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Abstract

The deep neural networks used in modern computer vi-
sion systems require enormous image datasets to train them.
These carefully-curated datasets typically have a million or
more images, across a thousand or more distinct categories.
The process of creating and curating such a dataset is a
monumental undertaking, demanding extensive effort and
labelling expense and necessitating careful navigation of
technical and social issues such as label accuracy, copy-
right ownership, and content bias.

What if we had a way to harness the power of large im-
age datasets but with few or none of the major issues and
concerns currently faced? This paper extends the recent
work of Kataoka et al. [15], proposing an improved pre-
training dataset based on dynamically-generated fractal
images. Challenging issues with large-scale image datasets
become points of elegance for fractal pre-training: perfect
label accuracy at zero cost; no need to store/transmit large
image archives; no privacy/demographic bias/concerns of
inappropriate content, as no humans are pictured; limit-
less supply and diversity of images; and the images are
free/open-source. Perhaps surprisingly, avoiding these diffi-
culties imposes only a small penalty in performance. Lever-
aging a newly-proposed pre-training task—multi-instance
prediction—our experiments demonstrate that fine-tuning a
network pre-trained using fractals attains 92.7-98.1% of the
accuracy of an ImageNet pre-trained network. Our code is
publicly available.1

1. Introduction

One of the leading factors in the improvement of com-

puter vision systems over the last decade has been the access

to ever-expanding datasets that can be used for pre-training

deep learning models. Nearly all state-of-the-art systems

these days have been trained on millions, tens-of-millions,

or even hundreds-of-millions of images. Collecting, label-

ing, managing, and distributing these datasets requires mon-

1catalys1.github.io/fractal-pretraining/

umental effort—indispensable effort—to achieve the power

found in today’s models. However, the list of challenges

and concerns around using these datasets is growing as well.

Along with technical challenges and high costs, there have

been questions of privacy, ownership, inappropriate content,

and unfair bias (for example, see [3, 32]). Clearly there are

complex issues that still need to be overcome, and many of

them elude simple solutions.

What if we had a way to harness the power of large image

datasets with few or none of the major issues and concerns

currently faced? In this paper, we discuss the possibility

of using abstract, computer-generated fractal images to pre-

train modern computer vision models. We expand on the

work of Kataoka et al. [15], from whom we take our inspi-

ration. There are several distinct advantages to using fractal

images for pre-training:

• Fractals are complex geometric structures that often

emerge from a very small set of parameters or equa-

tions; thus, as images, they are highly compressible—

often a handful of bytes is sufficient to describe them,

along with a generic program for rendering them.

Therefore, the need to store and transmit large
datasets of image files can be circumvented.

• Since the data is synthetic, we get labels for free: no

massive manual labeling effort is required.

• Since fractals are abstract geometric objects, there are
no issues surrounding the depictions of people: con-

cerns about privacy, inappropriate content, and biases

related to gender, race, or any other human factor can

be laid to rest as far as the pre-training data is con-

cerned.

• Fractals are “free and open-source”: they are defined

by fairly simple mathematics and anyone can produce

the images with only a few dozen lines of code. Thus,

there are no issues surrounding copyrights and own-

ership of images. Anyone can use fractal-generated
data to train models for any purpose, commercial
or otherwise.

• Fractals provide a near-limitless supply of diverse
images. Small changes to selected parameters can re-

sult in entirely new datasets.

2412

2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)

978-1-6654-0915-5/21/$31.00 ©2021 IEEE 
DOI 10.1109/WACV51458.2022.00247

20
22

 IE
EE

/C
V

F 
W

in
te

r C
on

fe
re

nc
e 

on
 A

pp
lic

at
io

ns
 o

f C
om

pu
te

r V
is

io
n 

(W
A

C
V

) |
 9

78
-1

-6
65

4-
09

15
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

W
A

C
V

51
45

8.
20

22
.0

02
47

Authorized licensed use limited to: Brigham Young University. Downloaded on May 30,2023 at 11:52:45 UTC from IEEE Xplore.  Restrictions apply. 



• In some cases, fractal images can be very efficient to

render. In fact, with the right approach, fractal im-

ages can be generated on-the-fly, fast enough to keep

up with the throughput of neural network training—

even when using fairly large batch sizes and distributed

training on multiple GPUs. This both eliminates the
need to generate and store a fixed set of data up

front, and removes the disk-IO bottleneck that sub-

sequently can become a problem while reading large

volumes of data from persistent storage.

A few of the preceding claims are obviously true by

virtue of the nature of the data. We show the remaining

claims to be true by analysis and experimental evaluation

in this paper. The remaining question, then, is how well

do fractal-image pre-trained models perform on real-world,

natural-image tasks? We show that, while not yet as good as

ImageNet pre-training in most cases, the gap is not as large

as you might expect.

We emphasize that we are not the first to propose pre-

training with fractal images. Kataoka et al. [15] recently

introduced the idea, and showed that it was a viable ap-

proach. Our work builds on some of the core ideas from

their paper—particularly, the use of a large set of randomly

sampled affine Iterated Function Systems (IFS) for gener-

ating training data. We make several fairly significant de-

viations from their approach, however, and show that these

deviations make a significant difference in the results ob-

tained. Figure 1 gives a high-level view of our approach.

The core contributions of our paper can be summarized

as follows:

• We propose a novel, principled approach for sam-

pling IFS codes (see Section 3.2). Our approach

leads to highly efficient sampling of large numbers of

codes (fractal parameters), simultaneously improving

the quality of the resulting fractal images, leading to

more effective representation learning.

• We introduce large-scale multi-instance (multi-label)

prediction as a pre-training task/method (see Sec-

tion 4.1), and show that it is more effective for fractal

pre-training than normal multi-class classification, as

evaluated on a set of natural-image recognition tasks.

• We show that using fractal images generated with color

and backgrounds (see Section 3.1) for pre-training

leads to better transfer learning (fine-tuning).

• We show that fractal-image pre-training can be quite

effective when transferred to tasks with limited train-

ing data, such as fine-grained visual categorization and

medical image segmentation (see Section 5).

• We show that we can use “just-in-time” image gener-

ation during training, without ever needing to create

and store a database of images beforehand (see Sec-

tion 4.2).

2. Related Work

Over the past decade, “ImageNet pre-training” has be-

come an integral part of training computer vision mod-

els. The default process is to train a model to per-

form supervised classification on the 1,000-class ImageNet

dataset [30] and then fine-tune the model on a different

dataset, which has proven to be very effective [14, 18].

Recent work has attempted to probe the limits of this “su-

pervised classification for pre-training” approach, showing

that huge amounts of data can improve the pre-training

transfer performance [33]—even when the labels are only

weakly associated with the image content [25]. Large-scale

domain-specific datasets, such as iNaturalist [36], have also

proven effective for pre-training [5]; large-scale, weakly-

labeled data [19] has also proven surprisingly effective.

Other work has suggested that pre-training isn’t the best ap-

proach in some domains, such as COCO [24] object detec-

tion [12, 39]; for many problems, particularly those with

limited data, however, pre-training provides a substantial

performance boost.

For some domains, it can be challenging or impossible

to collect and/or annotate enough images to sufficiently pre-

train a model. One way to address this issue is to use syn-

thetically generated data [28]. Such data can be generated

using 3D models [34] or generative models [4, 35]. Usu-

ally the data is modeled after natural images and real-world

objects.

In contrast to using synthetic data modeled after real-

world images, Kataoka et al. [15] recently proposed the use

of fractal images for pre-training. Fractal images are both

synthetic and abstract, though they have some similarity to

fractal structures in nature. Fractals have been admired for

their visual complexity and beauty, and can be used to create

beautiful artwork [6]; but they have also found practical ap-

plication in image compression [10], and have even inspired

neural network architectures [23]. Farmer [9] provides a

detailed treatment of applications of fractals in computer vi-

sion. Dym et al. [7] contributed a recent study of piecewise-

linear functions generated by fractal IFSs and their similar-

ity to those generated by deep neural networks. In another

interesting recent contribution, Marasca et al. [27] utilize

fractals to assess dataset classification complexity. Early

work used fractal principles for texture segmentation [17],

and Kocic [17] discussed how fractals could be used to

model natural forms.

In this work, we build on [15] and use fractal images to

pre-train visual recognition models.

3. Fractal Images

Fractal images are generally produced by iteration of

a simple formula. For example, the well known Man-

delbrot and Julia sets can be generated from the equation
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Figure 1. Fractal pre-training. We generate a dataset of IFS codes (fractal parameters), which are used to generate images on-the-fly for

pre-training a computer vision model, which can then be fine-tuned for a variety of real-world image recognition tasks.

zk+1 = z2k+c, for z, c ∈ C, by treating pixel coordinates as

points in the complex plane and iterating until z “escapes”

toward infinity or remains bounded for some number of iter-

ations. Information about whether or not the point escaped,

and how long it took to do so, can be used to color the pix-

els, revealing rich complexity.

An Iterated Function System (IFS) can also be used to

generate fractal images. An IFS consists of a set of two or

more functions and an associated set of probabilities. The

set of functions, which we refer to as a system or a code,

have an associated attractor—a set of points with a partic-

ular geometric structure—such that iterative application of

the functions in the system will bring points in the associ-

ated space onto the attractor. Sec. 3.1 describes how fractal

images can be rendered from IFS codes. These images ex-

hibit complex patterns and self-similarity.

As proposed in [15], we use affine Iterated Function Sys-

tems to create a dataset of fractal images for pre-training

computer vision models. In an affine IFS, the functions

in the system are affine transformations: they consist of a

linear function, represented by a matrix A, and a transla-

tion vector b, so that w(x) = Ax + b. Affine functions

have several advantages: particularly, it is easy to evaluate

whether they are contractive functions (which is generally

necessary for IFS) and they are simple and fast to evaluate

numerically.

Iterated Function Systems We now provide a more for-

mal definition of Iterated Function Systems. An IFS code S
defined on a complete metric space X (we will assume that

the metric space is X = (R2, ‖ · ‖2)) is a set of transfor-

mations wi : X → X and their associated probabilities pi:

S = {(wi, pi) : i = 1, 2, . . . , N}, (1)

which satisfy the average contractivity condition

N∏

i=1

spi

i < 1, (2)

where si is the Lipschitz constant for wi. The attractor AS
is a unique geometric structure [2], a subset of X defined by

S. The shape of AS depends on the functions wi and not the

probabilities pi; however, the pi do affect the distribution

of points across AS2. We choose pi ∝ |detAi|, as done in

[15]. We provide a visual comparison between determinant-

proportional and uniform pi in Appendix D.4.

3.1. Rendering Fractal Images

We can render an approximation of AS to obtain a fractal

image. The random iteration method, or “chaos game”, can

be used to to generate a subset of AS as follows: choose an

initial point x0 ∈ X ; randomly choose wi with probability

pi and apply it to x0 to get x1 = wi(x0); repeat this process

for a sufficiently large number of iterations K to get the set

of points Â = {x0,x1, . . . ,xK} ⊆ AS . The larger K is,

the closer the approximation will be to AS .

The next step is to render the points in Â to an image X .

We map a rectangular region R ∈ R
2, nominally defined by

the min and max x and y values in Â, to an M ×M pixel

grid. Pixels can be rendered as binary values, indicating

that at least one point in Â maps to that pixel; or they can

be rendered as continuous values, indicating the density of

points that map to each pixel.

3.2. Sampling Iterated Function Systems

3.2.1 What Makes a “Good” IFS Code?

So far we have defined Iterated Function Systems and how

we use them to render fractal images. We now turn our

attention to the question of how to get the IFS codes in

the first place. Let N = |S|, the number of functions

in the code S. In [15], they choose codes by sampling

N ∼ U({2, 3, . . . , 8})3, and then sampling the six val-

ues (Ak,bk) for each of the N affine transformations from

2See [1] for a more thorough introduction to Iterated Function Systems.
3Throughout the paper, we use U(a, b) to mean a continuous uniform

distribution on the interval [a, b], and U({·}) to mean a discrete uniform

distribution over elements of the set {·}.
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Figure 2. For systems with N = 2, . . . , 8 transforms, we show

the percentage of systems (out of 100,000 randomly sampled) that

have their largest singular value greater than 1 (in red), and also

those which violate average contractivity (in blue: pi ∝ det (Ai),
where Ai is the linear part of the affine transform).

U(−1, 1). Repeating this process thousands of times pro-

duces a dataset of IFS codes. Each code can then be treated

as a “class”, for the purpose of doing supervised multi-class

pre-training.

There are a few problems with the sampling approach

taken in [15]. First, in order to be a true IFS, the system

must be a contraction (Eq. 2). Sampling random transforms

with values between −1 and 1 does not guarantee a contrac-

tion. In fact, the majority of codes thus sampled will not be.

To demonstrate this, we sampled 100,000 random systems

with parameters in U(−1, 1) for each of N = 2, . . . , 8. Fig-

ure 2 shows (i) in blue, the percentage of those systems that

had at least one singular value greater than 1—an affine

transform must have singular values less than 1 to be a con-

traction, as we describe shortly—and (ii) in red, the percent-

age that violate the average contractivity condition. Clearly,

a naive sampling approach is quite inefficient, as the major-

ity of systems will not be contractions, and when a system

is not contractive it will, under iteration, produce sequences

that diverge to infinity. Such sequences cause numerical

difficulties and yield unsatisfactory images.

The second problem is that even when a system is a

contraction, it might not produce fractals with “good” ge-

ometric properties. What do we mean by “good” geometric

properties? Consider the fractal images shown in Figure 3.

Those on the left are very sparse, consisting of mostly blank

space and perhaps a few small structures (note that this is

similar to the idea of “filling rate” as discussed in [15]).

Those on the right look like blurry smudges. The ones in

the middle, however, contain complex and varied structure.

This set is the most visually interesting; we hypothesize

(and experimentally validate in Section 5.2) that it is the

most useful for representation learning.

3.2.2 Effectively Sampling IFS Codes

We will now describe an approach to sampling IFS codes

that addresses the two concerns just raised (contractivity

and good geometry). Our approach is based on the Sin-

gular Value Decomposition (SVD) of Ak, the linear part of

the affine transform. First, in order to ensure that an IFS is

contractive, it is sufficient to ensure that each function wi is

a contraction; that is, it satisfies

‖wi(x1)− wi(x2)‖ ≤ ‖x1 − x2‖, ∀ x1,x2 ∈ X (3)

For affine functions wi(x) : R
2→ R

2 = Ax+b, we require

‖Ax1 + b−Ax2 − b‖2 ≤ ‖x1 − x2‖2
⇒ ‖A(x1 − x2)‖2

‖x1 − x2‖2 ≤ 1

⇒ σmax(A) ≤ 1

(4)

where σmax(A) denotes the maximum singular value of A 4.

Thus, it is sufficient to ensure that the singular values of A
are less than 1, which we can do by construction. Recall that

by the Singular Value Decomposition, A = UΣV T , where

U and V are orthogonal matrices and Σ is a diagonal matrix

containing the singular values of A, σ1 and σ2, ordered by

decreasing magnitude. Since U and V are orthogonal, they

act as rotation matrices (with possible reflection, i.e. the de-

terminant can be ±1). Let U = Rθ be a rotation by angle θ,

and let V T = Rφ be a rotation by angle φ. Let D be a diag-

onal matrix with diagonal elements d1, d2 ∈ {−1, 1}. Then

A = UΣV T = RθΣRφD. We can sample A by appro-

priately sampling (θ, φ, σ1, σ2, d1, d2), composing the cor-

responding matrices, as above, and then multiplying them

together to obtain A. By sampling σ1 and σ2 in the range

(0, 1), we ensure that the system is a contraction.

Sampling the SVD parameters directly guarantees a con-

traction mapping, however, it does not address the ques-

tion of good geometry. It’s not immediately clear what

the relationship between the fractal geometry and the sys-

tem parameters is, nor whether there is a simple and con-

cise relationship at all. Intuition, however, hinted that the

singular values might play an important role. The magni-

tudes of the singular values define how quickly an affine

contraction map converges to its fixed point under itera-

tion; small singular values would lead to quick collapse,

while singular values near 1 would be more likely to re-

sult in “wandering” trajectories which don’t converge to

a clear geometric structure. Closer investigation revealed

that there is indeed a correlation between some property of

the singular values and whether the resulting fractal pos-

sesses good geometry. To probe this relationship, we la-

beled by hand several hundred size-2 systems according to

whether they had good geometry or not (subjectively), and

fit a linear Support Vector Machine (SVM) classifier to the

labels using the singular values of the system as features.

The SVM was able to distinguish between the systems with

4The final line of Eq. 4 follows from the definition of the spectral norm,

or l2 operator norm: ‖A‖2 = supx�=0
‖Ax‖
‖x‖ = σmax(A)
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Figure 3. Fractal systems by σ-factor (see Eq. 5). IFS codes with a σ-factor in the range [ 1
2
(5 + N), 1

2
(6 + N)] (where N is the size of

the system) tend to yield images with good geometry, while many codes with a σ-factor outside this range yield images with degenerate

geometry. Images were generated randomly at each σ-factor, with N = 2

nearly perfect accuracy. We repeated this experiment sev-

eral times for different system sizes. As we then investi-

gated the decision boundaries learned by the classifiers, we

discovered a simple and general pattern. Let σi,1 and σi,2

be the singular values for Ai, the ith function in the system,

and let xσ =
[
σ1,1 σ1,2 . . . σN,1 σN,2

]T
, and wσ =

[
1 2 . . . 1 2

]T
. We find that a large majority of the

systems with good geometry satisfy αl ≤ wT
σ xσ ≤ αu;

in other words, confining the weighted sum of a system’s

singular values

α =

N∑

i=1

(σi,1 + 2σi,2) (5)

to the appropriate range (αl, αu) will produce systems with

mostly good geometry, while systems outside of that range

tend to have less desirable geometry. We refer to the quan-

tity α in Eq. 5 as the σ-factor of the system. The appro-

priate range (αl, αu) depends on N , the size of the system;

but empirically, we discovered that setting αl =
1
2 (5 +N)

and αu = 1
2 (6 + N) works very well for N = 2, . . . , 8—

although a wider range might also work. Figure 3 shows the

effect of sampling images at different σ-factors.

We now know that we can confidently tell whether a

system will have good geometry by looking at its σ-factor.

We next describe an algorithm to randomly sample a set of

singular values, (σ1,1, σ1,2, . . . , σN,1, σN,2) that satisfy the

conditions

0 ≤ σi,2 ≤ σi,1 ≤ 1 (6)

and Eq. 5 for some 0 ≤ α ≤ 3N . We take an iterative

approach, sampling one singular value at a time and updat-

ing the constraints on the next one accordingly. We start

with σ1,1; it could achieve its smallest possible value if ev-

ery other were maximized. Assume that every other singu-

lar value was maximized according to Eq. 6, then we have

α = σ1,1 + 2σ1,2 + 3(N − 1), and the lower bound on

σ1,1 is max(0, 1
3 (α − 3(N − 1))). Similarly, σ1,1 could

achieve its maximum value when all others are minimized,

so we set them to 0 and get that the upper bound on σ1,1 is

min(1, α). We then sample σ1,1 uniformly according to the

bounds just established, and it becomes a constant in all fur-

ther bounds calculations. We follow this same process for

all but the last two singular values, calculating upper and

lower bounds for—and then sampling—each singular value

in turn, and updating the constraints on future values. For

the last pair, it is more convenient to first sample σN,2, at

which point σN,1 becomes fixed in order to satisfy Eq. 5.

The sampling constraints given by Eqs. 5 and 6 lead to

a problem that resembles a Linear Program, except that in-

stead of trying to find a minimizing point, we need to sam-

ple a point on the surface of the resulting 2N -polytope. The

algorithm described above does this by iteratively sampling

a value independently in each dimension, restricting the

available sampling volume for the remaining dimensions.

This approach does not necessarily sample points uniformly

across the volume, but it is fast and should be sufficient to

sample a diverse set of IFS codes.

We now have a process, described formally as

sample-svs in Alg. 1 (in Supplementary Material, Ap-

pendix A), for sampling singular values so that the result-

ing systems exhibit good geometry. Our algorithm using

this process to sample IFS codes via SVD is described as

sample-system in Alg. 2 (in Supplementary Material,

Appendix A).
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4. Pre-training Procedures
4.1. Pre-training Tasks

We are focused on using fractal images to learn good rep-

resentations which will benefit natural-image recognition

tasks via fine-tuning. There are several pre-training tasks

that could be used to learn these representations. We could

use unsupervised/self-supervised pre-training strategies as

described earlier in related work (Section 2), however, these

seem less compelling when labels are both accurate and

abundant. Supervised multi-class classification is routinely

used for pre-training on ImageNet, and is the pre-training

task adopted in [15]. We too utilize this widely-accepted ap-

proach; we additionally propose a new pre-training method

which is uniquely suited to synthetically-generated data

such as fractal images, a task which we call multi-instance
prediction. Multi-instance prediction is a type of large-scale

multi-label classification, where each image may contain

examples of multiple classes. We describe each of these

approaches in greater detail below.

4.1.1 Multi-class Classification

For multi-class classification, we follow the same basic ap-

proach taken in [15]. We choose a fixed number of classes

C, and assign IFS codes to each class. We use the stan-

dard cross-entropy objective function to train the model to

predict the corresponding class for each image.

Assigning classes to IFS codes Kataoka et al. [15] assign

each IFS code its own class label, and then augment each

class by scaling each of the six parameters in (Ak,bk) in-

dividually, essentially yielding a set of codes for each class.

In principle, these codes will be related, since there is a

smoothness to the space of fractals defined by IFS. Small

perturbations to the parameters can still yield large differ-

ences in the resulting fractals, however (see example in Ap-

pendix D); and simply scaling the parameters of the affine

transformations may additionally cause the singular values

of the system to become too large or too small, producing

sparse or degenerate images.

Our approach is to sample more systems according to

Algorithm 2, and assign a single class label to a group of

IFS codes. In our experiments, we show that this approach

outperforms the parameter-scaling method of [15]. How-

ever, we also experiment with some parameter augmenta-

tion methods and find that they can still help performance.

4.1.2 Multi-instance Prediction

Multi-instance classification is a supervised classification

task; like multi-class classification, we define a fixed num-

ber of classes C and assign one or more IFS codes to

each class. But unlike multi-class classification, the im-

ages we use in the multi-instance setting may contain mul-

tiple fractal instances from multiple classes—hence “multi-

instance”. During training, the model performs multi-label

prediction, trying to determine the presence or absence of

each of the C classes in each image. In other words, each

class can be considered as an attribute, and the model tries

to predict which attributes are present.

Multi-instance prediction is significantly more challeng-

ing than multi-class classification, as evidenced in our ex-

periments. Each image contains a variable number of frac-

tals, yielding a vast space of possible image configurations.

In training, the model must learn to pay attention to each

fractal “attribute” that is present. Our experiments show

that this added task complexity leads to pre-trained features

that generalize significantly better for downstream tasks.

The images for training multi-instance classification

models looks different than for regular multi-class, the pro-

cess for generating them is different, and there are some

special considerations that need to be accounted for. We

discuss this in Section 4.2.2.

We train multi-instance models using a binary cross-

entropy loss, averaged across all the classes. Since the num-

ber of positive examples in each image is so small com-

pared to number of classes (e.g. 5 out of 1000), we apply

a large weight to the positive examples to balance the loss.

For instance, when using 1000 classes and a maximum of

5 instances per image, we multiply the loss of the positive

classes in each image by 200. Without applying this weight-

ing factor, the model fails to learn.

4.2. Pre-training Datasets

Each pre-training task operates on different types of im-

ages: single-fractal images for multi-class classification,

and multi-fractal images for multi-instance prediction. For

both tasks, images are not generated or stored up-front; im-

ages are generated “just-in-time”, as needed during training.

With the correct procedure, we are able to generate all

images “on the fly” as they’re needed for training. This is

significant, as we circumvent the typical need to store or

transmit a huge quantity of data. The entire dataset can be

generated from the set of IFS codes, which can be stored in

tens or hundreds of megabytes (depending on the number

and size of the systems). For example, an ImageNet-sized

(1.28M images) fractal dataset requires only 184.5MB to

store its parameters instead of the 150GB of storage needed

to store ImageNet (ILSVRC 20212). We leverage an effi-

cient Numba [22] implementation, along with a rendering
cache of recently generated images, in order to achieve the

necessary throughput during training. Please see Appendix

B.2 in the Supplementary Material for details.
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Binary Patch-based Color Color and background

Figure 4. Rendered fractal images.

Figure 5. Rendering multi-instance images. A cache of fractals

and backgrounds is regularly updated with new samples. Each

training image is composed of a random selection of fractals from

the cache, randomly augmented and composited on top of a ran-

dom background image. Best viewed digitally, zoom in for details.

4.2.1 Single-instance Images

To generate a given fractal image, we start with the process

described in Section 3.1. We then add three additional ele-

ments: patch-based rendering, as described in [15]; adding

color to the fractal; and adding a randomly generated back-

ground using the “diamond-square” algorithm [11]. Full

details are provided in Appendix B.1 in the Supplementary

Material. In addition, we randomly scale and translate the

region R (see Section 3.1), which scales and translates the

resulting fractal. We also apply random flips and 90◦ rota-

tions, and random Gaussian blur to the final image.

4.2.2 Multi-instance Images

We create multi-instance images by compositing one or

more fractals and a background into a single image. For

each image, we randomly sample the number of fractals, n,

uniformly from {1, . . . , Nmax}. Then we randomly sample

n classes and generate their fractal images; we generate the

fractals at a lower resolution (such as 128 instead of 224),

for efficiency and because of how we composite them. We

do not apply scaling or translation at this stage. We also

generate a random background. In our experiments, we set

nmax = 5, to produce images which aren’t overly cluttered.

Once we have the n fractals and a background, we com-

posite them together. We randomly rescale each fractal and

add it to the image at a random location. Fractals may end

up partially occluded by other fractals, or partially outside

the image, resulting in complex, varied, and challenging im-

ages for recognition (see Figure 5, bottom).

Rendering multiple fractals for every training image will

almost certainly be too slow; in this case, a rendering cache

becomes particularly useful. Every kp training images (we

set kp = 2), we generate a new grayscale fractal image and

new background, and update the cache. To generate a train-

ing image, we choose n random fractals and a background

from the cache; we randomly flip and colorize each fractal,

and add it to the background image as described previously.

This allows us to create multi-instance images with roughly

the same computation as in the single-instance case. This

process is illustrated in Figure 5.

5. Experiments
Our basic fractal pre-training dataset consists of 50,000

IFS codes grouped into 1,000 classes. The IFS codes are

sampled uniformly for N ∈ {2, 3, 4}, and the parameters

are sampled as described in Section 3.2.2. We also employ

a parameter augmentation method, which randomly selects

one of the transforms (Ak,bk) in the system and scales it by

a factor γ ∼ U(0.8, 1.1) (while making sure not to overflow

the singular values) to get (γAk, γbk). We found this to

be more effective than the other augmentation methods we

explored and plan to investigate why in future work.

Setup/Implementation

Our experiments use a ResNet50 [13] CNN model. We

pre-train each model for 90 epochs, with 1,000,000 train-

ing samples per epoch, and with an image resolution of

224 × 224. Most models are pre-trained using 8 NVIDIA

GTX 1080 Ti GPUs, with a total batch size of 512. Some

of the ablations were run using 4 Tesla P100 GPUs and a

batch size of 256.

We evaluate the effectiveness of the pre-trained repre-

sentations by fine-tuning on several different tasks. For

image classification, we use CUB-2011 [37], Stanford

Cars [20], Stanford Dogs [16], FGVC Aircraft [26] and

CIFAR-100 [21]. We also fine-tune models for medical im-

age segmentation on the GlaS dataset [31]. For classifica-

tion, we fine-tune for 150 epochs with a batch size of 96—

we found that longer fine-tuning led to better performance.

For segmentation, we fine-tune for 90 epochs with a batch

size of 8.

We compare our proposed methods with three base-

lines: training from scratch (no pre-training); fine-tuning

from ImageNet [30] pre-trained weights (available through

PyTorch [29]); and, fine-tuning from FractalDB [15] pre-
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Figure 6. Fine-tuning evaluation results (classification accuracy) using different pre-training methods. The five datasets to the left are image

classification datasets; the rightmost dataset, GlaS, is a medical image segmentation dataset.

Figure 7. Performance from pre-training on systems with differ-

ent σ-factor ranges: (low) [1, 1
2
(5 + N)]; (proposed) [ 1

2
(5 +

N), 1
2
(6 +N)]; (high) [3N−1, 3N ].

trained weights, which we obtained using the dataset and

code made available by the authors5.

Our experiments use PyTorch [29] and the PyTorch-

Lightning framework [8], with Hydra [38] for configura-

tion. To facilitate reproducible research, all code and con-

figuration files will be made publicly available.

5.1. Fine-tuning Results

Fig. 6 shows the fine-tuning performance on each evalu-

ation task using different pre-training methods, along with

training from scratch. Fractal pre-training provides a clear

and consistent boost over both training from scratch as well

as pre-training with FractalDB. Using multi-instance pre-

diction as the pre-training task is also consistently better

than using multi-class classification. In fact, multi-instance

prediction models can provide more than 90% of the ac-

curacy achieved by ImageNet pre-training—and in some

cases, such as for Stanford Cars, the model obtains over

98% of the ImageNet performance.

5.2. Ablation Experiments

This section provides ablation experiment results isolat-

ing the impact of different parts of the proposed pre-training

method. Additional results can be found in the Appendix.

Impact of σ-factors First, we consider the effects of us-

ing different ranges of σ-factors. Figure 7 shows the results

of pre-trainng models using three different σ-factor ranges

(see figure caption for details) and evaluating performance

when fine-tuning for the CUB, Stanford Cars and CIFAR-

100 datasets. Across all three datasets, the high σ-factors

5hirokatsukataoka16.github.io/Pretraining-without-Natural-Images

Figure 8. Performance from pre-trained models with different

class composition: (FracDB) 1,000 classes and 1 system per class,

with parameter augmentation used in [15]; (1k) 1,000 classes

and 50 systems per class, without parameter augmentation; (10k)

10,000 classes and 50 systems per class without parameter aug-

mentation; (Gamma) 1,000 classes and 50 systems per class, with

γ-scaling augmentation (see beginning of Section 5).

perform poorly relative to the proposed “good” geometry

range. Similarly, the proposed σ-factor range outperforms

the low σ-factors model on two of the three datasets: CUB

and CIFAR-100.

Impact of Class Composition We also compare differ-

ent choices for the number of classes/systems and param-

eter augmentation, with results presented in Figure 8. The

γ-scaling augmentation appears to make the biggest differ-

ence. Interestingly, we don’t seem to see any consistent

improvement from using more classes and systems overall.

This could merit further exploration, as it conflicts with the

findings of [15].

6. Conclusion
We have shown that by carefully designing the pro-

cesses for sampling and rendering affine IFSs, fractal pre-

training can yield strong representations that are useful

for real-world image recognition tasks. We have also

proposed a pre-training task—multi-instance prediction—

which greatly improves over multi-class classification as a

pre-training task. Finally, we have shown that the fractal

images used for pre-training can be generated “on-the-fly”

in real-time during training, removing the need to generate,

store, or transmit a large volume of data.
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