response and transfer function, respectively. That is, the
product of the temporal and spectral resolutions is bounded, and there is a tradeoff between
the two in the limiting case where the filter approaches the theoretical best resolution (i.e., for
Gabor filters). Conceptually 20, and 20y can be thought of as the average integration time and
bandwidth of the filter, which we define as

At=2-0

Af =20, (13)

The uncertainty principle can then be expressed as

At-Af > 1/ (14)

For this study, we choose and characterized natural sounds using Gabor filters with three
distinct spectro-temporal resolutions: integration times of At = 10.6, 2.7, and 0.66 ms and cor-
responding bandwidths of Af= 30, 120, and 480 Hz (36, 141, 567 Hz 3 dB bandwidths, respec-
tively). These decompositions have the same At-Af resolution and are comparable to those
used previously to analyze modulation spectra of speech and other natural sounds [1,2].

Modulation power spectrum (MPS)

We are broadly interested in understanding how natural sounds are transformed by cochlear
and mid-level filters and in determining to what extent auditory filters represent spectro-tem-
poral modulations of natural sounds efficiently. Here we propose to use the modulation power
spectrum (MPS) to evaluate representations of spectro-temporal modulations. Conceptually,
the MPS is analogous to a power spectrum, but calculated for spectro-temporal modulations
of the sound [2]. Since modulations are determined by the filterbank model used for the
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spectrographic decomposition [38], the MPS can differ substantially between spectrographic
and cochleographic representations [2,8]. As we will also demonstrate, the MPS of a sound is
also highly dependent on the modulation filters used to estimate the MPS itself. Here we
describe the calculation of the MPS at multiple levels of the auditory processing using the 1)
cochlear model and a 2) midbrain model decomposition as well as for the reference 3) Fourier
based spectrographic decomposition.

Fourier spectrogram MPS. Conceptually, computing the MPS of natural sounds entails
measuring the output power through a bank of modulation filters that decompose the sound
into isolated modulation components [2]. This can be achieved by taking the two-dimensional
Fourier transform of the spectrographic representation and subsequently computing the
squared magnitude

MPS(f,,, Q) = |//S(t, x)e 2R ) x| (15)

Conceptually, the two-dimensional Fourier transform of the spectrogram transforms the
time and frequency dimensions (¢ and x) into the corresponding temporal and spectral modu-
lation frequencies (f,, and 2), while the squaring operation is needed to compute the power of
each modulation component. Here, due to the limited data size, we used a Welch’s periodo-
gram averaging procedure to approximate Eq 15, similar to previous methods [8]. The sound
spectrogram, S(t, x), is first partitioned in time into N adjacent non-overlapping segments,
Su(t, x) (n=1---N). The MPS is then given by

1 . ‘
MPS.(f,,,Q) = N Z:’Zl |//Sn(t, x)w(t —t,, x)e—12n(9x+fmt)dtdx|z. (16)

Here, the two-dimensional modulation filters (w(t — t,, x)e 7**@#/!)) have constant modu-
lation resolution. That is, the estimated power for each modulation frequency component can
be viewed as the power that is measured through the corresponding modulation filter. We use
a 1.5 seconds duration two-dimensional Kaiser window (f = 3.4) spanning the full frequency
range (0.1 — 10kHz), which in the modulation domain have a constant resolution of 0.8 Hz
and 0.1 cycles/kHz (3 dB Bandwidths). Although this procedure differs slightly from the
approached originally used by Singh and Theunissen [2], it is theoretically equivalent and, for
speech, produces very similar MPS [1].

Cochlear spectrogram MPS. Next, to characterize the modulations represented by a
cochlear model decomposition, we estimate the MPS of the cochleogram [8]. Due to the band-
width scaling, nonlinearity (Hilbert transform) and synaptic lowpass filter of the cochlear fil-
ters, the cochleogram representation differs from the Fourier spectrogram. However, the
cochlear MPS is computed similarly

1 . f
MPSc(fm’ Q) = NZ |ﬂsc.n(t7 .x)W(t - tn? x)67]2ﬂ(gx+fmwdtdx‘z (17)
n=1

where S¢,,(t, x) denotes the segmented cochlear spectrogram and replaces the Fourier version
(S,(t, x)), but the same window is applied to both (see above). Although both the Fourier MPS
and cochlear MPS¢ quantify temporal and spectral modulations, Fourier filters have Hz spac-
ing with constant bandwidth, while cochlear filters have octave spacing with proportional
bandwidths. Thus, while temporal modulation frequencies (f,,,) have a common unit of Hz, the
units for spectral modulations frequencies (€2) differ for the two representations: cycles/octave
for the cochlear and cycles/kHz for the Fourier spectrograms.
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Mid-Level / Midbrain Model MPS. In the Fourier and cochlear MPS, the spectro-tempo-
ral filters have constant spectro-temporal resolution in the modulation domain and can be
viewed as a basis set from which arbitrary Fourier and cochlear spectrograms can be synthe-
sized. Here to model the auditory midbrain and to derive a MPS representation of the mid-
brain model output we consider an alternative decomposition of the cochlear spectrogram.
Unlike the cochlear MPS which uses equal-resolution modulation filters, we use model recep-
tive fields based on auditory midbrain STRFs [8,36]. These spectro-temporal receptive fields
scale in the modulation domain thus resembling scaling observed physiologically [8]. This scal-
ing generates a decomposition analogous to a two-dimensional wavelet decomposition of the
cochlear spectrograms. Here the mid-level model MPS is given by the power at the output of
the mid-level filterbank:

MPS,,(f,, Q) / / S, (t,x:f. Q) ded, (18)

where Sy (%, x; f,.,, ) is the mid-level or midbrain filterbank output (Eq 8). Applying Parseval’s
theorem and combining with Eq 8, the midbrain MPS can alternately be computed directly in
the modulation domain by integrating the cochlear modulation power spectrum (MPSc)

MPS,,(f,, Q) = // IMTE(C, 3: £, )"-MPS,(, y)dCdy. (19)

where the modulation transfer function (MTF((, y; f,,, ©)) is obtained by taking the Fourier
transform of each STRF (see S1 Text). That is, the mid-level MPS is a transformed version of
the cochlear model MPS. Here the midbrain model MTF magnitudes shape the MPS output of
each modulation filter, and the total power for each filter is derived by integrating across spec-
tral and temporal modulation frequencies. Spectral and temporal modulation frequencies in
MPS,; share the same units as MPS¢ (Hz and cycles/oct). However, because the modulation fil-
ters scale with modulation frequency, both f,, and Q are now ordered logarithmically.

Spectral and modulation entropy

Here we use Shannon entropy [39] to characterize the effectiveness of a spectro-temporal
decomposition model for encoding natural sounds. Entropy is a metric of waveform diversity
and thus serves as a measure of potential information that may be transmitted within a signal
coding framework. Here we extend the conventional definition by quantifying the average
entropy in the neural response distribution in the frequency or modulation domains. Within
this multi-dimensional signal encoding framework, high spectral or modulation entropy indi-
cates that the encoded signal uniformly spans the basis set (i.e., the filters), as might be
expected for white noise being represented by conventional Fourier decomposition. Thus,
from a neural coding perspective, a signal with high spectral or modulation entropy is expected
whenever a sensory signal broadly and uniformly activates all of the neurons in the encoding
ensemble [18]. That is, a signal with high entropy is “whitened” by the particular filterbank
scheme. Here we measure the entropy associated with the spectral and modulation content of
natural sound as represented through the 1) Fourier based, 2) cochlear model, and 3) midbrain
model decompositions.

Spectral entropy. For each of the natural sound ensembles and both their Fourier and
cochlear model decompositions, we measured and compared the spectral entropy [40] as a
measure of the efficiency of the spectral decomposition. For a set of N spectral decomposition
filters, the spectral entropy of a sound is defined by the average expected uncertainty across all
filters. The spectral entropy calculation first involves calculating the power spectrum of a
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sound, which for the Fourier and cochlear models can be derived by averaging the sampled
time dimension in the spectrographic representations as follows:

PLR) = 2 3 IS(t, S (20)

ty is the k-th time sample, f; is the 1-th frequency channel, and K is the number of temporal
spectrogram samples. Next, the power spectrum is normalized for unit sum

_ Pss(f )
Pl =550 (7

so that the normalized power spectrum (P_(f,)) can be treated as a probability distribution
(sum of 1). The raw entropies associated with the power spectrum of a sound are then com-
puted as:

(21)

== D Pulf) - loga[P(f) (22)

For both the Fourier and cochlear representations, the power spectrum and resulting
entropy was estimated for frequencies between 100 Hz and 10 kHz. Furthermore, to allow for
comparisons across the different model representations (Fourier vs. cochlear), we consider the
maximum possible entropy that can be attained by each filterbank or, equivalently, the capac-
ity of the spectral decomposition model as a reference benchmark. The model capacity is
achieved when the resulting sound spectrum has a uniform power spectral density (i.e., flat so
that P_(f,) = 1/N) and thus a total entropy of log,N. The spectral entropy is then defined as:

_ P(f,) - log, [P, (f,)]
B Z log,N

H = 2
: mN (23)

where the entropy is normalized by the theoretical maximum entropy that can be achieved
given N decomposition filters. Note that the unnormalized entropy (Eq 22) grows proportional
to the number of filters (N, which differs for the cochlear and spectrographic decompositions)
and thus the entropy is normalized in Eq 23 to remove this dependency. This assures that com-
parisons can be made across spectral decomposition models with different number of decom-
position filters. Spectral entropy can thus be viewed as the fractional entropy that can be
achieved by each filter relative to the maximum that is theoretically attainable and thus can be
thought of as a measure of efficiency in the population representation. Representations that
are more efficient, will activate all of the neural filters uniformly while those that are less effi-
cient will activate a subset of filters more strongly than others.

Modulation entropy. We also estimate the entropy associated with the modulation con-
tent of each sound. Modulation entropy is similar in concept to the spectral entropy described
above, but is generalized to two-dimensions

Mps(fmﬂ lOgQ[MPS(me )]

- _Z Z log2 (L-M) (24)

where L and M are the number of spectral and temporal filter channels, respectively, f,, ; is the
i™ temporal modulation frequency, €2; is the jth spectral modulation frequency, and

MPS(f,, ;, Q,) is the normalized MPS (for unit sum). As for the spectral entropy, log,(L-M) is
the theoretical maximum entropy that can be achieved given L-M modulation filter outputs.
Thus, values of Hys near 1 would be near the theoretical maximum, indicating an efficient
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modulation representation. To characterize how temporal and spectral modulation represen-
tations are individually influenced by each of the model decomposition, we also computed the
spectral (Hgy) and temporal (Hrys) modulation entropy separately

MPS(Q,)-log,[MPS())]
Hgy, = _Zj log,L (25)

H,, = _Z,- MPS (fmt) -log, [M})S (fmz)] (26)

log,M

where and MPS(f,,;) and MPS (€;) are the temporal and spectral MPS marginal distributions,
respectively.

The total, spectral, and temporal modulation entropy was derived for each sound in each
ensemble, as decomposed through a 1) Fourier-based representation, 2) a cochlear model, and
3) a midbrain model. Because the range of spectro-temporal modulations generated by each
model are different due to the filterbank characteristics, we use white noise to determine a suit-
able range of modulation frequencies over which to calculate entropy. Here the range of spec-
tral and temporal modulations used for the entropy calculation were determined by the 90"
percent power contour of the white noise MPS and MPSc. This ensures that the entropy calcu-
lation is performed using modulations that obey the uncertainty principle and that can be reli-
ably identified under each decomposition. Finally, since auditory midbrain neural responses
to spectro-temporal modulation are largely limited to less than 500 Hz and 4 cycles/octave [5],
and both of these values were less than the upper limit for white noise, we used these values as
upper limits for the midbrain representation. This upper limit for the auditory midbrain repre-
sentation did not bias the entropy calculation, since all representations have a comparable
entropy for white noise (Fourier: 0.95, 0.95, 0.95 for Af = 30, 120 and 480 Hz, respectively;
Cochlear: 0.95 bits; and Midbrain: 0.93).

Results

Here we examine how auditory filter transformations influence the neural representations of
natural sounds by characterizing the spectrum and modulation statistics of cochlea- and mid-
brain-inspired sound decompositions. Our full, biologically-inspired auditory model consists
of a peripheral set of frequency-selective filters and a subsequent bank of mid-level modula-
tion-selective filters that model the tuning characteristics observed in the cochlea and auditory
midbrain, respectively (Fig 1). By comparing biologically-inspired representations to Fourier-
based spectrographic decompositions, we demonstrate how peripheral and mid-level auditory
filter tuning are better-matched to the statistics of natural sounds ensembles. Together periph-
eral and midbrain transformations appear to produce a near-optimal, whitened neural repre-
sentation of the spectro-temporal modulations that are present in natural sounds.

Tradeoffs in time-frequency filtering resolution and the implications for
spectrographic representation of natural sounds

We first examine the consequences of peripheral filter tuning using a cochlear model represen-
tation and compare the results to a Fourier -based filter representation. Here we examine natu-
ral sounds selected from 28 distinct sound ensembles with a wide range of spectro-temporal
characteristics, including animal vocalizations (18) and environmental background sounds
(10). Sounds included speech, parrot, and non-human primate vocalizations, for example, as
well as, sounds from running water, wind, and crowd noise as backgrounds.
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Although both cochlear model and Fourier-based decompositions provide representations
of spectro-temporal modulations, they use different filters with distinct impulse response and
transfer functions (Fig 2). In the frequency domain, cochlear model filters have bandwidths
that scale with frequency; that is, bandwidths vary and increase approximately proportional to
the filter best frequency (Fig 2A). At low frequencies, the filters have narrow frequency tuning
(in kHz) and thus relatively high spectral resolution while at high frequencies they are broader
and less resolved in frequency. In Fig 2A, the cochlear model filters are depicted in log-fre-
quency axis which demonstrates that the filters have approximately equal proportional resolu-
tion for frequencies above ~1kHz (i.e., ~constant octave bandwidth). In addition, the Gamma-
tone cochlear filters have shallow low-frequency and sharp high-frequency roll-offs that also
mirrors the selectivity of auditory nerve fibers [41]. In the time domain, the impulse responses
of the cochlear filters differ substantially in their temporal characteristics and amplitudes for
different best frequencies (Fig 2C, bottom). As illustrated for three selected filters, low fre-
quency filters have long delays and coarser temporal resolution (note the logarithmic delay
axis) while high frequency filters have substantially shorter delays and higher temporal resolu-
tion (Fig 2C top, amplitude normalized in order to highlight their temporal characteristics).
For example, the filter at 100 Hz has a temporal resolution of At = 45 ms and group delay of 11
ms indicating that it has relatively poor temporal acuity while the 10 kHz filter has a At = 1.7
ms and group delay of 0.4 ms which indicates that it responds substantially faster and can syn-
chronize to substantially higher temporal components in the sound. Finally, the peak ampli-
tudes of the filter impulse response (Fig 2C, bottom) increase with increasing frequency which
compensate for the bandwidth dependency shown in Fig 2A.

While the cochlear filters have spectral and temporal characteristics that vary in a frequency
dependent manner, the Fourier spectrographic decomposition (Fig 2B) uses linearly-spaced
filters with constant spectral bandwidth (Af). Although the impulse response of each filter
oscillates at a rate that is determined by the best frequency of the filter (Fig 2D), the average
temporal width (At) of each filter is the same. Thus, unlike the cochlear filters, which have
spectro-temporal resolution that varies with the filter best frequency, the Gabor filters of the
Fourier representation have a constant spectro-temporal resolution.

Examining the relationship between spectral bandwidth and temporal width illustrates a
key difference between Fourier and cochlear filters (Fig 2E). Theoretically, the uncertainty
principle requires that the time-frequency resolution product of each filter satisfy the uncer-
tainty principle [38]

At-Af > 1/,

and equality holds for the Gabor filter case. Here we use three Gabor filterbanks with band-
widths of Af = 30 Hz, 120 Hz, and 480 Hz and corresponding temporal resolutions of At = 10.6
ms, At = 2.7 ms, and At = 663 s, respectively. All of the individual filters for each of the three
Fourier filterbanks have identical time and frequency resolution, regardless of the best fre-
quency. Thus, each filterbank is represented by a single point (Fig 2E). In contrast, the cochlear
filters, have frequency-dependent bandwidths so that the time and frequency resolution of
each individual filter depends on the filter best frequency and slightly exceeds the uncertainty
principle theoretical limit (Fig 2E).

Although spectrographic representations are often treated as roughly equivalent, the differ-
ences in time-frequency resolution between the Fourier and cochlear filterbanks emphasize
distinct sound features, dramatically impacting the spectrographic representation of speech,
animal vocalizations, and other natural sounds (Fig 3). Narrowband Fourier spectrograms
(Af =30 Hz), for instance, tend to have detailed spectral resolution at the expense of limited
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Fig 2. Comparing Fourier and cochlear model filterbanks. (A) Cochlear filter transfer functions are shown for model
filters with best frequency between 0.1-10 kHz (color designates gain in dB). The cochlear filters are logarithmically spaced
and have bandwidths that scale with frequency (proportional resolution). They exhibit a sharp high-frequency transition
and gradual low frequency transition as observed physiologically for auditory nerve fibers. A subset of the transfer
functions is line plotted above. Three selected filters (103.5, 830.0, 6653.5Hz) are shown in different colors and their
corresponding time domain impulse responses are shown below. (B) The Fourier filterbank, by comparison, has constant
resolution filters (30 Hz bandwidth shown here) that are ordered on a linear scale (shown up to 2kHz for clarity, and part
of them are line plotted above, three examples are: 250, 750, 1500Hz). In the time domain, the cochlear filter impulse
responses (C) have frequency dependent peak amplitudes and delays and the impulse response durations scale inversely
with frequency. For visualization purposes and to allow for ease of comparison the impulse response line plots for the three
examples are normalized to a constant peak amplitude (C, top). The Fourier filterbank filters, by comparison, have
constant duration and are designed for zero delay (D). (E) shows the time (At) and frequency (Af) resolution of the cochlear
(colored circles) and three distinct Fourier filterbanks (+ symbols show Af = 30 Hz, 120 Hz, and 480 Hz). The dotted line
represents the uncertainty principle boundary. Although the Fourier filterbanks are represented by a single point and fall
on the uncertainty principle boundary, the time-frequency resolution of the cochlear filters is frequency dependent
(colored circles).

https://doi.org/10.1371/journal.pchi.1010862.g002

temporal resolution while broadband Fourier spectrograms (Af = 480 Hz) have substantially
faster temporal fluctuations and coarser spectral details (Fig 3). In speech, for instance, har-
monic structure is evident in the narrowband Fourier spectrogram during voiced segments
extending out to approximately 5 kHz (male talker; fundamental varies between ~100-170
Hz). However, the narrow bandwidth associated with these filters limits the filter temporal res-
olution and hence the fastest temporal modulations that can be resolved by this representation
(At =10.6 ms, ~50 Hz upper limit). A broadband spectrogram, with coarser spectral (Af = 480
Hz) and higher temporal (Af = 663 ps) resolution, cannot resolve individual harmonics and,
instead, exhibits periodic fluctuations at the fundamental frequency of voicing (Fig 3; vertical
striations).

By using filters with frequency-dependent resolution, the cochleogram model emphasizes
distinct spectro-temporal features in natural sounds. The cochleogram of speech, for instance,
has approximately four resolved harmonics due to the relatively narrow filters for low frequen-
cies as seen in the red (0.1-0.4 kHz) and magenta (0.4-1.6) panels highlighting a segment of
speech (Fig 3). The broader higher frequency cochlear filters (black; 1.6-6.4 kHz), by compari-
son, are unable to resolve voicing harmonics, and instead generate detailed temporal modula-
tions extending out to several hundred hertz (vertical striations visible upon zooming in;
visible in the black and magenta panel). The high frequency filters also highlight formant
structure which show up as coarse fluctuation in power across frequency (visible in the black
and magenta panels). The cochleogram thus accentuates voicing harmonic structure in the
low frequency channels while simultaneously producing voicing periodicity through the rela-
tively broad high frequency cochlear filters. Similar distinctions are observed for nonharmonic
sounds. For instance, the crackling fire has pronounced and transient modulation resulting
from crackling embers (broadband pops between ~1-10 kHz) that is visible in the cochleo-
gram and less pronounced in the narrowband spectrogram. Importantly, for all examples,
Fourier spectrogram power is biased towards low frequencies, while the cochleograms have
more evenly distributed power across channels.

Cochlear filter tuning characteristics whiten the power spectrum statistics
of natural sounds

Given the differences between the cochlear and Fourier representations, we next computed the
spectrum statistics of natural sounds for both model representations and used entropy mea-
sures to evaluate the effectiveness of each decomposition. Specifically, we explore the hypothe-
sis that the cochlear filters enhance the representation of natural sounds by “whitening” or
flattening the output power spectrum, thus producing a more efficient neural representation.
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Fig 3. Example Fourier and cochlear model spectrogram decompositions for vocalizations and background
environmental sounds: (A) Crackling fire, (B) owl vocalization, (C) speech, and (D) running water. Fourier-based
spectrograms are shown for three different frequency resolutions (Af = 30, 120 and 480 Hz). The Fourier spectrograms
tend to have higher power and details that are more concentrated at low frequencies, while the cochlear spectrograms
have spectro-temporal components and power distributions that are more evenly distributed across frequency. Black
(1.6-6.4 kHz), magenta (0.4-1.6 kHz) and red (0.1-0.4 kHz) boxes for speech (C) illustrate a regions of the Fourier or
cochlear spectrograms that emphasize the voicing hormonic structure, second formant, and voicing temporal
periodicity, respectively.

https://doi.org/10.1371/journal.pcbi.1010862.9003

Theoretically, high spectral entropy is achieved whenever the power spectrum of a sound
exhibits a uniform or a flat power distribution. From an encoding perspective, high entropy is
thus achieved whenever the filters have outputs with uniform power so that the original signal
power is spread equally across all filters (e.g., hair cells or neurons). For the Fourier
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spectrographic decompositions, which have equal bandwidth filters, we expect that the highest
entropy will be observed for white noise. By comparison, for the cochlear spectrographic
model which has bandwidths that scale with frequency it is expected that the decomposition
potentially boosts the output power at high frequencies. Since the high frequency filters inte-
grate across broader bandwidths, the cochlear filters act to “whiten” the output for sounds
with power spectra that decrease with frequency.
To characterize how the cochlear and Fourier filterbanks impact the filterbank spectrum
output statistics for natural sounds, we first computed the Fourier- (Fig 4A) and cochlear-
based (Fig 4B) power spectra for each sound category. Fourier-based power spectra tend to
drop off with increasing frequency for all of the environmental sound categories tested. With
the exemption of the Tamarin (slope = +1.9 dB/kHz, Af = 30Hz; Results for 120 Hz and 480
Hz shown in S1 Fig), vocalization sounds also exhibit a decreasing power trend with increasing
frequency, while a white noise control sound has a flat Fourier spectrum (slope = 0 dB / kHz;
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Fig 4. Spectra of vocalizations (VC) and background (BG) natural sound ensembles. Power spectra are shown for both the (A) cochlear and (B) Fourier-based
model representations. Dotted lines represent the best linear fit between 0.1-10 kHz. All but one of the natural sounds have a Fourier spectrum with negative
slope, while cochlear spectrums, by comparison, have more varied slopes (positive and negative) indicating a more even distribution of power across
frequencies. The spectral entropy of each sound category is listed on the right side of the panel.

https://doi.org/10.1371/journal.pchi.1010862.9004
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Fig 4A). The cochlear model power spectra, on the other hand, are generally more varied.
Some vocalization categories, such as the hawk, tamarin and parakeets, tend to have cochlear
spectra that increases with frequency; other categories, such as the bamboo rat and humming-
bird sounds, have spectra that are relatively flat on average and, yet, other categories such as
speech have somewhat decreasing power trends. Background sounds by comparison tend to
be biased towards having decreasing power trends (e.g., city, thunder, and ocean sounds) or
are relatively flat (e.g., rain, forest, and fire sounds). Without the bandwidth scaling, the
observed flattening is not present in the cochlear representation and the results resemble the
Fourier spectra (S5 and S6 Figs). This suggest that bandwidth scaling is a main factor for whit-
ening the cochlear model representation.

We then compare the distribution of measured slopes for both filterbanks. To account for
the fact that the two filterbanks have distinct frequency axes and the power spectrum slopes
have different units (dB/kHz for Fourier; dB/octave for cochlear model), we normalized the
slopes of each filterbank by their standard deviation (normalized by the standard deviation of
the ensemble distribution), so that both filterbanks have slope distributions with SD = 1. For
the Fourier decomposition, most vocalizations and background sounds have similar negative
slope (standardized slopes = -1.8 vs. -1.9 standard deviations, vocalizations vs. background,
respectively; Af = 30Hz; t-test, p>0.7). In contrast, the cochlear model standardized slopes
tend to be smaller in magnitude, spanning both negative and positive values, and with an aver-
age slope that was not significantly different from zero (t-test, p>0.29). Interestingly, vocaliza-
tions are biased towards positive slopes (0.75+0.22, mean+SE; t-test, p<0.01) and backgrounds
biased towards negative values (-0.41+0.25, mean+SE; t-test, p<0.01).

We next computed the spectral entropy of each sound for the Fourier and cochlear filter-
banks as a way of assessing their encoding effectiveness. As a reference, the spectral entropy of
white noise is highest for the Fourier filterbank (1.00 vs. 0.93 bits, Fourier vs. Cochlear; * on
Fig 5B). This is consistent with the notion that white noise generates a flat power spectrum for
the Fourier filterbank and, thus, ultimately is most efficiently represented with a Fourier like
decomposition. When comparing all sounds, the measured spectral entropy of the majority
natural sounds categories was larger for the cochlear over the Fourier decomposition (25 of 29
categories; Fig 5B), indicating that cochlear model filters produce a more efficient spectral
representation. Across all natural sounds the cochlear model entropy (0.88+0.06, Mean+SD) is
significantly higher than the Fourier based entropy (0.75+0.12, Mean+SD; Af = 30 Hz) regard-
less of the filter bandwidths used (paired t-test with Bonferoni correction, p<0.05; Af = 30, 120
or 480 Hz). When comparing vocalization and background sound categories (Fig 5C), we find
that measured entropies for the background sound categories are higher for the cochlear
decomposition (0.92+0.03 for cochlear; 0.71+0.12 for Af = 30; 0.59£0.18 for Af = 120; 0.52
10.19 for Af = 480; Mean+SD, t-test with Bonferoni correction, p<0.05). Similarly, the vocali-
zation entropy for the cochlear filters was also higher than the Fourier filters (0.86+0.06 for
cochlear; 0.77+0.12 for Af = 30, 0.71+0.14 for Af = 120, 0.65+0.15 for Af = 480; t-test with Bon-
feroni correction, p<0.05).

These comparisons demonstrate how cochlear model filters produce flatter spectra for both
vocalizations and background sound categories. These findings are consistent with the hypoth-
esis that cochlear filter decomposition whitens the cochlear spectrum of natural sounds ulti-
mately producing a more efficient population representation [23,25]. Here we further propose
that the output whitening is a direct result of bandwidth scaling for cochlear filters. To illus-
trate this effect, we show how the cochlear spectrum of natural sounds can be predicted
directly from the Fourier spectrum by taking into account the residual accumulated output
power that arises from cochlear bandwidth scaling. That is, since cochlear filters scale with fre-
quency we propose that integrating the sound power spectrum across increasing bandwidths
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Fig 5. Cochlear model bandwidth scaling whitens the power spectrum of natural sounds and maximizes spectral
entropy. (A) Violin plots showing the distribution of normalized slopes of the best regression fits to both the Fourier
and cochlear models (from Fig 4). For both vocalization and background sounds, normalized spectral slopes for the
Fourier decomposition are negative and not significantly different (t-test, p = 0.58). By comparison, vocalizations have
positive and negative slopes for vocalizations and background sounds, respectively, with an average slope near zero
(0.2) indicating a whitened average spectrum. (B and C) The cochlear model entropy is higher than Fourier-based
entropy regardless of the Fourier filter resolution used (30, 120 or 480 Hz). (D) Bandwidth scaling predicts the cochlear
filter whitening. The average Fourier power spectrum has a decreasing trend (black) whereas the cochlear power
spectrum is substantially flatter (red, continuous). The gain provided by the cochlear filter bandwidths (green curve)
increases and counteracts the decreasing power trend of the Fourier power spectrum. The cochlear power spectrum is
accurately predicted by considering the bandwidth dependent gain (dotted red lines; bandwidth gain + Fourier power
spectrum).

https://doi.org/10.1371/journal.pchi.1010862.9g005

(with increasing frequency) allows the high frequency filters to accrue more power, which
imposes a bandwidth dependent gain on the cochlear outputs (Fig 5, green). Fig 5D shows that
the Fourier based power spectrum (average across all natural sounds) has a decreasing power
trend (black curve) with increasing frequency while the average cochlear model power spec-
trum of natural sounds is substantially flatter (red curve). By imposing the proposed band-
width dependent gain of the cochlear filters, we can accurately predict the cochlear power
spectrum (Fig 5D). As seen, there is a strong correspondence between the actual cochlear
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power spectrum (continuous red) and the predicted cochlear power spectrum (dotted red)
with an average error of 0.75 dB. Thus, the cochlear model output power spectrum can be pre-
dicted by considering the Fourier power spectrum and adding the frequency dependent gain
of the cochlear filters (in units of dB).

The consequences of midlevel auditory filter tuning on the modulation
statistics of natural sounds

Following the cochlear decomposition of sounds into frequency components, midbrain audi-
tory structures such as the inferior colliculus carry out a second-order decomposition of
sounds into spectro-temporal modulation components. Spectro-temporal modulations are
critical acoustic features that strongly influence the perception and recognition of natural
sounds. Here, by comparing Fourier-based, cochlear, and auditory midbrain representations,
we explore the consequences of this secondary decomposition and propose that, by building
on the cochlear representation, the tuning characteristics of midbrain auditory filters further
enhance the representation of natural sounds.

Like the cochlear filters, auditory midbrain filters exhibit bandwidth scaling [8]. To evaluate
how the midbrain auditory filters impact the representation of natural sounds, we compare the
modulation statistics of the natural sound ensembles with Fourier, cochlear, and an auditory
midbrain model representation. Here the Fourier spectrogram is passed through a set of mod-
ulation decomposition filters [2] and the outputs are used to compute the Fourier modulation
power spectrum (MPSf). In the modulation domain (Fig 6C), the Fourier modulation decom-
position filters have a constant modulation bandwidth (both spectral and temporal) regardless
of the spectral or temporal modulation frequency being analyzed. In the spectrogram domain
(Fig 6D), these modulation filters consist of spectro-temporal Gabor functions with constant
duration and spectral resolution. Next, to characterize the modulation statistics obtained with
a cochlear filter decomposition, we estimated the modulation power spectrum of the cochleo-
gram (MPSc) [8]. Here, the cochleogram of each sound is processed through Fourier based set
of modulation filters with equal modulation resolution, analogous to the MPSf (as in Fig 6C).
Finally, we consider a midbrain-based representation by taking the cochleogram outputs and
processing them through a modulation filterbank model of the auditory midbrain (Fig 6A).
Here, unlike the Fourier based modulation filters used for the MPSf and MPSc, which have
constant modulation resolution, the spectral and temporal modulation filter bandwidths are
chosen to scale proportional to the best spectral and temporal modulation frequency of each
filter, respectively (see Methods; Fig 6A). These modulation filters have a quality factor of 1,
i.e., the spectral and temporal modulation bandwidths are equal to the best temporal and spec-
tral modulation frequency, respectively, mimicking physiological measurements [8]. In the
cochleogram domain (Fig 6B), these midbrain-inspired modulation filters resemble spectro-
temporal receptive fields (STRFs) that account for the spectro-temporal selectivity of auditory
midbrain neurons [36]. Like their neural counterparts, the model filters have durations that
become progressively shorter for high modulation frequencies and have narrower tuning for
high spectral modulation frequency filters. In other words, these midbrain model filter scale
with modulation frequency and the filter durations and bandwidths are inversely related to the
best temporal and spectral modulation frequencies, respectively.

Just as different spectrographic decompositions emphasize different sound features, these
three modulation decompositions emphasize distinct modulation features. For example, the
narrowband Fourier MPS (Af = 30 Hz) emphasizes spectral over temporal modulation fea-
tures, since the temporal modulations of all sounds here tend to be <50 Hz (Fig 7A, Af= 30
Hz; results for Af = 120 and 480 Hz are shown in S2 Fig), and the spectral modulations have
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Fig 6. Fourier and midbrain modulation filterbanks. Modulation decomposition filters are shown for (A) the midbrain filterbank and (C) the Fourier-based
filterbank, with each transfer function contoured at the 3dB level (50% power). Note that the Fourier-based modulation filters have equal resolution in both
spectral and temporal dimensions, whereas the midbrain modulation filters have proportional resolution as observed physiologically (i.e., bandwidth scaling).
The corresponding STRFs are shown for both the (B) midbrain filterbank and (D) Fourier-based filterbank. Note that the Fourier-based STRFs have equal
duration and bandwidth whereas the durations and bandwidths scale for midbrain filters.

https://doi.org/10.1371/journal.pcbi.1010862.g006

units of cycles/kHz (Fig 3). This filter structure ultimately emphasizes detailed spectral fluctua-
tions with an upper limit in the range of ~15 cycles/kHz as determined by the 90% energy con-
tours of all sounds, including white noise (black contours in Fig 7A). The equal resolution
spacing of the spectral modulation filters also emphasizes harmonically related components,
such as the mode between 5-10 cycles/kHz is created by harmonics in voiced speech [1].

The cochleogram MPS includes substantially higher temporal modulations, but at the
expense of having substantially lower spectral resolution for the cochlear filters, which on aver-
age are broader than those of the narrowband Fourier spectrogram. The 90% power contours
in the MPSc for white noise extend to 500 Hz (black contours in Fig 7B), well beyond the nar-
rowband MPSf (limited to ~50 Hz). Across sound categories, the range of temporal modula-
tions in the MPSc was highly variable. For example, vocalizations have 90% power contours
that extend beyond 50 Hz at zero spectral modulation (249.6+137.5 Hz, mean+SD) and these
were substantially higher than the corresponding contours for the narrowband MPSf (39.0
9.9, Af = 30 Hz; mean+SD). In the spectral modulation dimension, the natural sounds are
largely limited to less than 4 cycles/octave. Thus, cochlear filters appear to accentuate temporal
features at the expense of spectral modulation content.

While the cochlear and Fourier-based MPS accentuate unique set temporal and/or spectral
modulation features, the midbrain auditory representation further transforms the modulation
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Fig 7. Modulation power spectra of natural sound ensembles including vocalizations (VC) and background sounds (BG). The modulation power spectrum is
shown for the (A) Fourier-based decomposition (Af = 30 Hz), (B) cochlear model decomposition and (C) midbrain model decomposition. Whereas the Fourier
MPS and cochlear model MPS overemphasize low frequency spectral and temporal modulations, the midbrain model MPS is substantially flatter. Black
contours in each graph designate the MPS region accounting for 90% of the total sound power. The modulation entropy of each sound category is listed on the

right side of the panel.
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content. While the power tends to drop off with increasing temporal and spectral modulation
frequency for the MPSf and MPSc, the modulation statistics derived through the midbrain
model are far more uniform (Fig 7C; also shown using individualized color scale in S3 Fig).
Here the midbrain MPS of all natural sounds is substantially flatter than either the MPSf and
MPSc across both spectral and temporal modulation dimensions when all natural sounds are
considered, yet, the MPSm of each sound ensemble is still unique and discernible.

To assess the efficiency of each of the three modulation representations, we measure modu-
lation entropy. As with the spectrographic representations, the bandwidth scaling of the mid-
brain MPS leads to increased entropy compared to the Fourier and cochlear MPS (Fig 8). This
pattern occurs for both the spectral and temporal modulation entropy alone (Fig 8A), as well
as the total modulation entropy for the natural sounds (MPSf = 0.88+0.05, Af = 30 Hz;

MPSc = 0.82+0.09; MPSm = 0.98+0.01; mean+STD; Fig 8B), even though the modulation
entropy for white noise was comparable for the three representations (MPSf = 0.95;

MPSc = 0.95; MPSm = 0.93). The dramatic differences in modulation entropy are not simply
the consequence of the different range of modulations used for the modulation entropy calcu-
lation (see METHODS), but rather, reflect the statistical structure of the natural sounds. Col-
lectively, these findings suggest that midbrain modulation decomposition produces a
“whitened” representation of natural sound modulations that reduces redundancy by more
equitably activating all elements of the modulation filterbank.

Modulation filter bandwidth scaling as a mechanism for whitening the
spectro-temporal modulation content of natural sounds

As for cochlear filters, where bandwidth scaling serves to whiten the neural representation nat-
ural sounds, modulation filter bandwidths derived perceptually [26,27] and physiologically in
auditory midbrain [8] scale with the modulation frequency of sounds. Here we test and pro-
pose that bandwidth scaling for midbrain auditory filters provide a boosting mechanism for
equalizing the midbrain MPS of natural sounds. Fig 9A illustrates that the for the average natu-
ral sound MPSc, power drops off with increasing spectral and temporal modulation frequen-
cies, whereas the MPSm is substantially flatter (Fig 9B). We propose that by integrating across
broader modulation bandwidths (with increasing spectral or temporal modulation frequency)
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https://doi.org/10.1371/journal.pcbi.1010862.9g009

midbrain filters impose a modulation frequency depend gain on their output (Fig 9C). Indeed,
when we apply this gain to the MPSc it produces a substantially flatter output that matches the
observed MPSm. Thus, the power gain that results from modulation bandwidth scaling natu-
rally counteracts the decreasing power trend observed in the cochlear model MPS, thus pro-
viding a modulation frequency dependent gain mechanism that whitens the modulation
spectrum outputs of natural sounds.

Discussion

Here we examined how bandwidth scaling in the cochlea and midbrain influence the represen-
tation of natural sound spectra and modulations. Our findings are broadly consistent with the
efficient coding hypothesis whereby sensory systems evolved to efficiently transduce and
reduce redundancies in the statistical structure of natural sensory signals [18,42]. Both periph-
eral and mid-level auditory structures have scale-dependent and spectro-temporally compact
filters, analogous to a multi-dimensional wavelet decomposition of sounds. These filters differ
from conventional Fourier representations, which lack scaling and have constant spectro-tem-
poral resolution. The peripheral and mid-level bandwidth scaling jointly equalizes the power
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in the neural outputs in three dimensions (frequency, spectral modulation, and temporal mod-
ulation), which produces a more equitable and efficient representation of natural sounds.
These whitening transformations may have implications for neural coding and perception, as
well as for development of audio codecs, speech and sound recognition, and auditory
prosthetics.

Efficient representations of natural sounds

Although previous studies have shown that basis sets optimized for representing natural
sounds can, in some cases, match the filter characteristics observed in the cochlea [23,25] and
the auditory midbrain [24], here we directly examine consequences of filter characteristics
known to exist physiologically. The main insight from our study is that bandwidth scaling in
the cochlea and auditory midbrain provides a mechanism for hierarchically whitening the sec-
ond- (power spectrum) and fourth-order (modulation spectrum) statistics of natural sounds.
For both the spectrum and modulation spectrum of natural sounds, sound power decreases
systematically with increasing frequency (or modulation frequency) and both cochlear and
midbrain filter bandwidths scale to counteract this dependency. Having larger bandwidths at
high frequencies allows neurons to integrate over a larger extent of frequencies and thus accu-
mulate more of the weak high frequency signals. This in turn produces a boost in the output
power for these weak high frequency signals at the expense of having coarser spectral (cochlear
filters) or modulation (midbrain filters) resolution.

At the cochlear level, our results indicate that bandwidth scaling is matched to the power
spectrum statistics of environmental sounds and vocalizations. This is consistent with previous
work from Lewicki [23,25] showing that the optimal filters for representing natural sounds are
dependent on the stimulus categories used during training and that compact filters resembling
those in the cochlea are obtained only when both vocalizations and environmental sounds are
included. In our case, individual sound ensembles have cochlear spectra that are quite varied
and on their own are not fully whitened. When considering only vocalizations, the cochlear
model outputs overemphasized high frequencies, producing positive cochlear spectrum slopes
and indicating that the bandwidth scaling overcompensates for the decreasing power spectrum
trend in the sounds. By comparison, for background sounds, the cochlear model outputs over-
emphasized low frequencies, producing negative slopes and, consequently, lower entropies
(Fig 5A and 5C). Thus, the outputs for vocalization or environmental sounds ensembles indi-
vidually produced a biased, suboptimal output representation although for both cases they are
closer to a whitened output spectrum when compared against the Fourier representation.
Despite these individual ensemble biases, vocalizations and environmental sounds counterbal-
anced each other and produce combined cochlear spectrum that is, on average, whiter than
either category.

Despite the observed whitening, a reduction of power of ~10 dB is still observed at the high-
est frequencies for the average cochlear spectrum (Fig 5D; red). One additional mechanism
not explicitly accounted by our cochlear model that could further whiten the cochlear spec-
trum is the fact that the distribution of hair cells with different best frequencies varies along
the cochlear spiral. Our model assumes that frequencies follow octave spacing, yet the cochlear
spiral exhibits a nonlinear frequency versus position function spanning 10 octaves for human
hearing (20 Hz- 20 kHz) that deviates from an octave approximation at low frequencies [43].
Using Greenwood’s model of the human cochlea [31,43] and the fact that there are roughly
100 hair cells per mm [44] we estimated ~80 hair cells for the lowest octave of hearing (20-40
Hz) and ~500 hair cells over the last octave (10-20 kHz). Under the assumption that sound
power is integrated by the auditory system across peripheral receptors, this would correspond
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to an increase in output power of ~ 8dB at the high frequencies (54 Fig). Thus, although natu-
ral sounds are generally biased towards low frequencies (Figs 4 and S5) and many auditory
phenomena dominate the low frequency range of hearing [45], this frequency dependent
boost in the integrated cochlear power may further whiten the cochlear representation of natu-
ral sounds, thus extending the overall range of hearing.

Following power spectrum whitening at the cochlear stage, the modulation filterbank stage
further whitens the modulation representation of natural sounds. Just as with the cochlear fil-
ters, bandwidth scaling in this mid-level auditory model appears to be critical for this second-
ary form of whitening. Neurons in the auditory midbrain have quality factors of ~1 such that
modulation bandwidths scale proportional to modulation frequency [8]. Incorporating this
simple observation in our model produces a bandwidth-dependent gain that precisely counter-
acts the 1/f modulation spectrum statistics of natural sounds.

The choice of spectro-temporal representation impacts the interpretation and modeling of
neural data. Although spectro-temporal receptive fields (STRFs) are widely used to study
peripheral and central auditory coding, findings differ depending on whether sounds are rep-
resented using synthesis envelopes, spectrograms, or cochlear model representations [6,46—
49]. A recent study demonstrated that using a cochlear based model representation to derive
cortical STRFs provides higher predictive power over other spectro-temporal representations
[49]. This suggests that filters with physiologically-based spectrographic representations better
capture important spectro-temporal features that are encoded at the cortical level.

Our approach differs from various prior studies which have derived optimal basis sets for
representing natural sensory stimuli and testing the efficient coding hypothesis [23,24,50,51].
Although these studies employ a rigorous framework to test a computational theory, they
nonetheless require assumptions about the nature of the proposed code and the optimization
strategy used. For example, these models often assume linear basis sets which don’t account
for nonlinear characteristics of neural processing and often employ objective functions that
are not biologically driven. More recent studies have overcome such limitations by employing
deep neural network and behaviorally guided objective functions for optimization, which are
presumably more biologically relevant [52,53]. Nonetheless, such models often have tens of
thousands of parameters and can be difficult to interpret mechanistically. In our case, rather
than optimizing a model, we employed a model with known biological constraints to develop
a mechanistic explanation of the acoustic representation. This allowed us to demonstrate how
sound whitening is achieved for multiple auditory features across multiple levels of auditory
processing. In future studies, it would be valuable to derive a jointly optimal multi-stage filter-
bank in order to further identify optimal strategies and mechanisms for natural sound
processing.

In addition, the observed whitening is likely mechanistically different from whitening in
other sensory modalities and may be unique to audition. For instance, although multiple levels
of whitening are observed in the visual system the known mechanisms differ from those
described here. Whitening of visual scenes in the lateral geniculate nucleus is achieved by tem-
poral decorrelation of the spike trains that occurs at the individual neuron level and which is
restricted to low frequencies (<15 Hz) [54]. In primary visual cortex, additional whitening is
achieved through nonlinear interactions of the classical and nonclassical receptive fields of
individual neurons, which again are restricted to low frequency information (<36 Hz) [55]. In
our case, whitening is an ensemble level phenomena that involves multiple tuned filters and
which involves temporal information exceeding several hundredths of Hz.

Overall, our results demonstrate that whitening of multiple sound dimensions can be
achieved hierarchically across multiple levels of auditory processing. Whitening in the cochlear
model stage is restricted to sound spectra; whereas the mid-level stage whitens temporal and
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spectral modulations. On the one hand, such a three-dimensional neural representation serves
to equalize the statistics of natural sounds with well-known redundancy, such as the 1/f modu-
lation power spectra [56-58] and varied and non-white spectro-temporal correlation statistics
[59,60]. This whitening is achieved by having filters with variable resolution (either in fre-
quency or modulation space). Neurons that integrate weak signals, such as fast temporal mod-
ulations, have broader bandwidths and thus integrate over a broader range of feature space,
magnifying these weak signals and assuring that they are encoded and ultimately perceived.
Although other forms of efficient coding due to adaptation, sparsity, or nonlinearities may
coexist alongside these effects [21,61-63], here we focused on how bandwidth scaling distrib-
utes computational and metabolic resources evenly across a neural population, assuring that
all neurons are utilized and contribute similarly to the neural representation.

Implications for perception of natural sounds

The perception of acoustic attributes such as frequency, intensity, and modulation have been
studied extensively over the past century; yet most perceptual studies do so without consider-
ing the neural transformations involved and their impact. Given that auditory filters empha-
size a unique subset of acoustic features, we propose that they influence the perceived qualities
of natural sounds and ultimately underlie perceptual abilities.

The auditory midbrain decomposes sounds into modulation components and several stud-
ies have proposed that its anatomical layout and receptive field characteristics could underlie
several phenomena in audition. The laminar spacing and frequency bandwidths in auditory
midbrain have been proposed to contribute to critical band perceptual resolution [64], and
neural modulation bandwidths match those derived from perceptual measurements in
humans [8,26,27]. Furthermore, decoding brain activity in auditory midbrain replicates per-
ceptual trends for human texture perception [65]. Together, these results suggest that the mid-
level auditory representation already contains spectro-temporal features that predict various
aspects of natural sound perception.

Studies using physiologically-inspired representations of natural sounds also support the
notion that peripheral and mid-level filtering transformations strongly shape the perception of
natural sounds. For instance, water sounds exhibit scale-invariant power spectrum statistics
and realistic acoustic impressions can be generated as a superposition of scale invariant
gamma tone filters that mirror the cochlear filters [66]. Realistic synthetic impressions of “tex-
tures” sounds, such as crowd noise, wind, and running water can be generated with a genera-
tive model of the peripheral and mid-level auditory system; yet, removing the bandwidth
scaling present in this model by using equal resolution filters, either in the peripheral or modu-
lation filters, produces sound impressions that are less realistic [59]. The choice of representa-
tion also dramatically impacts word recognition accuracy for vocoded speech, since equal
resolution filters tend to yield low recognition accuracy while filters optimized for efficient
coding (with bandwidth scaling) substantially improve word recognition accuracy [67]. Col-
lectively, these studies suggest that filterbank models that scale and mirror known physiology
accentuate perceptually important features and thus generate more realistic and identifiable
sound impressions.

Spectro-temporal modulations are also critical for speech perception, contributing to vari-
ous perceptual attributes such as voice quality and pitch, vowel and consonant perception,
phonetic and word segmentation and, ultimately, speech recognition or discrimination abili-
ties. As demonstrated, different spectro-temporal decompositions accentuate a unique set of
spectro-temporal features which produce distinctly different spectro-temporal outcomes.
Thus, the unique differences in Fourier based versus cochlear representations can ultimately
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lead to different interpretations of the cues that are important physiologically and perceptually.
For instance, formants show up as relatively coarse fluctuations in power across frequency that
are visible in both the Fourier based and cochlear representation. In both instances, these
show up in modulation filters with low spectral modulation, yet they appear more compressed
in the cochlear model as a result of octave spacing. Voicing pitch on the other hand, is even
more dramatically impacted by the spectro-temporal representation. When speech is analyzed
using narrowband equal resolution Fourier based filters, temporal modulations are severely
limited (<50 Hz) while voicing harmonic content (spectral modulation) related to pitch is
accentuated [1]. This harmonic content is a critical cue for voice quality and gender identifica-
tion. In contrast to conventional spectrograms, the cochlear model only extracts a few har-
monics for the low frequency range of hearing, yet it accentuate temporal information at the
high frequencies. Such frequency dependent transformation is likely critical for perception
and coding of speech and perceptual models need to consider such differences in the sound
representation. There is a longstanding debate on whether the neural representation of pitch
relies predominantly on temporal or spectral features of sounds (i.e., harmonicity versus peri-
odicity) dating back to Helmholtz [68] and whether the neural representation itself is temporal
or rate based in nature. Harmonic structure in sounds can be represented as a place-rate code
implying a spectral analysis, which is particularly true for very low frequencies (<1000 Hz)
where narrow cochlear tuning can resolve harmonic content. However, for higher frequencies
cochlear outputs exhibit periodic temporal modulations if the harmonics are unresolved by
the cochlear filters. There is also evidence that even nonharmonic periodic sounds (e.g., modu-
lated noise) can produce weaker forms of pitch [14] and strongly drive periodic neural activity
[37], indicating that harmonicity is likely not the sole determinant of pitch. Although spectral
features are often regarded as dominant features in natural sounds, the auditory model ana-
lyzed here—and the physiological results the model is based on [8,28,69]-also implicates tem-
poral structure as an important acoustic factor for representing natural sounds, speech, and
pitch.

Implications for audio coding and recognition systems

Audio and sound recognition technologies have dramatically improved over the past few
decades. However, machine systems often perform poorly when recognizing sounds in com-
plex environments with background noise, and cochlear implant and hearing aid technologies
provide marginal benefits in noisy conditions. Here we suggest that these technologies could
benefit from two physiologically-inspired sound processing strategies: 1) preserving detailed
temporal information and 2) including bandwidth scaling. Previous work has shown that
detailed temporal information is critical for human speech perception in noise [70], and band-
width scaling in texture synthesis models yields more realistic impressions of natural sounds
[59]. Although sound recognition systems often use the mel-spectrogram, which applies filters
with spacing and bandwidths that scale and mirror human perception and physiology, these
are applied to narrowband Fourier spectrograms that have limited temporal modulation con-
tent and fine structure and which are often limited to < 50 Hz. The cochlear filters used here,
on the other hand, are applied to the sound waveform directly and preserve fine temporal
modulations extending out to ~1000 Hz [35]. Here we have shown how bandwidth scaling in
the cochlea and midbrain may act to hierarchically whiten natural sound representations, as
well. Such physiologically inspired whitening of the acoustic space could potentially improve
audio coding and lead to improvements in automatic speech recognition and prosthetic tech-
nologies, particularly for adverse and noisy conditions.
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S1 Fig. Fourier power spectra for natural sounds with different resolutions. Power spectra
for all sound categories are analyzed using the Fourier-based model with resolutions: 30, 120
and 480Hz.
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S2 Fig. Fourier modulation power spectra of natural sounds with different resolutions.
Modulation power spectra for all sound categories are analyzed with the Fourier model with
resolutions: 30, 120 and 480Hz.
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S3 Fig. Modulation power spectra of natural sounds for the auditory midbrain model.
Each sound category is plotted as in Fig 7, except that each is normalized to an individual

power range and colorscale for visual clarity.
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S4 Fig. Predicted frequency dependent cochlear gain arising from hair cell density along
the cochlear spiral. (A) Frequency-position function for the human cochlea proposed by
Greenwood [31,43] is broken up into 1 octave segments spanning low (20 Hz, blue) to high
(20 kHz, red) frequencies. The lowest octave range (20-40 Hz) spans ~0.8 mm of the cochlear
spiral while the highest octave spans ~5 mm. (B) Predicted hair cell count for different fre-
quency ranges (1 octave segments) obtained by assuming 100 hair cells / mm [44]. Hair cell
counts increase with increasing frequency resulting in ~5 times as many hair cells per octave
for high frequencies. (C) Predicted cochlear output gain of our model for different 1 octave
segments arising from hair cell density. The increased hair cell density per octave at high fre-
quencies produces an ~8 dB increase in our model output power relative to the lowest frequen-
cies.

(PDF)

S5 Fig. Bandwidth normalized cochlear spectra. The cochlear spectrum of natural sounds
(outputs of the cochlear model) shown in Fig 4 (panels B) were normalized by the cochlear fil-
ter bandwidths. This provides the cochlear output power per Hz. The results for each natural
sound closely resemble the Fourier spectrum of Fig 4A suggesting that flatting of the cochlear
spectrum observed in Fig 4A arises because of the cochlear bandwidth scaling. Dotted lines
correspond to the linear regression fits for each natural sound category.
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S6 Fig. Sloped distribution for the bandwidth normalized cochlear spectra. The normalized
slope distributions (shown as Violin plots) for vocalization and background sounds exhibit
similar trends as for the Fourier power spectrum (compare with Fig 5A).
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