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Randomized clinical trials have been the mainstay of

clinical research, but are prohibitively expensive and

subject to increasingly difficult patient recruitment.

Recently, there is a movement to use real-world

data (RWD) from electronic health records, patient

registries, claims data and other sources in lieu

of or supplementing controlled clinical trials. This

process of combining information from diverse

sources calls for inference under a Bayesian paradigm.

We review some of the currently used methods

and a novel non-parametric Bayesian (BNP) method.

Carrying out the desired adjustment for differences

in patient populations is naturally done with BNP

priors that facilitate understanding of and adjustment

for population heterogeneities across different data

sources. We discuss the particular problem of using

RWD to create a synthetic control arm to supplement

single-arm treatment only studies. At the core of the

proposed approach is the model-based adjustment to

achieve equivalent patient populations in the current

study and the (adjusted) RWD. This is implemented

using common atoms mixture models. The structure

of such models greatly simplifies inference. The

adjustment for differences in the populations can be

reduced to ratios of weights in such mixtures.

This article is part of the theme issue ‘Bayesian

inference: challenges, perspectives, and prospects’.

1. Introduction
Randomized controlled trials (RCT) remain the gold

standard for clinical studies to estimate the effect of an

intervention. However, RCTs, while critical to get drugs

2023 The Author(s) Published by the Royal Society. All rights reserved.
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to the market are beset with rising costs and difficulties in volunteer recruitment. Prolonged

duration of RCTs has impeded introduction of much needed therapies to consumers. Against

the background of these challenges the US 21st Century Clinical Care act was passed in 2016,

to encourage the use of readily available real world data (RWD) in drug development. This

legislation and the increased availability of RWD have paved the way for RWD in clinical trial

designs. Here RWD is defined as data relating to patient health status and/or the delivery of

health care routinely collected from a variety of sources. The resulting real-world evidence (RWE)

is the clinical evidence about the usage and potential benefits or risks of a medical product derived

from analysis of such RWD. Pursuant to the 21st Century Clinical Care act, the U.S. Food and Drug

Administration (FDA) is working with stakeholders to understand how RWE can best be used to

increase the efficiency of clinical research, as outlined, for example in [1].

One of the main issues in using RWD to complement RCTs is the need to demonstrate

equivalence of the patient populations under comparison, or achieve such equivalence by

appropriate adjustment or pre-processing. Propensity scoring is perhaps the most widely used

approach for matching populations to achieve equivalence. Propensity scores (PS) are often

estimated by logistic regression. However, in high dimensions, the inclusion of interaction terms

incurs an explosion of the design matrix. For this and related reasons, high dimensionality of

covariates, mixed data types and data missingness are fatal limitations to compare populations

for equivalence. It turns out that a preponderance of covariates are categorical. So, dimension

reduction by standard principal components (PCA) is not immediately feasible and alternate

methods are necessary. As an alternative to PS-based methods, in this article we also review a

model-based approach using common atoms mixture models. One motivation for this choice

is the observation that a variety of disease mechanisms and epidemiological factors induce

population heterogeneity, making it natural to use mixture models to account for intrinsic

heterogeneity and to estimate component-specific parameters for model-based inference.

In this article, we review several recently proposed methods using model-based Bayesian

inference to incorporate RWD in clinical trial design, including the mentioned PS-based methods.

We discuss in more detail a recently developed method introduced in [2] which uses common

atoms mixture models to account for heterogeneity. The model is parametrized so as to allow

parsimonious evaluation of weights for adjustment to achieve equivalent populations, or—

equivalently—to allow easy and flexible estimation of PS. These methods break the distinction

of model-based versus PS-based methods, as they can be seen as both. The scheme implements

stochastic stratification by PS, that is, inference is averaged with respect to uncertainties in the

stratification. This happens naturally in the proposed mixture model framework. We develop

the model and inference for the following context. Assume an investigator is designing a new

study (current study) and wishes to make use of RWD to supplement the current single-arm

treatment-only study with a synthetically created control arm. Here, the RWD could be data from

earlier studies (historical studies), electronic health records or repositories. We assume a typical

phase II study, with event time or binary endpoint, as it arises, for example, in phase II trials for

glioblastoma (GBM) patients without controls. See, for example, [3] for a discussion of the reasons

that led investigators to design single-arm trials in GBM.

While the discussion is in the context of this scenario, the approach is more widely applicable.

It can be used to create equivalent populations in any other context. For example, it could be used

to compare two treatments based on RWD, assembling both treatment arms from the same RWD

source. Or it could be used for interim analysis and stopping decisions [4].

Inference is implemented using Markov chain Monte Carlo (MCMC) posterior simulation,

which since the seminal work of A.F.M. Smith and collaborators in the 1990s [5,6] has enabled

researchers to use increasingly more complex inference models. At the core of the approach is

a common atoms mixture (CAM) model for the two patient populations, including patients in

the current single-arm trial and patients in the RWD. An interesting aspect of posterior inference

in the proposed CAM is that appropriately reweighed posterior simulation under one mixture

submodel can be used to evaluate expectations with respect to the other mixture submodel. The

CAM model is an example of a non-parametric Bayesian (BNP) model, whose wide support, i.e.
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the ability to fit virtually any distribution, is critical for use in this application. Some of the early

work of A.F.M Smith was instrumental in introducing BNP models in Bayesian inference [7,8].

In §2, we review some currently used methods. The CAM model and its use for the

construction of synthetic control arms are introduced in §3. In §4, we show an application to single

arm, treatment-only phase II studies for glioblastoma patients, and results from a simulation

study to compare the proposed method with alternatives based on propensity scores.

2. Real-world evidence in Bayesian clinical trial designs
Several methods have been proposed in the literature to incorporate information from RWD

in Bayesian clinical trial design. Several early methods consider the particular case of using

information from historical studies to formulate informative priors. These include historical data

priors, commensurate priors and meta-analytic priors, as briefly reviewed below. Several other

methods are based on PS for patients with given baseline covariates. The PS can be for treatment

selection, or for a patient being selected into one or the other study. Some methods are based on

flexible non-parametric regression models for potential outcomes (under treatment and control).

Another commonly used element of different methods is the use of patient-specific weights to

either thin out datasets or implement analyses with such weights. Details of these methods are

discussed in the following subsections.

The following review includes methods developed for a variety of different setups involving

RWD at different levels. In particular, some methods are meant for use in studies with a

concurrent control when RWD is used to augment this (often reduced sample size) control

arm. Other methods assume that a study is restricted to inference under a single condition.

Yet other methods create a synthetically constructed control arm to supplement a single-arm,

treatment-only study. In particular, methods discussed under (a) and (d) below have no notion

of constructing synthetic cohorts, but are suitable when either a concurrent control is available,

or inference is about a single condition only. The approach in (b) is explicitly about augmenting

a concurrent control arm, while (c) allows for both use cases. Relatedly, the broad definition of

RWD (compare the introduction) is reflected in a wide variety of use cases, including applications

where RWD refers to historical studies, registry data, observational studies or insurance data.

(a) Historical data priors

Under the Bayesian paradigm [9], a natural way of exploiting external information is by way of

informative prior probability models. If the external information are historical trials, one widely

used method to develop such priors is the use of the so-called power priors. The construction and

use of power priors is reviewed in [10]. We define a prior probability density (or function) to be

proportional to a fractional power of the likelihood function for the historical data. The fractional

power formalizes a notion of discounting the information from the earlier study. Let D denote

the data for the current study, and D1 the data from a historical study. Let p(D1 | θ ) denote the

likelihood function for the historical data, assuming a model indexed by an unknown parameter

θ , and let γ1 denote the fractional power. Assume then that the inference model p(D | θ ) for the

current data is indexed by the same parameter θ . That is, the inference model for the historical

and the current study share the same parameter θ . The historical data prior is then defined as

π (θ | D1, γ1) =
1

c(γ1)
π (θ ) · p(D1 | θ )γ1 ,

with normalization constant c(γ1). Using fixed γ1, this is known as the conditional power prior.

Extending the model to allow for uncertainty on γ1 defines the modified joint power prior

π (θ , γ1 | D1) ∝
π (θ ) · p(D1 | θ )γ1

c(γ1)
π (γ1). (2.1)
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The implied complete conditional distribution p(γ1 | θ , D) reveals one limitation of the modified

power prior. The conditional p(γ1 | θ , D) is free of the current data D. This has led to the

development of the commensurate power prior by Hobbs et al. [11]. The commensurate prior allows

for the possibility of different parameters for the historical and current study. Let θ1 denote the

parameter for the inference model p(D1 | θ1) for the historical data, and let θ denote the parameter

in p(D | θ ), as before. The commensurate prior links the two inference models by postulating

a hierarchical prior probability model with positive prior probability for θ ≈ θ1. Let N(· | m, V)

denote a normal p.d.f. with moments (m, V). A commensurate prior is defined as

π (θ , γ1, τ ) ∝

{∫
p(D1 | θ1)γ1

c(γ1)
· N

(
θ | θ1,

1

τ

)
dθ1

}
π (γ1 | τ ) π (τ ).

The two parameters θ , θ1 are linked by assuming θ | θ1, τ ∼ N(θ1, 1/τ ). The normal precision τ is

known as the commensurability parameter. The model can adapt to prior-data conflict if needed.

Of course, alternatives to the normal model for p(θ | θ1, τ ) could be used if desired.

Considering a setting with multiple prior studies [12] define the meta-analytic prior (MAP).

Let s = 1, . . . , S index multiple prior (external) studies. Similar to before, we assume inference

models indexed by (θs, s = 1, . . . , S) for the historical data and θ for the current data, respectively.

The MAP prior is defined as the posterior predictive distribution for θ in a hierarchical extension

that includes submodels for each of the historical studies and the current study, as

π (θ | Ds, s = 1, . . . , S) ∝

∫
p(θ | η)

{∏

s

∫
p(Ds | θs) dp(θs | η)

}
π (η) dη.

In a default implementation [12] use a half-normal prior π (σ 2) for across-study variance σ 2 in

p(θ | η) = N(θ | η1, η2 = σ 2). Similar to the commensurate prior, [13] define the robust MAP prior

by introducing an additional component in the mixture model, allowing for θ and θs to be

independent. Let π̂(θ ) denote a mixture model approximation of the MAP prior, and let πv denote

a conjugate prior for the assumed sampling model p(D | θ ). The robust MAP is defined as

π (θ | D1, . . . , DS) = (1 − w)π̂(θ ) + wπv(θ ).

The mixture approximation π̂ in lieu of the actual MAP prior is introduced to simplify the model

construction by defining the robust MAP as a simple extension of the same mixture. The marginal

posterior on w characterizes the level of borrowing of strength.

(b) Non-parametric regression and potential outcomes

Using a potential outcome [14] framework, [15] develop a method to enrich an RCT with

additional data on control using RWD. That is, they use RWD to supplement (a typically reduced

sample size) control arm in a current study. They proceed by fitting a non-parametric regression

model of outcomes as a function of baseline covariates for patients under control, and similarly

for patients under treatment. The main innovation is that the earlier regression for outcomes

under control includes a study indicator as an additional covariate, thus allowing probabilistic

adjustment for study effects. The regression is implemented as a Bayesian random forest using

Bayesian additive regression trees (BART) [16].

Formally, let Yi(a) denote the (potential) outcome for patient i under treatment a, let Si ∈

{0, 1, . . . , S} denote an indicator for inclusion in the current study (s = 0) or external data (s > 0).

Two random forest models for patients under treatment Ai ∈ {0, 1} and covariates Xi define

(Yi | Ai = 0, Xi = x, Si = s) = f0(x, s) + ǫ0i using a random forest f0(·) and (Yi | Ai = 1, Xi = x, Si = 0) =

f1(x) + ǫ1i with a second instance f1(·) of the random forest model, and assumed i.i.d. residuals ǫai.

The model implies a well-defined conditional average treatment effect (CATE) as

	 =
1

N

∑

i

E{Yi(1) − Yi(0) | Data, Si = 0}.
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Here the BART models fa(·) adjust for patient-level covariates, naturally allow for interactions,

and capture potentially heterogeneous treatment effects across different data sources s.

(c) Propensity scores

Several methods use propensity scores (PS)

e(X) = p(S = 0 | X),

for current (S = 0) versus historical (S = 1) data, that is, S ∈ {0, 1} is an indicator for a patient in

a merged population being selected into one versus the other dataset. Wang et al. [17] stratify

the data by equal quantiles of e(X) in the current study. Let r = 1, . . . , R index these R quantiles.

First, external data beyond this range is trimmed. Then let fr0(e) and fr1(e) denote density

estimates for e restricted to stratum r in the current study and external data, respectively. Next,

define a coefficient of similarity based on some distance measure (or measure of discrepancy)

δr = diff{fr0, fr1}. For inference under stratum r we then use a power prior with exponent γr ∝ δr,

to report a stratum-specific treatment effect θr and an overall treatment effect θ = (1/R)
∑

r θr

(assuming equal quantiles).

Using a non-Bayesian approach, a similar scheme is developed in [18] defining a composite

likelihood including factors for strata r = 1, . . . , R. Let θ denote parameters of the outcome model.

Let W1
r denote the indices of all patients in the RWD in statum r, and similarly W0

r for patients

from the current study. A composite likelihood function is then defined as

L(θ ) =
∏

r





∏

i∈W1
r

p(y1i | θ )γr
∏

i∈W0
r

p(y0i | θ )



 ,

with γr = diff{fr0, fr1}, similar to the exponent γr in the stratified power prior.

The propensity-score integrated power prior [17] and the composite likelihood method [18]

are implemented in the R package psrwe [19]. The program is easy to use, including functions

to implement each step of the process, starting with one function to estimate the propensity

scores e(X), a function to create the stratification, and finally two functions to implement either

the PS-integrated power prior or the composite likelihood, as desired. For the estimation of the

propensity scores, the user can choose either logistic regression or random forests.

Many other uses of PS are developed in the recent literature. For example, [20] combine the use

of PS and MAP priors. The approach evaluates PS e(X) for selection into one or the other study,

stratifies with respect to these propensity scores and then uses MAP priors to evaluate treatment

effects in each stratum.

A generalization with multivariate propensity scores for selection of patients into one of

S > 2 studies is developed in [21]. The method sets up a non-parametric Bayesian regression of

outcomes on these multivariate propensity scores, and then evaluates an average treatment effect

as a difference of fitted outcomes under treatment versus control.

(d) Patient-level weights

Golchi [22] comments on the nature of historical data priors as using study-specific weights,

which appear as the fractional power in the historical data likelihood function. The use of such

omnibus weights ignores the typically high level of heterogeneity of patient populations. The

latter would more naturally justify patient-specific weights, with higher weights for patients

who are more representative of the current patient population. Let then Dsi denote data for

the ith patient in study s with s = 0 for the current study and s ≥ 1 for historical studies, and

let Ds = (Dsi, i = 1, . . . , ns). Defining γsi = δsim(Dsi, D0) as a similarity measure of Dsi and D0, we

then proceed similar to historical data priors, but now with patient-specific weights to construct

a prior π (θ ) ∝ π0(θ ) ·
∏

s≥1 p(Dsi | θ )γsi . For parsimony, in a practical implementation replace γsi by

γ̃si = γsiI(γsi > ρ) with some pre-set threshold ρ.
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As a default choice for δsim [22] proposes for continuous covariates to use a rescaled version

of the Mahalanobis distance. Let dsi = dMH(Dsi, D0) using sample mean and covariance matrix of

D0 to evaluate the Mahalanobis distance, and define γsi = 1 − r · dsi, where r is chosen to map dsi

to the unit interval. For other data formats, Golchi [22] suggests to use the posterior predictive

distribution for Dsi given D0, i.e. dsi = p(Dsi | D0) =
∫

p(Dsi | ψ) · π0(ψ)
∏

j p(D0j | ψ) dψ using the

same probability models as the inference model, with ψ replacing θ . The expression is assuming

that the inference model (or a simplified version of it) takes the form of i.i.d. sampling given θ .

3. A common-atoms BNP mixture model for using RWD
Chandra et al. [2] develop a model-based approach to include RWD in clinical trial design using

nonparametric Bayesian (BNP) mixture models. We introduce the set up and approach in the

context of a specific example.

Example 3.1. Synthetic controls for single-arm glioblastoma (GBM) trials. For a variety of

reasons (e.g. [3]) many phase II trials in GBM are designed as single-arm treatment-only studies

(SAT). Let then s = 0 indicate a current SAT, and assume that RWD is available in the form of data

for earlier patients in the same hospital and treated by the same clinical group (s = 1). We want

to use this RWD to create a synthetic control arm to augment the current SAT study. See [2] for

more details. A summary of the data is shown in figure 1. We report results for this application in

the next section, after introducing the general approach. In the following discussion we will use

(T) and (C) to refer to the patient population in the SAT (‘T’ for treatment), and the RWD (‘C’ for

control), respectively.

(a) Common atoms mixtures

The approach proceeds as follows. First we fit a BNP mixture model, F1(x1i), to patient covariates

x1i in (C). For simplicity, assume a mixture of normals. Then we fit a second mixture model,

F0(x0i), to (T), using the same atoms, that is, the same normal location-scale parameters in the case

of the mixture of normals. Only the weights distinguish F1 and F0. Let πsh, s = 0, 1, denote these

weights. Figure 2 illustrates the two mixture models F0 and F1, assuming univariate xsi and four

components, h = 1, . . . , 4. Part of the inference is a latent allocation of all data points, i.e. patients,

to one of the terms in the mixture. This link is not fixed. It involves random indicator variables

csi that link patient i in study s with one of the terms in the mixture. We are already almost done.

Clearly the desired adjustment of the RWD data to create an equivalent patient population should

involve the ratio of the weights in the mixture. For patient i in (C), let then wi denote the posterior

expectation of the ratio π0c1i
/π1c1i

. It can be shown that thinning out the RWD by retaining data

points with probability wi creates an adjusted distribution F′
1 = F0. One could then proceed with

the desired inference as if the study were a randomized controlled trial. Figure 3 illustrates the

idea. For this scheme it is critical that the nonparametric mixture model Fs can fit the data. Under

appropriate (mostly technical) assumptions this is the case. BNP models ‘are always right’, in the

sense of full prior support (e.g. [23]). We skipped some details in this brief outline. In particular,

the atoms of F0 are only defined conditional on latent cluster allocations for the real-world data.

See below for more details.

For a formal description of the same scheme let xsi = (xsij, j = 1, . . . , p) denote the baseline

covariates for patient i in study s, including p covariates. Fitting a mixture model to x1i, we assume

x1i ∼

∫
q(x1i; ζ ) dG1(ζ )

︸ ︷︷ ︸
F1(x)

, i = 1, . . . , n1, (3.1)

where G1 is a random mixing measure. Let δx denote a point mass at x. Using a prior

probability model that restricts G1 to discrete probability measures we can represent G1 as G1 =
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Figure 1. Data for historical data (RWD) (left block) and a current single arm, treatment-only study (right block). The horizontal

axis are patients, and the vertical axis are p= 11 baseline covariates. All covariates are categorical, with different colours

indicating different levels of each covariate (0= black, 1= purple or dark grey, 2= yellow or light grey) andwhite formissing

data. (Online version in colour.)

0

0.1

0.2

atoms

d
en

si
ty

density

RWD

treatment

ζ1 ζ2 ζ3 ζ4

Figure 2. Two common-atoms mixture models for the RWD (blue, with four terms) and the SAT (red, with three terms). The

mixture models share the same kernels q(·; ζ̃h) and differ only by the weightsπsh. (Online version in colour.)

∑
h π1h δ

ζ̃h
. Using, for example, multivariate normal kernels q(x; ζ = (µ, Σ)) = N(x; µ, Σ), equation

(3.1) becomes a mixture of normal model. The latter can be written as

F1 =
∑

h

π1hq(•; ζ̃h) or

{
x1i | ζi ∼ q(·; ζi)

ζi ∼ G1.
(3.2)

Sampling from the mixture induces a random partition of [n1] = {1, . . . , n1}. First, note that the

mixture model can equivalently be written as x1i | ζi ∼ q(·; ζi) with ζi ∼ G1, as indicated on the

right side of (3.2). The discrete nature of G1 implies a positive probability of ties among the ζi. The

arrangement of such ties defines clusters C1k. Let {ζ ⋆
1 , . . . , ζ ⋆

K} denote the K ≤ n1 unique values

among the ζi. Finally, let c1i = k when i ∈ C1k, i.e. ζi = ζ ⋆
k . We will use these cluster membership
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R
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Figure 3. Matching the two populations by thinning out. Blue stars (top) indicate patients in the external data, arranged by

strata. Red stars (bottom) are patients in the treatment arm. Stars in light grey (top) indicate patients in the external data that

are (conceptually) dropped from the dataset to create equivalent populations. (Online version in colour.)

indicators c1i to represent the clusters in posterior simulation below. The described structure is

summarized as a partition ρ1 ≡ {C11, . . . , C1K} of [n1] into clusters C1k. That is, C1k ⊆ [n1] and⋃̇
k C1k = [n1]. Here

⋃̇
refers to a disjoint union with C1k ∩ C1ℓ = ∅ for k 
= ℓ. See, for example,

[24] for more discussion of this random partition.

The idea is then to fit the mixture F1 to the RWD, generate the random partition {C11, . . . , C1K}

and cluster-specific parameters ζ ⋆
k , k = 1, . . . , K. Note that the random number of clusters, K, is part

of the random partition. Also, for easier notation assume without loss of generality that ζ ⋆
k = ζ̃k,

k = 1, . . . , K (re-indexing ζ̃h if needed). Given ζ ⋆ we then fit a second mixture

F0 =

K∑

k=1

π0kq(•; ζ ⋆
k ), (3.3)

to the SAT data x0i, i = 1, . . . , n0. Two observations about F0 are in order. First, F0 is a mixture with

respect to a random probability measure with atoms matching those of F1 only that are linked to

data points under c1i. Second, in Fs, s = 0, 1 only the weights π have s indices. The atoms ζ ⋆ are

shared (more precisely, the subset of those atoms that are allocated under c1i are shared). Such

‘common atoms’ BNP mixture models have been shown to be useful in other applications too

[25,26].

In summary, the common atoms mixture model (CAM) for RWD and the current study is as

follows:

p(x1i | ζ̃ , π1) ∼

F1(x1i)︷ ︸︸ ︷∑

h

π1hq(x1i | ζ̃h) or

{
p(x1i | ζ1i) ∼ q(x1i | ζ1i)

p(ζ1i = ζ̃h) = π1h

p(x0i | ζ ⋆, π0) ∼
∑

k

π0kq(x0i | ζ ⋆
k )

︸ ︷︷ ︸
F0

.





(3.4)

Recall that ζ ⋆ is defined as the set of unique values in {ζ1i, i = 1, . . . , n1}, and we assume ζ̃k = ζ ⋆
k (re-

arranging indices if needed). In other words, the prior on F0 is defined conditional on F1 and ζ ⋆.

For reasons explained later, in §3c, we refer to model (3.4) as CA-PPMx. The model is illustrated

in figure 2. Similar common-atoms mixture models, without the constraint on the second mixture

model to only use the atoms ζ ⋆
k sampled in the first mixture, are used, for example, in [25]. The
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latter constraint makes the mixture F0 dependent on the latent ζ ⋆, which are therefore introduced

in the first line of (3.4).

We implement MCMC-based posterior simulation under this model, obtaining a posterior

Monte Carlo sample of π1k, π0k, c1i. Let m1k = |C1k| denote the size of the kth cluster under the

RWD. Let Ds = {xsi, i = 1, . . . , ns} denote the data. We use the posterior Monte Carlo sample to

evaluate the posterior mean wi ∝ E(π0c1i
/m1c1i

| D0, D1), i = 1, . . . , n1. Here we replaced π1k in the

denominator by the cluster size (to avoid numerical problems). We use these weights to thin out

the RWD sample, to create an adjusted sample from F′
1 = F0, as desired.

(b) Algorithm

The approach is summarized by the following four steps. Let (T) and (C) denote the single-arm

treatment only study (SAT) and RWD data, respectively.

STEP 1: Fit data in (T) and (C) , using a common atoms random partition (3.4) including F1, ξ⋆

and F0.

STEP 2: Resample (-weigh) the (C) patients, to achieve equivalent patient populations.

STEP 3: Prove equivalence, using any general purpose classification (support vector

machine, Bayesian random forests, etc.) of the merged data set, merging (T) and

(C). Failure to classify the merged data proves equivalence.

At this moment, we have (T) ≈ resampled/weighted (C); and could proceed as if the

resampled/weighted (C) were a control arm in a RCT.

STEP 4: Carry out inference on treatment effects as if the study were an RCT.

STEP 4’: Alternatively, extend the BNP mixture model (3.4) for xsi to include outcomes ysi,

allowing model-based inference on treatment effects.

The latter allows us to impute potential outcomes and proceed by reporting a model-based

average treatment effect as a posterior expected difference of outcomes under treatment versus

control.

Some more details on STEP 2: from (3.4), it is intuitively plausible that reweighing of the

control patients to evaluate expectations under F0 should use the already mentioned weights

wi = π0k/π1k, with k = c1i. More specifically, in [2] we show that expectations under F0 can be

evaluated using posterior Monte Carlo samples conditional on D1 after thinning out the external

data using weights wi. We will use this in STEP 4’ to evaluate posterior expectations of average

treatment effects. See [2] for a formal discussion and justification. In the implementation, we

evaluate the weights for i = 1, . . . , n1 as a Monte Carlo average

wi ∝
∑

t

π0c1i

m1c1i
/n1

,

where t indexes posterior Monte Carlo samples, m1k = |C1k| is the size of cluster k, and ci is the

cluster membership indicator with ci = k when i ∈ Ck.

Finally, more detail on the evaluation of treatment effects in STEP 4. Note that the model in (3.4)

is restricted to patient covariates xsi. It does not yet include a sampling model for the outcomes.

But the model can easily be extended to include outcomes ysi by introducing cluster-specific

parameters θsk and assuming

ysi ∼ p(ysi | i ∈ Csk, θsk),

where θ0k and θ1k, k = 1, . . . , K, index the response model under treatment and control,

respectively. We then define a cluster-specific treatment effect using a suitable function d(θ0k, θ1k)

of these parameters. For example, if the interpretation of θsk is as an average event time, this
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could be dk = (θ0k − θ1k). Finally, we report the overall treatment effect under F0 as the posterior

expectation of

δ =
∑

k

π0kd(θ0k, θ1k), (3.5)

with the posterior expectation averaging over the random partition, the weights and the treatment

effect parameters.

(c) Implied random partition and missing data

Some more observations on ρ1 = {C11, . . . , C1K}. Since we only discuss the partition of (C) here,

we for the moment drop the study subindex 1. The discrete mixture (3.1) for the external data

implies the already mentioned random partition of patient indices [n] ≡ {1, . . . , n} into clusters ρ =

{C1, . . . , CK}. A widely used choice for the prior probability model for G1 in (3.1) is the Dirichlet

process (DP) prior [27]. The DP prior on G1 implies a marginal prior p(ρ) which is known as the

Chinese restaurant process and can be written as p(ρ) ∝
∏

k(|Ck| − 1)! [28]. In general, a random

partition of this product form is known as product partition model (PPM) [29]. The factors c(Ck),

in this case, c(Ck) = (|Ck| − 1)! are known as the concentration function. Let x⋆
k = {xi; i ∈ Ck} denote

the covariate vectors arranged by cluster. Conditional on x the model becomes

p(ρ | x) ∝
∏

k

c(Ck) g(x⋆
k). (3.6)

Here, the last factor is g(x⋆
k) =

∫ ∏
i∈Ck

q(xi | ζ ⋆
k ) dG⋆(ζ ⋆

k ), with q(·) referring to the mixture kernel

and G⋆ is the prior on the cluster-specific parameters ζ ⋆
k , which is specified as one of the

hyperparameters of the DP prior on G1. The random partition p(ρ | x) again takes the form of a

PPM, now indexed with covariates xi. In other words, p(ρ | x) defines a regression of the random

partition ρ on covariates x [30]. In the context of this model, the additional factor g(x⋆
k) serves a

purpose like a purity or ‘similarity’ function in hierarchical clustering algorithms. It favours the

formation of clusters with similar xi. For more discussion of such models for prediction, see also

[31]. We refer to (3.6) as the PPMx model, and to (3.4) as the CA-PPMx model to highlight the

implied random partition.

(i) Missing data

An important feature of the model for the application to RWD is the natural accommodation of

missing data (missing at random). Assuming that the kernels factor across coordinates of xi as

q(xi | ζ ⋆
k ) =

∏
j qj(xij | ζ ⋆

kj), the similarity function g(x⋆
k) can be evaluated using available covariates

xij only. For each patient, let Ci ⊂ {1, . . . , p} denote the indices of all available covariates, let xi =

(xij, j ∈ Ci) and let x⋆
k = {xi; i ∈ Ck} denote the set of only the observed covariates for all patients in

cluster Ck. Also, let Okj = {i : i ∈ Ck and j ∈ Ci}. Then

g(x⋆
k) =

∫ ∏

i∈Ck

q(xi | ζ ⋆
k ) dG⋆(ζ ⋆

k ) =

p∏

j=1

∫ ∏

i∈Okj

q(xij | ζ ⋆
kj) dG⋆(ζ ⋆

kj). (3.7)

In the last expression, the product over i goes only over all those patients in cluster Ck with

available jth coordinate. Missing covariate values are simply not used.

Implicit in this construction is the assumption of missing at random. An interesting situation

could arise when RWD includes multiple sources of datasets with different sets of missing

covariates. While formally (3.7) can accommodate this set-up, one would need to carefully

consider whether it is reasonable to continue assuming missing at random. Missingness patterns

other than completely at random can be handled by introducing additional hierarchy in the model

(see, e.g. [32] for a review).
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4. A Glioblastoma study
In this section, we discuss an application example and a simulation study to illustrate the use of

RWD for creating a synthetic control arm to complement a single-arm treatment-only study.

Example 4.1. (continued): Synthetic controls for single-arm glioblastoma (GBM) trials. In

[2] we apply the CAM approach to create a synthetic control arm to design a single arm

treatment-only phase II trial for GBM patients treated at M.D. Anderson Cancer Center. We use

data from historical patients treated over recent years in the same clinic. This RWD includes

n1 = 339 patients. We record p = 11 carefully selected covariates. Given the devastating nature of

glioblastoma thorough studies have been conducted to find clinically relevant covariates [33,34].

We followed these earlier studies and expert advice from clinical collaborators to choose the

selected covariates.

Consider then a new SAT with n0 = 49 patients. The endpoint is overall survival (OS). Let λt

denote the hazard ratio at time t for patients under treatment versus control. The evaluation of

the hazard ratio averages over the covariates xi of a future patient i = n + 1 and is evaluated over

a range of t from 0 to 180 weeks. A new treatment is considered clinically effective if λt < 0.6 for

all t.

In the design, we consider two scenarios. In the first scenario (null scenario, H0), we assume

λt = 1, that is, no difference between treatment and control. In the second scenario (alternative

scenario, H1), we assume a treatment effect with λt < 0.6 for 0 < t < 180. Figure 4 shows Kaplan–

Meier (KM) plots for one hypothetical realization of the trial under H0 (a) and under H1 (b).

For a more extensive comparison, we carry out a simulation study. We compare the CA-PPMx

model approach with an approach using a PS-integrated power prior (PP) [17], and a similar, non-

Bayesian propensity-score composite likelihood approach (CL) [18] (compare with the discussion

of the PP and CL approach in §2c).

We simulate hypothetical data under three scenarios. We generate covariates xi, i = 1, . . . , n,

from a model p(x) for the (assumed) marginal distribution of patient covariates in a merged

population. Here n = n0 + n1 is the total number of patients (and see next for n0 and n1). Given

xi we then select each patient into either the external data (Si = 1) or the treatment only single

arm trial (Si = 0), with n1 =
∑

Si and n0 = n − n1. That is, instead of simulating xsi for s = 0, 1

separately we first simulated xi for the merged population, and then only assigned patients to

one or the other study.

For p(x), we used the empirical distribution of the data in the historical GBM studies. To create

a desired simulation truth δ0 for the treatment effect, we use the recorded outcomes for patients

under Si = 1 and increment outcomes for patients under Si = 0. To select patients into one or the

other studies, we used three different (simulation truth) propensity score models: (i) a logistic

regression without interaction, as assumed by the PP and CL methods. We therefore refer to this

as the Oracle scenario; (ii) a logistic regression with interaction (Interaction scenario); and (iii) using

the propensity score model implied by the CA mixture model (CA Mixture). For the simulation

under scenarios (i) and (ii), we use n0 = 49, n1 = 290 and p = 11 with all categorical covariates;

and for scenario (iii) n0 ∈ {50, 100, 150}, n1 = 6 · n0 and p ∈ {10, 15, 20}. The scenarios were chosen

to mimic some aspects of the GBM study. In fact, the covariate distribution p(x) for (i) and (ii) is

defined as the empirical distribution of the n1 = 339 historical patients in that study.

Under each hypothetical trial realization, we estimated the treatment effect δ. We define a

simulation truth of the treatment effect as δo ≡ (1/n)
∑

E{Yi(1) − Yi(0)} as average difference

of mean outcome under treatment and control for patients i = 1, . . . , n, with the expectation

evaluated under the simulation truth. Let then bias = |δ0 − E(δ | y)| for true treatment effect δ0

denote the bias of the reported treatment effect. Figures 5 and 6 summarize results under the three

scenarios. The figures show boxplots of realized bias under 100 repeat simulations, arranged by

sample size n1, number of covariates p, true treatment effect δo and method. For each combination

of (n1, p, δo), the figures show five boxplots corresponding to inference under the CA mixture

model, CL and PP, using logistic and random forest propensity score models for the latter two.
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Figure 4. KM plots for one hypothetical realization of the trial using a synthetic treatment cohort under H0 (a) and H1 (b).

(Online version in colour.)

50
40
30
20
10
0

–1 0 1 3

δ
–1 0 1 3

scenario: oracle

b
ia

s

scenario: interaction

method IS-LM CA-PPMx CL-logistic CL-RF PP-logistic PP-RF

Figure 5. Summaries of simulation results under the oracle scenario (i) (right panel), and the interaction scenarios (ii) (left

panel). The boxplots show realized bias over 100 repeat simulations under assumed true treatment effects δ ∈ {−1, 0, 1, 3},

and under each of the compared methods. See the text for an explanation of the six compared methods. (Online version in

colour.)
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Figure 6. Summaries of simulation results under the CAM scenario (iii) showing realized bias over 100 repeat simulations under

assumed true treatment effects δ ∈ {−1, 0, 1, 3}, and under each of the comparedmethods. See the text for the six compared

methods. (Online version in colour.)
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The labels for the compared methods are as follows. CA-PPMx refers to model-based inference

using the proposed CA mixture model and (3.5), that is, using steps 1,2,3 and 4 of the algorithm

in §3c; IS-LM refers to inference using steps 1,2,3 and 4 of the algorithm, with a linear model to

compare treatment effects in step 4; PP-Logistic, PP-RF, CL-Logistic and CL-RF are PP and CL

approaches using a logistic regression and random forest [35] PS model, respectively. The latter

four methods are briefly discussed in §2c.

Overall the simulation results are favourable for the CAM model. The increased bias under

the PS-based methods might be due to the multi-step nature of the methods, ignoring substantial

uncertainty in the propensity scores e(x), the realistic, but small sample sizes relative to the p ≥ 10

covariates, and model misspecification in scenarios (ii) and (iii).

5. Conclusion
We have briefly discussed several methods for including RWD in clinical studies, focusing

mainly on Bayesian methods. The main challenge is to adjust for the lack of randomization, to

coherently propagate all uncertainties, and to combine different sources of information. All three

considerations are naturally formalized and can be addressed under a Bayesian framework. There

are no magic solutions. But a principled Bayesian approach can clearly articulate all assumptions,

quantify uncertainties and allow us to systematically study sensitivity and error rates.

One limitation of the methods that we discussed here is the dimension of the data. In

many cases, when data collection is automated and/or involves large scale genomic markers

the dimension of patient-specific covariates can easily exceed what is computationally feasible

for inference with nonparametric mixture models. Matching subpopulations with respect to all

reported covariates becomes increasingly more restrictive with increasing dimension covariate

vectors. Also, achieving matching distributions on all available covariates becomes increasingly

less important as additional covariates add progressively more noise unrelated to treatment

effects. One would need to include dimension reduction as part of the inference pipeline, using,

for example, methods proposed in [36] or [37]. Another limitation when working with multiple

data sets is the coherent definition of variables and coding. This is a critical precondition to any

meaningful inference. See [38] for a recent discussion.

Finally, throughout we proceeded assuming that all relevant covariates are recorded, that is,

there are no unmeasured confounders. For carefully planned clinical studies, this assumption is

reasonable for most instances of statistical inference. For example, in the case of the GBM study,

there is a wide consensus about the set of relevant baseline covariates. We would still recommend

to follow up with a sensitivity analysis, perhaps in the form of a simulation study to investigate

the size of plausible effects of unmeasured confounders.
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