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Figure 1: Castles Dataset. The proposed Castles dataset consists of over 770k images from more than 2,400 castle instances. Bodiam

Castle is shown here as a mosaic of images from the dataset.

Abstract

In recent years, large-scale datasets, each typically tai-
lored to a particular problem, have become a critical fac-
tor towards fueling rapid progress in the field of computer
vision. This paper describes a valuable new dataset that
should accelerate research efforts on problems such as fine-
grained classification, instance recognition and retrieval,
and geolocalization. The dataset, comprised of more than
2400 individual castles, palaces and fortresses from more
than 90 countries, contains more than 770K images in to-
tal. This paper details the dataset’s construction process,
the characteristics including annotations such as location
(geotagged latlong and country label), construction date,
Google Maps link and estimated per-class and per-image
difficulty. An experimental section provides baseline exper-
iments for important vision tasks including classification,
instance retrieval and geolocalization (estimating global lo-
cation from an image’s visual appearance). The dataset is
publicly available at vision.cs.byu.edu/castles.

1. Introduction

“The castle, and all it represents, will always be
with us. Once it was born, once the stone was
made living, the repository of power made real, the
idea could never be unmade. Even if all the castles
of all the world were destroyed, in the minds of
men they would be built anew; the wizard called
imagination would raise high walls and towers out
of ruins.”
- David Day

The ImageNet dataset [4] became a catalyst in 2012 [19]
for the success of deep learning methods which rapidly
transformed the field of computer vision. In the ensuing
years, dozens of increasingly large-scale datasets, each typ-
ically tailored to a particular problem, have fueled con-
tinued progress and innovation. Future progress will re-
quire both novel theoretical/algorithmic advances and in-
creasingly challenging datasets to help us see and identify
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Figure 2: Dataset Examples. The images in our dataset represent castles and palaces from over 90 countries. This figure exhibits a

sample of images from our database from varying countries.

the shortcomings of prior methodologies.

With this in mind, this work proposes a new dataset
aimed at tasks such as fine-grained instance recognition,
retrieval and geolocalization. While there are certainly
existing landmark/place/scene datasets (see Section 2),
the proposed dataset intentionally deviates from the pat-
tern of highly-varied large-scale landmark/place recogni-
tion datasets, instead acutely focusing on a single fine-
grained domain, Castles, as the subject domain of the
dataset. Recognition in fine-grained domains cannot simply
be solved with the same approaches as large-scale recogni-
tion — there are unique and significant challenges imposed
by high intra-class variation and very low inter-class varia-
tion.

Why Castles? Among the oldest structures on our planet,
castles constitute a fascinating part of our history. They in-
spire the imagination with their strong walls and high tow-
ers, often perched on hills or cliff faces. They also provide
an interesting challenge from a computer vision perspec-
tive: they are large structures which can be viewed from
many angles; they are subject to many kinds of occlusion;
and they have recognizable features at multiple scales.

We should note that we use a loose definition of “cas-
tle” in this work, including some buildings that would more
accurately be defined as palaces, mansions or manors, and
some others that are actually forts or compounds. Our fo-
cus is less on specific function (such as defense) and more
on “castle-like” and palatial architecture. We exclude many
ruined castles. We also make no attempt to be comprehen-
sive. Our proposed dataset does include over 2400 castles,

many well known and others less so.
This paper makes two significant contributions:

o First, a fine-grained/instance-level dataset with an or-
der of magnitude more classes and nearly two orders
of magnitude more images than existing fine-grained
datasets. The dataset also provides a geolocations,
country label, approximate construction date (on 85%
of the classes) and a Google Maps link for each class
in the dataset.

e Second, baseline experiments are provided for sev-
eral important vision tasks including fine-grained in-
stance recognition, superclass (country) prediction,
fine-grained image retrieval and geo-localization of
held out query images.

2. Background and Related Work

There are several areas of computer vision that are rele-
vant to this work, which we discuss here.

Fine-grained and Instance Recognition Fine-grained
recognition is the task of distinguishing between subtle sub-
categories of objects, such as different species of birds [36,
32], dog breeds [16, 30], models of cars [18, 43] or air-
craft [21], or types of food [2, 15]. Recent efforts have
been made to create challenging datasets that are both fine-
grained and large-scale, such as iNaturalist [33], Prod-
ucts 10k [1], iMaterialist Fashion [7], Herbarium [31], or
iMet [44].



Instance recognition [!1] is the extreme end of fine-
grained, where each “class” consists of a single entity, such
as in face recognition or landmark recognition. When in-
stance recognition focuses on biological markers (face, fin-
gerprint, stripe-patterns [3]), is is typically called biomet-
rics.

Place Landmark Datasets A number of datasets for
landmark and location recognition have been proposed over
the years. The original Google Landmarks [45] dataset is
an early example. The Google Landmarks v2 [39] dataset
is a recent large-scale landmark dataset built specifically
for benchmarking progress in instance recognition and re-
trieval. It is very large and very diverse, with over 5 mil-
lion images of more than 200k landmarks. One particular
challenge with Landmarks v2, which might be considered a
downside in some settings, is that images for each landmark
can contain visual entities that wouldn’t be considered the
landmark itself: for instance, pictures of a band playing in-
side a bar, which might not contain any visual information
about the bar (the landmark) itself.

Hotels-50K [29] is a large dataset of hotel-room images,
developed to help fight human trafficking by identifying
hotels where human trafficking pictures have been taken.
Hotels-50k has over a million images of 50,000 different
hotel interiors.

Places2 [46] is a very large scene recognition dataset
with 10 million images from 434 scene categories. Places2
builds on the ideas of the SUN Database [4 1, 42], a compar-
atively smaller scene recognition dataset. Other specialized
datasets include KITTI [6], a dataset consisting of video
and sensory data from cars, or the TorontoCity dataset [37],
which represents the culmination of an enormous effort to
digitize much of the city of Toronto.

Image Geolocalization Im2GPS [8, 9, 14] was the first
attempt to do image geolocalization on a global scale.
Later efforts incorporated SIFT-based features and “lazy
learning” [9], and eventually CNN feature extractors [35].
PlaNet [40] dispensed with the reference database by fram-
ing geolocalization as a classification problem, dividing
the surface of the earth into cells that correspond to target
classes. A classifier outputs a probability distribution over
the cells that expresses a level of uncertainty about where
the image was taken. Subsequent work [26] improved the
cell partitioning technique. Two additional related applica-
tions include interesting work on Webcam Localization [ 3]
and Photo-tourism [27, 28]. More recent work explores us-
ing hierarchical information [22] and novel loss functions

(20, 12].

3. The Castles Dataset

”Time builds castles, and time destroys them.”
Serbian Proverb

3.1. Building the Dataset

In order to construct a large dataset of castle instances,
we first needed to compile a large collection of castle names
and locations. There are many small and partial lists of
castles on the web, scattered across travel sites, local gov-
ernment sites, blogs, and wikis; however, these lists tend
to be limited, repetitive, and not convenient for large-scale
search. Instead of relying on these partial lists, we used
Google Maps to search metadata about castles, including
names and locations.

Compiling a Castle List We began by searching for po-
tential castles on Google maps. We used search terms such
as “castles in [country name]” for over forty different coun-
tries, and compiled a list of the returned results. This led
to an initial list of around 5000 potential castle locations.
This initial list contained many castles from the countries
we searched in, and castles from other nearby countries as
well. It also contained many locations that were not castles,
such as businesses, hotels, or national parks — even a few
bouncy castle companies. In order to sort out castles from
other locations, we developed a web interface to quickly
scan through locations and provide an initial accept or reject
decision. The interface showed the name and any summary
information collected from Google Maps, along with the
first few images returned from a Google image search using
the location name as the search term. Using this interface,
we were able to fairly quickly sort through the initial 5000
and reject 30-40% that were either not castles, or else too
ruined for our purposes.

Another issue we encountered was that there were du-
plicates in our initial list. Often these duplicates referred
to the same location but used different names, sometimes
in different languages. To deduplicate, we first obtained the
Google Maps link corresponding to each location. From the
Maps link, we retrieved the latitude-longitude location for
each castle. We then calculated the pairwise distances be-
tween all locations, and manually inspected any that were
close together. We were able to detect and remove a num-
ber of duplicates this way. We used the Vincenty distance
for accurate geospatial distances, and a Ball-tree data struc-
ture for efficient nearest neighbor searches. After removing
duplicate locations, we were left with a list of around 2500
castles.

Obtaining images Using our list of castles, we obtained
images from user-uploaded photos associated with each
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Figure 3: Distribution of Castle Locations. The dataset contains castles from around the world. The highest concentration is in Europe.
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Figure 4: Binary Castle-image Scores. Images were included in
the dataset based on a binary classifier trained on manually labeled
images. The labeling process included several iterations of man-
ual labeling and classifier retraining. The distribution of classifier
scores is shown for four iterations. The classifier was trained with
soft labels — 0.1 for not-castle, 0.9 for castle. The final threshold
for inclusion was 0.6.

castle location on Google Maps. Some locations had few-
to-no images available, and we dropped those castles from
the our final set. We downloaded up to 1000 images per
castle, or as many as were available. In total, we collected
over 1.6 million images.

Pruning images The primary purpose of this dataset is
to visually capture the exterior architecture of castles at the
macro scale; we did not want to include images of the inte-
rior, close-up shots of small features (such as a single win-
dow, statue, etc.), adjacent or nearby buildings, or views
of the grounds and surrounding landscape which do not in-
clude the castle itself. However, many of the images we
downloaded fell into one of those categories (see Figure 5).

With such a large set of images, it would be prohibitively
expensive to manually sort out the ones we wanted to ex-
clude. Instead, we relied on a semi-automated procedure.
We started by labeling several hundred images by hand. For
our purpose, we used a binary label indicating whether the
image contained the kind of view of a castle that we were
looking for or not. We then trained a binary classifier on the
manually labeled images, and used it to generate predic-
tions for the rest of the images. We used a sigmoid function

Images Categories Countries
772,927 2412 93

Table 1: Dataset Statistics.

on the raw classifier outputs to get a pseudo-probability for
each image, and then sorted them based on their predictions,
helping us to focus on the areas of confusion as we labeled
more samples. We repeated this process several times, even-
tually annotating roughly 16,000 images. After training the
final classifier, we chose a conservative prediction threshold
(we used 0.6) and kept only the images with higher predic-
tion scores. Figure 4 shows the distribution of prediction
scores for several iterations of labeling and retraining. Af-
ter thresholding, roughly 773,000 images remained. In or-
der to facilitate multiple train/val/test splits (see Section 4),
we further removed any instances with less than 5 images.
The final image statistics are shown in Table 1.

3.2. Relation to Fine-grained/Large-scale Datasets

As outlined above in Section 2, there are a number of
fine-grained and/or large-scale datsets available to and fre-
quently used by the vision community. The two most rele-
vant types to our discussion are: fine-grained datasets like
CUB Birds [36], Stanford Cars [18], FGVC Aircraft [21]
or iNaturalist [34]; and large-scale landmark/place/scene
recognition datasets such as Google Landmarks [34], SUN
Database [41], and MIT Places [40].

Fine-grained recognition is a very challenging domain
due to the high degree of perceived visual ambiguity be-
tween very similar classes; the differences can be extremely
subtle—inter-class variation can be extremely low. Con-
versely, the intra-class variation (differences between im-
ages of the same class) can be very high due to changes in
pose/articulation, viewpoint and illumination. Fine-grained
datasets are tremendously difficult to curate, often requiring
substantial domain expertise to generate datasets of 100-200
closely-related classes (all from a shared domain) and typi-
cally 50-100 images per class.
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Figure 5: Examples of Rejected Images. Images deemed irrele-
vant to the exterior of castles were rejected. Examples shown here
include non-target subjects, paintings or models of castles, castles
that are severely ruined, reliefs/details, shots from castles, and im-
ages from the interior.

Large-scale place/scene datasets, on the other hand, can
have a similar (though larger) number of classes — SUN and
Places have 397 and 365 classes, respectively — but often
have far more images per class. The Places-2 dataset in-
cludes up to 40,000 images per class. The Google Land-
marks dataset couples a huge number of classes (three or-
ders of magnitude large, over 200K) with a large number of
images (more than 4 million in total).

Our proposed castle dataset focuses on combining the
challenges from both the large-scale landmark/place and
the fine-grained dataset regimes. We couple the scale of
thousands of classes across a class-imbalanced distribution
with the intrinsic challenges inherent to closely-related cat-
egories that exhibit high visual similarity.

3.3. Ranking by Difficulty

An important facet that we have endeavored to bring fo-
cus to is the notion of inherent difficulty. In fine-grained
and large-scale datasets, highly similar categories/images
are generally treated just like highly dissimilar cate-
gories/images: they’re all just different. Viewing things in
this fashion, however, hides a vitally important and interest-
ing dimension to the recognition problem — there is a spec-
trum of different which could appropriately be viewed as
gradations of difficulty. Recognition of highly similar cate-
gories/images is fundamentally more challenging than that
of highly distinctive/dissimilar categories.

Difficulty exists and can be assessed or estimated at the
image or at the category level. Some images are inherently
difficult while others are easy. Similarly, there are varying
degrees of underlying visual/structural similarity between
whole categories, not just images. We draw attention here
to this interesting dimension of the problem, but further de-
scribe our efforts to quantify difficulty in Section 4.5.
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Figure 6: Distribution of Images. Each image in the dataset
was assigned a category number and the total number of images in
the dataset was recorded and graphed. Images shown in the figure
are examples of images at various locations along the distribution.
Images of large or famous castles tend to have more images than
unknown or obscure castles. More than 75% of the images in the
dataset have more than 100 images and 55.6% have 250 or more.

4. Experiments and Analysis

We run several experiments to provide baseline perfor-
mance on a few different recognition tasks using the Castles
dataset. We train convolutional neural networks for two re-
lated classification tasks: castle instance recognition, where
the goal is to predict one of N possible classes for each im-
age; and country-location prediction, where the goal is to
predict the country where a castle is located for castles not
seen during training. We also train models for the task of
image retrieval where the goal is to rank images in a gallery
based on semantic (class) similarity to the query images.
Using our image retrieval models, we also provide a naive
baseline for geo-location regression.

Dataset Splits In all of our experiments, we train models
on five different train/val/test splits and report aggregated
results. We obtain these splits by dividing the data into five
folds and taking different combinations of three for train-
ing/validation, with the remaining two for test. We use one
third of the train-val data for validation: to monitor model
performance during training and to select the best model for
measuring test performance. After training, we report per-
formance on the held-out test subset.

For instance recognition, we divide the data into five
folds such that the images for any given class are equally
divided, preserving the overall proportion of class labels in
each fold. For country prediction, we first remove any cas-
tles belonging to countries with less than five castles rep-
resented in the dataset; then we evenly distribute the cas-
tles from each country among the five folds, preserving the
overall ratio of castles in a country within each fold. For
retrieval, we evenly distribute the number of castles across
the folds, so that each fold contains a unique one-fifth of the
castle instances.
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Figure 7: Country Prediction. The percent of castles that were correctly predicted for each country (top 24 by number of castles). The
country color saturation correlates to the percentage and the number of castles per country is listed next to the country name.

Layer C-in C-out |
BN-DO-FC-ReLU 2048 1024 0.25
BN-DO-FC 1024 num-class 0.5

Table 2: Classification Head. Replaces the single linear layer of
Resnet during recognition experiments. Key: BN is batch normal-
ization; DO is dropout; FC is a fully-connected linear layer; C-in
and C-out are the number of feature channel inputs and output; P
is the dropout probability.

General Training Details All of our experiments are run
using Pytorch and Pytorch Lightning [25, 5] on a machine
with 8 GTX 1080 Ti GPUs. Unless specifically noted oth-
erwise, we use the following settings in each experiment:

e Resnet-50 [10] as the backbone network, initialized
from ImageNet-pretrained weights

e Adam [

e Train for 30 epochs, with a learning rate schedule using
a linear warmup from 0 to 103 over 9 epochs, and a
cosine decay back to 0 over the following 21 epochs

] as the optimizer

e Training data augmentation: random resized crops
with resolution 224x224, color jitter, and random
grayscale conversion. For validation/test: resize im-
ages to resolution 256 in the smaller dimension and
take a square 256x256 center crop

4.1. Instance Recognition

For instance recognition, we perform standard N-way
classification using five different splits and report the ag-
gregate performance. Results are shown in Figure 8a. We
report predictive accuracy on the test set, both globally (for
all images together) as well as within each class individu-
ally. Results are averaged across five splits, and min/max
values are shown for the per-class distribution.

At just below 90%, the recognition performance is quite
good. This is likely due, at least partially, to a number of
distinctive castles that have many images which are easy
to recognize. Indeed, when we normalize for the number
of images per-class we see a drop in accuracy from 89.8%
to 82.5%, and we can see from Figure 8a that there are a

Std. dev.
+1.1%

Mean accuracy
44.1%

Table 3: Country Prediction. Overall accuracy for country pre-
diction on held out set of castle instances. The accuracy and stan-
dard deviation are reported over the five different test splits.

number of classes for which performance tends to be low.
Figure 8a also shows performance by number of images in
the class, and we can see that classes with more images tend
to perform better on average than those with fewer images.

Details We replace the final linear layer of Resnet-50 [10]
with an extended classification head (see Table 2). Mod-
els were trained using distributed-data-parallel training on
8 GPUs, with a batch size of 96 per GPU.

4.2. Country Prediction

We treat country prediction as another N-way classifica-
tion problem, where N in this case is the number of coun-
tries represented by the various castle instances. All images
belonging to any castle located in a given country are as-
signed the same country label. For testing, we hold out all
the images belonging to a subset of the castles from each
country; predictions are made by images from castles that
were not seen during training, about the country where that
castle is located.

Results for country prediction for the top 24 countries
(by number of castles) are shown in Figure 7. In some cases,
the results agree well with intuition. Japan, for instance, has
extremely high accuracy; this makes sense, since Japanese
castles have a style that is distinctive from any of the other
countries. Some of the other results are interesting, such
as the fact that the Netherlands is fairly high, but Austria is
extremely low. Table 3 reports the mean overall accuracy
and standard deviation across the five splits.

4.3. Image Retrieval

The goal of image retrieval is to match a query image
to gallery images of the same class. We use a held-out set
of castle instances as the test set, which serves as both the
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Figure 8: Instance Recognition and Image Retrieval Results. (a) The overall accuracy (proportion of correct image predictions), along
with the average per-class accuracy and the distribution of per-class accuracies (sorted by average performance) averaged over five splits
(top). Class accuracy vs. image count (bottom), showing strong correlation between number of images in a class and class accuracy. (b)
Distribution of average per-class MAP@R (top): each class appears in two of the five splits, so the average involves two scores (the min
and max are also shown); the average over all the per-class scores is also shown. Class-average retrieval scores vs. image counts (bottom):
most classes score low, but the ones that are higher tend to have more images. Correlation values are Pearson coefficients; in both cases,

the p-value is < 10722

query set and the gallery. The model is trained using the
triplet loss to produce an embedding space where images
of the same class (in the training set) are closer together
than images of different classes. At test time, each image
in the test set is treated as a query and the rest of the test
set is used as the gallery and ranked according to euclidean
distance between the embeddings.

As with the recognition experiments, we train one model
each on five different splits of the data. In this setting, each
of the castle instances end up in the test set for two of the
five splits. When reporting results, we report the average
performance for a given instance based on those two test
splits.

Retrieval results are shown in Figure 8b. We report Mean
Average Precision at R (MAP@R), as suggested in [23].
MAP@R computes the Mean Average Precision over the
set of R nearest neighbors, where R is the number of true
matches in the gallery for a given query image. We report
the average MAP@R for each class individually, as well as
the average over all the classes.

In our test sets, each class has between 2 to 400 images,
and the total size of the set is over 300,000, making for a
large gallery and a challenging retrieval problem. This is
reflected in the results shown in Figure 8b, where the re-
ported average per-class MAP@R is just under 0.1. The

distribution shows us that there are some classes which on
average have MAP@R over 0.5, but more than 60% of the
classes have MAP@R< 0.1, leaving a great deal of room
for improvement.

Details We use a linear layer directly after global aver-
age pooling to reduce the image embedding dimension from
2048 to 128. Models were trained using data-parallel train-
ing across 8 GPUs, with a total batch size of B = 768. For
each batch, we sample 4 images from B/4 unique classes.
We train using the standard triplet loss and the online
mining strategy of [38], as implemented in the pytorch
metric learning library [24].

4.4. Blind Castle Localization

An important and interesting task, given the known ge-
ographic locations of the castles, is trying to geolocate a
castle, simply by visual similarity to a known set of castles.

In the original im2gps paper [8], the process used to lo-
calize a held-out query image relative to a large database
of geotagged training images involved finding the k£ = 120
most visually similar database images. From these k-NN
(k nearest neighbors), mean-shift clustering was performed
(using a bandwidth of 500km) on the corresponding 120



3.0k 18k
—— Per-class-average 18
E 2.5k --- Median per-class-average L 15k
g Mean per-class-average
p 2.0k1 + 1 std-dev F12k
o
£ 1.5k r 9k
Q
2
S 1.0k b6k
o
O 0.5k 3k
0 T T - ri———"19
0 550 1100 1650 2200 2400

Sorted class #

Figure 9: Blind Castle Localization (Geolocation). The loca-
tion of held-out query images is estimated based on visual simi-
larity relative to the geotagged set of training images. The median
localization error across all of the castles is only 600.3km.

geolocations, retaining the top 6-12 location clusters (drop-
ping any cluster with less than 4 locations). The mode of
the maximum-cardinality cluster was used as the estimated
location.

Our locations, in turn, are discrete castles. If multiple
of the visual nearest neighbors are images of the same cas-
tle, then we will have the same location. Because of this,
instead of mean-shift clustering on a smaller number of
unique locations, we rank the castles in the nearest neigh-
bor set in decreasing frequency and retain the smallest set of
castles that has an aggregate frequency of 20 or more. We
then calculate the mean location weighted by the respective
frequency of each nearest neighbor castle (akin to the center
of mass). Using Vincenty’s formula for geodesic distance,
we calculate the distance from a castle’s ground-truth loca-
tion to the estimated location computed using the weighted
mean described above.

For each castle, the mean across the estimated locations
is computed. Figure 9 plots this mean distance (measured
in kilometers) for each castle and shows them sorted by in-
creasing distance (decreasing precision of the estimated lo-
cation). Also shown are +/- one standard deviation in the
estimated distance for images from each respective castle.
The average per-castle error is only 989.9km. A substantial
majority of castles are below this, however a small number
of castles have significant errors; the median error is only
594.9km, indicated with a green dashed line in the figure.

4.5. Analysis of Difficult Images

We use cross-validation to estimate the difficulty of indi-
vidual images. We divide the data into six folds, and train
on each subset of three folds to get predictions on the other
three. This requires us to train (J) = 20 models, and we
get (3) = 10 predictions for each image. We train a Resnet-
34 with an extended classifier (Table 2) for ten epochs on
the three training folds and then extract predictions for each

image in the remaining folds.
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Figure 10: Image Difficulty. The number of correct and unique
predictions for each image, obtained via cross-validation, are used
as a proxy for its “difficulty”. Over half of all images are consis-
tently classified correctly, but a significant number have few or no
correct predictions (perhaps because they are irrelevant to castle
exteriors).

We assess image difficulty by the number of incorrect
validation predictions made across fold-groups for each im-
age: an “easy” image might have all ten predictions for the
correct class, while a more “difficult” image would have
additional unique predictions for other (incorrect) classes.
However, we note that there is a distinction between im-
ages with few correct predictions and many unique predic-
tions, and those that have few correct predictions but also
few unique predictions. The former set may include images
which are not relevant to the exterior of any castle (e.g. inte-
rior images, shots from castles) that slipped past our rejec-
tion threshold, while the latter set may correspond to images
that are similar to those of an incorrect class because of an-
gle, lighting, or semantic similarity. In Figure 10 we show
the marginal distribution of unique predictions for each im-
age, grouped by number of correct predictions.

5. Conclusion

We have presented the Castles dataset, a large-scale fine-
grained instance recognition dataset consisting of over 770k
images of more than 2,400 castles. Our experiments and
analysis focused on classification, image retrieval, and ge-
olocalization; however, we anticipate that the data can be
used in a diverse set of applications, including local descrip-
tor learning, correspondence and matching, multi-view re-
construction, and generative modeling.
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