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Bayesian Nonparametric

Bivariate Survival Regression

for Current Status Data∗

Giorgio Paulon†,¶, Peter Müller‡, and Victor G. Sal y Rosas§

Abstract. We consider Bayesian nonparametric inference for event time distri-
butions based on current status data. We show that under dependent censoring
conventional mixture priors, including the popular Dirichlet process mixture prior,
lead to biologically uninterpretable results as they unnaturally skew the proba-
bility mass for the event times toward the extremes of the observed data. Simple
assumptions on dependent censoring can fix the problem. We then extend the dis-
cussion to bivariate current status data with partial ordering of the two outcomes.
In addition to dependent censoring, we also exploit some minimal known structure
relating the two event times. We design a Markov chain Monte Carlo algorithm for
posterior simulation. Applied to a recurrent infection study, the method provides
novel insights into how symptoms-related hospital visits are affected by covariates.

Keywords: survival regression, current status data, Bayesian nonparametrics,
joint modeling, race model, recurrent infections.

1 Introduction

We develop Bayesian nonparametric survival regression for bivariate event times that
are subject to a single censoring time. In particular, we consider bivariate current status
data (Groeneboom and Wellner, 1992), referring to situations where the only available
information on each event time is whether or not it exceeds a monitoring time that is
common to the two outcomes. Data of this type are often collected in studies on the
prevalence of recurrent infectious diseases such as partner studies of HIV infections (Jew-
ell and Shiboski, 1990), or in carcinogenicity testing when a tumor under investigation is
occult (Dunson and Dinse, 2002). Wang and Ding (2000) show that the distribution for
bivariate current status data is not identifiable using nonparametric maximum likelihood
estimation. The goal of this article is twofold: first (Section 3), we propose a dependent
censoring scheme that is useful for modeling univariate event time data; second (Sec-
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2 BNP Survival Regression for Current Status Data

tion 4), we embed such dependent censoring within a flexible model that can estimate
the joint distribution of bivariate outcomes with the aid of weak structural assumptions.

Our goal is to develop a flexible model whose components have a biologically mean-
ingful interpretation. Bayesian models are especially useful in such scenarios because
of their ability to accommodate prior information. Nonparametric priors are often used
to flexibly model a baseline survival function, usually completed with a parametric
component that relates survival to a number of predictors. For example, Bayesian ex-
tensions of the proportional hazards (PH) model (Cox, 1972) have been proposed in
Kalbfleisch (1978) and in Hjort (1990). Generalizations of the accelerated failure times
(AFT) model (Buckley and James, 1979) based on a Dirichlet process prior appear in
Christensen and Johnson (1988), Kuo and Mallick (1997), Kottas and Gelfand (2001),
Hanson and Johnson (2004), or alternatively using Polya trees, for example in Hanson
and Johnson (2002). In other cases the main inference target is the hazard function.
Sparapani et al. (2016), for instance, construct nonparametric survival regression using
a Bayesian additive regression tree (BART) model (Chipman et al., 2010) by adding
time as an ordinal predictor to a BART-probit model for the hazard function.

In general, censored observations contribute limited information, via the distribution
function or survival function as the corresponding factors of the joint likelihood. This
becomes problematic in the case of current status data, as we shall demonstrate. Some
proposals have been put forward to tackle these issues. In the case of univariate survival
regression, generalizations of the PH model for current status data have been introduced
in Cai et al. (2011), Wang et al. (2015) and in Huang (1996). Xue et al. (2004) propose
a partly linear AFT model for univariate current status data. More similar to our
approach, Wang and Ding (2000) model dependence between bivariate event times via
a copula function. Dunson and Dinse (2002) use a Bayesian probit model with normal
frailties to induce dependence among multivariate current status data. Nevertheless,
there remains a gap in the literature concerning flexible nonparametric regression models
for bivariate current status data under dependent censoring.

The motivating case study is inference for the Partner Notification Study (Golden
et al., 2005). The goal of the study is to understand the times of development of infection
and symptoms for recurrent episodes of gonorrhea and/or chlamydial infections. The
study design includes a single follow-up visit for each individual. During this visit the
presence of symptoms and infection was recorded, leading to all censored data with
shared censoring times for the two outcomes.

Let S denote the time of the onset of symptoms, I the time of infection, and C the
time of the hospital visit. Thus, four responses are possible: presence of both disease and
symptoms (I < C, S < C), absence of both (I > C, S > C), absence of symptoms and
presence of disease (I < C, S > C), and symptoms without disease (I > C, S < C). The
latter can be explained by the fact that the surveyed symptoms are very generic and
might also arise due to other underlying causes. This setup yields data that are bivariate
in nature as two outcomes are registered. However, the censoring times, i.e. the hospital
visit times, are restricted to a lower dimensional subspace, with a single follow-up visit
to assess the presence of both symptoms and disease. Additional complexity arises from
the partial ordering of the two outcomes: the infection time is a priori unlikely to follow
the symptoms time. This can only occur when the symptoms arise due to other causes.
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Our model introduces features to reflect this consideration. We use a mixture model
with one submodel being subject to an order constraint, representing symptoms due to
the infection of interest, and another submodel without such constraint, allowing for
symptoms due to other causes. While our discussion is motivated by a specific applica-
tion, we note that similar data formats arise frequently in any study that involves data
collection during follow-up visits. For example, doctors might record tumor recurrence
using a CT scan and symptoms as reported by patients.

In the first part of this article, we demonstrate with simple examples the problems
arising from the use of standard techniques with current status data. We then introduce
structural assumptions that allow us to correctly estimate a meaningful distribution of
the latent bivariate outcomes. We propose a Bayesian nonparametric (BNP) approach
for modeling the joint distribution under these assumptions. An important feature of
BNP models is their large support, allowing us to approximate essentially arbitrary
distributions (Ishwaran and James, 2001). To handle covariates, our approach is based
on the dependent Dirichlet process (DDP) prior introduced by MacEachern (1999). See
also the discussion in De Iorio et al. (2004) for the special case of categorical covariates.

In summary, the main features of our approach here are (i) using BNP priors to-
gether with informative monitoring times to address the challenges that arise with
parametric inference for univariate current status data; (ii) exploiting known structural
dependence of the two event times to allow for some borrowing of strength; and (iii)
exploiting heterogeneity if known. While our motivating application gives rise to partic-
ular assumptions for (ii) and (iii), the same framework remains valid in more generality.
Current status data on any two event times that are likely to be ordered give rise to
the same setup.

The rest of this article is organized as follows. Section 2 describes the clinical study
that motivates this article. Section 3 develops the proposed inference approach starting
from a simple univariate case. Section 4 uses the univariate model as a building block
for bivariate outcomes and outlines a Markov chain Monte Carlo (MCMC) strategy for
estimation. Section 5 presents the results of the proposed method applied to the Part-
ner Notification Study. Section 6 finishes with concluding remarks. Additional details,
including proofs, the MCMC scheme, convergence diagnostics and simulation studies
are deferred to the supplementary materials (Paulon et al., 2022).

2 The Partner Notification Study

The Partner Notification Study (Golden et al., 2005) enrolled men and women who re-
ceived a diagnosis of gonorrhea or genital chlamydia at most 14 days prior to enrollment.
It was conducted in King County Seattle (Washington state, U.S.A.) from September
1998 to March 2003. Researchers contacted clinicians who diagnosed and treated the
infections to seek permission to contact their patients. To minimize the likelihood of
reinfection before randomization, patients who could not be contacted within 14 days
after treatment were not eligible for the study, yielding a total of n = 1864 participants.
The study was designed to gather current status data of recurrent gonorrhea or chlamy-
dial infection in patients 3 to 19 weeks after randomization to standard (control group,
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933 individuals) or expedited partner therapy (intervention group, 931 individuals). The
primary outcome was persistent or recurrent gonorrhea and/or chlamydial infection in
the original participants within 90 days after enrollment, although actual follow-up
times varied considerably (19 to 161 days) due to both difficulty scheduling follow-up
visits and anticipated hospitalizations due to symptoms. A scheme illustrating the trial
follow-up timing is shown in Figure 1. The issue of patient noncompliance is handled
by our model via a dependent censoring mechanism. Sal y Rosas and Hughes (2011)
previously analyzed data on infection times from the same study, explicitly allowing for
outcome misclassification.

Figure 1: “O” marks the date of the original diagnosis for the recurrent infection studied
in the trial, “R” is the randomization date. The randomization must occur in the 14
days following the original infection. The red segment represents the time window for
the follow-up visit.

When visiting the hospital, two outcomes were recorded for each patient: presence of
reinfection (Ii) and of symptoms (Si). Thus, two latent event times (Ii, Si) correspond
to a common censoring time Ci, i.e. the time of the hospital visit. The data record
for each patient Ci, and whether the patient has already experienced the infection
∆Ii

= 1(Ii < Ci) and some symptoms ∆Si
= 1(Si < Ci). While in general symptoms

should follow the onset of infection, the definition of symptoms in this study is very
generic and they might also be due to other causes. In the case Ii < Si it is impossible
to tell whether symptoms are due to the disease of interest or any other cause, while
when Ii > Si the symptoms are known to be due some other cause. Importantly, the
protocol, and thus the data did not include recording of actual event times for symptoms,
even in the case of Si < Ci.

The recorded n = 1832 follow-up visits included patients reporting all four possible
combinations of censoring for the two outcomes: n00 = 1303 patients did not experience
symptoms and tested negative for the infection; n10 = 121 patients tested positive
for the infection but were not experiencing any symptoms (asymptomatic infections);
n01 = 325 patients tested negative for the infection but were experiencing symptoms
(due to other causes); n11 = 83 patients tested positive for the infection and were also
experiencing symptoms (symptomatic infections).

Figure 2 shows two univariate nonparametric maximum likelihood estimates (MLE)
(Groeneboom and Wellner, 1992) for the distributions of time to infection Ii and time
to symptoms Si, stratified by two covariates (gender and intervention) under the as-
sumption of independent censoring. Female participants seem to experience symptoms
sooner than men. The flat region of survival probability in the middle of the range of the
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observed data is typical for the nonparametric MLE and is clinically highly implausible.
In Section 3 we show that the accumulation of probability mass toward the bounds of
the observation range is a common issue when dealing with current status data under
dependent censoring. Moreover, these nonparametric MLE estimates represent marginal
effects and do not take into account any correlation that is expected between the time
to infection and time to symptoms.

Figure 2: Nonparametric MLE for infection times (left panel) and time until symptoms
(right panel), stratified by the binary covariates gender and treatment fixing age to the
average age in the sample. Shaded areas represent pointwise 95% confidence intervals.

3 Univariate Survival Analysis for Current Status Data

We introduce a Bayesian nonparametric (BNP) modeling strategy for current status
data, first in a simple univariate case. We show that the nonparametric MLE for cur-
rent status data has an undesirable feature that makes it biologically uninterpretable
when the independent censoring assumption is violated. More specifically, most of the
probability mass is accumulated toward the extremes of the data range.

Let Si represent the latent event time for patient i, ∆i be a censoring indicator
with ∆i = 1 if the event has been detected and ∆i = 0 otherwise, and let Ci denote
the censoring time. That is, when ∆i = 1, then Si ≤ Ci (left censored), otherwise
Si > Ci (right censored). We want to infer the unknown density fS(s) based on only
the observed censoring times and indicators (Ci, ∆i), i = 1, . . . , n.

3.1 Limitations of the Maximum Likelihood Estimator

We show that under moderate sample sizes the nonparametric MLE does not provide
meaningful estimates of the event time distribution for current status data under de-
pendent censoring. Without loss of generality, we assume that the censoring times are
ordered, Ci ≤ Ci−1, and that ∆1 = 1, ∆n = 0. Define P = {{i > 1 s.t. ∆i = 1, ∆i−1 =
0} ∪ {1}} as the set of indices of left censored observations immediately following a
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right censored observation, i.e. the set of indices of the pairs (∆i−1, ∆i) = (0, 1). Next,
let J = |P | and C⋆ = (C⋆

1 , . . . , C⋆
J) = (Ci, i ∈ P ) denote the corresponding censoring

times. See Figure 3 for an illustration.

Figure 3: An example with n = 12 latent event times. The set of support points is
P = {1, 4, 7, 10}. On the x-axis, 0 and 1 indicate the values of ∆i.

Let C⋆
J+1 denote any point to the right of the last right censored observation. The

times C⋆ ∪{C⋆
J+1} are the only points where probability mass can accumulate under the

nonparametric MLE. In other words, the support of a discrete nonparametric density
estimate for the latent event times can have probability mass only at the left censoring
times. More specifically, the support of the MLE is restricted to Ci’s corresponding to (i)
the left censored observation in every “01” pair, (ii) the first left censored observation,
and (iii) any point to the right of the last right censored observation. To see this, write
the unknown distribution fS(·) of the latent times Si as a discrete probability measure
with atoms at the C⋆

j , i.e.

fS(s) =
J+1
∑

j=1

pjδC⋆
j
. (3.1)

We denote with Fj =
∑

k≤j pk the cumulative density function (c.d.f.) and with F̄j =
1 − Fj the survival function at the supporting point C⋆

j . To see that the nonparametric
MLE for fS(s) can only have support on the set C⋆, assume that fS(s) were to include
any additional probability mass p at Ci �= C⋆

j , j = 1, . . . , J . Let j⋆ = maxj{C⋆
j < Ci}

and j′ = minj{C⋆
j > Ci} denote the point mass in C⋆ closest to Ci from the left and

from the right, respectively. Then, if ∆i = 1 one could move the probability mass p to
C⋆

j⋆ , and if ∆i = 0 one could move the probability mass p to C⋆
j′ . Either would leave

the likelihood function unchanged.

Groeneboom and Wellner (1992) introduce a simple EM algorithm to estimate the
unknown c.d.f for the latent times under the independent censoring assumption. Let lj =
#{Ci s.t. ∆i = 1, C⋆

j ≤ Ci < C⋆
j+1} and rj = #{Ci s.t. ∆i = 0, C⋆

j < Ci ≤ C⋆
j+1} de-

note the runs of left and right censored observations, respectively. Let Y = {(Ci, ∆i)}
n
i=1
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Figure 4: Simulated data. Right and left censoring times are represented by black “0”
and red “1”, respectively, on the x-axis. Vertical dashed lines represent the possible
support points for fS(s).

denote the data and p = {pj}J+1
j=1 denote the parameters. The log-likelihood function

under model (3.1) is

ℓ(p; Y) =

n
∑

i=1

{δ1(∆i) · log F (Ci) + δ0(∆i) · log F̄ (Ci)}

=

J
∑

j=1

{lj log Fj + rj log F̄j}.

If instead we knew the latent times z = {Si}
n
i=1, we could use the full data log-likelihood

ℓ(p, z) =
∑J

j=1 nj log(pj) where nj = #{Si = C⋆
j }. The expectation of this full data

log-likelihood with respect to z involves only E(nj | p). This motivates an easy Expec-
tation Maximization (EM) algorithm, illustrated in Algorithm 2 in the supplementary
materials.

We illustrate the algorithm on simulated data with n = 200 latent times generated
from a mixture of three normal distributions with weights π = (0.4, 0.2, 0.4)⊺, locations
µ = (20, 40, 60)⊺ and scale parameters σ2 = (25, 25, 25)⊺. The censoring times Ci were
simulated according to model (3.2), defined below. As shown in Figure 4a, despite a
large number of support points C⋆, in this simulation study most of the probability
mass under the unconstrained MLE accumulates close to the bounds of the range of the
data. One might conjecture that the issue is caused by the excessively flexible nature of
the unconstrained MLE. However, under dependent censoring even parametric models
fail to capture the underlying distribution of the latent times. For comparison, we carried
out inference using a mixture of K = 3 Gaussian distributions for the latent times S,
matching the nature of the actual simulation truth. In Figure 4b, we show the posterior
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mean for the unknown event time distribution under this model when fitted to the
current status data in the simulation study. The posterior estimated distribution still
allocates most probability mass toward the extremes of the data and misses the central
peak, despite using an analysis model that matched the actual simulation truth. The
same issues arise to either side of the range of the data when only either left censored
observations or right censored observations are available.

3.2 A Bayesian Nonparametric Model

We introduce some assumptions to address the issues described in the previous section.
In short, we regularize the model by (i) explicitly modeling the dependence between
censoring times and latent event times, and (ii) introducing prior shrinkage with a
flexible nonparametric Bayesian prior. We opt for a proper prior probability model to
ensure that the posterior is proper. As a consequence, inference of any summary of
interest is regularized and shrunk towards the corresponding prior summary.

Knowledge about dependent censoring allows us to gain some information on fS(·)
from the censoring times. For example, in the motivating case study it is expected that
patients seek help shortly after they experience symptoms. This information can be
incorporated in the model in many ways. For our specific application, we assume that
the censoring times Ci’s arise from a race between a return by schedule versus a return
driven by the onset of symptoms, as

Ci | Si, λ
d
= min{Si + Exp(λ); Unif(A, B)}, (3.2)

where
d
= denotes equality in distribution, A and B represent the range of the observa-

tion window, and Exp(λ) and Unif(A, B) refer to random variables with the respective
distribution. In other words, the visit time to the hospital can either occur uniformly
in the observation range (visit by protocol) or it can closely follow the symptoms on-
set (visit prompted by symptoms). The resulting distribution can be easily evaluated.
Below we provide an explicit expression for the probability density function in the case
A ≤ c ≤ B, s ≥ A, which in our application was guaranteed by choosing A = 0.

Proposition 1. The p.d.f. of the conditional distribution of censoring times given the
event times is given by

fC|S(c | s) =
1{c ≤ s}

B − A
+
1{c > s}

B − A
e−λ(c−s){1 + λ(B − c)}, A ≤ c ≤ B, s ≥ A.

A proof is provided in the supplementary materials. An alternative expression for
the p.d.f. can be found for the case s < A.

The regularization induced by the dependent censoring mechanism in (3.2) yields
more interpretable inference, but some issues remain. Figure 5 shows the nonparametric
density estimate for such a model under dependent censoring, and it highlights that
inference still fails to recover the simulation truth. Two important features that are
missing from this model are prior smoothing for the distribution of the latent event
times as well as borrowing of information within homogeneous patient subpopulations.
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Motivated by the described limitations we specify a Bayesian nonparametric prior
for the latent event times. Relaxing parametric assumptions allows for greater modeling
flexibility, robustness against misspecification of a parametric statistical model and, as a
result, more honest uncertainty assessment than under a parametric model. At the same
time, prior smoothing and shrinkage result in more realistic and clinically meaningful
estimates compared to a nonparametric MLE. In addition, a BNP model can allow to
accommodate heterogeneous patient populations, for example using a Dirichlet process
(DP) mixture model.

Let f denote the distribution of the variable of interest (in our case the event times).
A DP mixture model assumes f(y) =

∫

k(y | θ) dH(θ) with H ∼ DP (M, H0), where
DP indicates a DP prior with total mass α and base measure H0. See, for example
Müller et al. (2015, Chapter 2) for a review of the DP and DP mixtures. For later

reference we note that H =
∑∞

h=1 πhδθh
is a.s. discrete with θh

iid
∼ H0, and a stick

breaking prior (Sethuraman, 1994) for the weights πh = qh

∏

ℓ<h(1 − qℓ) with qh
iid
∼

Beta(1, M). Two natural choices of sampling models k(y | θ) for survival data are the
log normal and the Weibull families. In applications with event times close to 0, it can
be convenient to first log transform the data and then use normal kernels, i.e. use log
normal kernels. In many instances, however, a mixture of normals may suffice (Lo, 1984)
and is often preferred. Another attractive choice are gamma mixtures, especially with
a view towards asymptotic results (Hanson, 2006; Poynor and Kottas, 2019). Although
our implementation uses normal kernels for computational convenience, we recognize
that distributions with support on the positive real line would be more natural and
that very little would change in the model construction if gamma kernels are used. In
our particular motivating case study, however, we did not observe any imputed negative
event times over the 1, 250 Monte Carlo iterations (after burn-in and thinning) using
normal kernels.

Finally, like most survival analysis approaches we treat the data as continuous ran-
dom variables. This is a reasonable approximation even when the data is discrete (as in
the case of dates) but with a resolution relatively small compared with time window of
the experiment, as in the application motivating this article.

The BNP-CS model

The resulting model can be summarized as

Ci | Si, λ
d
= min{Si + Exp(λ); Unif(A, B)}

Si | H ∼

∫

N(Si | µ, σ2)dH(µ, σ2), H ∼ DP(M, H0).
(3.3)

The model is completed with base measure

H0 = N(µk | µ0, σ2
k/κ0) × IG(σ2

k | aσ, bσ),

and priors M ∼ Gamma(aM , bM ), λ ∼ Gamma(aλ, bλ). We refer to (3.3) as BNP for
current status (BNP-CS) model, with the name implying that alternative BNP priors
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other than the DPM (see, e.g. Müller et al., 2015) could be used if desired. Using the
stick-breaking construction of the DP, the second line of model (3.3) can be rewritten
as

Si | {µk, σ2
k, πk}+∞

k=1 ∼

+∞
∑

k=1

πkN(Si | µk, σ2
k)

with (µk, σ2
k) ∼ H0, i.i.d., and π ∼ SB(M), where SB(M) denotes the stick-breaking

construction for the weights, with concentration parameter M . In our implementation,
we also use priors on the hyperparameters µ0, κ0, bσ.

Figure 5: Simulated data: Right and left censoring times are represented by “0” and
“1”, respectively, on the x-axis. The green step function shows an estimate of the sur-
vival function under the nonparametric MLE using independent censoring. The gray
step function shows an estimate of the survival function under the nonparametric MLE
using dependent censoring. The blue curve shows an estimate of the survival func-
tion under a mixture of normals model (note that the simulation truth is in the same
parametric family). The red curve shows an estimate of the survival function under
the proposed model. Shaded areas represent pointwise 95% credible intervals for the
estimated survival functions. The black dashed line represents the simulation truth.

Inference under the BNP-CS model for the same data used in the illustration of
Section 3.1 recovers the underlying truth better than inference under the model with
independent censoring. Figure 5 shows the survival function estimated under (i) an
unconstrained nonparametric model, (ii) a nonparametric model under dependent cen-
soring, (iii) a mixture of K = 3 normal distributions with independent censoring, and
(iv) the proposed nonparametric model with dependent censoring. Although the model
under (iii) matches the simulation truth, inference under models (i) – (iii) fails to recover
a meaningful estimate, while inference under (iv) successfully exploits the information
that is contained in the observed Ci.
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4 Bivariate Survival Regression for Partially Ordered

Current Status Data

4.1 A Bivariate Event Time Model

We now use the BNP-CS model (3.3) as a building block for bivariate outcomes. Beyond
the already discussed dependence of Si and Ci, we add some more structure based on
prior knowledge of the underlying process. Without additional assumptions, the joint
distribution for bivariate current status data is not likelihood identifiable, in general
(Wang and Ding, 2000).

To see that this is the case, let FI = P (Ii ≤ Ci) = P (∆Ii
= 1), FS = P (Si ≤ Ci) =

P (∆Si
= 1), and FIS = P (Ii ≤ Ci, Si ≤ Ci) = P (∆Ii

= ∆Si
= 1). Note that FI , etc.

are functions of Ci. Assuming independent censoring, the joint likelihood function for
bivariate current status data Y = (∆Ii

, ∆Si
, Ci, i = 1, . . . , n) is then

∏

i

{

F ∆I ∆S

IS (FI − FIS)∆I (1−∆S)(FS − FIS)(1−∆I )∆S (1 − FS − FI + FIS)(1−∆I )(1−∆S)
}

,

(4.1)
where, for ease of notation, we suppressed the i index in ∆I and ∆S . Only the three
univariate distributions FI , FS and FIS are likelihood identifiable. In other words, (4.1)
is invariant with respect to changing any other element of the joint distribution that does
not change FI , FS or FIS . For example, any general bivariate quantile P (I < a, S < b)
for a �= b would not be identifiable. In particular, this implies that nonparametric
inference on the bivariate event time distribution is only possible with some additional
assumptions. To achieve inference on the joint distribution of (I, S) we can either (i)
estimate the joint distribution under parametric or semiparametric assumptions, or (ii)
build the joint model from the two identifiable marginal distributions and a particular
choice for their dependence structure. Our approach follows mainly the latter strategy.

In the application, we distinguish between symptoms that arise due to the infection
and symptoms that arise due to other causes. In the former case, we assume a parametric
model for the lag time L = S − I between infection time I and onset of symptoms S.
In the latter case, we assume independence between I and S. That is, we model the
bivariate event time distribution fIS(I, S) as a mixture model in which one of the two
components is subject to the order constraint I < S, i.e.

fIS(I, S) = wf⋆
IS(I, S) + (1 − w)f ′

IS(I, S), (4.2)

where f ′
IS(I, S) is subject to I < S, whereas f⋆

IS(I, S) is not. Therefore, f⋆
IS(I, S) can

be interpreted as the distribution of (I, S) for a patient with symptoms “due to other
causes”. Figure 6 shows the support of the two components of the mixture as well as
the support for the latent times corresponding to the four possible censoring indicators,
i.e. factors in (4.1).

We add two main assumptions to introduce more structure in (4.2), which will
eventually facilitate inference: (i) under f⋆

IS(I, S), the time to symptoms (due to other
causes) and time to infection are independent; (ii) under f ′

IS(I, S), the latency time



12 BNP Survival Regression for Current Status Data

Figure 6: Support for the latent times I > 0, S > 0, corresponding to the four cases
Q00, Q01, Q11, and Q10. The gray quadrants represent the support for the latent times
corresponding to the observed censoring times (Ci, Ci) under f⋆

IS(I, S). The red shaded
areas represent the support for the latent times under f ′

IS(I, S).

L = S − I and the time to infection are independent. These are reasonable model
assumptions which are clinically plausible in the motivating application. Here L is the
delay from the onset of illness to the development of symptoms. The assumed marginal
fI(·) on I is shared by both, f⋆

IS and f ′
IS . Thus, model (4.2) becomes

fIS(I, S) = wfI(I)f⋆
S(S) + (1 − w)fI(I)fL(S − I). (4.3)

Finally, note that by introducing in (4.3) dependence between S and I, we implicitly
also introduce dependence between I and C through (3.3), thus regularizing inference
on both fI and fS . For later reference we note that sampling (Ii, Si) ∼ fIS can be
equivalently written as a hierarchical model with latent indicators, say vi, with p(vi =
1) = w and

(Ii, Si | vi) ∼

{

fI(I)f⋆
S(S) if vi = 1

fI(I)fL(S − I) if vi = 0.
(4.4)

The second component in (4.3) includes the constraint I < S as a positivity con-
straint on the latency time L > 0. Recent approaches to deal with hard constraints use
relaxation methods that replace the hard constraint with priors that penalize departures
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outside of the constraint subspace (Duan et al., 2020). Alternatively, Patra and Dunson

(2018) developed methodology that uses unconstrained inference and then projects the

posterior draws onto the constrained subspace. In our model, assigning positive support

to the reparametrized variable L automatically ensures the required order constraint

I < S. In the following, we will use L | λL ∼ Exp(λL). However, if desired, any richer

parametric family, e.g. a Gamma distribution, could be used. As a consequence, under

f ′
IS(I, S) = fI(I)fL(S − I), time to symptoms and time to infection are dependent.

Let M00, M01, M11, M10 denote the likelihood factors corresponding to the four cases

in Figure 6, i.e. the four factors in (4.1). Dropping the subject subscripts, let FI =

FI(Ci), F̄I = 1−FI(Ci), and similarly for F ⋆
S and F̄ ⋆

S . The structural assumptions allow

us to replace the general bivariate quantiles arising from (4.2) by simple expressions that

only use the univariate marginal distributions. Hence we get

M00 = wF̄I F̄ ⋆
S + (1 − w)F̄I ,

M01 = wF̄IF ⋆
S ,

M11 = wFIF ⋆
S + (1 − w)

∫ C

0

fI(I)FL(C − I)dI,

M10 = wFI F̄ ⋆
S + (1 − w)

∫ C

0

fI(I)F̄L(C − I)dI.

(4.5)

Simulation experiments to assess successful estimation of the model parameters can be

found in the supplementary materials.

Considering identifiability of (FI , F ⋆
S , w, λL), we use a finite grid (g1, . . . , gG) over I

and S as it is used for the posterior summary figures in Figure 7 and Figure 8. In what

follows, we use a definition introduced in Basu (1983), as stated in Swartz et al. (2004).

Definition 1 (Identifiability). Let U be an observable random variable with distribution

function Fθ and let Fθ belong to a family F = {Fθ : θ ∈ Ω} of distribution functions

indexed by a parameter θ. Here θ could be scalar or vector-valued. We say that θ is

nonidentifiable by U if there is at least one pair (θ, θ′) ∈ Ω2, θ �= θ′, such that Fθ(u) =

Fθ′(u) for all u. In the contrary case we shall say θ is identifiable.

Proposition 2. Assume the model for the lag time L is such that an equation for the

c.d.f., FL(x) = u for u ∈ (0, 1) has a unique solution in the parameter λL. Assume that

the prior support Sw for w is s.t. Sw ⊆ (0, 1) and the prior support for FI , F ⋆
S implies

for the discretized event times FI(gk) < 1, F ⋆
S(gk) > 0 for k = 1, . . . , G. Then model

(4.5) is identifiable.

A proof is provided in the supplementary materials.



14 BNP Survival Regression for Current Status Data

4.2 Bayesian Nonparametric Priors

The model is completed by introducing priors for the two unknown distributions, as-
suming nonparametric mixture models for both fI(I) and f⋆

S(S),

fI(I) =

∫

N(I | θ(I))dH(I)(θ(I)) =

+∞
∑

k=1

π
(I)
k N(I | µ

(I)
k , σ

(I)2
k ),

f⋆
S(S) =

∫

N(I | θ(S))dH(S)(θ(S)) =

+∞
∑

k=1

π
(S)
k N(S | µ

(S)
k , σ

(S)2
k ),

(4.6)

where θ(I) = (µ(I), σ(I)2) and θ(S) = (µ(S), σ(S)2). Here H(I)(·) =
∑

k π
(I)
k δ

θ(I) , and

similarly H(S), are the random mixing measures. The model is completed with a prior
probability model on H(I) and H(S). Prior distributions on random probability measures
are known as nonparametric Bayes (BNP) models.

Using a nonparametric prior on H(I) and H(S) the model becomes a mixture of
normals with respect to the chosen random mixing measure. For example, in our im-
plementation we assume a DP prior again, as in (3.3), now using two instances for
fI and f⋆

S . Alternatively, any other nonparametric Bayesian prior (e.g. James et al.,
2009) could be used. The following result gives the marginal distributions implied by
our construction.

Theorem 1. The marginal distributions implied by model (4.3) with priors (4.6) are

fI(I) =
+∞
∑

k=1

π
(I)
k N(I | µ

(I)
k , σ

(I)2
k ), (4.7)

fS(S) = w

+∞
∑

k=1

π
(S)
k N(S | µ

(S)
k , σ

(S)2
k ) + (1 − w)

+∞
∑

k=1

π
(I)
k EMG(S | µ

(I)
k , σ

(I)2
k , λL), (4.8)

where EMG(µ, σ2, λ) denotes the exponentially modified Gaussian distribution (Grushka,
1972).

An easy proof is provided in the supplementary materials. Model (4.3) together
with (4.6) and (3.3) for p(Ci | Si) defines the proposed bivariate BNP-CS model for
current status data.

One of the reasons for the wide use of BNP mixtures like (4.6) is the induced prior on
a random partition. Consider Ii ∼ fI , i = 1, . . . , n. Under model (4.6) we can introduce

latent indicators, say r
(I)
i , and write instead

p(Ii | r
(I)
i = k) = N(µ

(I)
k , σ

(I)2
k ) and p(r

(I)
i = k) = π

(I)
k .

The r
(I)
i ’s can be interpreted as cluster membership indicators. We see then how

this formulation implicitly defines a probability model p(r(I)) on a partition r(I) =
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(r
(I)
1 , . . . , r

(I)
n ). Two observations are clustered together if they are assigned the same

group-specific parameters θk = (µk, σ2
k), where for brevity we now omit the superscript

(I). Recall the indicators vi in (4.4). Without loss of generality assume that vi = 1
(symptoms due to other causes) for i = 1, . . . , n1, and vi = 0 (symptoms due to disease),

i = n1 + 1, . . . , n. Similar to p(r(I)) we get a random partition p(r
(S)
⋆ ) induced by

sampling from f⋆
S(·) for patients i = 1, . . . , n1. For i = n1 +1, . . . , n we have Si = Ii +Li

with the infection times Ii subject to the already described partition r(I), and Li i.i.d.
under the assumed parametric model for the lag times Li = Si − Ii. In words, under the

proposed model, the clustering structures r(S) and r
(S)
⋆ for symptoms due to infection

and for symptoms due to other causes, respectively, are modeled separately and are
independent. In fact, symptoms due to infection inherit the clustering structure r(I),
which is induced by the marginal distribution for the infection times.

In order to cluster grouped data, other approaches have been proposed (Teh et al.,
2005; Rodriguez et al., 2008; Camerlenghi et al., 2019; Argiento et al., 2020). These
strategies allow for the possibility of sharing atoms of the random probability measures
across groups, thus borrowing information and yielding more precise inference. However,
the random partition is not the main inference target here and we shall therefore not
further explore such alternatives.

4.3 Regression on Covariates

We now add covariate effects in the proposed nonparametric model. In the context of
model (4.6) this takes the form of replacing H(I) and H(S) by families of random proba-

bility measures (r.p.m). That is, we introduce a family {H
(I)
x , x ∈ X }, and similarly for

H(S). Here x are patient specific covariates, and we replace H(I) and H(S) by H
(I)
xi

and

H
(S)
xi

for patient i in equation (4.6). Dropping for the moment the superscript for easier
exposition, let H = {Hx =

∑

k πxkδµxk
, x ∈ X } denote a family of r.p.m.’s indexed by

x. The most widely used class of priors on families like H are dependent DP (DDP)
models (MacEachern, 1999). The DDP construction implies marginally for each Hx a
DP prior, and allows for the desired dependence across x. The definition of the marginal
DP implies that the µxk’s are independent across k and that the weights have stick-
breaking priors, but it does not restrict the distribution across x. This is what the DDP
construction exploits to borrow information across covariate values. The DDP induces
dependence across x through the atoms µxk and/or the weights πxk of the marginal
r.p.m.’s.

In the Partner Notification study the predictors are xi = {gender, arm, age} ∈
{0; 1}2 × R

+, i.e. two binary and one continuous covariate. We use a simple analy-
sis of variance (ANOVA) structure to induce dependence of µxk across x and common
weights πh. DDP models with ANOVA-type dependence across categorical factors are in-
troduced as the ANOVA-DDP in De Iorio et al. (2004) and then extended to continuous
covariates in De Iorio et al. (2009). The dependence structure of the random probability
measures Hx is modeled by constructing the atoms as µxk = δk + αkx1 + βkx2 + γkx3.
The interpretation of the linear model coefficients mk = (δk, αk, βk, γk)⊺ is exactly as
in an ANOVA model, inducing the desired dependence of Hx across x by sharing, for
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example, the same βk for any two covariate vectors x and x′ that share the same x2.
Finally, using a design vector di = (1, xi1, xi2, xi3)⊺ to select the desired ANOVA effects
we can write µxik = d

⊺

i mk to get Hxi
=

∑+∞
k=1 πkδd⊺mk

. Defining θk = (mk, σ2
k)⊺ to

allow for a mixture also with respect to the kernel variances, we can define one common
mixing measure

H(·) =

+∞
∑

k=1

πkδθk
,

and push the linear model into the mixture kernel in (4.6). We now add back the
superscripts (I) and (S) for the two models H(I) and H(S) in (4.6). Using H(I) the
marginal distribution fI(Ii | xi) can thus be rewritten equivalently as a DP mixture of
linear models, now using a single mixing measure H for all x (linear dependent DDP,
Jara et al., 2010)

fI(Ii | xi) =

∫

N(Ii | d
⊺

i m(I), σ(I)2)dH(I)(θ(I)) with H(I) ∼ DP(M (I), H
(I)
0 ).

(4.9)
Another instance of the same model is used for the marginal distribution of symptoms
due to other causes f⋆

S(Si | xi). The full model is

Ci | Si, λ
d
= min{Si + Exp(λ); Unif(A, B)}

(Si, Ii) | θ(S), θ(I), w, λL ∼ fIS(I, S).

using (4.9) for fI and similarly for f⋆
S . The complete model now defines a bivariate

BNP-CS survival regression. Using the stick-breaking representation, the DP priors
on H(I) and H(S) can be written as follows. Using superscripts E ∈ {I, S} to refer to
the construction of fI and f⋆

S respectively, we have

{m
(E)
k , σ

(E)2
k }+∞

k=1
iid
∼ H

(E)
0 = N(m

(E)
k | m

(E)
0 , Σ

(E)
0 ) × IG(σ

(E)2
k | a(E)

σ , b(E)
σ )

π(E) | M (E) ∼ SB(M (E)); M (E) ∼ Ga(aM , bM ),

and λ ∼ Ga(aλ, bλ), λL ∼ Ga(aL, bL), w ∼ Beta(aw, bw). This completes the model
construction. Hyperparameter choices are described in the supplementary materials.

For later reference we note that the random probability measures H(I)(θ(I)) and

H(S)(θ(S)) that serve as the mixing measure in (4.9) are multivariate distributions for

θ(I) = (m(I), σ(I)2)⊺ = (δ(I), α(I), β(I), γ(I), σ(I)2)⊺, and similarly for θ(S). Let

H
(I)
β =

+∞
∑

k=1

π
(I)
k δ

β
(I)
k

(4.10)

denote the implied univariate marginal for the ANOVA effect β(I). Analogous notation

can be used for H
(S)
β and any of the other ANOVA effects. We will later use inference on

H
(E)
β , E ∈ {I, S}, to summarize inference on the treatment effect. Note that H

(E)
β , E ∈

{I, S} should only be interpreted as summaries of a comparison of posterior inference

on the distributions fI and f⋆
S across x, as there is no notion of the mixtures H

(E)
β ,

E ∈ {I, S} being identifiable.
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4.4 Posterior Inference

To implement posterior inference under a Dirichlet process mixture model, the two main
strategies are marginal (Escobar and West, 1995; MacEachern and Müller, 1998; Neal,
2000) and conditional MCMC posterior simulation, including the truncated Dirichlet
process of (Ishwaran and James, 2001) and the slice sampler implementation proposed
in Kalli et al. (2011). In our implementation, we employ the truncation algorithm of
Ishwaran and James (2001). In particular, we rewrite the mixture model as a hierarchy

by explicitly introducing the latent cluster membership variables v, r(I) and r
(S)
⋆ . More-

over, we impute the latent symptoms and infection times from their corresponding full
conditionals. We use efficient sampling for truncated normal distributions, originally
proposed in Geweke (1991). This allows us to use standard algorithms for inference
under a DPM.

The total masses M (I) and M (S) for the two random probability measures are in-
cluded in the MCMC scheme and assigned Gamma priors, as recommended in Escobar
and West (1995). Moreover, we put priors on the hyperparameters for the base measures

H
(I)
0 and H

(S)
0 . Additional details of the algorithm are deferred to the supplementary

materials.

We carried out extensive simulation studies to verify the use of the proposed model
with relevant sample sizes (details in the supplementary materials). Figure 7 shows the
summary of one of these simulations, which was designed to closely mimic the setup of
the Partner Notification Study. We simulate one binary and one continuous covariate.
The underlying distributions for the infection times and for the symptom times are
two mixtures of linear models, each one with different parameters. For more details
on how the data were generated, we refer to the supplementary materials. Simulations
show that our model can recover the underlying bivariate density for the two events
when inference is conditioned on censoring times and censoring indicators only, using
sample sizes as in the application. Figure 7 highlights that the underlying true bivariate
density is recovered well by our method. In the supplementary materials, we show that
our proposed method outperforms parametric and nonparametric alternatives in terms
of goodness-of-fit.

5 Partner Notification Study - Results

We apply the proposed model for inference in the Partner Notification study described
in Section 2. The primary inference goal is to understand the effect of covariates, in
particular treatment assignment, on the joint distribution of the two latent times of in-
terest. Furthermore, we are interested in assessing what factors drive time to reinfection
and how time to symptoms onset of these cases can improve such estimation.

Inference under the proposed model includes the full joint distribution of latent times
to symptoms and infection times. Figure 8 shows the posterior estimated distribution
fIS(I, S) and the two components f⋆

IS(I, S), f ′
IS(I, S) corresponding to a ‘baseline’

covariate combination (male, control group, median age). There is significant probability
mass in the lower triangle (S < I) that is not concentrated around the 45◦ line but is
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Figure 7: Results for simulated data: Posterior mean density estimate for f⋆
IS , f ′

IS and
fIS corresponding to the baseline covariate levels. The green line is the 45◦ line I = S.
The corresponding marginal distributions are shown on the top and right side of the
density plot. The white points are a sample of the true latent times corresponding to
the same covariate levels. Inference is only conditioned on ∆I and ∆S .

quite spread out. Instead, for the constrained component (S > I) the probability mass is
concentrated very close to the 45◦ line. In other words, most of the inferred symptoms
times due to infection concentrate in I < S < I + 10. This is simply reflecting that
symptoms due to the infection follow shortly after the disease onset.

These results differ from the prior expectation implied by our choice of the hyperpa-
rameters. As one can see in the supplementary materials, the prior is much more diffuse
than the posterior density estimate.

To show the estimated covariate effects, we could compare estimated survival func-
tions for different combinations of the predictors. Alternatively, we can report posterior

estimated marginal distributions of the ANOVA effects, for example H
(E)
β , E ∈ {I, S}

from (4.10). These are the univariate marginal distributions of the treatment effect in
the DDP model, and concisely summarize the change of the bivariate survival distribu-
tion with respect to treatment versus control. The top center panel in Figure 9 shows

the posterior estimated distributions E(H
(I)
β | data), and similarly for other regression

effects. Two significant effects can be detected. Importantly, treatment delays reinfec-
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Figure 8: Results: Posterior mean density estimate for f⋆
IS , f ′

IS and fIS corresponding to
the baseline covariate levels (male, control group, mean age). The green line corresponds
to the 45◦ line, i.e. I = S. The corresponding marginal distributions are shown on the
top and right side of the density plot.

tion times, confirming what was found in an earlier analysis in Sal y Rosas and Hughes
(2011). Moreover, gender has an effect on the time to symptoms due to other causes,
with women seeking hospital visits earlier, when the visit is prompted by symptoms.
This might be simply due to the fact that women are more aware of their symptoms
and are more inclined to hospital visits, suggesting that a health education campaign
for men might improve their health outcome. Age has also been found to have a weak
effect: younger individuals have shorter times to reinfection, possibly due to their more
risky behavior.

Two parameters of the model, namely λL and λ, can give insights into how long
it takes for participants to develop symptoms and to seek a visit to the hospital. In
particular, the 95% credible interval for the exponential parameter λ is [0.70, 1.42],
suggesting that people seek a doctor visit, on average, one day after onset of symptoms.
Moreover, the 95% credible interval for the exponential parameter λL is [0.22, 0.80],
which implies that patients develop symptoms due to infection, on average, 2.5 days after
reinfection. Inference includes an estimate for the proportion of patients that experience
symptoms due to the infection, in our notation 1 − w. The posterior mean of such
proportion is 0.18 (95% CI: [0.12, 0.24]). This is coherent with what we see empirically
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Figure 9: Results: Posterior means for the distributions Hα, Hβ and Hγ associated to
the regression coefficients α (left), β (middle) and γ (right) under fI (top panels) and f⋆

S

(bottom panels). The figures show kernel density estimates based on MCMC posterior
simulations.

in the data. There are more observed symptoms than observed infections, which implies

that most of the symptoms should be attributed to other causes. This finding has

important practical implications as it can help better planning for the treatment of

patients.

Figure 10: Results: Estimated survival curves under the proposed model for infection
times (left panel) and times until symptoms (right panel) corresponding to the possible
combinations of the binary covariates gender and treatment fixing the predictor age to
the average age in the sample.
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By way of comparison we carry out alternative inference, first using a model with
flexible marginal distributions that assumes independence between the two events, and
then using a model with parametric marginal distributions that instead implies depen-
dence between the events. For the first strategy, we implement inference under two
independent linear dependent Dirichlet process (LDDP) mixture of survival models for
the marginal distributions of infection and symptoms times. This method is described
in De Iorio et al. (2009) and implemented in the DPpackage (Jara et al., 2011). For a
fair comparison, we used the same prior specifications for the shared parameters under
the two models. The results are shown in Figure 11. Note the inappropriate posterior
shrinkage of probability mass toward the extremes.

Figure 11: Results: LDDP estimated survival curves for infection times (left panel) and
times until symptoms (right panel) corresponding to the possible combinations of the
binary covariates gender and treatment fixing the predictor age to the average age in
the sample.

The second comparison uses a bivariate Gumbel model (Gumbel, 1960). Two vari-
ables (I, S) have a Gumbel bivariate exponential distribution if their probability density
function is

f(I, S) = λIe−λI IλSe−λSS [1 + α{1 − 2e−λI I}{1 − 2e−λSS}],

where −1 ≤ α ≤ 1 is a measure of dependence between the two variables. To include
covariates, we generalize this model to a bivariate Gumbel regression by using log(λI) =
λI0 + X⊺β, log(λS) = λS0 + X⊺γ. Under this model, both I and S have marginal
exponential distributions with parameters λI and λS , respectively. Vague priors on all
parameters were specified.

Some consistent results can be found across the models. For example, under the esti-
mated models women have shorter time until symptoms as measured by the distribution
for the corresponding regression coefficient in Figure 9 (or by the survival curves in Fig-
ure 10, right panel) and by the survival curves in Figure 11 (right) and Figure 12 (right).
Unlike inference under the competing models, inference under the proposed bivariate
model also shows a weak effect of the treatment on the infection time. Patients in the
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Figure 12: Results: Estimated survival curves under the bivariate Gumbel model for
infection times (left panel) and times until symptoms (right panel) corresponding to
the possible combinations of the binary covariates gender and treatment fixing the
predictor age to the average age in the sample.

intervention group have a delayed re-infection time. The proposed model yields more
interpretable results compared to the two independent LDDP models. In fact, under
the LDDP models the probability mass accumulates toward the bounds of the observed
censoring times, yielding a “flat” survival curve in the middle region (see Figure 11
compared to Figure 10), exactly where we expect events to happen. In fact, most right
censored observations are imputed to the right of the rightmost censoring time, whereas
most left censored observations are imputed to the left of the leftmost censoring time.
This shows that the prior shrinkage alone does not suffice for regularization, and it is
consistent with the observations of Section 3.1. On the other hand, the Exponential
marginal distributions implied by the bivariate Gumbel model represent a very strict
parametric assumption that seems not to fit well the data. The specification of such
a simple parametric model also yields underestimation of uncertainty. The bivariate
Gumbel model also implies a positive correlation between the events, as measured by
the 95% credible interval for the parameter α is [0.72, 0.99].

Additional simulations that illustrate the flexibility of our model compared to its
competitors are shown in the supplementary materials.

6 Discussion

We proposed a novel Bayesian nonparametric bivariate survival regression model that
is especially suited for current status data (BNP-CS regression). This research was
motivated by the failure of available methods for such data formats. For example, we
showed that under dependent censoring widely used nonparametric mixture priors lead
to biologically uninterpretable results. Our model was built by incorporating simple
structural dependence assumptions in a linear dependent Dirichlet process mixture of
survival models. While the specific structural assumptions have natural interpretations
in the motivating application, a similar inference framework remains valid in more gen-
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erality. Any bivariate event times with a weak notion of ordering could be modeled very
similarly, by introducing heterogeneity with an order constraint under one subpopula-
tion and independence otherwise.

Applied to a recurrent infection study, the method provides novel insights into how
symptoms-related hospital visits are affected by covariates. Notably, we were able to
replicate previous results showing a significant effect of the intervention in the ran-
domized controlled trial under consideration. In particular, patients in the intervention
group have an improved outlook as measured by delayed reinfections. We also detect an
effect of age, with young people having earlier reinfections, which might be due to more
risky behaviours. Furthermore, we show that gender has a significant effect on the time
until symptoms, but not on infection times. Our study shows that men seek hospital
visits later compared to women, suggesting that investing in an awareness campaign
could be beneficial.

The ideas presented in this article can be extended to different dependence struc-
tures. The present data called for a positive correlation between infection times and
infection-related symptom times. A similar model specification can be used for negative
correlations. Once the marginal models are flexibly specified, one could for example use
copula models to construct a joint distribution with the desired dependence structure.
A similar approach, but with positive correlations, could be used for general positively
correlated event times when the assumptions used in this application are not available.

Supplementary Material

Supplementary Materials for Bayesian Nonparametric Bivariate Survival Regression for
Current Status Data (DOI: 10.1214/22-BA1346SUPP; .pdf). Supplementary materi-
als present additional details. These include proofs of the theorems, the choice of prior
hyper-parameters and the MCMC scheme, convergence diagnostics and simulation stud-
ies. In separate files, the supplementary materials additionally include the R programs
implementing the model developed in this article
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