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Abstract

Determinant maximization problem gives a general framework that models problems aris-
ing in as diverse fields as statistics [Puk06], convex geometry [Kha96], fair allocations
[AGSS16], combinatorics [AGV18], spectral graph theory [NST19a], network design, and ran-
dom processes [KT12]. In an instance of a determinant maximization problem, we are given
a collection of vectors U = {v1, . . . , vn} ⊂ Rd, and a goal is to pick a subset S ⊆ U of given
vectors to maximize the determinant of the matrix ∑i∈S viv>i . Often, the set S of picked vec-
tors must satisfy additional combinatorial constraints such as cardinality constraint (|S| ≤ k)
or matroid constraint (S is a basis of a matroid defined on the vectors).

In this paper, we give a polynomial-time deterministic algorithm that returns a rO(r)

-approximation for any matroid of rank r ≤ d. This improves previous results that give eO(r2)-
approximation algorithms relying on eO(r)-approximate estimation algorithms [NS16, AG17,
AGV18, MNST20] for any r ≤ d. All previous results use convex relaxations and their relation-
ship to stable polynomials and strongly log-concave polynomials. In contrast, our algorithm
builds on combinatorial algorithms for matroid intersection, which iteratively improve any
solution by finding an alternating negative cycle in the exchange graph defined by the matroids.
While the det(.) function is not linear, we show that taking appropriate linear approximations
at each iteration suffice to give the improved approximation algorithm.

1 Introduction

Determinant maximization problem gives a general framework that models problems arising in
as diverse fields as statistics [Puk06], convex geometry [Kha96], fair allocations [AGSS16], combi-
natorics [AGV18], spectral graph theory [NST19a], network design and random processes [KT12].
In an instance of a determinant maximization problem, we are given a collection of vectors U =
{v1, . . . , vn} ⊂ Rd, and a goal is to pick a subset S ⊆ U of given vectors to maximize the deter-
minant of the matrix ∑i∈S viv>i . Additionally, the set S of picked vectors must satisfy additional
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combinatorial constraints such as cardinality constraint (|S| ≤ k) or matroid constraint (S is a basis
of a matroid defined on the vectors).

Apart from its modeling strength, from a technical perspective, determinant maximization has
brought interesting connections between areas such as combinatorial optimization, convex analy-
sis, geometry of polynomials, graph sparsification and complexity of permanent and other count-
ing problems [ALSW17, AGSS16, AG17, Kha96].

Applications. Observe that when the number of vectors picked is exactly d, the objective is
precisely the square of the volume of the parallelepiped spanned by the selected vectors. The
problem of finding the largest volume parallelepiped in a collection of given vectors has been
studied [Nik15a, Kha96, SEFM15] for over three decades. Another interesting application is the
determinantal point processes [KT12], where a probability distribution over subsets of vectors is
defined. The probability of selecting a subset is defined to be proportional to the squared volume
of the parallelepiped defined by them. These distributions display nice properties of negative cor-
relation. Finding sets with the largest probability mass is exactly the determinant maximization
problem. We refer the reader to [NST19a] for applications in experimental design and to [AGSS16]
for application to fair allocations.

The computational complexity of the determinant maximization depends crucially on the com-
binatorial set family which constrains the set of feasible collection of vectors. The simplest con-
straint being the cardinality constraint, wherein the number of vectors is fixed, has been the most
widely studied variant. For this, a variety of methods including convex programming based
methods [ALSW17, SEFM15, Nik15b, SX18], combinatorial methods - such as local search and
greedy [Kha96, MSTX19, LZ21] - as well as close relationship to graph sparsification [ALSW17]
have been exploited to obtain efficient approximation algorithms with very good guarantees.
Overall, these results give a very clear understanding of the computational complexity of the
problem.

The more general case when the combinatorial constraints are defined by a matroid constraint has
recently received extensive focus [NS16, AGSS16, AG17, AGV18, MNST20]. This is especially
interesting since some of the applications are naturally modeled as matroid constraints, in par-
ticular, as partition constraints. Unfortunately, there is a big gap between estimation algorithms
and approximation algorithms in this case! Indeed, one can approximately estimate the value of
an optimal solution with a good guarantee, however, finding such a solution is much more chal-
lenging, leading to an exponential loss in the approximation factor. For example, even for the
special case of the partition matroid, there is an ed-approximate estimation algorithm but the best
known approximation algorithms return a solution with an approximation factor of eO(d2), an ex-
ponential blow-up1. A fundamental reason for this gap is the reliance on the relationship between
convex programming relaxations for the problem and the theory of stable polynomials and its
generalization to strongly log-concave polynomials. Unfortunately, these methods are inherently
non-algorithmic and do not give a simple way to obtain efficient algorithms with the same guar-
antees that match the estimation bounds.

1Since we are computing the determinant of d× d matrices, the exponent of d in the approximation factor is appro-
priate. Indeed, many works even consider the dth-root of the determinant where the approximation factors are also the
dth-root of the above bounds.
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1.1 Our Results and Contributions

In this work, we introduce new combinatorial methods for determinant maximization under a
matroid constraint and give an O(dO(d))-deterministic approximation algorithm. While previous
works have used a convex programming approach and the theory of stable polynomials, our
approach builds on the classical matroid intersection algorithm. Our first result focuses on the
case when the rank of the matroid is exactly d, i.e., the output solution will contain precisely d
vectors.

Theorem 1 There is a polynomial time algorithm which, given a collection of vectors v1, . . . , vn ∈ Rd and
a matroidM = ([n], I) of rank d, returns a set S ∈ I such that

det

(
∑
i∈S

viv>i

)
= Ω

(
1

dO(d)

)
max
S∗∈I

det

(
∑

i∈S∗
viv>i

)
.

Our results improve the eO(d2)-approximation algorithm which relies on the eO(d)-estimation al-
gorithm [AGV18, AG17, MNST20]. Our algorithm builds on the matroid intersection algorithm
and is an iterative algorithm that starts at any feasible solution and improves the objective in each
step. To maintain feasibility in the matroid constraint, each step of the algorithm is an exchange of
multiple elements as found by an alternating cycle of an appropriately defined exchange graph.

Result for r ≤ d. We also generalize the result when the rank r of the matroid is at most d.
Observe that the solution matrix ∑i∈S viv>i is a d× d matrix of rank at most r and, therefore, the
appropriate objective to consider is the product of its largest r eigenvalues, or equivalently, the
elementary symmetric function of order r of its eigenvalues. Let symr(M) be the rth elementary
symmetric function of the eigenvalues of the d× d matrix M. Thus, our objective is to maximize
symr

(
∑i∈S viv>i

)
.

Theorem 2 There is a polynomial-time algorithm which, given a collection of vectors v1, . . . , vn ∈ Rd and
a matroidM = ([n], I) of rank r ≤ d, returns a set S ∈ I such that

symr

(
∑
i∈S

viv>i

)
= Ω

(
1

rO(r)

)
max
S∗∈I

symr

(
∑

i∈S∗
viv>i

)
.

This again improves the best bound of eO(r2)-approximation algorithm based on eO(r)-approximate
estimation algorithms. The proof of Theorem 2 is presented in Appendix B.

Technical Overview. For intuition, let vol(S) denote the volume of the parallelepiped spanned by
the vectors in S. Then vol(S)2 = det

(
∑i∈S viv>i

)
, for any S ⊆ U with |S| = d, so we can think of

vol(S) as an equivalent objective function. First, observe that the feasibility problem of checking
whether there is a set S ∈ I such that vol(S) > 0 can be reduced to matroid intersection. Indeed,
the feasibility problem is equivalent to checking if there is a common basis of the matroid M
and the linear matroid defined by the vectors {v1, . . . , vn}. Since we aim to maximize vol(S) over
all independent sets S, a natural approach is to use the weighted matroid intersection algorithm.
Unfortunately, our weights are not linear, i.e., vol(S) does not equal ∑i∈S wi or log-linear ∏i∈S wi
for some weights w on the vectors. Nonetheless, the matroid intersection algorithm forms the
backbone of our approach.
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Overview of Matroid Intersection. Before we describe our algorithm, let us review a classical
algorithm to find a maximum weight common basis of two matroids. Given U = {1, . . . , n}, a
weight function w : U → R and two matroidsM1 = (U, I1) andM2 = (U, I2), the goal is to find
a common basis S of maximum weight w(S) := ∑e∈S we. We assume that there exists a common
basis of the two matroids. Consider the following simple algorithm that also introduces some of
the basic ingredients necessary for our algorithm. The algorithm will take as an input a common
basis S and either certify that S is a maximum weight common basis or return a new common
basis Ŝ of higher weight. To explain the algorithm, we recall the important concept of the exchange
graph. Given the set S, we construct a directed bipartite graph G(S) with bipartitions given by
U \ S and S. For any u ∈ U \ S and v ∈ S, G(S) contains an arc from u to v if S− v + u is a basis
in M2 and an arc from v to u if S − v + u is a basis in M1. For convenience, we use S − v + u
to refer to the set (S ∪ {u}) \ {v}. Moreover, give each vertex u ∈ U \ S a weight −wu and each
vertex v ∈ S a weight of wv. A nice fact from matroid theory is that S is a maximum weight basis
if and only if there is no negative weight cycle in this directed graph (Chapter 41, Theorem 41.5
[Sch03]). Moreover, if C is a directed negative weight cycle with minimum hops2, then S∆C forms
a common basis of the two matroids whose weight is strictly larger than the weight of S. Thus, the
algorithm finds a maximum weight basis by iteratively finding a negative weight cycle in such an
exchange graph.

With the above algorithm as a guiding tool, we describe our algorithm. The two matroids are pre-
cisely the constraint matroidM and the linear matroid defined over the vectors. A first challenge
is that the objective function vol(S)2 = det

(
∑i∈S viv>i

)
is not linear. Thus it is not possible to define

the vertex weights as was done above. But a natural function to work with instead is the function
log vol(S), which is known to be submodular. While we do not use submodularity explicitly, our
algorithm takes linear approximations of this function at each iteration while searching for im-
provements as in the matroid intersection algorithm. We use the geometric relationship between
vol and det closely. The first new ingredient in our algorithm is to introduce arc weights rather
than vertex weights in the exchange graph G(S). Indeed for the forward arcs (u, v) for u 6∈ S
and v ∈ S that correspond to the linear matroid, we introduce a weight of − log vol(S−v+u)

vol(S) . We
also introduce a weight of 0 for the backward arcs, which correspond to the arcs for the constraint
matroid M. The crucial observation is the following interpretation of the weight log vol(S−v+u)

vol(S) :
write the vector u 6∈ S in the basis S, i.e. u = ∑v∈S auvv, for some auv ∈ R for each v ∈ S. Then
vol(S−v+u)

vol(S) = |auv| (See Lemma 3). Such relationships between the ratio of volumes and coefficients
in expressing the vectors in basis given by S play an important role.

Our first lemma shows that if the volume of the current solution is much smaller than the opti-
mal solution, then there must be a cycle such that the sum of weights of the arcs on the cycle is
significantly negative.

Lemma 1 (Determinant to Cycle) Let S be a basis of M and OPT be the basis of M maximizing
vol(OPT). If vol(OPT) ≥ e5d log d · vol(S), then there exists a directed cycle C of 2` hops for some
` > 0 in the exchange graph G(S) such that

∏
(u,v)∈C,u/∈S,v∈S

|auv| ≥ 2(`!)3 =: f (`).

We call such a cycle an f -violating cycle. Observe that such a cycle can be found as a negative

2Hops here refers to the number of arcs of the cycle.
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weight 2`-hop cycle when weights are updated to w`(u, v) = 1
` log f (`)− log |auv| for a forward

arc (u, v) where u 6∈ S and v ∈ S. The lemma relies on the following observation. Abusing notation
slightly, let T and S be matrices whose columns are the vectors in OPT and S, respectively. Writing
each vector in OPT in the basis given by S we obtain T = SA> for some matrix A. The condition
in the lemma implies that det(A) ≥ e5d log d. Also observe that the weight of any (u, v) where
u ∈ OPT and v ∈ S is exactly − log |auv| where auv is the (u, v)th-entry in A. Combining these
facts, we can show there exists a cycle satisfying the conditions of the lemma.

The next step in the algorithm is to find an f -violating cycle C and then update the solution to
T = S∆C. Again, we relate the change in objective vol(T) to the coefficients. While the entries
|auv| of the cycle are large, the objective of the new solution T depends not only on the weight of
the edges of the cycle but the weight of all arcs between all vertices in C \ S and C ∩ S. Indeed,
consider a square matrix B with rows and columns indexed by C \ S and S ∩ C respectively with
entry (u, v) as auv. Recall auv is the coefficient of vector v when u is expressed in basis S. Then
vol(T) = |det(B)| · vol(S) (Lemma 6). Thus it remains to lower bound the determinant of B. The
entries on the diagonal of the matrix B exactly correspond to entries that define the weights of the
forward arcs on the cycle C. Thus Lemma 1 implies that the product of the diagonal entries of B
is large. In the next lemma, we show that if the cycle C is the minimum hop f -violating cycle, then
we can in fact lower bound the determinant of the matrix.

Lemma 2 (Cycle to Determinant) If C is a minimum hop f -violating cycle in the exchange graph G(S),
then vol(S∆C) ≥ 2 · vol(S). Moreover, S∆C is also a basis ofM.

This lemma crucially uses the fact that C is a minimum hop f -violating cycle as in the case for
matroid intersection algorithms. Indeed, off-diagonal entries of the matrix B correspond to arcs
that form chords of the cycle C. The minimality of C allows us to show upper bounds on all the
off-diagonal entries of the matrix B. A technical calculation then allows us to lower bound the
determinant.

1.2 Related Work

Determinant Maximization under Cardinality Constraints. Determinant maximization prob-
lems under a cardinality constraint have been studied widely [Kha96, SEFM15, Nik15b, SX18,
ALSW17, MSTX19]. Currently, the best approximation algorithm for the case r ≤ d is an er-
approximation due to Nikolov [Nik15b] and for r ≥ d, there is an ed-approximation [SX18]. It turns
out that the problem gets significantly easier when r >> d, and there is a (1 + ε)d-approximation
when r ≥ d + d

ε [ALSW17, MSTX19, LZ21]. These results use local search methods and are closely
related to the algorithm discussed in this paper, as the cycle improving algorithm will always find
a 2-cycle when the matroid is defined by the cardinality constraint.

Determinant Maximization under Matroid Constraints. As mentioned earlier, determinant max-
imization under a matroid constraint is considerably challenging and the bounds also depend on
the rank r of the constraint matroid. There are eO(r)-estimation algorithms when r ≤ d [NS16,
AG17, ALGV19] and a min{eO(r), O

(
dO(d))}-estimation algorithm when r ≥ d [MNST20]. The

output of these algorithms is a random feasible set whose objective is at least min{eO(r), O
(
dO(d))}

of the objective of a convex programming relaxation, in expectation. Since the approximation
guarantees are exponential, it can happen that the output set has objective zero almost always.
To convert them into deterministic algorithms (or randomized algorithms that work with high
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probability), additional loss in approximation factor is incurred. These results imply an eO(d2)-
approximation algorithm when r ≤ d, and a O

(
dO(d3)

)
-approximation algorithm [MNST20] for

r ≥ d. Approximation algorithms are also known where the approximation factor is exponential
in the size of the ground set for special classes of matroids [ESV17].

Nash Social Welfare and its generalizations. A special case of the determinant maximization
problem is the Nash Social Welfare problem [CKM+16]. In the Nash Social Welfare problem, we
are given m items and d players and there is a valuation function vi : 2[m] → R+ for each player
i ∈ [d] that specifies value obtained by a player when given a bundle of items. The goal is to
find an assignment of items to players to maximize the geometric mean of the valuations of each
of the players. When the valuation functions are additive, the problem becomes a special case
of the determinant maximization and this connection can be utilized to give an e-approximation
algorithm [AGSS16]. Other methods including rounding algorithms [CG15, CDG+17] as well as
primal-dual methods [BKV18a] have been utilized to obtain improved bounds. The problem has
been studied when the valuation function is more general [GHM18, BKV18b, AMGV18, GHV21]
and a constant-factor approximation is known when the valuation function is submodular [LV22].

Other Spectral Objectives. While we focus on the determinant objective, the problem is also
interesting when considering other spectral objectives including minimizing the trace or the max-
imum eigenvalue of the

(
∑i∈S

(
viv>i

))−1. These problems have been studied for the cardinality
constraint [ALSW17, NST19b]. For the case of partition matroid, the problem of maximizing the
minimum eigenvalue is closely related to the Kadison-Singer problem [MSS15].

2 Algorithm for Partition Matroid

We first show the algorithm and the analysis for a partition matroid with rank d. This allows us
to show the basic ideas without going into the details of matroid theory. The generalizations to
general matroid are quite standard. We detail them in Section 3.

Consider a partition matroid M with d partitions P1, . . . ,Pd, where each Pi contains ni vectors
vi1, . . . , vini ∈ Rd. Our goal is to find a set S which provides a good approximation to the objective

max

{
det(∑

v∈S
vv>) : |S| = d, |S ∩ Pi| = 1 ∀i

}
.

Let OPT denote the optimal solution set. The following theorem is a specialization of Theorem 1
to the case of partition matroid.

Theorem 3 Given a partition matroidM with d parts, let OPT be the optimal solution to the determinant
maximization problem on M. Then, there is a polynomial-time deterministic algorithm that outputs a
feasible set S ∈ M such that

det

(
∑
i∈S

viv>i

)
≥ e−10d log(d) · det

(
∑

i∈OPT
viv>i

)
.
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S

U\S

v1

vi

vd

P1\{v1}

Pi\{vi}

Pd\{vd}

Partition matroidM1

Linear matroidM2

Figure 1: The exchange graph G(S)

2.1 Algorithm

We begin by formally defining the exchange graph, the different weight functions, and then the
algorithm which helps establish Theorem 1 for the case of partition matroids.

Definition 1 (Exchange Graph) Formally, for a subset of vectors S = {v1, v2, . . . , vd} with vi ∈ Pi
for all i, we define the exchange graph of S, denoted by G(S) as a bipartite graph, where the right-hand
side consists of vectors in S, i.e., R = {v1, v2, . . . , vd} and the left-hand side consists of all the vectors
L =

⋃d
i=1 Pi\{vi} (See Figure 1). Each vi ∈ R has an edge to every u ∈ Pi\{vi}, i.e., all the vectors in

the same part as vi. The vertices on the left-hand side have forward edges to every vertex in S.

We define a family of weight functions on the exchange graph. The basic weight function will be
denoted by w0 : A(G(S))→ R and, in addition, we define weight functions wi for each 1 ≤ i ≤ d.
To define these weights, we use the function f : [d]→ Z+ with f (i) = 2(i!)3 for each i > 0.

Definition 2 (Weight functions on the Exchange graph) We first define weight function w0. All the
backward arcs, from any vi ∈ S to every uj ∈ Pi\{vi}, have weight 0. For uj ∈ L, let uj = ∑d

i=1 aij · vi
be expression for uj in the basis S where aij ∈ R for each i. Then the forward arc (uj, vi) has weight
w0(uj, vi) := − log(|aij|) for each i ∈ [d] and each uj ∈ L.

Now we define the weight function w` on the arcs for any 1 ≤ ` ≤ d. All backward arcs still have weight 0
but every forward edge (u, v) has weight w`(u, v) := log( f (`))

` + w0(u, v).

The following lemma gives the intuition behind the weight function w0 defined above. It shows
that the weight on arc (ui, vj) exactly measures the change in the objective when we replace ele-
ment vi with uj in S. The proof appears in the appendix.

Lemma 3 Let S be a solution with vol(S) > 0 and u 6∈ S. Then for any v ∈ S, we have w0(u, v) =

− log vol(S+u−v)
vol(S) .
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While we will be specific about which weight function to use, but if it is not specified, then we
refer to the weight function w0.

Definition 3 (Cycle Weight) The weight of a cycle C in G(S) is defined as w0(C) = ∑e∈C w0(e).

Observe that the weight of a cycle depends only on the weight of the forward edges as backward
edges have a weight 0.

We want to move from the current set S to a set with higher volume by exchanging on cycles in
G(S). But we want to exchange only on cycles that satisfy certain nice properties. For this purpose,
we define f -Violating Cycles and Minimal f -Violating Cycles. The algorithm will always exchange
on a Minimal f -Violating Cycle.

Definition 4 ( f -Violating Cycle) A cycle in G(S) is called an f -violating cycle if

w0(C) < − log f (|C|/2) ,

where |C| is the number of arcs in C.

We have the following simple observation regarding f -violating cycle.

Observation 1 If C is a f -violating cycle then ∏(u,v)∈C:u∈L,v∈R |auv| > 2
((
|C|
2

)
!
)3

.

(See appendix A)

Definition 5 (Minimal f -Violating Cycle) A cycle C in G(S) is called a minimal f -violating cycle if

• C is an f -violating cycle, and

• for all cycles C′ such that V(C′) ⊂ V(C), C′ is not an f -violating cycle.

Note that finding an f -violating cycle with 2i arcs is equivalent to finding a negative cycle with 2i
arcs in G(S) with weights wi. We use the following simple algorithm to find a minimal f -violating
cycle in G(S) (if one exists), where we iterate on the number of arcs in the cycle.

Algorithm 1 Finding minimal f -violating cycle

for i = 1, . . . , d do
if there is a negative cycle C with exactly 2i arcs in G(S) with weight function wi then

Return C
end if

end for

The following lemma is immediate. A proof appears in the appendix.

Lemma 4 Algorithm 1 finds the minimal f -violating cycle in G(S).

8



After finding a minimal f -violating cycle, C, we modify the current set S to S∆C and repeat. Ob-
serve that S∆C is always a feasible set as it will pick exactly one element from each part. The main
idea is that if vol(S) is small compared to vol(OPT), i.e., vol(S) < vol(OPT) · e−Ω(d log(d)), then
there is always an f -violating cycle in G(S) (see Lemma 5). Moreover, if C is a minimal f -violating
cycle, then vol(S∆C) ≥ 2 · vol(S) (see Lemma 7). If we initialize S to any solution with non-zero
determinant, then the ratio vol(OPT)/ vol(S) is at most 24σ where σ is the encoding length of our
problem input (Chapter 3, Theorem 3.2 [Sch00]). This implies that we need only modify the set S
polynomially many times before vol(S) becomes greater than vol(OPT) · e−O(d log(d)), which gives
Theorem 3. Such an initialization can be obtained by finding a basis of Rd that picks exactly one
vector from each part. As discussed above, this problem can be solved by the matroid intersection
algorithm over the partition matroid and the linear matroid defined by the vectors.

Algorithm 2 Algorithm to find an approximation to OPT

S← set with |S| = d, |S ∩ Pi| = 1 for all i, and vol(S) > 0.
while there exists an f -violating cycle in G(S) do

C = minimal f -violating cycle in G(S)
S = S∆C

end while
Return S

Lemma 5 For any set S with |S| = d and vol(S) > 0, if vol(S) < vol(OPT) · e−5d log(d), then there
exists an f -violating cycle in G(S).

Proof Let OPT = {u1, u2, . . . , ud} and S = {v1, v2, . . . , vd} such that ui, vi ∈ Pi for all i ∈ [d].
Observe that (vi, ui) is an arc in the exchange graph for each i since ui and vi belong to the same
part3.

Abusing notation slightly, let T and S be matrices whose columns are the vectors in OPT and S,
respectively. Let A be the coefficient matrix of T w.r.t. S, i.e., T = SA>. Then

vol(OPT)2 = det(TT>) = det(SA>AS>) = det(SS>) · |det(A)|2.

Let X = OPT\S, Y = S\OPT, and |X| = |Y| = k. Without loss of generality, let Y = {v1, . . . , vk}

and X = {u1, . . . , uk}. Then A =

[
Ak A′

0 Id−k

]
, where Ak is the sub-matrix of A corresponding to

rows in X and columns in Y. Then det(A) = det(Ak).

As per the hypothesis in the lemma, we have det(SS>) < det(TT>) · e−10d log(d). Therefore,

|det(Ak)| > e5d log(d) ≥ e5k log(k). (1)

By the Leibniz formula, we have det(Ak) = ∑σ∈Sk
sign(σ)∏k

i=1 aiσ(i). Taking absolute values gives
|det(Ak)| ≤ ∑σ∈Sk ∏k

i=1 |aiσ(i)|. Since |Sk| = k! ≤ ek log(k), there exists a permutation σ ∈ Sk such
that

k

∏
i=1
|aiσ(i)| > |det(Ak)| · e−k log(k) ≥ e4k log(k). (2)

3Given ui 6= vi
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Let the cycle decomposition of this σ be σ = {C1, C2, . . . , C`}. Then each Cj corresponds to a
unique cycle in G(S) with 2|Cj| hops by considering the forward arcs (ui, vσ(i)) for each i on the
cycle and the backward arcs (vi, ui) for each i in Cj. We claim that at least one of these cycles is an f -
violating cycle. If not, then by the definition of f -violating cycles, we have ∏i∈Cj

|aiσ(i)| ≤ 2(|Cj|!)3.
Multiplying over all cycles in σ gives

k

∏
i=1
|aiσ(i)| =

`

∏
j=1

∏
i∈Cj

|aiσ(i)| <
`

∏
j=1

2(|Cj|!)3 < 2k(k!)3 < e4k log(k),

where the second last inequality follows from ∑`
j=1 |Cj| = k. This contradicts eq. (2), so G(S) must

contain an f -violating cycle. �

The requirement in Lemma 5 that vol(S) < vol(OPT) · e−5d log(d) is tight, up to the coefficient in
the exponent. Consider the case where d is a power of two (or more generally, any d for which
a Hadamard matrix of order d is known to exist), S = {e1, . . . , ed} consists of the standard basis
vectors, and L = H = {h1, . . . , hd} consists of the columns of the d × d Hadamard matrix. The
entries of H are all ±1, and h>i hj = 0 for i 6= j. Then vol(S) = 1, and the optimal solution is
OPT = H, which has objective value

vol(H) =
d

∏
i=1
‖hi‖ = dd/2 = e

d
2 log(d) · vol(S),

since the vectors in H are orthogonal. Meanwhile, the exchange matrix in this case is A = H>.
Since all the entries of A are ±1, we know that the product of the entries along any cycle will have
an absolute value of 1. Thus, we cannot find an f -violating cycle in the same way, despite the fact
that vol(S) ≤ vol(OPT) · e− d

2 log(d).

2.2 Cycle Exchange and Determinant

Now we show that exchanging on a minimal f -violating cycle C increases the objective of the
output set by at least a factor of two. The proof relies on two technical lemmas. First, observe that
the arc weights given by w0(u, v) are exactly how much the objective will change if switch from
the solution S to S + u− v in the solution. But switching on a cycle will switch multiple elements
at the same time. Since our function vol(.) (or more appropriately log vol(.)) is not additive, it is
not clear what the change in the objective. The following lemma characterizes exactly how the
objective changes when we switch a large set.

Consider our current solution S. Let C be the minimal cycle found and ` = |C|/2. Let X = C ∩ L
and Y = C ∩ S. Thus the output set T = (S ∪ X) \ Y. We will also abuse notation to let X, Y
and S represent the matrices whose columns are the vectors in their respective sets. Note that S is
d× d while both X and Y are d× `. Observe that vol(S)2 = det(SS>) and vol(T)2 = det(TT>) =
det(SS> + XX> − YY>). Crucially, we show that the matrix consisting of coefficients auv that
define the weights on the arcs of the exchange graph for u ∈ X and v ∈ Y also defines the change
in objective value.

Lemma 6 Let S be a basis, let X and Y be sets with |X| = |Y| = ` and Y ⊆ S. Let A be the `× d matrix
of coefficients so that X = SA>, and let AC be the `× ` submatrix of only the coefficients corresponding to

10



S

v0

v1

v2

U\S

u1

u2

u`

u`−1 v`−1

Figure 2: The cycle C

columns in Y. If T = (S ∪ X)\Y then vol(T)2 = vol(S)2 · det(AC A>C ).

Without loss of generality, let C = (v0 → u1 → v1 → u2 → v2 → . . . u` → v0) so that X =
{u1, . . . u`} and Y = {v1, . . . , v`−1, v0}, and order the columns of AC accordingly so that the `-th
column corresponds to v0. Observe that diagonal entries of the AC correspond to coefficient of vi
when expressing ui in basis of S and thus equals aii. C being f -violating implies that the product
of the diagonal entries ∏`

i=1 |aii| > f (`). To show that the volume of T is large, we need to show
|det(AC)| is large. To this end, we utilize crucially that C is the minimal f -violating cycle. Observe
that the off-diagonal entries aij exactly correspond to the weight on chords of the cycle. Since
each chord introduces a cycle with smaller number of arcs, by minimality we know that it is not
f -violating. This allows us to prove upper bounds on the off-diagonal entries of the matrix AC.
Finally, a careful argument allows us to give a lower bound on the determinant of any matrix with
such bounds on the off-diagonal entries. We now expand on the above outline below.

Lemma 7 If C is a minimal f -violating cycle in G(S), then vol(S∆C) ≥ 2 · vol(S).

Proof Let C = (v0 → u1 → v1 → u2 → v2 → . . . u` → v0) where vi, ui+1 belong to the same part
and vi ∈ S (See Figure 2).

By the Lemma 6, we know that vol(S∆C) = det(AC A>C )
1/2 · vol(S) = |det(AC)| · vol(S). We will

index the entries of AC according to the indices of ui and vj where the last column corresponds to
v0. Since C has 2` hops, AC is an `× ` matrix.

We now bound each entry of the matrix AC in terms of the its diagonal entries, ai,i for i = 1, . . . , n.
We show upper bounds on the absolute value of each entry as a function of the diagonal entries.
Consider the i, j-th entry of AC. For i > j, define the cycle Ci,j := (ui → vj → uj+1 → vj+1 →
. . . vi−1 → ui). Ci,j is a cycle with 2(i− j) hops and V(Ci,j) ⊂ V(C). C being a minimal f -violating
cycle implies that Ci,j is not an f -violating cycle. Therefore, e−w0(Ci,j) = |ai,j| ·∏i−1

s=j+1 |as,s| < f (i−

11



S

v0

v1

U\S

u1

u`

u`−1 v`−1

viui

vjuj

(a) Shortcut when i < j

S

v0

v1

U\S

u1

u`

u`−1 v`−1

vjuj

vi−1ui−1
viui

vj+1uj+1

(b) Sub-cycle when i > j

Figure 3: Structure when the edge ui → vj (in blue) is added

j). This implies

|ai,j| <
f (i− j)

∏i−1
s=j+1 |as,s|

. (3)

Similarly for j = `, we have |ai,`| < f (i)
∏i−1

s=1 |as,s|
.

For i < j < `, define C′i,j := (v0 → u1 → v1 → . . . ui → vj → . . . u` → v0). Again, C′i,j is a cycle
with 2(`− j + i) hops which is not f -violating. Therefore,

|ai,j| ·
i−1

∏
s=1
|as,s| ·

`

∏
s=j+1

|as,s| < f (`− j + i). (4)

Since C is an f -violating cycle, we also have

`

∏
s=1
|as,s| > f (`). (5)

Combining (4) and (5) gives

|ai,j| <
f (`− j + i)

f (`)
·

j

∏
s=i
|as,s|.

Let B` be the matrix obtained by applying the following operations to AC

• Multiply the last column by a1,1 and for j < `, divide the j-th column by ∏
j
s=2 as,s

12



• Divide the first row by a1,1 and for i > 1, multiply the i-th row by ∏i−1
s=2 as,s

• Divide the last column by f (`) and, if needed, flip the sign of the last column so that a`,` > 0.

Then |det(AC)| = f (`) · |det(B`)|, and B` satisfies the following properties:

• bi,i = 1 for all i ∈ [`− 1], b`,` ≥ 1,

• |bi,j| ≤ f (i− j) for all j < i ≤ `, and

• |bi,j| ≤ f (`− j + i)/ f (`) for all i < j ≤ `.

For ` ≥ 2, we have the following claim:

Claim 2.1 det(B2) ≥ 0.75 and det(B`) > 0.1 for all ` ≥ 3.

With this claim in hand, it implies that |det(AC)| > 0.1 · f (`) > 2 for all ` ≥ 3. For ` = 2,
det(B2) ≥ 0.75, and det(AC) ≥ 0.75 · f (2) > 2. Therefore, vol(S∆C) ≥ |det(AC)| · vol(S) ≥
2 · vol(S). �

Proof of Claim 2.1 Consider the following process on B`:

Algorithm 3 Gaussian Elimination Process (Column Operations)

for s = 1, . . . , ` do .Outer Loop
for j = s + 1, . . . , ` do .Inner Loop

b:,j = b:,j − b:,s ·
bs,j
bs,s

end for
end for

Note that det(B2) ≥ 0.75, det(B3) ≥ 0.73, and det(B4) ≥ 0.83 (see the end of the Appendix). From
hereafter, we will assume that ` ≥ 5.

The output of the Algorithm 3 is a lower triangular matrix. Let bi,j(s) denote the value of bi,j before
the s-th iteration of the outer loop of Gaussian Elimination. For example, bi,j(1) = bi,j for all i, j.

For any i < j, bi,j becomes 0 at the end of the i-th iteration of the outer loop of the algorithm, and
does not change after that. So, the final value of bi,j, before it becomes 0, is bi,j(i). Similarly, for
i ≥ j, the value of bi,j does not change after the (j− 1)-th iteration of the outer loop, and therefore
the final value of bi,j, i.e., bi,j(`) satisfies bi,j(`) = bi,j(j).

Since this process does not change the determinant of B`, we have det(B`) = ∏`
j=1 bj,j(j). By

Lemma 8, bj,j(j) > 1− 0.92/` for j < ` and b`,`(`) > 0.303. Therefore,

det(B`) =
`

∏
j=1

bj,j(j) ≥
(

1− 0.92
`

)`−1

· 0.303 .

The function
(
1− 0.92

`

)`−1 is a decreasing function of `, but has a horizontal asymptote at ∼ 0.39.

Thus,
(
1− 0.92

`

)`−1 ≥ 0.39 and this gives

det(B`) > 0.39× 0.303 > 0.1 .

13
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Lemma 8 For ` ≥ 5, the final values of entries of B` after Algorithm 3 are bounded as follows:

1. |bi,j(j)| < (i
j) · f (i− j) for 1 < j < i,

2. |bi,j(i)| < 1.5 · f (`− j + i)/ f (`) for i < j < `,

3. |bi,`(i)| < 2.84 · f (i)/ f (`) for i < `,

4. bj,j(j) > 1− 0.92
` for all j < `,

5. b`,`(`) > 0.303 .

Proof We will prove the lemma by induction on j, the column index. Note that Algorithm 3 does
not change the values of the first column of B`, and it also does not change the values of the first
row of B` before they become 0. So, the bounds are trivially true for the first column and the first
row.

For i ≥ j,

bi,j(j) = bi,j(1)−
j−1

∑
s=1

bi,s(s) ·
bs,j(s)
bs,s(s)

. (6)

Taking absolute values gives

|bi,j(j)− bi,j(1)| ≤
j−1

∑
s=1
|bi,s(s)| ·

|bs,j(s)|
|bs,s(s)|

. (7)

The induction hypothesis implies that for all s < j, |bi,s(s)| < (i
s) · f (i − s), |bs,j(s)| < 1.5 · f (`−

j + s)/ f (`), and bs,s(s) > 1− 0.92/` ≥ 0.816 (since ` ≥ 5). Plugging these bounds in (7), we get

|bi,j(j)− bi,j(1)| <
1.5

0.816
·

j−1

∑
s=1

(
i
s

)
· f (i− s) · f (`− j + s)

f (`)
. (8)

Note that
f (i− s) · f (`− j + s)

f (i− j) · f (`)
=

((i− s)!)3 · ((`− j + s)!)3

((i− j)!)3 · (`!)3 =

(
(`+i−j

` )

(`+i−j
i−s )

)3

.

For any 1 ≤ s ≤ j− 1, (`+i−j
` )

(`+i−j
i−s )
≤ (i−j+1)

` . Therefore,

f (i− s) · f (`− j + s)
f (i− j) · f (`)

≤
(`+i−j

` )

(`+i−j
i−s )

· (i− j + 1)2

`2 .
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Plugging this in (8) gives

|bi,j(j)− bi,j(1)| ≤ f (i− j)

(
1.84 · (i− j + 1)2

`2 ·
j−1

∑
s=1

(
i
s

)
·
(`+i−j

` )

(`+i−j
i−s )

)

≤ f (i− j)

(
1.84 · (i− j + 1)2

`2 ·
i!(`+i−j

` )

(`+ i− j)!

j−1

∑
s=1

(`− j + s)!
s!

)

= f (i− j)

(
1.84 · (i− j + 1)2

`2 ·
i!(`+i−j

` )(`− j)!
(`+ i− j)!

j−1

∑
s=1

(
`− j + s
`− j

))

= f (i− j)

(
1.84 · (i− j + 1)2

`2 · i!(`− j)!
`!(i− j)!

j−1

∑
s=1

(
`− j + s
`− j

))
. (9)

For positive integers a, b, x with x ≤ a ≤ b,(
a
x

)
+

(
a + 1

x

)
+

(
a + 2

x

)
+ . . . +

(
b
x

)
=

(
b + 1
x + 1

)
−
(

a
x− 1

)
. (10)

Using (10) with a = `− j + 1, b = `− 1, and x = `− j gives ∑
j−1
s=1 (

`−j+s
`−j ) ≤ ( `

`−j+1) and from (9),

|bi,j(j)− bi,j(1)| ≤ f (i− j)
(

1.84 · (i− j + 1)2

`2 · i!(`− j)!
(i− j)!`!

·
(

`

`− j + 1

))
= f (i− j)

(
1.84 ·

(
i
j

)
· (i− j + 1)2 j
`2(`− j + 1)

)
(11)

≤ f (i− j)
(

1.84 ·
(

i
j

)
· (`− j + 1)j

`2

)
. (12)

Since (`− j + 1)j is maximized at j = (`+ 1)/2, we have (`−j+1)j
`2 ≤ (`+1)2

4`2 ≤ 0.36 for any ` ≥ 5.

Plugging this in (12) gives

|bi,j(j)| ≤ |bi,j(j)|+ f (i− j) · 0.6624 ·
(

i
j

)
≤ f (i− j)

(
1 + 0.6624 ·

(
i
j

))
.

Now we will restrict ourselves to the case when i > j. For i = 2, j can only be 1 and this corre-
sponds to an entry in the first column for which the bounds are trivially true. So, we only need
to consider i ≥ 3. Since 1 ≤ j < i, we have (i

j) ≥ i. Furthermore, since ` ≥ 5 and i ≥ 3, we have

1 ≤ 0.3376 · i < 0.3376(i
j). This gives

|bi,j(j)| ≤ f (i− j)
(

0.3376 ·
(

i
j

)
+ 0.6624 ·

(
i
j

))
≤ f (i− j) ·

(
i
j

)
.

This concludes the proof of part 1.

For j > i, we have

|bi,j(i)− bi,j(1)| ≤
i−1

∑
s=1
|bi,s(s)| ·

|bs,j(s)|
|bs,s(s)|

. (13)
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By the induction hypothesis, |bs,j(s)| < 1.5 · f (`− j+ s)/ f (`), |bi,s(s)| < (i
s) · f (i− s), and bs,s(s) >

1− 0.92/` ≥ 0.816. Plugging these bounds in (13), we get

|bi,j(i)− bi,j(1)| <
1.5

0.816

i−1

∑
s=1

f (`− j + s)
f (`)

·
(

i
s

)
· f (i− s). (14)

Note that f (`−j+s)· f (i−s)
f (`−j+i) = 2((`−j+s)!)3·((i−s)!)3

((`−j+i)!)3 = 2 ·
(

1
(`−j+i

i−s )

)3

. For any 1 ≤ s ≤ i− 1, 1
(`−j+i

i−s )
≤ 1

`−j+i .

Therefore,

f (`− j + i− s) · f (s)
f (`− j + i)

≤ 1

(`−j+i
i−s )

· 2
(`− j + i)2 .

Plugging this in (14) gives

|bi,j(i)− bi,j(1)| ≤
f (`− j + i)

f (`)
· 3.68
(`− j + i)2 ·

(
i−1

∑
s=1

(
i
s

)
· 1

(`−j+i
i−s )

)

=
f (`− j + i)

f (`)
· 3.68 · i!(`− j)!
(`− j + i)2 · (`− j + i)!

·
i−1

∑
s=1

(
`− j + s
`− j

)
.

Using (10) again, we get ∑i−1
s=1 (

`−j+s
`−j ) ≤ (`−j+i

`−j+1) and this gives

|bi,j(i)− bi,j(i)| ≤
f (`− j + i)

f (`)
· 3.68 · i!(`− j)!
(`− j + i)2 · (`− j + i)!

·
(
`− j + i
`− j + 1

)
=

f (`− j + i)
f (`)

· 3.68 · i
(`− j + i)2 · (`− j + 1)

. (15)

The function i
(`−j+i)2 is maximized at i = `− j. So for any j < `, we have

|bi,j(i)− bi,j(1)| ≤
f (`− j + i)

f (`)
· 3.68

4(`− j) · (`− j + 1)
≤ 0.5 · f (`− j + i)

f (`)
.

Using the fact that |bi,j(1)| ≤ f (` − j + i)/ f (`), we have |bi,j(i)| ≤ 1.5 · f (` − j + i)/ f (`) for
i < j < `.

For j = ` and i ≥ 2, equation (15) gives

|bi,`(i)− bi,`(1)| ≤
f (i)
f (`)
· 3.68

i
≤ 1.84 · f (i)

f (`)
,

and therefore |bi,`(i)| ≤ 2.84 · f (i)
f (`) . This concludes the proof of parts 2 and 3.

For i = j and j < `, using (11), we get

|bj,j(j)− 1| ≤ 1.84 · j
`2(`− j + 1)

≤ 1.84 · (`− 1)
2`2 ≤ 0.92

`
.
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For i = j = `, by (8) and the induction hypothesis,

|b`,`(`)− b`,`(1)| <
2.84

1− 0.92/`

`−1

∑
s=1

(
`

s

)
· f (`− s) · f (s)

f (`)
.

Following the proof outline of equation (11) gives |b`,`(`) − b`,`(1)| ≤ 2.84
0.816 ·

1
` ≤ 0.697. Since

b`,`(1) ≥ 1, we have b`,`(`) ≥ b`,`(1)− 0.697 ≥ 0.303. �

3 Update Step for General Matroids

Consider the case whenM = ([n], I) is a general matroid of rank d. When we exchange on a cycle
C and update S ← S∆C, the resulting set is guaranteed to be independent in the linear matroid
because of the determinant bounds in Lemma 7, but it is not clear that it would be independent in
the general constraint matroid,M, whenM is not a partition matroid. However, by exchanging
on a minimal f -violating cycle in our algorithm, we can make the same guarantee.

In this section, we prove the existence of an f -violating cycle for any matroidMwith rank d when
the current basis S is sufficiently smaller in volume than the optimal solution OPT. We also prove
that exchanging on a minimal f -violating cycle preserves independence inM.

Theorem 4 For any basis S with |S| = d and vol(S) > 0, if vol(S) < vol(OPT) · e−5d log(d), then there
exists an f -violating cycle in G(S).

Proof Since S and OPT are independent and |S| = |OPT|, there exists a perfect matching between
OPT\S and S\OPT using the backward arcs in G(S) (Chapter 39, Corollary 39.12a, [Sch03]). Let
X = OPT\S, Y = S\OPT, and |X| = |Y| = k. Without loss of generality, let Y = {v1, . . . , vk} and
X = {u1, . . . , uk} such that (vi → ui) is an arc in G(S) for all i ∈ [k].

Let T and S be matrices whose columns are the vectors in OPT and S, respectively. Let A be the

coefficient matrix of T w.r.t. S, i.e., T = SA>. Then A =

[
Ak A′

0 Id−k

]
, where Ak is the sub-matrix

of A corresponding to rows in X and columns in Y. Then by the same proof as in 5, there exists a
permutation σ ∈ Sk such that

k

∏
i=1
|aiσ(i)| > |det(A)| · e−k log(k) ≥ e4k log(k) . (16)

Let the cycle decomposition of σ be σ = {C1, C2, . . . , C`} where Ci = (i1 → i2 → . . . ij → i1).
Since there is an edge from vσ(j) to uσ(j) for all j, every cyclic permutation Ci corresponds to a
cycle (ui1 → vi2 → ui2 → vi3 . . . → uij → vi1 → ui1) in G(S). We claim that at least one of
these cycles is an f -violating cycle. If not, then by the definition of f -violating cycles, we have
∏i∈Cj

|aiσ(i)| ≤ 2(|Cj|!)3 for all j ≤ `. Multiplying over all the cycles in σ gives

k

∏
i=1
|aiσ(i)| =

`

∏
j=1

∏
i∈Cj

|aiσ(i)| ≤
`

∏
j=1

2(|Cj|!)3 < e4k log(k),
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where the last inequality follows from ∑`
j=1 |Cj| = k. This contradicts (16), so G(S) must contain

an f -violating cycle. �

Lemma 9 If C is a minimal f -violating cycle in G(S), then S∆C is independent inM.

Proof For clarity, let V(C) denote the vertex set of C. Let T := S∆V(C) and let |C| = 2`. Lets
consider the graph G(S) with weights w`, and define w`(D) := ∑e∈D w`(e) for any cycle D. Since
C is an f -violating cycle, w`(C) = w0(C) + log( f (`)) < 0.

Let the set of backward arcs in C be N1, and the set of forward arcs be N2. For the sake of con-
tradiction, assume that T /∈ I . Then, there exists a matching N′1 on V(C) consisting of only
backward arcs such that N1 6= N′1 (Chapter 39, Theorem 39.13, [Sch03]). Let A be a multiset of
arcs consisting of all arcs in N2 twice and all arcs N1 and N′1 (with arcs in N1 ∩N′1 appearing twice).
Consider the directed graph D = (V(C), A). Since N1 6= N′1, D contains a directed circuit C1 with
V(C1) ( V(C). Every vertex in V(C) has exactly two in-edges and two out-edges in A. Therefore,
D is Eulerian, and we can decompose A into directed circuits C1, . . . , Ck. Since only arcs in N2
have non-zero weights, we have ∑k

i=1 w`(Ci) = 2w`(C).

Because V(C1) ( V(C), at most one cycle Cj can have V(Cj) = V(C). If for some j, V(C) = V(Cj),
then w`(Cj) = w`(C) as Cj must contain every edge in N2. So, ∑i 6=j w`(Ci) = w`(C) < 0 and there
exists a cycle Ci such that V(Ci) ( V(C) and w`(Ci) < 0. Otherwise V(Cj) ( V(C′) for all j and
∑i w`(Ci) = 2w`(C) < 0. Again, there exists a cycle Ci such that V(Ci) ( V(C) and w`(Ci) < 0.

Let C′ be the directed cycle such that V(C′) ( V(C) and w`(C′) ≤ w`(C) ≤ 0. Define y := |C′|/2.
Thus w`(C′) = y · log( f (`))/`+ w0(C′) < 0. Since y < `, log( f (y))/y ≤ log( f (`))/`. Therefore
w0(C′) ≤ −y · log( f (`))/` ≤ − log( f (y)). So C′ is an f -violating cycle with V(C′) ⊂ V(C), which
contradicts the fact that C is a minimal f -violating cycle. �
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A Omitted Proofs

Proof of Lemma 3 Recall the statement of the Lemma: Let S be a solution with vol(S) > 0 and
u 6∈ S. Then for any v ∈ S, we have w0(u, v) = − log vol(S+u−v)

vol(S) .

Let S = {v1, . . . , vd} so that v = v1 and write u = ∑d
i=1 aivi. We can also write v = v⊥ + ∑d

i=2 bivi
where v⊥ is orthogonal to S\{v}. Then u = a1v⊥ + ∑d

i=2(a1bi + ai)vi. For X ⊆ Rd with |X| = k ≤
d, let vol(X) denote the k-dimensional volume of the parallelepiped spanned by X. Then

vol(S) = vol(S− v) · ‖v⊥‖,

while
vol(S + u− v) = vol(S− v) · |a1|‖v⊥‖,

since the change in volume from adding a single new vector is proportional to the length of the
component of that vector which is orthogonal to our current set. Thus

− log
vol(S + u− v)

vol(S)
= − log

vol(S− v) · |auv|‖v⊥‖
vol(S− v) · ‖v⊥‖ = − log |auv|.

�

Proof of Observation 1 Recall the statement of the Observation: If C is a f -violating cycle then
∏(u,v)∈C:u∈L,v∈R |auv| > 2(|C|/2!)3.
If C is f -violating then `(C) < − log f (|C|/2), where `(C) is the sum of the w0 edge weights in C,
and f (|C|/2) = 2((|C|/2)!)3. Note that |C ∩ R| = |C ∩ L| = |C|/2, so f (|C/2|) = 2(|C ∩ R|!)3. By
expanding `(C) we see that

`(C) = ∑
(u,v)∈C:u∈L,v∈R

w0(u, v)

= − log

(
∏

(u,v)∈C:u∈L,v∈R
|auv|

)
.

Since `(C) < − log f (|C|/2), we can take the exponential to remove the logarithms and attain the
desired inequality. �

Proof of Lemma 4 Recall the statement of the Lemma: Algorithm 1 finds the minimal f -violating
cycle in G(S), if one exists.
In the ith iteration of Algorithm 1 we determine if there is a negative cycle in G(S) with weights
wi and 2i hops, as follows. For each vertex of G(S), we start an instance of Bellman-Ford (See
Chapter 8, Section 8.3, [Sch03]) with that vertex as the root, and proceed for 2i iterations. For
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source u, after 2i iterations, we check whether the distance from u to u is negative. If so, we have
found a negative cycle with at most 2i hops. Note that for weights wi, any negative cycle with at
most 2i hops is an f -Violating cycle. Since the (i − 1)-th iteration of the algorithm ensured that
there are no f -Violating cycles with at most 2(i− 1) hops, a negative cycle in the i-th iteration (if
any) must have exactly 2i hops.

Suppose there is an f -violating cycle C in G(S), so that ` = |C|/2. Then, with weight w`, the total
weight of the cycle C is

w`(C) = ∑
(u,v)∈C

w`(u, v) = ∑
(u,v)∈C

log( f (`))/`+ w0(u, v) = log f (`) + w0(C).

Since C is f -violating we know that log f (`) < −w0(C), so the above calculation shows that C has
negative total weight with weights w`. This guarantees that Algorithm 1 will return an f -violating
cycle whenever one exists.

Now suppose that C is the cycle returned by Algorithm 1 and we must show that C is minimal
f -violating. Let C′ be another cycle such that V(C′) ⊂ V(C). Then C′ has fewer hops than C, but it
was not returned in iteration |C′|/2, so we know that C′ must not be f -violating. Thus C is indeed
minimal. �

Proof of Lemma 6 Recall the statement of the Lemma 6: Let S be a basis, let X and Y be sets with
|X| = |Y| = ` and Y ⊆ S. Let A be the `× d matrix of coefficients so that X = SA>, and let AC be
the `× ` submatrix of only the coefficients corresponding to columns in Y. If T = (S ∪ X)\Y then
vol(T)2 = vol(S)2 · det(AC A>C ).

We will abuse notation slightly to let S, X, Y also denote the matrices with columns from their
respective sets. Order the columns of S so that Y makes up the first ` columns of S. Let A′ be the
`× (d− `) submatrix of A consisting of the remaining columns not already in AC. Then

T = S
[

AC A′

0 Id−`

]>
,

which implies that
det(T) = det(S) · det(AC).

�

Bounds on det(B2), det(B3), det(B4) mentioned in Proof of Claim 2.1:

For ` = 2, b1,1(1) = 1, |b1,2(1)| ≤ 0.125, |b2,1(1)| ≤ 2, and |b2,2(2)| ≥ 0.75.

det(B2) ≥
2

∏
i=1

bi,i(i) ≥ 0.75.

The bounds on final values of B3 are:
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b1,1(1) = 1 |b1,2(1)| ≤ 0.0371 |b1,3(1)| ≤ 0.00463

|b2,1(1)| ≤ 2.0 b2,2(2) ≥ 0.92 |b2,3(2)| ≤ 0.0463

|b3,1(1)| ≤ 16.0 |b3,2(2)| ≤ 2.5926 b3,3(3) ≥ 0.79

det(B3) ≥
3

∏
i=1

bi,i(i) ≥ 0.73.

The bounds on final values of B4 are:

b1,1(1) = 1 |b1,2(1)| ≤ 0.015625 |b1,3(1)| ≤ 0.00057871 |b1,4(1)| ≤ 0.000073

|b2,1(1)| ≤ 2.0 b2,2(2) ≥ 0.96875 |b2,3(2)| ≤ 0.01678241 |b2,4(2)| ≤ 0.00072338

|b3,1(1)| ≤ 16.0 |b3,2(2)| ≤ 2.25 b3,3(3) ≥ 0.95 |b3,4(3)| ≤ 0.018463

|b4,1(1)| ≤ 432.0 |b4,2(2)| ≤ 22.75 |b4,3(3)| ≤ 2.645 b4,4(4) ≥ 0.9

det(B4) ≥
4

∏
i=1

bi,i(i) ≥ 0.83.

B Rank r ≤ d

In this section, we prove Theorem 2. Consider a matroidM = ([n], I) with rank r ≤ d. Starting
with a basis S with non-zero volume, we will use a slight modification of Algorithm 2 to iteratively
find a basis with strictly larger volume. However since the set S is not full dimensional, our edge
weight functions will be different.

Let S = {v1, v2, . . . , vr} be a basis ofM with vol(S) > 0. We can write any vector ui inM as

ui =
r

∑
j=1

ai,jvj + u⊥i ,

where u⊥i is orthogonal to Span(S).

The change in volume on replacing some v ∈ S by u /∈ S is given by

vol(S− u + v)
vol(S)

=

√√√√a2
uv +

‖u⊥‖2

‖v⊥‖2 , (17)

where v⊥ is the component of v orthogonal to Span(S− v). The two terms in equation (17) have
geometric meanings. Let us decompose u into u⊥ + u‖, where u⊥ is the component of u orthog-
onal to Span(S). Then |auv| is exactly the change in the volume if we project u to Span(S) before

replacing v, i.e., |auv| = vol(S−v+u‖)
vol(S) , and ‖u⊥‖

‖v⊥‖ is the change in the volume if we project u orthogo-
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nal to Span(S) before replacing v, i.e., ‖u⊥‖
‖v⊥‖ = vol(S−v+u⊥)

vol(S) . So, we augment the exchange graph to

reflect this.

Like Lemma 5, when symr(S) < symr(OPT) · r−Ω(r), we can find an f̃ -violating cycle (for an
appropriate function f̃ ) in the augmented exchange graph.

However unlike Lemma 7, the change in the objective induced by a cycle C in the augmented
graph is not a simple function of the weights of chords and arcs of C. To get around this issue,
we use the geometric relation between symr and vol, specifically the subadditivity of vol to relate
symr to the chord and arc weights of C.

We define the exchange graph G(S) exactly as Definition 1 with w0(ui, vj) = − log(|ai,j|). Our
approach to find a basis with larger volume is to first try to exchange on an f -violating cycle in
G(S). Like Algorithm 1, exchanging on an f -violating cycle implies increase in volume. Unlike
Algorithm 1, failure to find an f -violating cycle does not imply that the volume of the current
solution is close to optimal. So, we move to Stage 2, where we work with an augmented version
of the exchange graph defined below.

We decompose every vector ui inM as

ui = u‖i + u⊥i ,

where u‖i ∈ Span(S) and u⊥i is orthogonal to Span(S).

In the augmented exchange graph G̃(S), for every vector ui ∈ M, we create two vertices u‖i (called
a parallel vertex) and u⊥i (called a perpendicular vertex) in the left-hand side.

Definition 6 (Augmented Exchange Graph) For a subset of vectors S = {v1, v2, . . . , vr}, we define
the augmented exchange graph of S, denoted by G̃(S) as a bipartite graph, where the right-hand side
consists of vectors in S, i.e., R = {v1, v2, . . . , vr} and the left-hand side consists of all the vectors L =⋃

u∈U\S{u⊥i , u‖i }. For each vi ∈ R, if S− vi + u ∈ I , then vi has an edge to u⊥ and an edge to u‖. The
vertices on the left-hand side have forward edges to every vertex in S ( See figure Figure 4).

Each vector vj ∈ S can be decomposed as vj = ∑i 6=j αj,ivi + v⊥j , where v⊥j is orthogonal to the span
of S\{vj}. We will call v⊥j the orthogonal component of vj and use it to define edge weights in

G̃(S).

Definition 7 (Weight functions on the Augmented Exchange graph) All the arcs from some vertex
in R to some vertex in L, have weight 0. The weights of the forward arcs are defined as

• for every parallel vertex u‖i ∈ L, the weight of the arc u‖i → vj is

w̃0(u
‖
i → vj) := − log(|ai,j|),

• for every perpendicular vertex u⊥i ∈ L, the weight of the arc u⊥i → vj is

w̃0(u⊥i → vj) := − log

∥∥u⊥i
∥∥∥∥∥v⊥j
∥∥∥
 .
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Linear matroidM2

u
‖
1

u⊥1

u
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i

u⊥i

u
‖
n−r

u⊥n−r

Figure 4: The augmented exchange graph G̃(S)(An exchange cycle is shown in bold edges)

We define a family of weight functions on the exchange graph. To define these weights we use the new
function f̃ (i) = (i!)11 if i ≥ 2 and f̃ (1) = 2. Now we define the weight function w̃` analogously to w`,
i.e., all backward arcs still have weight 0 but every forward edge (u, v) has weight

w̃`(u, v) :=
log( f̃ (`))

`
+ w̃0(u, v).

Observation 2 For a current solution S, let M̃(S) be the matroid obtained fromM by adding an element
parallel to every u ∈ U\S, and labelling the pair u⊥, u‖. Then the subgraph of G̃(S) induced by edges
with finite weight is the matroid exchange graph where M1 = M̃(S), and M2 is the linear matroid on
S ∪⋃u∈U\S{u⊥, u‖}.

By construction, no independent set in M̃(S) contains both u⊥ and u‖, for any u ∈ U\S. Thus, if Ĩ is an
independent set in M̃(S) and I is obtained from Ĩ by replacing each instance of u⊥, or u‖ with the original
element u ∈ U\S, then I is independent inM.

Similar to Lemma 3, a function of w̃0(u
‖
i , vj) and w̃0(u⊥i , vj) measures the change in objective when

we replace element vj by ui.

Lemma 10 Let S be a solution with vol(S) > 0 and u 6∈ S with u = u‖ + u⊥. Then for any v ∈ S, we
have

√
e−2w̃0(u‖,v) + e−2w̃0(u⊥,v) = vol(S−u+v)

vol(S) .

Our algorithm works in 2 stages. In the first stage, we try to find an f -violating cycle in the
exchange graph G(S). If the algorithm finds such a cycle, it exchanges on it. If no f -violating
cycle is found, we move to the augmented exchange graph G̃(S), and search for an f̃ -violating
cycle in G̃(S). If no such cycle is found in Stage 2, then Lemma 12 guarantees that vol(S) ≥
e−O(r log(r)) · vol(OPT).
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Algorithm 4 Algorithm to find an approximation to OPT

S← basis with vol(S) > 0.
Let f (i) = 2(i!)3 and f̃ (i) = (i!)11

while There exists an f -violating cycle in G(S) or an f̃ -violating cycle in G̃(S) do
if There exists an f -violating cycle in G(S) then

Stage 1:
C = minimal f -violating cycle in G(S)
S = S∆C

else
Stage 2:
C = minimal f̃ -violating cycle in G̃(S)
C̃ = {u ∈ [n]\S : u⊥ or u‖ ∈ C} ∪ {v ∈ S : v ∈ C}
S = S∆C̃

end if
end while
Return S

Lemma 11 If Algorithm 4 finds an f -violating cycle, C, in G(S), then vol(S∆C) ≥ 2 · vol(S).

Proof Let C′ be the projection of C onto Span(S). By Lemma 20, we know that vol(S∆C) ≥
vol(S∆C′), and by Lemma 7, we know that vol(S∆C′) ≥ 2 · vol(S). Therefore,

vol(S∆C) ≥ vol(S∆C′) ≥ 2 · vol(S),

which concludes the proof of the Lemma. �

From hereafter we analyze the case when Algorithm 4 does not find an f -violating cycle in Stage
1, moves on to Stage 2 and finds an f̃ -violating cycle in G̃(S).

B.1 Existence of f̃ -violating cycle

To guarantee we make progress at every iteration, we need to ensure there will always be an f̃ -
violating cycle, whenever our current volume is far from the optimal volume. Before we prove
the existence of an f̃ -violating cycle, we state a couple of useful observations.

For convenience, to specify the volume of a set of vectors {v1, v2, . . . , vr}, instead of writing
vol({v1, v2, . . . , vr}), we use vol(v1, v2, . . . , vr).

Observation 3 For any set of vectors {va
1, vb

1, v2, . . . , vr},

vol(va
1 + vb

1, v2, . . . , vr) ≤ vol(va
1, v2, . . . , vr) + vol(vb

1, v2, . . . , vr) ,

vol(va
1 + vb

1, v2, . . . , vr) ≥ vol(va
1, v2, . . . , vr)− vol(vb

1, v2, . . . , vr) .

Proof Let P⊥ be the projection matrix orthogonal to Span(v2, . . . , vr). By triangle inequality, we
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have that ∥∥∥P⊥(va
1 + vb

1)
∥∥∥ ≤ ∥∥∥P⊥va

1

∥∥∥+ ∥∥∥P⊥vb
1

∥∥∥ , and∥∥∥P⊥(va
1 + vb

1)
∥∥∥ ≥ ∥∥∥P⊥va

1

∥∥∥− ∥∥∥P⊥vb
1

∥∥∥ .

Since vol(va
1, v2, . . . , vr) =

∥∥P⊥va
1

∥∥ · vol(v2, . . . , vr), multiplying both sides by vol(v2, . . . , vr) gives
us the required inequalities. �

Observation 4 If v⊥i is the orthogonal projection of vi onto Span(S− vi), then

vol(v1, . . . , vk) ·
r

∏
i=k+1

∥∥∥v⊥i
∥∥∥ ≤ vol(v1, . . . , vr)

for any k ∈ [r].

Proof Let Si = {v1, . . . , vi} for i ∈ [r] and S0 = ∅. Since vol(v1, . . . , vr) = ∏r
i=1

vol(Si)
vol(Si−1)

where

vol(∅) = 1, it suffices to prove that vol(Si)
vol(Si−1)

≥
∥∥v⊥i

∥∥ = vol(S)
vol(S\{vi}) which follows from the submod-

ularity of log vol(·) as Si−1 ⊆ S\{vi}. �

The following lemma is an extension to Lemma 5 when the current solution has r ≤ d vectors.

Lemma 12 For any basis S ∈ I with vol(S) > 0, if vol(OPT) > vol(S) · r2r · f̃ (r), then there exists an
f̃ -violating cycle in G̃(S).

Proof Since S and OPT are independent and |S| = |OPT|, there exists a perfect matching between
OPT\S and S\OPT using the backward arcs in G(S) (Chapter 39, Corollary 39.12a, [Sch03]). Let
X = OPT\S, Y = S\OPT, and |X| = |Y| = `. Without loss of generality, let Y = {v1, . . . , v`}
and X = {u1, . . . , u`} such that (vi → ui) is an arc in G(S) for all i ∈ [`]. Let Z = OPT ∩ S =
{v`+1, . . . , vr} and let us use T instead of OPT for ease of notation.

From the hypothesis of the lemma, we have

r2r · f̃ (r) ≤ vol(T)
vol(S)

=
vol(X ∪ Z)
vol(Y ∪ Z)

. (18)

Since ui = ∑r
j=1 ai,jvj + u⊥i , we can decompose each vector ui into a sum of r + 1 vectors, i.e.,

ui = ∑r
j=0 u(j)

i where

• u(0)
i := u⊥i for all i, and

• u(j)
i := ai,jvj .

Now using Observation 3, we can expand vol(T) as

vol(T)
vol(S)

≤ ∑
i1,i2,...,i`∈{0,...,r}

vol({u(i1)
1 , u(i2)

2 , . . . , u(i`)
` } ∪ Z)

vol(S)
. (19)
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If ij > ` for any j, then u
(ij)

j and the vectors in set Z are linearly dependent and therefore the
volume is 0. So we can restrict ourselves to the case when ij ∈ {0, . . . , `} for all j ∈ [`].

For any permutation σ ∈ S`, define F (σ) := {(i1, i2, . . . , i`) : ij ∈ {σ(j), 0}}. Since u(j)
i1

and u(j)
i2

are
linearly dependent whenever j > 0, we can rewrite vol(T) as

vol(T) ≤ ∑
τ∈⋃σ F (σ)

vol({u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` } ∪ Z)

≤ ∑
σ∈S`

∑
τ∈F (σ)

vol({u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` } ∪ Z) . (20)

We will upper bound vol({u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` } ∪ Z) for each τ separately. As an illustration for a

fixed σ, let us consider τ = (0, . . . , 0, σ(k + 1), . . . , σ(`)). The corresponding volume term is equal
to

vol({u(0)
1 , . . . , u(0)

k , u(τk+1)
k+1 , . . . , u(τ`)

` } ∪ Z)
vol(S)

=
vol(u(0)

1 , . . . , u(0)
k ) · vol({u(τk+1)

k+1 , . . . , u(τ`)
` } ∪ Z)

vol(S)
,

as the sets of vectors {u(0)
1 , . . . , u(0)

k } and {u(τk+1)
k+1 , . . . , u(τ`)

` }∪Z are orthogonal to each other. Upper

bounding vol(u(0)
1 , . . . , u(0)

k ) by ∏k
i=1
∥∥u⊥i

∥∥, we get

vol({u(0)
1 , . . . , u(0)

k , u(τk+1)
k+1 , . . . , u(τ`)

` } ∪ Z)
vol(S)

≤
(

k

∏
i=1

∥∥∥u⊥i
∥∥∥) · vol({u(τk+1)

k+1 , . . . , u(τ`)
` } ∪ Z)

vol(S)
.

To bound vol({u(τk+1)
k+1 , . . . , u(τ`)

` } ∪ Z), consider

vol({u(τk+1)
k+1 , . . . , u(τ`)

` } ∪ Z)
vol(S)

=
vol({ak+1,τk+1 vτk+1 , . . . , a`,τ`vτ`} ∪ Z)

vol(S)

=

(
`

∏
i=k+1

|aiτi |
)

vol({vσ(k+1), . . . , vσ(`)} ∪ Z)
vol(S)

.

(since τj = σ(j) for k < j ≤ `)

Using 4,

vol({vσ(k+1), . . . , vσ(`)} ∪ Z)
vol(S)

≤ ∏
j∈[`]\{σ(k+1),...,σ(`)}

1∥∥∥v⊥j
∥∥∥ = ∏

j∈{σ(1),...,σ(k)}

1∥∥∥v⊥j
∥∥∥ .

Continuing the above chain of inequalities,

vol({u(τk+1)
k+1 , . . . , u(τ`)

` } ∪ Z)
vol(S)

≤
(

`

∏
i=k+1

|aiτi |
)
· ∏

j∈{σ(1),...,σ(k)}

1∥∥∥v⊥j
∥∥∥ ·

k

∏
i=1

∥∥∥u⊥i
∥∥∥

=

(
`

∏
i=k+1

|aiτi |
)
·

 k

∏
i=1

∥∥u⊥i
∥∥∥∥∥v⊥

σ(i)

∥∥∥
 .
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Now consider any τ ∈ F (σ), and let I0
τ := {j : τ(j) = 0} and Iσ

τ = [`]\I0
τ . Then following a similar

chain of proof as above, we get

vol({u(τ1)
1 , . . . , . . . , u(τ`)

` } ∪ Z)
vol(S)

≤
(

∏
i∈Iσ

τ

|aiσ(i)|
)
·

∏
i∈I0

τ

∥∥u⊥i
∥∥∥∥∥v⊥

σ(i)

∥∥∥
 .

Summing over all τ ∈ F (σ),

∑
τ∈F (σ)

vol({u(τ1)
1 , . . . , . . . , u(τr)

r } ∪ Z)
vol(S)

≤ ∑
τ∈F (σ)

(
∏
i∈Iσ

τ

|aiσ(i)|
)∏

i∈I0
τ

∥∥u⊥i
∥∥∥∥∥v⊥

σ(i)

∥∥∥


= ∑
τ∈F (σ)

(
∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i))

)∏
i∈I0

τ

e−w̃0(u⊥i ,vσ(i))

 .

Summing over all permutations,

r2r · f̃ (r) ≤ vol(T)
vol(S)

≤ ∑
σ∈S`

∑
τ∈F (σ)

(
∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i))

)∏
i∈I0

τ

e−w̃0(u⊥i ,vσ(i))

 .

The RHS is sum of 2``! positive terms. So, there exists some permutation σ ∈ S` and τ ∈ F (σ)
such that (

∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i))

)∏
i∈I0

τ

e−w̃0(u⊥i ,vσ(i))

 ≥ r2r · f̃ (r)
2``!

≥ f̃ (r) .

Let the cycle decomposition of σ = {π1, π2, . . . , πk} with πi = {j1, j2, . . . , jxi}. For each vector ui,
we define symbols pi indicating whether ui is present as a perpendicular vector in τ, i.e., pi =‖ if
i ∈ Iσ

τ and pi =⊥ otherwise.

Then each cyclic permutation πi corresponds to a cycle Ci in G̃(S) given by

Ci = (u
pj1
j1
→ vj2 → u

pj2
j2
→ vj3 . . . u

pjxi
jxi
→ vj1 → u

pj1
j1
),

and for every i ∈ [k],
(

∏j∈Iσ
τ∩πi

e−w̃0(u
‖
j ,vσ(j))

)
·
(

∏j∈I0
τ∩πi

e−w̃0(u⊥j ,vσ(j))
)
= e−w̃0(Ci) and therefore,

(
∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i))

)
·

∏
i∈I0

τ

e−w̃0(u⊥i ,vσ(i))

 =
k

∏
i=1

e−w̃0(Ci) ≥ f̃ (r). (21)

At least one of the Ci’s must be an f̃ -violating cycle. If not, then e−w̃0(Ci) ≤ f̃ (|Ci|/2) and(
∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i))

)∏
i∈I0

τ

e−w̃0(u⊥i ,vσ(i))

 =
k

∏
i=1

e−w̃0(Ci) ≤
k

∏
i=1

f̃ (|Ci|/2) ≤ f̃ (r), (22)

where the last inequality follows from ∑k
i=1 |Ci| = 2` ≤ 2r. Equation (22) contradicts (21), so there

exist i such that Ci is an f̃ -violating cycle in G̃(S). �
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B.2 Analysis of Stage 2

In this section, we prove that if the algorithm finds an f̃ -violating cycle in Stage 2, then exchanging
on this cycle increases the volume by a constant factor. However, since the algorithm fails to find a
cycle in Stage 1, a cycle in Stage 2 must contain a perpendicular vertex. We first bound the number
of vertices a minimal f̃ -violating cycle can contain, and use this fact to prove that exchanging on
such a cycle increases the volume.

Lemma 13 If C is a minimal f̃ -violating cycle in G̃(S) and C̃ = {u ∈ [n]\S : u⊥ or u‖ ∈ C} ∪ {v ∈ S :
v ∈ C}, then S∆C̃ is independent inM.

Proof Observation 2 and Lemma 9 imply that S∆C̃ is independent in M̃(S), and the second part
of Observatio 2 then implies that S∆C̃ is independent inM. �

To make our later calculations possible, we first prove that any minimal f̃ -violating cycle in G̃(S)
contains exactly one perpendicular vector. The following lemma is slightly more general than we
need now, but will be useful later.

Lemma 14 Let C, |C| = 2y be a cycle in G̃(S) such that there are no f̃ -violating cycles with less than 2y
hops in G̃(S). Let C contain k ≥ 2 perpendicular vertices u⊥1 , u⊥2 , . . . , u⊥k such that the section of C from
u⊥i to u⊥(i mod k)+1 has 2xi hops for i ∈ [k]. Then

e−w̃0(C) ≤
k

∏
i=1

f̃ (xi).

Proof The proof is by induction on k > 1. Let the perpendicular vertices u⊥1 , u⊥2 , . . . , u⊥k appear in
order along around C. Let C′ and C′′ be the two cycles created by replacing the edges u⊥1 → v1 and
u⊥2 → v2 with the new edges u⊥1 → v2 and u⊥2 → v1, so that C′ is the cycle containing u⊥1 . Note
that C′ has 2y− 2x1 < 2y hops and C′′ has 2x1 < 2y hops. So by the hypothesis of the Lemma,
both C′ and C′′ are not f̃ -violating.

Additionally,

w̃0(u⊥1 → v2) + w̃0(u⊥2 → v1) = − log

(
‖u⊥1 ‖‖u⊥2 ‖
‖v⊥1 ‖‖v⊥2 ‖

)
= w̃0(u⊥1 → v1) + w̃0(u⊥2 → v2),

and therefore
e−w̃0(C) = e−w̃0(C′)−w̃0(C′′). (23)

When k = 2, both cycles C′ and C′′ contain exactly one perpendicular vertex, and since they are
not f̃ -violating, e−w̃0(C′) ≤ f̃ (2y− 2x1) and e−w̃0(C′′) ≤ f̃ (2x1).

Using equation (23), we conclude that e−w̃0(C) = e−w̃0(C′)−w̃0(C′′) ≤ f̃ (2y− 2x1) · f̃ (x1), as desired.

When k > 2 the cycle C′ has k− 1 ≥ 2 perpendicular vertices since it no longer contains u⊥2 . Thus,
the induction hypothesis implies that e−w̃0(C′) ≤ ∏k

i=2 f̃ (xi). Since C′′ is not f̃ -violating, it satisfies
e−w̃0(C′′) ≤ f̃ (2x1).

Again using equation (23), we conclude that e−w̃0(C) = e−w̃0(C′)−w̃0(C′′) ≤ ∏k
i=1 f̃ (xi), as desired. �
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When y = ∑k
i=1 xi, we know that f̃ (y) ≥ ∏k

i=1 f̃ (xi). Thus, we obtain the following corollary:

Corollary 1 If C is a minimal f̃ -violating cycle in G̃(S), then C contains exactly one perpendicular vector.

Now we will prove that for a minimal f̃ -violating cycle C, the volume of S∆C is strictly larger than
vol(S).

Lemma 15 If C is a minimal f̃ -violating cycle in G̃(S), then vol(S∆C) ≥ 2 · vol(S).

Proof If |C| = 2, then let C = (u⊥ → v). Since C is an f̃ -violating cycle, e−w̃0(C) =
‖u⊥‖
‖v⊥‖ > f̃ (1) ≥

2. By Lemma 10,

vol(S− v + u)
vol(S)

=

√√√√a2
uv +

‖u⊥‖2

‖v⊥‖2 ≥ e−w̃0(C) ≥ 2.

This concludes the proof when C has 2 arcs.

Now consider the case when C has at least 4 arcs. By Corollary 1, we can assume that C contains
exactly one perpendicular vertex. Let C = (u⊥1 → v1 → u‖2 → v2 → . . . u‖` → v` → u⊥1 ), where
` ≥ 2, vi ∈ S, and vi → ui+1 is an arc in G(S).

Define T := S∆C, X := C\S = {u1, u2, . . . , u`}, and Y := S ∩ C = {v1, v2, . . . , v`}, and let S\Y =
{v`+1, . . . , vr}. Let P denote the projection matrix orthogonal to the span of S\Y.

Then

vol(T)
vol(S)

=
vol({S\Y} ∪ X)

vol({S\Y} ∪Y)
=

vol(u1, u2, . . . , u`, v`+1, . . . , vr)

vol(v1, v2, . . . , v`, v`+1, . . . , vr)
.

Note that for any set of vectors {x1, . . . , x`},

vol(x1, x2, . . . , x`, v`+1, . . . , vr) = vol(Px1, Px2, . . . , Px`) · vol(v`+1, . . . , vr).

Applying this to the sets X and Y, we get

vol(T)
vol(S)

=
vol(Pu1, Pu2, . . . , Pu`)

vol(Pv1, Pv2, . . . , Pv`)
=

vol(PX)

vol(PY)
.

By definition, ui = ∑r
j=1 ai,jvj + u⊥i . Taking the projection of ui orthogonal to Span(S\Y), we get

Pui = ∑`
j=1 ai,jPvj + u⊥i , since Pvj = 0 for all j > `. So we can decompose each vector Pui into a

sum of `+ 1 vectors, i.e., Pui = ∑`
j=0 u(j)

i where

• u(0)
i := u⊥i for all i, and

• u(j)
i := ai,jPvj.

Note that for any i1, i2 ∈ [`], the vectors u(j)
i1

and u(j)
i2

are linearly dependent for any j > 0.
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Let IC denote the tuple (0, 2, 3, . . . , `). Using Observation 3, we can lower bound vol(PX) as

vol(PX) ≥ vol( u(0)
1 , u(2)

2 , . . . , u(`)
` ) − ∑

i1,i2,...,i`∈{0,1,...,`}
(i1,i2,...,i`) 6=IC

vol( u(i1)
1 , u(i2)

2 , . . . , u(i`)
` ) . (24)

For any permutation σ ∈ S`, define F (σ) := {(i1, i2, . . . , i`) : ij ∈ {σ(j), 0}}. Since u(j)
i1

and u(j)
i2

are
linearly dependent, we can rewrite (24) as

vol(PX) ≥ vol( u(0)
1 , u(2)

2 , . . . , u(`)
` ) − ∑

τ∈⋃σ F (σ)\IC

vol( u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` )

≥ vol( u(0)
1 , u(2)

2 , . . . , u(`)
` ) − ∑

σ∈S`

∑
τ∈F (σ)\IC

vol( u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` ) . (25)

For a fixed σ 6= id` and some τ ∈ F (σ), let I0
τ := {j ∈ [`] : τ(j) = 0} and Iσ

τ := [`]\I0
τ . Also, let

Xτ = {vσ(i) : i ∈ Iσ
τ }. Then

vol( u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` )

vol(PY)
=

vol
(⋃

i∈I0
τ
{u⊥i }

)
· vol

(⋃
i∈Iσ

τ
{ai,σ(i)Pvσ(i))}

)
vol(PY)

≤ ∏
i∈I0

τ

∥∥∥u⊥i
∥∥∥ ·∏

i∈Iσ
τ

|ai,σ(i)| ·
vol
(⋃

i∈Iσ
τ
{Pvσ(i))}

)
vol(PY)

≤ ∏
i∈I0

τ

∥∥∥u⊥i
∥∥∥ ·∏

i∈Iσ
τ

|ai,σ(i)| ·
1

∏i∈I0
τ

∥∥∥v⊥
σ(i)

∥∥∥ (from Observation 4)

= ∏
i∈I0

τ

‖ui‖∥∥∥v⊥
σ(i)

∥∥∥ ·∏i∈Iσ
τ

|ai,σ(i)| = ∏
i∈I0

τ

e−w̃0(u⊥i ,vσ(i)) ·∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i)) .

Summing over all tuples τ ∈ F (σ), we get

∑
τ∈F (σ)

vol( u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` )

vol(PY)
≤ ∏

i∈I0
τ

e−w̃0(u⊥i ,vσ(i)) ·∏
i∈Iσ

τ

e−w̃0(u
‖
i ,vσ(i))

=
`

∏
i=1

(
e−w̃0(u⊥i ,vσ(i)) + e−w̃0(u

‖
i ,vσ(i))

)
. (26)

Let WC ∈ R`×` be a matrix with [WC]i,j = e−w̃0(u⊥i ,vσ(i)) + e−w̃0(u
‖
i ,vσ(i)). Then we can rewrite (26) as

∑
τ∈F (σ)

vol( u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` )

vol(PY)
≤

`

∏
i=1

[WC]i,σ(i) . (27)

Similarly, the sum of tuples for the identity permutation id` gives

vol( u(0)
1 , u(2)

2 , . . . , u(`)
` )

vol(PY)
+ ∑

τ∈F (id`)\IC

vol( u(τ1)
1 , u(τ2)

2 , . . . , u(τ`)
` )

vol(PX)
≤

`

∏
i=1

[WC]i,i . (28)
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Plugging equation (27) and equation (28) in (25), we get

vol(PX)

vol(PY)
≥

vol( u(0)
1 , u(2)

2 , . . . , u(`)
` )

vol(PY)
− ∑

σ 6=id

`

∏
i=1

[WC]i,σ(i) −
(

`

∏
i=1

[WC]i,i −
vol( u(0)

1 , u(2)
2 , . . . , u(`)

` )

vol(PY)

)

=
2 vol( u(0)

1 , u(2)
2 , . . . , u(`)

` )

vol(PY)
− ∑

σ 6=id

`

∏
i=1

[WC]i,σ(i) −
`

∏
i=1

[WC]i,i

=
2 vol( u(0)

1 , u(2)
2 , . . . , u(`)

` )

vol(PY)
− perm(WC) . (29)

From Lemma 16, we have

perm(WC) ≤ 1.56 ·
∥∥u⊥1

∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| . (30)

Note that
vol( u(0)

1 , u(2)
2 , . . . , u(`)

` )

vol(PY)
=

∥∥u⊥1
∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| . (31)

Inserting the bounds from (30) and (31) in (29) gives

vol(PX)

vol(PY)
≥
∥∥u⊥1

∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| · (2− 1.56) = 0.44 ·

∥∥u⊥1
∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| .

Since C is an f̃ -Violating cycle, e−w̃0(C) =
‖u⊥1 ‖
‖v⊥1 ‖

·∏`
i=2 |ai,i| ≥ f̃ (`). Therefore,

vol(S∆C)
vol(S)

=
vol(PX)

vol(PY)
≥ 0.44 · f̃ (`) ≥ 2 .

�

B.3 Miscellaneous Lemmas

Lemma 16 Let C = (v0 → u⊥1 → v1 → u‖2 → v2 → . . . u‖` → v0) be a minimal f̃ -violating cycle in

G̃(S) with ` ≥ 2 and let WC be a matrix with [WC]i,j = |ai,j|+
‖u⊥i ‖∥∥∥v⊥j

∥∥∥ , then

perm(WC) ≤ 1.56 ·
∥∥u⊥1

∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| .

Proof Define z1 := ‖u⊥1 ‖
‖v⊥1 ‖

, p1 =⊥, and zi := |ai,i|, pi =‖ for all i ≥ 2.

We show upper bounds on the absolute value of each entry of WC as a function of zi’s. Consider
the i, j-th entry of WC. For i > j, let C⊥i,j := (u⊥i → vj → u

pj+1
j+1 → vj+1 → . . . vi−1 → u⊥i ). C⊥i,j is a

cycle of with 2(i− j) hops and V(C⊥i,j) ⊂ V(C). C being a minimal f̃ -violating cycle implies that
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C⊥i,j is not an f̃ -violating cycle. Therefore, e−w̃0(C⊥i,j) =
‖u⊥i ‖∥∥∥v⊥j

∥∥∥ ·∏i−1
s=j+1 zs < f̃ (i− j). This implies

∥∥u⊥i
∥∥∥∥∥v⊥j
∥∥∥ <

f̃ (i− j)

∏i−1
s=j+1 zs

. (32)

Similarly for j = `, we have ‖u⊥i ‖
‖v⊥0 ‖

< f̃ (i)
∏i−1

s=1 zs
.

Similarly, let C‖i,j := (u‖i → vj → u
pj+1
j+1 → vj+1 → . . . vi−1 → u‖i ). Again, using the fact that C‖i,j is

not f̃ -Violating we get

|ai,j| <
f̃ (i− j)

∏i−1
s=j+1 zs

, (33)

for any i > j and for j = `, we have ai,0 < f̃ (i)
∏i−1

s=1 zs
.

For i < j < `, let C⊥i,j := (v0 → upi
1 → v1 → . . . u⊥i → vj → . . . up`

` → v0). Again, C⊥i,j is a cycle with
2(`− j + i) hops and which is not f̃ -violating. Therefore,∥∥u⊥i

∥∥∥∥∥v⊥j
∥∥∥ ·

i−1

∏
s=1

zs ·
`

∏
s=j+1

zs < f̃ (`− j + i). (34)

Since C is an f̃ -violating cycle, we also have

e−w̃0(C) =
`

∏
s=1

zs > f̃ (`) . (35)

Combining (34) and (35) gives ∥∥u⊥i
∥∥∥∥∥v⊥j
∥∥∥ <

f̃ (`− j + i)
f̃ (`)

·
j

∏
s=i

zs .

Similarly, for i < j < `,

|ai,j| <
f̃ (`− j + i)

f̃ (`)
·

j

∏
s=i

zs .

Define x1 := (|a1,1|+
‖u⊥1 ‖
‖v⊥1 ‖

)/‖u⊥1 ‖
‖v⊥1 ‖

and xi := (|ai,i|+
‖u⊥i ‖
‖v⊥i ‖

)/|ai,i| for i ≥ 2. Then xi ≥ 1 and the

i-th diagonal entry of WC is xi · zi.

Let B` be the matrix obtained by applying the following operations to WC

• Multiply the last column by z1 and for j > 1, divide the j-th column by ∏
j
s=2 zs

• Divide the first row by z1 and for i > 1, multiply the i-th row by ∏i−1
s=2 zs

• Divide the last column by ∏`
i=1 zi.
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• Divide the j-th column by xj.

Then |perm(WC)| = (∏`
i=1 xizi) · |perm(B`)|, and B` satisfies the following properties:

• bi,i = 1 for all i ∈ [`],

• |bi,j| ≤ 2 · f̃ (i− j)/xj ≤ 2 · f̃ (i− j) for all j < i ≤ `, and

• |bi,j| ≤ 2 · f̃ (`− j + i)/( f̃ (`)xj) ≤ 2 · f̃ (`− j + i)/ f̃ (`) for all i < j ≤ `.

If ` = 1, perm(B`) = 1 and for ` ≥ 2, Lemma 18 gives perm(B`) ≤ 1.3. Therefore, we have

perm(WC) ≤ 1.3 ·
`

∏
i=1

xizi = 1.3 ·
`

∏
i=1

(
|ai,i|+

∥∥u⊥i
∥∥∥∥v⊥i
∥∥
)
≤ 1.3 · 1.2 ·

∥∥u⊥1
∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| = 1.56 · e−w̃0(C) ,

where the last inequality follows from Lemma 17. �

Lemma 17 If C = (v0 → u⊥1 → v1 → u‖2 → v2 → . . . u‖` → v0) is a minimal f̃ -violating cycle with
` ≥ 2, then

`

∏
i=1

(
|ai,i|+

∥∥u⊥i
∥∥∥∥v⊥i
∥∥
)
≤ 1.2 · e−w̃0(C). (36)

Proof Since C is an f̃ -violating cycle,

e−w̃0(C) =

∥∥u⊥1
∥∥∥∥v⊥1
∥∥ · `

∏
i=2
|ai,i| ≥ f̃ (`). (37)

Define xi,0 := ‖u⊥i ‖
‖v⊥i ‖

and xi,1 := |ai,i| for all i ∈ [`]. Then we can decompose the LHS of (36) as

follows:

`

∏
i=1

(
|ai,i|+

∥∥u⊥i
∥∥∥∥v⊥i
∥∥
)

= ∑
Z⊆[`]

∏
i∈Z

xi,0 ·∏
i/∈Z

xi,1 =: ∑
Z⊆[`]

w(Z),

We now upper bound w(Z) for all Z 6= {1} based on the cardinality of Z. For the empty set, i.e.,
|Z| = 0, since Algorithm 4 did not return a cycle in Stage 1, w(Z) = ∏`

i=1 |ai,i| = e−w0(C) ≤ f (`).

Consider a subset Z with |Z| = k where k ≥ 2. We define a cycle CZ such that CZ contains the
same arcs as C but a vertex ui ∈ C\S is present as a perpendicular vertex in CZ if and only if
u ∈ Z. Then w(Z) = e−w̃0(CZ). Let the distance between successive perpendicular vertices in CZ
be b1, b2, . . . , bk. Then ∑k

i=1 bi = ` and by Lemma 14, w(Z) = e−w̃0(CZ) ≤ ∏k
i=1 f̃ (bi).

Since CZ has the same structure as C, we can completely characterize CZ by the first vertex among
u1, u2, . . . , u` which is perpendicular, and the distances between successive perpendicular vertices
in CZ, i.e., b1, b2, . . . , bk. There are only ` options for the first perpendicular vertex. Therefore,

∑
Z:|Z|=k

w(Z) ≤ ` · ∑
∑k

j=1 bj=`

b1,b2,...,bk≥1

k

∏
i=1

f̃ (bi) ≤ ` ·
(
`− 1
k− 1

)
· f̃ (`− k + 1) ≤ f̃ (`)

`8 . (38)
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For a subset with one element, i.e., Z = {x}, x 6= 1, − log w(Z) is the same as the weight of the
cycle

Cx := (v0 → u‖1 → v1 → . . . u⊥x → v2 → . . .→ u‖` → v0) .

Combining Cx with C, we get two cycles

C(1)
x = (v0 → u⊥1 → v1 → . . . u⊥x → v2 →→ . . . u‖` → v0)

C(2)
x = (v0 → u‖1 → v1 → . . . u‖x → v2 → . . .→ u‖` → v0) ,

such that w̃0(C) · w̃0(Cx) = w̃0(C
(1)
x ) · w̃0(C

(2)
x )). By Lemma 14, we know that e−w̃0(C

(1)
x ) ≤ f̃ (x −

1) f̃ (`− x + 1). Also, since C(2)
x only contains parallel vectors, w̃0(C

(2)
x ) = w0(C

(2)
x ); and since C(2)

x

is not f -violating, e−w̃0(C
(2)
x ) ≤ f (`). Therefore, e−w̃0(C)−w̃0(Cx) ≤ f̃ (x − 1) f̃ (` − x + 1) · f (`). C

being f̃ -violating implies e−w̃0(C) ≥ f̃ (`), and therefore e−w̃0(C) ≤ f̃ (x− 1) f̃ (`− x + 1) f (`)/ f̃ (`).

Summing over all choices of x, we get

∑
Z,|Z|=1

w(Z) =
`

∑
x=2

e−w̃0(Cx) ≤
`

∑
x=2

f̃ (x− 1) f̃ (`− x + 1) f (`)
f̃ (`)

≤ 4 f (`)
`

. (39)

Combining (37), (38), and (39), we get

`

∏
i=1

(
|ai,i|+

∥∥u⊥i
∥∥∥∥v⊥i
∥∥
)

= ∑
Z⊆[`]

w(Z) ≤ w(∅) + ∑
Z:|Z|=1

w(Z) + ∑
Z:|Z|≥2

w(Z)

≤ f (`) + e−w̃0(C) +
4 f (`)
`

+
f̃ (`)
`8 .

Since e−w̃0(C) ≥ f̃ (`) ≥ (`!)4 · f (`),

`

∏
i=1

(
|ai,i|+

∥∥u⊥i
∥∥∥∥v⊥i
∥∥
)
≤ e−w̃0(C)

(
1 +

3
(`!)4 +

1
`8

)
≤ 1.2 · e−w̃0(C).

�

Lemma 18 Let B` ∈ R`×` satisfy the following properties:

• bi,i = 1 for all i ∈ [`],

• 0 ≤ bi,j ≤ 2 · f̃ (i− j) for all j < i ≤ `, and

• 0 ≤ bi,j ≤ 2 · f̃ (`− j + i)/ f̃ (`) for all i < j ≤ `.

Then the permanent of B` is at most 1.13.

Proof For ` = 2, perm(B2) = 1 + b1,2 · b2,1 ≤ 1 + 4 f̃ (1)2

f̃ (2)
< 1.1.
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Now, consider the case when ` ≥ 3. Let id` denote the identity permutation on ` elements. Ex-
panding the permanent of B` gives

perm(B`) = ∑
σ∈S`

`

∏
i=1

bi,σ(i) = 1 + ∑
σ∈S`\{id`}

`

∏
i=1

bi,σ(i) . (40)

We categorize all permutations in S`\{id`} based on the number of fixed points and the number of
exceedances. The set of fixed points of a permutation σ ∈ S` is defined as {i ∈ [`] : σ(i) = i} and
the exceedance of σ is defined to be the number of indices i such that σ(i) > i (for more details,
see Remark 1 and Lemma 19). Let S`(n, k) denote the subset of S` with `− n fixed points and k
exceedances. Then

|S`(n, k)| =
(
`

n

)
· T(n, k),

where T(n, k) is the derangement number defined in Remark 1.

Since all permutations in S`\{id`} have at most `− 2 fixed points and at least 1 exceedance, we
can further expand (40) as

perm(B`) = 1 +
`

∑
n=2

n−1

∑
k=1

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) . (41)

For a permutation σ ∈ S`(n, k),

`

∏
i=1

bi,σ(i) = ∏
i>σ(i)

bi,σ(i) · ∏
i<σ(i)

bi,σ(i) ≤ ∏
i>σ(i)

2 f̃ (i− σ(i)) · ∏
i<σ(i)

2 f̃ (`− σ(i) + i)
f̃ (`)

.

where the last inequality follows from the hypothesis of the Lemma.

Since ∑`
i=1 i − σ(i) = 0 for any permutation σ, ∑i>σ(i) i − σ(i) + ∑i<σ(i) ` − σ(i) + i = ` · |{i :

σ(i) > i}| = ` · k for any σ ∈ S`(n, k). Therefore, if σ ∈ S`(n, k), then there exist integers
1 ≤ x1, x2, . . . , xn ≤ n− 1 with ∑n

i=1 xi = ` · k, such that

`

∏
i=1

bi,σ(i) ≤ 2n · ∏n
i=1 f̃ (xi)

f̃ (`)k
.

Since f̃ satisfies f̃ (a + b) ≥ f̃ (a) · f̃ (b), under the constraints on xi’s, for any k ≥ n/2,

`

∏
i=1

bi,σ(i) ≤ 2n · f̃ (`− 1)k · f̃ (2k− n + 1) · f̃ (1)n−k−1

f̃ (`)k
,

and for k < n/2,

`

∏
i=1

bi,σ(i) ≤ 2n · f̃ (`− 1)k−1 · f̃ (`− n + 2k− 1) · f̃ (1)n−k

f̃ (`)k
.
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Using the definition of f̃ , for any k ≥ n/2,

`

∏
i=1

bi,σ(i) ≤ 22n−k−1 · ((2k− n + 1)!)11

`11k , (42)

and for k < n/2,

`

∏
i=1

bi,σ(i) ≤ 22n−k · 1
`11(k−1) · (` · (`− 1) . . . (`− n + 2k))11

. (43)

For some k and n with k < n/2, summing over all permutations in S`(n, k) gives

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
(
`

n

)
· T(n, k) · 22n−k · 1

`11(k−1) · (` · (`− 1) . . . (`− n + 2k))11
. (44)

We will bound the three terms of equation (44), namely (`n), T(n, k), and 22n−k separately.

Expanding the first term, we get(
`

n

)
· 1
`(k−1) · (` · (`− 1) . . . (`− n + 2k))

=
` · (`− 1) . . . (`− n + 1)

n! · `(k−1) · (` · (`− 1) . . . (`− n + 2k))
<

1
n! · `k−1 .

(45)

For the third term, note that k < n/2 implies that 22n−k < 23n−3k, and since k ≥ 1, `− n + 2k > 2.
Using these two facts, we get

22n−k · 1
`3(k−1) · (` · (`− 1) . . . (`− n + 2k))3

<
23(n−k)

(`− n + 2k)3(n−k)
< 1 . (46)

Plugging (45) and (46) in (44), we get

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1

n! · `k−1 · T(n, k) · 1
`7(k−1) · (` · (`− 1) . . . (`− n + 2k))7

. (47)

For k = 1, T(n, k) = 1 and therefore

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1
n!
· 1
(` · (`− 1) . . . (`− n + 2))7 . (48)

For any 2 ≤ k < n/2, using Lemma 19, we have T(n, k) ≤ (2k + 3)n. Since k ≥ 2, 2k + 3 ≤ 2 · 2k,
and therefore T(n, k) ≤ (2 · 2k)n+2. Plugging this is (47), we get

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1

n! · `k−1 · (2k)n · 2n · 1
`7(k−1) · (` · (`− 1) . . . (`− n + 2k))7

. (49)

Moreover k < n/2 implies that n − k > n/2, and as a result n ≤ 2(n − k) and 2n · (2k)n ≤
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22(n−k) · (2k)2(n−k). Therefore,

2n · (2k)n · 1
`4(k−1) · (` · (`− 1) . . . (`− n + 2k))4

< 22(n−k) · (2k)2(n−k) · 1
`4(k−1) · (` · (`− 1) . . . (`− n + 2k))4

<
(2)2(n−k)

(`− n + 2k)2(n−k)
· (2k)2(n−k)

(`− n + 2k)2(n−k)
< 1, (50)

where the last inequality follows from 2k ≤ `− n + 2k and 2 ≤ `− n + 2k.

Combining (49) and (50), we have for any 2 ≤ k < n/2,

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1

n! · `k−1 ·
1

`3(k−1) · (` · (`− 1) . . . (`− n + 2k))3
. (51)

For a fixed k and n with k ≥ n/2, summing over all permutations in S`(n, k),

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
(
`

n

)
· T(n, k) · 22n−k−1 · ((2k− n + 1)!)11

`11k . (52)

We will again bound the three terms, namely (`n), T(n, k), and 22n−k−1 separately.

For the first term, since n/2 ≤ k, 2n− k− 1 ≤ 3k− 1, and therefore

22n−k−1 · ((2k− n + 1)!)3

`3k ≤ 23k−1 · ((2k− n + 1)!)3

`3k .

Since 2k− n + 1 ≤ k, and k + 1 ≤ `,

23k−1 · ((2k− n + 1)!)3

`3k ≤ 1
2
· (2k k!)3

(k + 1)3k .

For k = 1, 2, 3, 4, 5, (2kk!)3

(k+1)3k ≤ 1. For k ≥ 6, 2kk! ≤ kk. Therefore,

22n−k−1 · ((2k− n + 1)!)3

`3k ≤ 1
2

. (53)

Expanding the third term,(
`

n

)
· ((2k− n + 1)!)2

`2k =
` · (`− 1) . . . (`− n + 1)

n!
· ((2k− n + 1)!)2

`2k

≤ 1
n!
· ((2k− n + 1)!)2

`2k−n =
1

`(n− 1)!
· ((2k− n + 1)!)2

n`2k−n−1 ≤ (2k− n + 1)!
`(n− 1)!

.

Since k + 1 ≤ n, we have 2k− n + 1 ≤ n− 1, and therefore(
`

n

)
· ((2k− n + 1)!)2

`2k ≤ (2k− n + 1)!
l(n− 1)!

≤ 1
`

. (54)
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Plugging in (53) and (54) in (52),

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1
2`
· T(n, k) · ((2k− n + 1)!)6

`6k . (55)

Since T(n, n− 1) = 1, for k = n− 1, we have

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1
2`
· ((n− 1)!)6

`6(n−1)
. (56)

By Lemma 19, for k < n− 1, T(n, k) ≤ (2n− 2k + 5)n for k ≥ n/2, and

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1
2`
· (2n− 2k + 5)n · ((2k− n + 1)!)6

`6k .

Let n = 2k− z, then

(2n− 2k + 5)n · ((2k− n + 1)!)6

`6k = (2k− 2z + 5)2k−z · ((z + 1)!)6

`6k

≤ (2k− z + 5)2k−z · ((z + 1)!)6

`6k .

Taking derivative of (2k−z+7)2k−z+2

`6k with respect to k,

(2k− z + 5)2k−z

`6k

(
2 · log(2k− z + 5) + 2 · 2k− z

2k− z + 5
− 6 log(`)

)
≤ 0 .

Therefore (2k−z+5)2k−z+2

`6k is a non-increasing function of k. Since n = 2k− z ≥ 1, k satisfies 2k ≥ z+ 1.

So (2k−z+5)2k−z

`6k is maximized when 2k = z + 1. Therefore,

(2k− z + 5)2k−z · ((z + 1)!)6

`6k ≤ 6 · ((z + 1)!)6

`6k = 6 · ((2k− n + 1)!)6

`6k ≤ 6 · 1
`6(n−k−1)

,

where the last inequality follows from 2k− n + 1 ≤ `. Plugging this bound in (55) gives

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i) ≤
1
2`
· 6
`6(n−k−1)

. (57)

Plugging in (48), (51), (56), and (57) into (41),

perm(B`) =1 +
`

∑
n=2

n−1

∑
k=1

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i)

=1 +
`

∑
n=2

∑
σ∈S`(n,1)

`

∏
i=1

bi,σ(i) +
`

∑
n=5

∑
2≤k<n/2

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i)
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+
`

∑
n=2

∑
σ∈S`(n,n−1)

`

∏
i=1

bi,σ(i) +
`

∑
n=2

n−2

∑
k=dn/2e

∑
σ∈S`(n,k)

`

∏
i=1

bi,σ(i)

≤1 +
`

∑
n=2

1
n!
· 1
(` · (`− 1) . . . (`− n + 2))7

+
`

∑
n=5

∑
2≤k<n/2

1
n! · `4(k−1) · (` · (`− 1) . . . (`− n + 2k))3

+
`

∑
n=2

1
2`
· ((n− 1)!)6

`6(n−1)
+

`

∑
n=2

∑
k≥n/2

1
2`
· 6
`6(n−k−1)

≤1 +
1
`5 +

1
`2 +

1
2`6 +

`

∑
n=2

3
`
· 1
`6 − 1

≤1 +
1
`5 +

1
`2 +

1
2`6 +

3
`6 − 1

≤ 1.13 ,

for ` ≥ 3. �

Remark 1 (Exceedances and the Eulerian Number) For a permutation σ ∈ Sn,

• The exceedance of σ is defined as |{i ∈ [n− 1] : σ(i) > i}|.

• The Eulerian number E(n, k) is defined to be the number of permutations in Sn with k − 1 ex-
ceedances.

• The derangement number T(n, k) is defined to be the number of derangements in Sn with k ex-
ceedances.

The explicit formula for E(n, k) is E(n, k) = ∑k+1
j=0 (−1)j(n+1

j ) · (k + 1− j)n (page 273, [Com74]). The
exponential generating function of E(n, k) is given by (page 273, [Com74])

∞

∑
n=0

n

∑
k=0

E(n, k) tk xn

n!
=

t− 1
t− e(t−1)x

. (58)

The exponential generating function of T(n, k) is given by (Proposition 5, [Bre90])

∞

∑
n=0

n−1

∑
k=1

T(n, k) tk xn

n!
= e−t · t− 1

t− e(t−1)x
. (59)

Comparing (58) and (59), we infer

T(n, k) =
n

∑
j=0

(−1)(n−j) ·
(

n
j

)
· E(j, k) . (60)

Lemma 19 For any positive integer n,

• T(n, 1) = T(n, n− 1) = 1,
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• T(n, k) = T(n, n + 1− k) < (2k + 3)n for any k ∈ {2, . . . , n− 2}.

Proof Since E(n, m) = ∑m+1
k=0 (−1)k(n+1

k ) · (m + 1− k)n, taking absolute values, we get

E(n, m) <

(
n + 1

0

)
· (m + 1)n +

(
n + 1

2

)
· (m + 1− 2)n + . . .

< (m + 1)n ·
(

n

∑
i=0

(
n + 1

2i

))
≤ (m + 1)n · 2n.

Using equation 60 and taking absolute values, we get

T(n, k) <
n

∑
j=0

(
n
j

)
· E(j, k) <

n

∑
j=0

(
n
j

)
· 2j · (k + 1)j = (1 + 2(k + 1))n.

�

The following lemma is an extension to lemma 6.

Lemma 20 Let S be a subset of r < d vectors in Rd. Let C be a cycle in G(S), and let X = C\S and
Y = S\C such that |X| = |Y| = `. Let X = YAC + X⊥, where X⊥ denotes the projection of vectors in X
orthogonal to Span(Y). Then the change in objective value is given by

vol(S∆C)2

vol(S)2 ≥ det(A>C AC).

In particular, if C′ is the projection of the vectors in C onto Span(S), then vol(S∆C)2 ≥ vol(S∆C′)2.

Proof Let W = S\Y. Let us abuse notation to denote by X the matrix whose columns are the
vectors in set X and similarly for other sets defined above. Then let X = YAC + WA′ + Z, where
Z is the component of X which is orthogonal to Span(S). Let Y = Y⊥ + YW , where Y⊥ is the
component of Y orthogonal to Span(W).

Let M denote the matrix whose columns are the elements of S∆C. Concretely, M = [X W] follow-
ing the notation above. Note that

vol(S∆C)2 = det(M>M) = det

X>

W>

 [X W
] = det

X>X X>W

W>X W>W


= det

(
W>W

)1/2
det

(
X>X− X>W(W>W)−1W>X

)
, (61)

where the last equation follows from the fact that M>M is positive definite.

Now, since Z is orthogonal to both Y and W, we get

X>X = (YAC)
>(YAC) + (WA′)>(WA′) + Z>Z + (YAC)

>(WA′) + (WA′)>(YAC). (62)

Additionally, W(W>W)−1W> is the projection matrix on the column space of W, so

W(W>W)−1W>X = YW AC + WA′ . (63)
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Multiplying equation (63) with X gives

X>W(W>W)−1W>X = (YAC)
>(YW AC) + (YAC)

>(WA′) + (WA′)>(YW AC) + (WA′)>(WA′).
(64)

Subtracting equation (64) from equation (62), we see that

X>X− X>W(W>W)−1W>X = (YAC)
>(Y−YW)AC + (WA′)>(Y−YW)AC + Z>Z

= (Y⊥AC)
>(Y⊥AC) + Z>Z.

Substituting the value of X>X − X>W(W>W)−1W>X from the above equation in equation (61),
we conclude that

vol(S∆C)2 = det
(

W>W
)

det
(
(Y⊥AC)

>(Y⊥AC) + Z>Z
)

.

Similarly,

vol(S)2 = det

Y>

W>

 [Y W
] = det

Y>Y Y>W

W>Y W>W


= det

(
W>W

)1/2
det

(
Y>Y−Y>W(W>W)−1W>Y

)
= det

(
W>W

)1/2
det

(
Y>Y−Y>YW

)
(65)

= det
(

W>W
)1/2

det
(

Y>⊥Y⊥
)

. (66)

Finally, dividing equation (64) by equation (13) gives

vol(S∆C)2

vol(S)2 =
det

(
(Y⊥AC)

>(Y⊥AC) + Z>Z
)

det
(
Y>⊥Y⊥

) .

Since Z>Z is positive semidefinite, we conclude that

vol(S∆C)2

vol(S)2 =
det

(
(Y⊥AC)

>(Y⊥AC) + Z>Z
)

det
(
Y>⊥Y⊥

)
≥

det
(
(Y⊥AC)

>(Y⊥AC)
)

det
(
Y>⊥Y⊥

) = det(A>C AC).

If C′ is the projection of C onto Span(S), then Lemma 6 implies that vol(S∆C′)2 = vol(S)2 ·
det(A>C AC) ≤ vol(S∆C)2. �
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