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Randomized clinical trials have been the mainstay of
clinical research, but are prohibitively expensive and
subject to increasingly difficult patient recruitment.
Recently, there is a movement to use real-world
data (RWD) from electronic health records, patient
registries, claims data and other sources in lieu
of or supplementing controlled clinical trials. This
process of combining information from diverse
sources calls for inference under a Bayesian paradigm.
We review some of the currently used methods
and a novel non-parametric Bayesian (BNP) method.
Carrying out the desired adjustment for differences
in patient populations is naturally done with BNP
priors that facilitate understanding of and adjustment
for population heterogeneities across different data
sources. We discuss the particular problem of using
RWD to create a synthetic control arm to supplement
single-arm treatment only studies. At the core of the
proposed approach is the model-based adjustment to
achieve equivalent patient populations in the current
study and the (adjusted) RWD. This is implemented
using common atoms mixture models. The structure
of such models greatly simplifies inference. The
adjustment for differences in the populations can be
reduced to ratios of weights in such mixtures.

This article is part of the theme issue ‘Bayesian
inference: challenges, perspectives, and prospects’.

1. Introduction

Randomized controlled trials (RCT) remain the gold
standard for clinical studies to estimate the effect of an
intervention. However, RCTs, while critical to get drugs
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to the market are beset with rising costs and difficulties in volunteer recruitment. Prolonged
duration of RCTs has impeded introduction of much needed therapies to consumers. Against
the background of these challenges the US 21st Century Clinical Care act was passed in 2016,
to encourage the use of readily available real world data (RWD) in drug development. This
legislation and the increased availability of RWD have paved the way for RWD in clinical trial
designs. Here RWD is defined as data relating to patient health status and/or the delivery of
health care routinely collected from a variety of sources. The resulting real-world evidence (RWE)
is the clinical evidence about the usage and potential benefits or risks of a medical product derived
from analysis of such RWD. Pursuant to the 21st Century Clinical Care act, the U.S. Food and Drug
Administration (FDA) is working with stakeholders to understand how RWE can best be used to
increase the efficiency of clinical research, as outlined, for example in [1].

One of the main issues in using RWD to complement RCTs is the need to demonstrate
equivalence of the patient populations under comparison, or achieve such equivalence by
appropriate adjustment or pre-processing. Propensity scoring is perhaps the most widely used
approach for matching populations to achieve equivalence. Propensity scores (PS) are often
estimated by logistic regression. However, in high dimensions, the inclusion of interaction terms
incurs an explosion of the design matrix. For this and related reasons, high dimensionality of
covariates, mixed data types and data missingness are fatal limitations to compare populations
for equivalence. It turns out that a preponderance of covariates are categorical. So, dimension
reduction by standard principal components (PCA) is not immediately feasible and alternate
methods are necessary. As an alternative to PS-based methods, in this article we also review a
model-based approach using common atoms mixture models. One motivation for this choice
is the observation that a variety of disease mechanisms and epidemiological factors induce
population heterogeneity, making it natural to use mixture models to account for intrinsic
heterogeneity and to estimate component-specific parameters for model-based inference.

In this article, we review several recently proposed methods using model-based Bayesian
inference to incorporate RWD in clinical trial design, including the mentioned PS-based methods.
We discuss in more detail a recently developed method introduced in [2] which uses common
atoms mixture models to account for heterogeneity. The model is parametrized so as to allow
parsimonious evaluation of weights for adjustment to achieve equivalent populations, or—
equivalently—to allow easy and flexible estimation of PS. These methods break the distinction
of model-based versus PS-based methods, as they can be seen as both. The scheme implements
stochastic stratification by PS, that is, inference is averaged with respect to uncertainties in the
stratification. This happens naturally in the proposed mixture model framework. We develop
the model and inference for the following context. Assume an investigator is designing a new
study (current study) and wishes to make use of RWD to supplement the current single-arm
treatment-only study with a synthetically created control arm. Here, the RWD could be data from
earlier studies (historical studies), electronic health records or repositories. We assume a typical
phase II study, with event time or binary endpoint, as it arises, for example, in phase II trials for
glioblastoma (GBM) patients without controls. See, for example, [3] for a discussion of the reasons
that led investigators to design single-arm trials in GBM.

While the discussion is in the context of this scenario, the approach is more widely applicable.
It can be used to create equivalent populations in any other context. For example, it could be used
to compare two treatments based on RWD, assembling both treatment arms from the same RWD
source. Or it could be used for interim analysis and stopping decisions [4].

Inference is implemented using Markov chain Monte Carlo (MCMC) posterior simulation,
which since the seminal work of A.FM. Smith and collaborators in the 1990s [5,6] has enabled
researchers to use increasingly more complex inference models. At the core of the approach is
a common atoms mixture (CAM) model for the two patient populations, including patients in
the current single-arm trial and patients in the RWD. An interesting aspect of posterior inference
in the proposed CAM is that appropriately reweighed posterior simulation under one mixture
submodel can be used to evaluate expectations with respect to the other mixture submodel. The
CAM model is an example of a non-parametric Bayesian (BNP) model, whose wide support, i.e.
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the ability to fit virtually any distribution, is critical for use in this application. Some of the early
work of A.FM Smith was instrumental in introducing BNP models in Bayesian inference [7,8].

In §2, we review some currently used methods. The CAM model and its use for the
construction of synthetic control arms are introduced in §3. In §4, we show an application to single
arm, treatment-only phase II studies for glioblastoma patients, and results from a simulation
study to compare the proposed method with alternatives based on propensity scores.

2. Real-world evidence in Bayesian clinical trial designs

Several methods have been proposed in the literature to incorporate information from RWD
in Bayesian clinical trial design. Several early methods consider the particular case of using
information from historical studies to formulate informative priors. These include historical data
priors, commensurate priors and meta-analytic priors, as briefly reviewed below. Several other
methods are based on PS for patients with given baseline covariates. The PS can be for treatment
selection, or for a patient being selected into one or the other study. Some methods are based on
flexible non-parametric regression models for potential outcomes (under treatment and control).
Another commonly used element of different methods is the use of patient-specific weights to
either thin out datasets or implement analyses with such weights. Details of these methods are
discussed in the following subsections.

The following review includes methods developed for a variety of different setups involving
RWD at different levels. In particular, some methods are meant for use in studies with a
concurrent control when RWD is used to augment this (often reduced sample size) control
arm. Other methods assume that a study is restricted to inference under a single condition.
Yet other methods create a synthetically constructed control arm to supplement a single-arm,
treatment-only study. In particular, methods discussed under (a) and (d) below have no notion
of constructing synthetic cohorts, but are suitable when either a concurrent control is available,
or inference is about a single condition only. The approach in (b) is explicitly about augmenting
a concurrent control arm, while (c) allows for both use cases. Relatedly, the broad definition of
RWD (compare the introduction) is reflected in a wide variety of use cases, including applications
where RWD refers to historical studies, registry data, observational studies or insurance data.

(a) Historical data priors

Under the Bayesian paradigm [9], a natural way of exploiting external information is by way of
informative prior probability models. If the external information are historical trials, one widely
used method to develop such priors is the use of the so-called power priors. The construction and
use of power priors is reviewed in [10]. We define a prior probability density (or function) to be
proportional to a fractional power of the likelihood function for the historical data. The fractional
power formalizes a notion of discounting the information from the earlier study. Let D denote
the data for the current study, and D; the data from a historical study. Let p(D; | 6) denote the
likelihood function for the historical data, assuming a model indexed by an unknown parameter
0, and let y; denote the fractional power. Assume then that the inference model p(D | 6) for the
current data is indexed by the same parameter 6. That is, the inference model for the historical
and the current study share the same parameter 6. The historical data prior is then defined as

1
70Dy, v1)=———7(®) - -p(D116)",
c(n)
with normalization constant c(y;). Using fixed y1, this is known as the conditional power prior.
Extending the model to allow for uncertainty on y; defines the modified joint power prior

n () - p(D1 [6)"

D
7(0,y1|D1) D)

7(y1)- 2.1
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The implied complete conditional distribution p(y; | 8, D) reveals one limitation of the modified
power prior. The conditional p(y; |6,D) is free of the current data D. This has led to the
development of the commensurate power prior by Hobbs et al. [11]. The commensurate prior allows
for the possibility of different parameters for the historical and current study. Let 6; denote the
parameter for the inference model p(D; | 61) for the historical data, and let & denote the parameter
in p(D | 0), as before. The commensurate prior links the two inference models by postulating
a hierarchical prior probability model with positive prior probability for 6 ~6;. Let N(-|m, V)
denote a normal p.d.f. with moments (1, V). A commensurate prior is defined as

p(D1 | 1)

67, ” )

N (01617 ) dor} 701070

The two parameters 6, 6; are linked by assuming 6 | 61,7 ~ N(61,1/7). The normal precision t is
known as the commensurability parameter. The model can adapt to prior-data conflict if needed.
Of course, alternatives to the normal model for p(6 | 6, T) could be used if desired.

Considering a setting with multiple prior studies [12] define the meta-analytic prior (MAP).
Let s=1,...,S index multiple prior (external) studies. Similar to before, we assume inference
models indexed by (f;,s=1,...,S) for the historical data and 6 for the current data, respectively.
The MAP prior is defined as the posterior predictive distribution for 6 in a hierarchical extension
that includes submodels for each of the historical studies and the current study, as

701 Ders =1, S [ 6 1) {HJP(DS |9s)dlﬂ(95|77)} 7 (n)dn.

S

In a default implementation [12] use a half-normal prior 7(0?) for across-study variance o2 in
p@1n)=N@ |n,m= 02). Similar to the commensurate prior, [13] define the robust MAP prior
by introducing an additional component in the mixture model, allowing for 6 and 6; to be
independent. Let 7(6) denote a mixture model approximation of the MAP prior, and let 7, denote

a conjugate prior for the assumed sampling model p(D | ). The robust MAP is defined as
7@ |D1,...,Ds)=1—w)m(8) + wmy(9).

The mixture approximation 7 in lieu of the actual MAP prior is introduced to simplify the model
construction by defining the robust MAP as a simple extension of the same mixture. The marginal
posterior on w characterizes the level of borrowing of strength.

(b) Non-parametric regression and potential outcomes

Using a potential outcome [14] framework, [15] develop a method to enrich an RCT with
additional data on control using RWD. That is, they use RWD to supplement (a typically reduced
sample size) control arm in a current study. They proceed by fitting a non-parametric regression
model of outcomes as a function of baseline covariates for patients under control, and similarly
for patients under treatment. The main innovation is that the earlier regression for outcomes
under control includes a study indicator as an additional covariate, thus allowing probabilistic
adjustment for study effects. The regression is implemented as a Bayesian random forest using
Bayesian additive regression trees (BART) [16].

Formally, let Y;(a) denote the (potential) outcome for patient i under treatment a, let S; €
{0,1,...,S} denote an indicator for inclusion in the current study (s = 0) or external data (s > 0).
Two random forest models for patients under treatment A; € {0,1} and covariates X; define
(Yi1A;=0,X;=x,5;=5) =fo(x,s) + €p; using a random forest fo(-) and (Y; |A; =1, X;=x,5,=0)=
f1(x) + €1; with a second instance f1(-) of the random forest model, and assumed i.i.d. residuals ;.
The model implies a well-defined conditional average treatment effect (CATE) as

A= % Z E{Y;(1) — Y;(0) | Data, S; = 0}.
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Here the BART models f,(-) adjust for patient-level covariates, naturally allow for interactions,
and capture potentially heterogeneous treatment effects across different data sources s.

(c) Propensity scores
Several methods use propensity scores (PS)
e(X)=p(5=0]X),

for current (S =0) versus historical (S=1) data, that is, S € {0, 1} is an indicator for a patient in
a merged population being selected into one versus the other dataset. Wang et al. [17] stratify
the data by equal quantiles of e(X) in the current study. Let r=1,...,R index these R quantiles.
First, external data beyond this range is trimmed. Then let f,o(e) and f;1(¢) denote density
estimates for e restricted to stratum r in the current study and external data, respectively. Next,
define a coefficient of similarity based on some distance measure (or measure of discrepancy)
8, = diff{f,o, fr1}. For inference under stratum r we then use a power prior with exponent y; o é,
to report a stratum-specific treatment effect 6, and an overall treatment effect 6 =(1/R) )", 6,
(assuming equal quantiles).

Using a non-Bayesian approach, a similar scheme is developed in [18] defining a composite
likelihood including factors for stratar =1, ..., R. Let # denote parameters of the outcome model.
Let W} denote the indices of all patients in the RWD in statum r, and similarly WY for patients
from the current study. A composite likelihood function is then defined as

LO)=[13 [ rwi1o) [] rwoi10)¢,

o liew} ieW?

with y, = diff{f,o, fr1}, similar to the exponent y; in the stratified power prior.

The propensity-score integrated power prior [17] and the composite likelihood method [18]
are implemented in the R package psrwe [19]. The program is easy to use, including functions
to implement each step of the process, starting with one function to estimate the propensity
scores e(X), a function to create the stratification, and finally two functions to implement either
the PS-integrated power prior or the composite likelihood, as desired. For the estimation of the
propensity scores, the user can choose either logistic regression or random forests.

Many other uses of PS are developed in the recent literature. For example, [20] combine the use
of PS and MAP priors. The approach evaluates PS e(X) for selection into one or the other study,
stratifies with respect to these propensity scores and then uses MAP priors to evaluate treatment
effects in each stratum.

A generalization with multivariate propensity scores for selection of patients into one of
S > 2 studies is developed in [21]. The method sets up a non-parametric Bayesian regression of
outcomes on these multivariate propensity scores, and then evaluates an average treatment effect
as a difference of fitted outcomes under treatment versus control.

(d) Patient-level weights

Golchi [22] comments on the nature of historical data priors as using study-specific weights,
which appear as the fractional power in the historical data likelihood function. The use of such
omnibus weights ignores the typically high level of heterogeneity of patient populations. The
latter would more naturally justify patient-specific weights, with higher weights for patients
who are more representative of the current patient population. Let then D;; denote data for
the ith patient in study s with s=0 for the current study and s >1 for historical studies, and
let Ds =(Dg;,i=1,...,ns). Defining ys; = 8sim(Ds;, Do) as a similarity measure of Dy; and Dy, we
then proceed similar to historical data priors, but now with patient-specific weights to construct
a prior 7 (0) «x 7o(0) - [ [s-1 p(Dsi | 6)¥%. For parsimony, in a practical implementation replace ys; by
Vsi = Vsil(vsi > p) with some pre-set threshold p.
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As a default choice for 8gim [22] proposes for continuous covariates to use a rescaled version
of the Mahalanobis distance. Let ds; = dp1H(Ds;, Do) using sample mean and covariance matrix of
Dy to evaluate the Mahalanobis distance, and define y;; =1 — r - dg;, where r is chosen to map dg;
to the unit interval. For other data formats, Golchi [22] suggests to use the posterior predictive
distribution for D; given Dy, i.e. dsj =p(Dq; | Do) = [ p(Ds; | ¥) - mo(¥) ]_[]- p(Do; | ¥) dyr using the
same probability models as the inference model, with ¥ replacing 6. The expression is assuming
that the inference model (or a simplified version of it) takes the form of i.i.d. sampling given 6.

3. A common-atoms BNP mixture model for using RWD

Chandra et al. [2] develop a model-based approach to include RWD in clinical trial design using
nonparametric Bayesian (BNP) mixture models. We introduce the set up and approach in the
context of a specific example.

Example 3.1. Synthetic controls for single-arm glioblastoma (GBM) trials. For a variety of
reasons (e.g. [3]) many phase II trials in GBM are designed as single-arm treatment-only studies
(SAT). Let then s = 0 indicate a current SAT, and assume that RWD is available in the form of data
for earlier patients in the same hospital and treated by the same clinical group (s =1). We want
to use this RWD to create a synthetic control arm to augment the current SAT study. See [2] for
more details. A summary of the data is shown in figure 1. We report results for this application in
the next section, after introducing the general approach. In the following discussion we will use
(T) and (C) to refer to the patient population in the SAT (“I” for treatment), and the RWD (‘C’ for
control), respectively.

(@) Common atoms mixtures

The approach proceeds as follows. First we fit a BNP mixture model, F1(xy;), to patient covariates
x1; in (C). For simplicity, assume a mixture of normals. Then we fit a second mixture model,
Fo(x;), to (T), using the same atoms, that is, the same normal location-scale parameters in the case
of the mixture of normals. Only the weights distinguish F; and F. Let 7, s =0, 1, denote these
weights. Figure 2 illustrates the two mixture models Fy and Fq, assuming univariate x;; and four
components, h =1,...,4. Part of the inference is a latent allocation of all data points, i.e. patients,
to one of the terms in the mixture. This link is not fixed. It involves random indicator variables
¢ that link patient i in study s with one of the terms in the mixture. We are already almost done.
Clearly the desired adjustment of the RWD data to create an equivalent patient population should
involve the ratio of the weights in the mixture. For patient i in (C), let then w; denote the posterior
expectation of the ratio mq,, /71c,;. It can be shown that thinning out the RWD by retaining data
points with probability w; creates an adjusted distribution Fj = Fy. One could then proceed with
the desired inference as if the study were a randomized controlled trial. Figure 3 illustrates the
idea. For this scheme it is critical that the nonparametric mixture model F; can fit the data. Under
appropriate (mostly technical) assumptions this is the case. BNP models ‘are always right’, in the
sense of full prior support (e.g. [23]). We skipped some details in this brief outline. In particular,
the atoms of Fy are only defined conditional on latent cluster allocations for the real-world data.
See below for more details.

For a formal description of the same scheme let x5; = (xs;5,j=1,...,p) denote the baseline
covariates for patient i in study s, including p covariates. Fitting a mixture model to x;;, we assume

xli~Jq(x1i;;)dcl<c), i=1,...,m, (3.1)
N————
Fi(x)

where G; is a random mixing measure. Let 8y denote a point mass at x. Using a prior
probability model that restricts G; to discrete probability measures we can represent G as G1 =
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Figure 1. Data for historical data (RWD) (left block) and a current single arm, treatment-only study (right block). The horizontal
axis are patients, and the vertical axis are p = 11 baseline covariates. All covariates are categorical, with different colours
indicating different levels of each covariate (0 = black, 1 = purple or dark grey, 2 = yellow or light grey) and white for missing
data. (Online version in colour.)
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Figure 2. Two common-atoms mixture mo@els for the RWD (blue, with four terms) and the SAT (red, with three terms). The
mixture models share the same kernels g(-; £») and differ only by the weights 7z, (Online version in colour.)

LT X Using, for example, multivariate normal kernels g(x; ¢ = (1, X)) = N(x; 1, X¥), equation
(3.1) becomes a mixture of normal model. The latter can be written as

x1i 16 ~q(5 &)

(3.2)
g~ G1.

Fi=) myq(e; &) or
I

Sampling from the mixture induces a random partition of [n1]={1,..., n1}. First, note that the
mixture model can equivalently be written as xy; | £; ~q(; §;) with ¢; ~ Gy, as indicated on the
right side of (3.2). The discrete nature of G; implies a positive probability of ties among the ¢;. The
arrangement of such ties defines clusters Cyx. Let {7, ..., ¢z} denote the K <n1 unique values
among the ¢;. Finally, let c1; =k when i € Cyy, i.e. §; = ¢. We will use these cluster membership
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Figure 3. Matching the two populations by thinning out. Blue stars (top) indicate patients in the external data, arranged by
strata. Red stars (bottom) are patients in the treatment arm. Stars in light grey (top) indicate patients in the external data that
are (conceptually) dropped from the dataset to create equivalent populations. (Online version in colour.)

indicators cy; to represent the clusters in posterior simulation below. The described structure is
summarized as a partition p; ={Cyy,...,Cix} of [n1] into clusters Cy;. That is, Cix S [n1] and
Uk Cix = [n1]. Here U refers to a disjoint union with Cix N Cyp =9 for k# £. See, for example,
[24] for more discussion of this random partition.

The idea is then to fit the mixture F; to the RWD, generate the random partition {Cy1,...,Cik}
and cluster-specific parameters ¢, k=1, ..., K. Note that the random number of clusters, K, is part
of the random partition. Also, for easier notation assume without loss of generality that ¢} = ¢,
k=1,...,K (re-indexing ¢, if needed). Given ¢* we then fit a second mixture

K
Fo= Z mokq(e; &), (3.3)
k=1

to the SAT data xy;,i=1,...,n9. Two observations about F( are in order. First, F is a mixture with
respect to a random probability measure with atoms matching those of F; only that are linked to
data points under cy;. Second, in Fs, s =0, 1 only the weights = have s indices. The atoms ¢* are
shared (more precisely, the subset of those atoms that are allocated under cy; are shared). Such
‘common atoms’ BNP mixture models have been shown to be useful in other applications too
[25,26].
In summary, the common atoms mixture model (CAM) for RWD and the current study is as
follows:
Fi(x1)

Y Iz plail &)~ g1l ¢n)
Pl &) ;nlhq(%'m o p(&1i = &) 1k

(3.4)
pxoi 1 %, m0) ~ Y mokq(xoi | &) -
k

Fo

Recall that ¢* is defined as the set of unique valuesin {¢1;, i=1,...,n1}, and we assume &= & (re-
arranging indices if needed). In other words, the prior on Fy is defined conditional on F; and ¢*.
For reasons explained later, in §3¢c, we refer to model (3.4) as CA-PPMx. The model is illustrated
in figure 2. Similar common-atoms mixture models, without the constraint on the second mixture
model to only use the atoms ¢ sampled in the first mixture, are used, for example, in [25]. The
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latter constraint makes the mixture Fy dependent on the latent ¢*, which are therefore introduced
in the first line of (3.4).

We implement MCMC-based posterior simulation under this model, obtaining a posterior
Monte Carlo sample of myy, mox, c1;. Let myx = |Cix| denote the size of the kth cluster under the
RWD. Let Ds ={x, i=1,...,ns} denote the data. We use the posterior Monte Carlo sample to
evaluate the posterior mean w; o< E(mqc,, /m1c,, | Do, D1), i=1,...,n1. Here we replaced myj in the
denominator by the cluster size (to avoid numerical problems). We use these weights to thin out
the RWD sample, to create an adjusted sample from F; = Fy, as desired.

(b) Algorithm

The approach is summarized by the following four steps. Let (T) and (C) denote the single-arm
treatment only study (SAT) and RWD data, respectively.

STEP 1: Fit data in (T) and (C) , using a common atoms random partition (3.4) including Fq, £*
and Fy.

STEP 2: Resample (-weigh) the (C) patients, to achieve equivalent patient populations.

STEP 3: Prove equivalence, using any general purpose classification (support vector
machine, Bayesian random forests, etc.) of the merged data set, merging (T) and
(C). Failure to classify the merged data proves equivalence.

At this moment, we have (T) ~ resampled/weighted (C); and could proceed as if the
resampled /weighted (C) were a control arm in a RCT.

STEP 4: Carry out inference on treatment effects as if the study were an RCT.
STEP 4": Alternatively, extend the BNP mixture model (3.4) for x,; to include outcomes ys;,
allowing model-based inference on treatment effects.

The latter allows us to impute potential outcomes and proceed by reporting a model-based
average treatment effect as a posterior expected difference of outcomes under treatment versus
control.

Some more details on STEP 2: from (3.4), it is intuitively plausible that reweighing of the
control patients to evaluate expectations under Fy should use the already mentioned weights
w; = o /m1k, with k= cy;. More specifically, in [2] we show that expectations under Fj can be
evaluated using posterior Monte Carlo samples conditional on D; after thinning out the external
data using weights w;. We will use this in STEP 4’ to evaluate posterior expectations of average
treatment effects. See [2] for a formal discussion and justification. In the implementation, we
evaluate the weights fori=1,...,n; as a Monte Carlo average

T[OC]l
w; X E

M, /n1’

where t indexes posterior Monte Carlo samples, m; = |Cy| is the size of cluster k, and ¢; is the
cluster membership indicator with ¢; =k when i € Cy.

Finally, more detail on the evaluation of treatment effects in STEP 4. Note that the model in (3.4)
is restricted to patient covariates x,;. It does not yet include a sampling model for the outcomes.
But the model can easily be extended to include outcomes y,; by introducing cluster-specific
parameters 0 and assuming

Ysi ~ PYsi |1 € Cek, Osk),
where 6Oy and 60y, k=1,...,K, index the response model under treatment and control,

respectively. We then define a cluster-specific treatment effect using a suitable function d(6, 61x)
of these parameters. For example, if the interpretation of 6y is as an average event time, this
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could be dj = (6px — 61x). Finally, we report the overall treatment effect under Fy as the posterior
expectation of

8= mord(Oox, 611), 3.5)
k

with the posterior expectation averaging over the random partition, the weights and the treatment
effect parameters.

(c) Implied random partition and missing data

Some more observations on p; ={Cyy, ..., Cix}. Since we only discuss the partition of (C) here,
we for the moment drop the study subindex 1. The discrete mixture (3.1) for the external data
implies the already mentioned random partition of patient indices [n] = {1, ..., n} into clusters p =
{C1,...,Ck}. A widely used choice for the prior probability model for G; in (3.1) is the Dirichlet
process (DP) prior [27]. The DP prior on G implies a marginal prior p(p) which is known as the
Chinese restaurant process and can be written as p(p) o [ [;(ICx| — 1)! [28]. In general, a random
partition of this product form is known as product partition model (PPM) [29]. The factors c(Cy),
in this case, ¢(Cy) = (|Cx| — 1)! are known as the concentration function. Let x; = {x;; i € C¢} denote
the covariate vectors arranged by cluster. Conditional on x the model becomes

pp | x) o [ [ o(C) g(xp)- (3.6)
k

Here, the last factor is g(x}) = i nieck q(x; | &) dG*(gf), with q(-) referring to the mixture kernel
and G* is the prior on the cluster-specific parameters ¢, which is specified as one of the
hyperparameters of the DP prior on Gj. The random partition p(p | x) again takes the form of a
PPM, now indexed with covariates x;. In other words, p(p | x) defines a regression of the random
partition p on covariates x [30]. In the context of this model, the additional factor g(x) serves a
purpose like a purity or ‘similarity” function in hierarchical clustering algorithms. It favours the
formation of clusters with similar x;. For more discussion of such models for prediction, see also
[31]. We refer to (3.6) as the PPMx model, and to (3.4) as the CA-PPMx model to highlight the
implied random partition.

(i) Missing data

An important feature of the model for the application to RWD is the natural accommodation of
missing data (missing at random). Assuming that the kernels factor across coordinates of x; as
q(xi 1 ¢F) = ]_[j g;(xij | (,:].), the similarity function g(x;) can be evaluated using available covariates
Xjj only. For each patient, let C; C {1,...,p} denote the indices of all available covariates, let x; =
(xij, j € C;) and let x; = {x;; i € Cy} denote the set of only the observed covariates for all patients in
cluster Cy. Also, let Oyj={i: i € Cx and j € C;}. Then

p
st = | [Taes 16 dc e =TT | T a1 6567z (3.7)

ieCy j=1" icOy

In the last expression, the product over i goes only over all those patients in cluster Cy with
available jth coordinate. Missing covariate values are simply not used.

Implicit in this construction is the assumption of missing at random. An interesting situation
could arise when RWD includes multiple sources of datasets with different sets of missing
covariates. While formally (3.7) can accommodate this set-up, one would need to carefully
consider whether it is reasonable to continue assuming missing at random. Missingness patterns
other than completely at random can be handled by introducing additional hierarchy in the model
(see, e.g. [32] for a review).
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4. AGlioblastoma study

In this section, we discuss an application example and a simulation study to illustrate the use of
RWD for creating a synthetic control arm to complement a single-arm treatment-only study.

Example 4.1. (continued): Synthetic controls for single-arm glioblastoma (GBM) trials. In
[2] we apply the CAM approach to create a synthetic control arm to design a single arm
treatment-only phase II trial for GBM patients treated at M.D. Anderson Cancer Center. We use
data from historical patients treated over recent years in the same clinic. This RWD includes
n1 = 339 patients. We record p =11 carefully selected covariates. Given the devastating nature of
glioblastoma thorough studies have been conducted to find clinically relevant covariates [33,34].
We followed these earlier studies and expert advice from clinical collaborators to choose the
selected covariates.

Consider then a new SAT with np =49 patients. The endpoint is overall survival (OS). Let A;
denote the hazard ratio at time ¢ for patients under treatment versus control. The evaluation of
the hazard ratio averages over the covariates x; of a future patient i =7 + 1 and is evaluated over
a range of t from 0 to 180 weeks. A new treatment is considered clinically effective if A; < 0.6 for
all ¢.

In the design, we consider two scenarios. In the first scenario (null scenario, Hp), we assume
A+ =1, that is, no difference between treatment and control. In the second scenario (alternative
scenario, Hy), we assume a treatment effect with A; < 0.6 for 0 <t < 180. Figure 4 shows Kaplan—
Meier (KM) plots for one hypothetical realization of the trial under Hyp (2) and under H; (b).

For a more extensive comparison, we carry out a simulation study. We compare the CA-PPMx
model approach with an approach using a PS-integrated power prior (PP) [17], and a similar, non-
Bayesian propensity-score composite likelihood approach (CL) [18] (compare with the discussion
of the PP and CL approach in §2c).

We simulate hypothetical data under three scenarios. We generate covariates x;, i=1,...,n,
from a model p(x) for the (assumed) marginal distribution of patient covariates in a merged
population. Here n =ng + 1y is the total number of patients (and see next for ng and n1). Given
x; we then select each patient into either the external data (S; =1) or the treatment only single
arm trial (S;=0), with ny1 =3} S; and ng =n — ny. That is, instead of simulating x,; for s=0,1
separately we first simulated x; for the merged population, and then only assigned patients to
one or the other study.

For p(x), we used the empirical distribution of the data in the historical GBM studies. To create
a desired simulation truth §° for the treatment effect, we use the recorded outcomes for patients
under S; =1 and increment outcomes for patients under S; = 0. To select patients into one or the
other studies, we used three different (simulation truth) propensity score models: (i) a logistic
regression without interaction, as assumed by the PP and CL methods. We therefore refer to this
as the Oracle scenario; (ii) a logistic regression with interaction (Interaction scenario); and (iii) using
the propensity score model implied by the CA mixture model (CA Mixture). For the simulation
under scenarios (i) and (ii), we use ng =49,1n1 =290 and p =11 with all categorical covariates;
and for scenario (iii) ng € {50, 100, 150}, n; =6 - ng and p € {10, 15,20}. The scenarios were chosen
to mimic some aspects of the GBM study. In fact, the covariate distribution p(x) for (i) and (ii) is
defined as the empirical distribution of the n; =339 historical patients in that study.

Under each hypothetical trial realization, we estimated the treatment effect 5. We define a
simulation truth of the treatment effect as 6°=(1/n) Y E{Yi(1) — Y;(0)} as average difference
of mean outcome under treatment and control for patients i=1,...,n, with the expectation
evaluated under the simulation truth. Let then bias = |8° — E(S | y)| for true treatment effect 80
denote the bias of the reported treatment effect. Figures 5 and 6 summarize results under the three
scenarios. The figures show boxplots of realized bias under 100 repeat simulations, arranged by
sample size 11, number of covariates p, true treatment effect ° and method. For each combination
of (n1,p,8°), the figures show five boxplots corresponding to inference under the CA mixture
model, CL and PP, using logistic and random forest propensity score models for the latter two.
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Figure 4. KM plots for one hypothetical realization of the trial using a synthetic treatment cohort under Hy (a) and H; (b).

(Online version in colour.)
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The labels for the compared methods are as follows. CA-PPMx refers to model-based inference
using the proposed CA mixture model and (3.5), that is, using steps 1,2,3 and 4 of the algorithm
in §3c; IS-LM refers to inference using steps 1,2,3 and 4 of the algorithm, with a linear model to
compare treatment effects in step 4; PP-Logistic, PP-RF, CL-Logistic and CL-RF are PP and CL
approaches using a logistic regression and random forest [35] PS model, respectively. The latter
four methods are briefly discussed in §2c.

Overall the simulation results are favourable for the CAM model. The increased bias under
the PS-based methods might be due to the multi-step nature of the methods, ignoring substantial
uncertainty in the propensity scores e(x), the realistic, but small sample sizes relative to the p > 10
covariates, and model misspecification in scenarios (ii) and (iii).

5. Conclusion

We have briefly discussed several methods for including RWD in clinical studies, focusing
mainly on Bayesian methods. The main challenge is to adjust for the lack of randomization, to
coherently propagate all uncertainties, and to combine different sources of information. All three
considerations are naturally formalized and can be addressed under a Bayesian framework. There
are no magic solutions. But a principled Bayesian approach can clearly articulate all assumptions,
quantify uncertainties and allow us to systematically study sensitivity and error rates.

One limitation of the methods that we discussed here is the dimension of the data. In
many cases, when data collection is automated and/or involves large scale genomic markers
the dimension of patient-specific covariates can easily exceed what is computationally feasible
for inference with nonparametric mixture models. Matching subpopulations with respect to all
reported covariates becomes increasingly more restrictive with increasing dimension covariate
vectors. Also, achieving matching distributions on all available covariates becomes increasingly
less important as additional covariates add progressively more noise unrelated to treatment
effects. One would need to include dimension reduction as part of the inference pipeline, using,
for example, methods proposed in [36] or [37]. Another limitation when working with multiple
data sets is the coherent definition of variables and coding. This is a critical precondition to any
meaningful inference. See [38] for a recent discussion.

Finally, throughout we proceeded assuming that all relevant covariates are recorded, that is,
there are no unmeasured confounders. For carefully planned clinical studies, this assumption is
reasonable for most instances of statistical inference. For example, in the case of the GBM study,
there is a wide consensus about the set of relevant baseline covariates. We would still recommend
to follow up with a sensitivity analysis, perhaps in the form of a simulation study to investigate
the size of plausible effects of unmeasured confounders.
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