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• Water permeability and depth simulated 

with and without the probability distribu- 

tion function. 

• The modified SCS-CN approach improved 

the results through the basin FORM factor. 

• Construction design using the modified 

SCS-CN method provides more safety. 

• Quantification of hydrologic responses 

due to urbanization using TUFLOW. 
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A B S T R A C T  
 

Understanding pathways connecting urbanization to the recharge process across the land surface and river 

environment is of great significance in achieving low-impact development. Accordingly, the contribution of 

an urbanized region with a low and high development rate, along with the expected overflow into the river net- work 

resulting from increased impervious surfaces, was assessed in the recharge rate at Jackson, Tennessee. To this end, 

first, the losses were calculated using the standard and modified SCS-CN methods for the maximum probable flood 

condition. Then, TUFLOW was applied to simulate the two-dimensional flood for a historic 24-h probable 

maximum precipitation event with a 100-year return period. The results of TUFLOW were later calibrated 

using the results of standard and modified SCS-CN methods. A calibrated MODFLOW was employed to 

assess the effects of urbanization and, consequently, the plausible extended river network on the recharge rate. 

Results revealed that the West Wood contribution in groundwater recharge was 19 % less than the Musa Street, 

while it supplies approximately 2.7 % more flow than Musa Street. The performance evaluation results of TUFLOW 

showed 0.4916 and 0.689 as Nash–Sutcliffe, respectively, for the standard and modified SCS-CN methods. 

Although the flow velocity and depth were respectively increased by 3.3 % and 8.3 % under modified SCS-

CN compared to the standard one, the soil water storage capacity remained constant at equal to 0.16 mm. Results 

revealed that the maximum soil water storage capacity was fulfilled soon through the modified SCS-CN than 

the standard method leading to higher flood volume and discharge. To this end, the discharge resulting from 

modified SCS-CN was approximately 1.5 times higher than that in the standard method under the same precipitation 

condition. Our findings suggest that designing any construction, mainly dams downstream, based on the modified 

SCS-CN estimations will provide more safety, particularly in crowded regions. Also, overflowing the excess 

surface runoff into the river network resulted from the increased 
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impervious surface amplifying the flow volume, depth, and velocity across the river networks, finally leaving 

the area without increasing the aquifer's recharge rate. The results provide insights into possible sustainable de- 

velopment options and flood management in the built-up area. 

 
 

 

1. Introduction 

 
There is no doubt that groundwater is one of the most important re- 

sources in terms of the supply of fresh water for socio-economic develop- 

ment around the world. Unsustainable socioeconomic development, land 

and climate changes and prolonged droughts are among the factors affect- 

ing groundwater resources' quantity and quality. Another stimulus is urban- 

ization, which has increased pressure on groundwater resources from 

several perspectives (Nazari et al., 2013; Feng et al., 2021; Pasquier et al., 

2022). On the one hand, urbanization, and subsequent wellfield develop- 

ments have significantly increased groundwater withdrawal (Jazaei et al., 

2019; Ayalew Yifru et al., 2022). On the other hand, urbanization increased 

impervious surfaces and, thus, changed the surface flow regimes and aqui- 

fer recharge mechanisms (McGrane, 2016; Feng et al., 2021; Pasquier et al., 

2022). The increased impervious surfaces have challenged the aquifer re- 

charge rate in the built-up region leading to increasing catastrophic hazards 

such as flash floods and degradation of water qualities (Guan et al., 2016; 

Rosburg et al., 2017; Fahad et al., 2020; Lü et al., 2022; Ayalew Yifru 

et al., 2022; Kumar et al., 2022; Talebmorad and Ostad-Ali-Askari, 2022). 

Water infiltration and groundwater recharge can occur through satu- 

rated beds of surface water bodies (e.g., lakes, streams, and creeks) and 

through unsaturated vadose zones (Lerner et al., 1990; Healy and Cook, 

2002; Scanlon et al., 2002). The infiltration process is strictly affected by to- 

pographic conditions and biophysical features, mainly land use at the basin 

(Bartlett et al., 2016; Karimi et al., 2017; Ostad-Ali-Askar, 2022; Fathi 

Nafchi et al., 2021; Shirmohammadi et al., 2020). Impermeable surfaces 

in urban areas drive excess overland flow into the hydrographic network, 

causing runoff of greater intensity and extent. Thus, urbanization can inten- 

sify the river network and change the runoff properties (shape and volume) 

downstream urban areas. Several methods have been developed by various 

research groups to estimate surface runoff. However, accurate estimation of 

runoff losses remains one of the main sources of uncertainty. By simplifying 

assumptions, such as considering the same soil wetting conditions through- 

out the entire basin, runoff losses are often misestimated (Wang, 2018). Ac- 

curate estimation of the soil wetting extent during rainfall events is critical 

to determining the overland flow network extent and magnitude, leading to 

accurate urbanization impact assessment. 

The Conservation Service Curve Number (SCS-CN) is the widespread 

approach to estimating surface runoff (Mockus, 1972; Shi and Wang, 

2020; Schoener and Stoneb, 2019; Lian et al., 2020). In this approach, 

soil-wetting conditions only include fixed and limited amounts of runoff 

under wet, dry, and medium conditions. The initial soil water storage was 

considered 20 % of the basin's total storage capacity (HEC, 2020). Even 

though recently developed models can assess soil moisture ratios, the un- 

certainty imposed by effective precipitation estimation on hydrograph 

components led to the localization of the SCS-CN method (Schoener and 

Stoneb, 2019; Lian et al., 2020). Most errors in the estimation of the maxi- 

mum discharge across large catchments are referred to computing water 

percolation into the soil during historic flood conditions (Wang, 2018). 

Thus, SCS-CN usually overestimates maximum discharges by using simplis- 

tic assumptions in estimating the soil moisture compared to in-situ data, 

specifically in large catchments (Wang, 2018). 

The most comprehensive study addressing the SCS-CN estimation chal- 

lenges was conducted by Wang (2018), which resulted in a new SCS-CN 

equation. According to Wang's (2018) equation, a probabilistic distribution 

is necessary to calculate the overland flow under boundary conditions 

(i.e., upper and lower bounds of soil storage index). In this Equation, runoff 

is estimated only for the affected basins, and the results are modified ac- 

cording to the topographic conditions of the catchments. 

Several models have been developed to assess the effects of impervious 

surfaces on groundwater recharge rate in urban areas, such as GSFLOW, 

ParFLOW, HydroGeoSphere, MIKE SHE, MODHMS, and SWATMOD. 

These models have been widely used to address several water resources 

challenges, including surface-groundwater interactions (Huntington and 

Niswonger, 2012), irrigation management (Perez et al., 2011), water qual- 

ity, land use, and climate change impacts on water resources (Markstrom et 

al., 2008; Tian et al., 2015). Most of them use MODFLOW code to 

model subsurface water systems due to their high performance in capturing 

groundwater system properties accurately. However, one of the efficiently 

accurate runoff simulations can be fulfilled by coupling the SCS-CN method 

with a runoff simulation model such as TUFLOW, which would be consid- 

ered as this novelty. 

This study aimed to assess the effects of increased impervious surfaces 

on the recharge rate in the built-up area using a coupled SCS-CN- 

TUFLOW approach. This approach established an accurate relationship 

between soil wetting conditions and soil storage index in order to reduce 

the uncertainty in the estimation of runoff volume and recharge rate. 

Finally, the effects of increased impervious surfaces and, consequently, 

the expected excess overland flow on groundwater recharge were assessed 

using MODFLOW. 

 
2. Materials and methods 

 
2.1. Study area 

 
The study area is located in Jackson, Tennessee, and extends between 

88° 47′ 30″ to 88° 50′ 00″ W longitude and 35° 38′ 00″ to 35° 39′ 30″ N lat- 

itude. It is part of the Memphis Aquifer recharge area belt that supplies 

fresh water for municipal and industrial usage (Fig. 1). Fig. 1 shows two dis- 

tinct areas, Sandy Creek West Wood and Sandy Creek Muse Street, which 

indicate high and low urban development, respectively. These areas resem- 

ble biophysical characteristics but differ in urban development, making it 

ideal for studying how urbanization would recharge. 

The slopes in both areas are very low, and surface flow occurs temporar- 

ily following rainfall events. In this area, the rainfall is highest during 

February–March and lowest during September–October, respectively. Rela- 

tively low slopes, along with effective urban uses with scattered streams, 

allow for studying the effects of urbanization and therefore increased 

impervious surfaces on the hydrological process and flow network. 

 
2.2. The groundwater and surface water model development 

 
The TUFLOW, grid-based 2D hydrodynamic model for free-surface 

flow, was applied to estimate the accurate amount of overland flow using 

the standard and modified SCS-CN methods, which was of utmost impor- 

tance in this research. As an urban hydraulic runoff model, TUFLOW can 

capture complex two-dimensional flow components individually (WBM, 

2016; Fahad et al., 2020). TUFLOW is a distributed hydrological model 

used to analyze runoff risk management which is differentiated from the 

other 2D flood models through the inclusion of the viscosity or sub-grid- 

scale turbulence (WBM, 2008, 2016). It is mainly used to simulate free- 

surface flows and inundation patterns in floodplains, coastal areas, estuar- 

ies, rivers, and urban areas (WBM, 2016). SCS-CN and its newly modified 

version by Wang (2018) were employed to capture the relationship be- 

tween soil moisture ratio and soil storage index. In the modified SCS-CN, 

a new distribution function is proposed as a substitute for the upper 

bound of soil water storage conditions to better capture the spatial distribu- 

tion of soil water storage capacity (Wang, 2018). Thus, it is necessary to 
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Fig. 1. The study area location (source: Environmental Systems Research Institute (ESRI)). 

 
 

simulate surface runoff twice under two different soil wetting conditions 

(i.e., standard and modified SCS-CNs). This allows for determining 

how the basin First Order Reliability Method (FORM) factor, along with 

the probability distribution function, affects the hydrological response 

throughout the basin. The modified SCS-CN method can precisely address 

the challenges that arise from the simplification assumption. The modified 

SCS-CN approach can minimize the unintended effects of simplifying 

assumptions (i.e., soil wetting condition and Basin's soil water storage 

 

capacity) on misestimating soil wetting conditions. Thus, using the modi- 

fied SCS-CN would improve the results of TUFLOW and lead to a more ac- 

curate runoff projection (see detailed model explanation in Wang, 2018) 

The overland flow volume and its distribution for the historic Probability 

Maximum Precipitation (PMP) event were performed under the two soil 

wetting conditions using the standard and modified SCS-CN method. 

First, the probable maximum precipitation with a 100-year return period 

was estimated using the Bell equation (Eq. (1)). Then, the precipitation 

 
 

 
 

Fig. 2. The conceptual model of aquifer recharge fluctuations from the river network as a result of increasing impermeable surfaces for the two standards and modified SCS- 

CN methods (SCS-CN*: modified, Wang, 2018). 
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distribution pattern was developed based on the SCS Type Ш. The standard 

and modified SCS-CN methods were used to analyze the sensitivity of max- 

imum flow volume to variation in FORM factor and soil wetting conditions 

(Wang, 2018). 

 
20 vertical layers with a cell size of 10*10 m was developed using the 

MODFLOW code. The artificial neural network of LSTM was employed to 

predict precipitation from September 2017 to December 2023 as a recharge 

source for the last 36 months of the modeling period. This timeframe was 
considered due to the availability of reliable water level data. In addition 

Pt ¼ ð0:21lnT þ 0:52Þ
(
0:54t0:25 - 0:5

)
P60 (1) to four exploitation wells, the area involves permeable boundaries in the 

 

 

where t is the rainfall duration (min), T is the return period (year), P60 is the 

precipitation amount received in an hour with a 10-year return period 

(min) and Pt is the precipitation amount received in t minutes with a T- 

year return period. 

Fig. 2 depicts the developed conceptual model to simulate the flow- 

forming process and dynamics across the basin and river network environ- 

ment using the two standards and modified SCS-CN methods. The figure 

illustrates how the accurate estimation of losses during rainfall events can 

affect the results, mainly runoff peak. 

A TUFLOW model was developed to simulate flood conditions under a 

historic rainfall event with a 100-year return period, which was developed 

through SCS artificial hyetograph. The model was calibrated using the ver- 

ified flood volume derived from the SCS-CN modified equations (Wang, 

2018). Then, the flow component, the runoff depth distribution, was used 

to estimate the spatially distributed soil water capacity within the basins. A 

performance function was defined based on the first-order reliability 

method (FORM) to employ the sensitivity analysis. This was performed 

by defining a performance function in the probability distribution domain 

and calculating the failure threshold using the soil moisture ratio and soil 

storage index derived from TUFLOW and SWC (Soil Water Content) sensors 

data. Fig. 3 provides an overview of the key stages of the methodology. 

Using the SCS-CN method, the shape of the flow network was explored 

using the probabilistic distribution of losses in the runoff volume 

hydrograph. 

A calibrated modeling approach was used to quantify the effects of 

impervious surfaces on recharge rate. The 3D groundwater flow model in 

lated using monthly observed precipitation, evaporation, and outflow 

datasets measured across the region. The monthly average values were ap- 

plied to the conceptual model based on land use types and impermeable 

surfaces percentage. The RIV package of MODFLOW was implemented 

with and without recharge components to separate the total recharge 

from the leakage from the riverbed. This way, the recharge volume from 

river networks is specified by the actual ratio of the observed storage, indi- 

cating the contribution of river networks to the region's total recharge. 

Also, the two-dimensional flood hydraulic depth and the impermeabil- 

ity percentage of different land use types were used to calculate the soil wet- 

ting ratio and soil storage index. These indices were then applied to develop 

the study area's soil water storage capacity distribution. The saturated 

moisture capacity captures the amplitude changes of the flow network 

and, consequently, the aquifer recharge status in response to the changes 

in flood flows. The basin soil water storage capacity was determined 

more accurately due to the extensive network of finite difference ap- 

proaches in TUFLOW. Therefore, the difference in soil water storage capac- 

ity during the two model runs implied how flood variations can affect the 

recharge process into the aquifer. 

 
2.3. Soil water storage capacity 

 
The average flow depth was determined using TUFLOW for a historical 

event (100-years return period simulated within a 10*10 m cell size) from 

its initiates to reach the peak at the outlet, total in 13 steps (6 min). The 

overland flow volume was estimated using modified SCS-CN (Wang, 

 

 
 

north and south parts of the aquifer. The recharge variations were calcu- 
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Fig. 3. The key stages of the methodology. 
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where the soil storage index (ɸsc (SSW)) was calculated based on VWC 

observed data using Eq. (2). According to Eq. (2), ɸsc (SSW) was calculated 

close to reality using ψ index (Wang, 2018). 
 

ɸ 
Sb 

sc ðSSWÞ ¼ 
P 

ð1 - ψÞ (2) 

where, Sb is the region's maximum average soil water storage capacity. Ac- 

cording to the basic assumption of the SCS-CN method, the antecedent 

moisture (wi) was considered equal to 20 % (Ponce, 1996) of the total aver- 

age storage capacity of the basin (Eq. (3)) (Wang, 2018). 

 

wi ¼ 0:2 x ψðSCS - CNÞ (3) 

According to Eq. (4), the modified SCS-CN was applied to extract the ob- 

served values from the moisture ratio, which accurately estimates under 

historical flood conditions (Wang, 2018). 

q
ð
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Fig. 4. Probabilistic integral of two random variables in three-dimensional space 

(Faber, 2009). 

W  
1 þ 

P 
¼ 

Þ 

1−ψ 
ɸscðModelÞ− 1 

1−ψ 
ɸscðModelÞ 

a 

−2am 
ɸscðModelÞ 

1−ψ 
− 

1−ψ 
ɸscðModelÞ 

ð4Þ 

 

 

2018) across the region, leading to the new peak flow. The modified SCS- 

CN determines the distribution of the soil water storage based on a proba- 

bility function distribution. Therefore, Wang's (2018) equation estimates 

the overland flow closer to reality and greater than the standard SCS-CN 

equations concerning historical flood events. The magnitude of the compu- 

tational value with a reasonable threshold can face the soil water storage 

capacity of the basin with challenges through reprocessing the standardized 

layers, including the standardized flood flow depth, impermeability, and 

soil retention capacity distribution coefficient. Therefore, once a probabilis- 

tic value for the form factor (a) was achieved through the Wang (2018) 

equation, the moisture ratio as a representative of the soil water storage 

was estimated in two ways: 1- based on the modified SCS-CN approach re- 

sults which work based on the point probability distribution function at the 

basin scale, and 2- based on the standard SCS-CN approach results. Eq. (1) 

was employed to calculate the basin form factor of the modified SCS-CN 

method (Wang, 2018). 

 
w2 

where, m is calculated based on two variables a, and ψ which is varied be- 

tween 0 and 2 (Wang, 2018). This parameter (m), which has considered as β 

by Wood et al. (1992), was estimated between 0.01 and 5 in this study, 

indicating the convexity and concavity of the soil storage capacity distribu- 

tion curve. Determining the graphic sensitivity value between the soil stor- 

age index and soil moisture ratio can lead to the improvement of the 

accuracy of basin form factor (a) in the modified SCS-CN equation 

(Eq. (5)) (Wang, 2018). 

ða−1ÞP−S 

q ffi

ð
ffi

m

ffi ffi ffi ffi ffi

þ
ffi ffi ffi ffi ffi

1

ffi ffi ffi ffi
2
ffi ffi ffi

−
ffi ffi ffi ffi

2

ffi ffi ffi

a

ffi ffi

m

ffi ffi ffiffi 

þ 
q

½
ffiffi

P

ffiffiffiffi

þ
ffiffiffiffi

ð
ffiffi

m

ffiffiffiffiffi

þ
ffiffiffiffiffi

1

ffiffiffi

Þ
ffi

S

ffiffiffiffiffiffi
2
ffiffi

−
ffiffiffiffiffi

2

ffiffi

a

ffiffiffi

m

ffiffiffiffi

S

ffiffi
2
ffiffiffi

−
ffiffiffiffi

2

ffiffiffi

a

ffiffi

S

ffiffiffiffiffi

P

ffiffi 

 

 

ð5Þ 

 

According to Eq. (5), the surface runoff is a function of precipitation (P), 

the maximum value of average soil water storage capacity over the basin 

(Sb), the shape parameter of the storage capacity distribution (a), storage 

capacity distribution (m) and initial soil moisture (ψ) (Wang, 2018). In 

this Equation, estimating the shape parameter of the storage capacity distri- 

W 

P 
¼ 

1
 

ɸsc ðSSWÞ −  i 
 

þ ɸsc ðSSWÞ −2 
P 

ð1Þ 
bution (a) is similar to the Cp parameter in the Schneider hydrograph, 

which was calculated using trial and error by the observed data (Eq. (6)). 

Its initial approximation in this study was calculated through the 

 

 

a 

þ 

¼ Q 
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Fig. 5. Beta distribution based on statistical characteristics of the soil water storage index and soil moisture ratio. 
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Fig. 6. The monthly temporal discharge distribution per unit of area across the 

studied watersheds. 

2.4. First-order analysis of the basin shape reliability 

 
Determining the reliability threshold in a performance function of an 

event magnitude was accomplished to specify the threshold of reliability 

of the basin form factor (a) in the estimation of surface runoff in the unit 

hydrograph of the modified SCS-CN equations. The reliability is defined 

as the positivity of the significant function of g (X), when P {g (X) > 0}. 

In other words, reliability is the probability that the random variable of 

X= (X1, X2…, Xn) is in the safe region of g (X) > 0 (Fig. 4). 

Therefore, the failure probability is defined as g (X) <0. Considering the 

probability density function of the variable X as fx(X), the probability of 

failure is evaluated by Eq. (8) (Faber, 2009). 

 
Z 

 

equivalence assumption between the discharge obtained by the standard 

and modified SCS-CN methods (Eq. (7)) (Wang, 2018). 

pf ¼ PfgðXÞ < 0g ¼ fxðXÞdx ð8Þ 

gðxÞ<0 

ψð2 - aψÞ 

2ð1 - ψÞ 

The first-order reliability or FORM (First Order Reliability Method) 

analysis is originally derived from the significant function of g(X), which 

is linearly approximated by the Taylor expansion (Melchers, 1999). The 

probabilistic integral Eq. (8) is visualized in two dimensions. Integral sim- 

plification is performed by transferring or converting a dependent random 

ɸ ¼ 
Sb - S0 

¼ 
Sp (7) variable space into a standard space as an independent random variable 

sc ðModelÞ P   P 

 

where So is the initial soil water storage at the begging of the rainfall event. 

The ɸsc (Model) was calculated using the TUFLOW results as presented in 

Eq. (7). 

space (Melchers, 1999). This space contains the main variable of X = 

(X1, X2…, Xn), called X space. All random variables of X = (X1, X2, Xn) 

are converted from X space into standard space to convert the integral 

contours of the f (X) in an organized and symmetrical manner. While the 

standard variables of U = (U1, U2…, Un) have a certain distribution. In 
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Fig. 7. a) Impermeability surfaces map across the study area, b) Land cover variety map across the study area. 
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Fig. 8. The basic distribution pattern of soil saturation percentage and the observed VWC values at WW and MS. 

 
 

this case, the converted space is called U space. Eventually, the probabilistic 

integral will be equal to Eq. (9) (Faber, 2009). 

Z 

… 

Z Yn 1
 

  

(  
1 2

 

d ⋯d 

 

Fig. 5 illustrates the Beta statistical distribution for X1 and X2 parame- 

ters obtained by the established distributions in the performance function of 

the reliability analysis. (16) The statistical distribution (Fig. 5) for all 

states of form factor (a) showed that the closest fit occurs with the probabi- 

listic beta distribution. The Beta continuous distribution includes two free 

parameters on the interval [1 and 0], α and β. The closest fit to the data 

was fulfilled around β = 1 and α = 5. The probability density function 

of this distribution was presented in Eq. (10). 

 
xα−1ð1 þ x −α−β 

 
 
 
 
 
 
 

 
Fig. 10. Contribution of the recharge components into the aquifer at Westwood 

watershed zone. 

 
The shape of the sub-integral function was simplified to development of 

fðxÞ ¼ 
Bðα: 

Þ
 

 
 

 

ð10Þ further probabilistic integrals for evaluation leading to the approximation 

of the boundary integral of g(U) = 0. In this section, the FORM method 

uses a linear approximation called the first-order Taylor expansion analysis, 

as presented in Eq. (11). 

 

gðUÞ ≈ LðUÞ ¼ gðu Þ þ ∇gðu ÞðU−u ÞT ð11Þ 

where L(U) is the linearized significance function, u* = (u*1, u*2, …, u*n) 

is the design point, T is the conversion base and ∇g (u*) is the slope of the g 

(U) function at the u*. The expansion of the significant function was 

considered at the point with the greatest amount of the sub-integral func- 

tion, which is known as the maximum probability density. The point with 

 
Table 1 

Comparison of leakage percentage from the riverbed and natural recharge. 
 

Watershed 

Zone 

Leakage from Riverbed to Total 

Inflow (%) 

Natural Recharge to Total 

inflow (%) 

gðu1 :u2 :…:un Þ<0 i¼1 

SC-WW SC-MS 

V
o

lu
m

e 
W

at
er

 C
o
n
te

n
t 

p f ¼ 
un ð9Þ 
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Fig. 9. Contribution of the recharge components into the aquifer at Muse Street 

watershed zone. 

Muse Street Zone 70 30 

Westwood Zone 67 33 
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Fig. 11. The SCS Type III Hyetograph along with the specified value at the proposed SCS-CN dimensionless hydrograph. 

 

 

 

the highest probability density at the significant function of g(U) = 0 is the 

Most Probable Point (MMP). Eq. (12) was applied to capture this 

coordinate. 
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distribution, while only the samples that differ from the basic distribution 

are produced. This method was first presented by Kloek and Dijk (1987) 

and applied to reduce the number of simulations and the coefficient of var- 

iation. Importance Sampling (IS) is one of the widespread methods where 

its characteristics regarding failure level were added using Eq. (13). 
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pf ¼ pðgðXÞ ≤0Þ ¼ ∭ 
ð Þ  

IðgðXÞ ≤0Þ  fx ðXÞ 
h ðXÞdx ð13Þ 

i¼1 

 
The processes to calculate the FORM factor can be summarized in 3 

steps (Faber, 2009): 1- converting the main random variable from X space 

to U space using the Rosenblatt transform; 2- searching the MPP in U 

space and calculating the β reliability index; and 3- calculation of reliability 

R= ϕ (β). 

The Importance Sampling method was employed to capture the uncer- 

tainty threshold of the shape parameter (a) dynamics using the mean values 

and standard deviation specified for the two variables of X1 and X2. This 

way, the probabilistic assessment of calculated discharge was possible 

using the standard SCS-CN distribution method based on an evaluation 

performance function. 

Uncertainty resulting from incomplete information usually arises dur- 

ing practical computational molding, affecting results and leading to uncer- 

tain performance (Wang et al., 2013: Wang, 2018). Due to the dense form 

of the distributed data across the random values, a sampling method was 

applied to estimate results more accurately. In statistics, Importance Sam- 

pling (IS) is a general technique for estimating the properties of a particular 

where hx (X) is the probability density function of the Importance Sampling 

(Faber, 2009), selecting the hx (X) is the key factor in this method, where 

the samples are mainly obtained from the failure domain. To this end, a 

FORM analysis is often performed to find a previous breakpoint (Baker, 

2010) which was defined as X2-X1 in this study. The processes for the 

FORM reliability calculations were accomplished using the Importance 

Sampling in Python 3.8. 

 
3. Results and discussion 

 
3.1. Ground and surface water models 

 
Results showed that the contribution of West Wood contributes in the 

recharge process was 19 % less than Muse Street. While the water supply 

through river networks in the West Wood, approximately 2.749 %, was 

higher than that in Muse Street drainage system. Fig. 6 illustrates the 

response of the studied watershed ((m3/month)/m2) regarding the 

received precipitation over the study period. According to this figure, 

the SC-WW watershed significantly contributed to the surface runoff 

 

 

 
Table 2 

The Initial Losses and Continues Losses corresponds to the different land cover types with different percentage of impervious surfaces. 

Land Cover type IS TUFLOW Run-1    TUFLOW Run-2  

  IL (mm) CL in Base time CL (mm/h)  IL (mm) CL in Base time CL (mm/h)  

Open Water 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Developed, Open Space 8.405 % 0.70 31.32 165.24  14.16 28.18 148.68  

Developed, Low Intensity 33.199 % 0.51 22.84 120.51  10.33 20.55 108.44  

Developed, Medium Intensity 61.290 % 0.29 13.23 69.83  5.98 11.91 62.84  

Developed, High Intensity 86.235 % 0.10 4.71 24.83  2.13 4.23 22.34  

Barren Land (Rock/Sand/Clay) 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Deciduous Forest 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Evergreen Forest 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Mixed Forest 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Shrub/Scrub 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Grassland/Herbaceous 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Pasture/Hay 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  

Cultivated Crops 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  
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Woody Wetlands 0.000 % 0.76 34.19 180.40  15.46 30.76 162.33  
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Fig. 12. Temporal flood distribution and hydrograph in the hydraulic model initial implementation at WW. 

 

 

generation than the SC-MS while receiving approximately the same 

precipitation. This figure carries an important message regarding gener- ated 

surface water per unit of area, which is an important topic in urban 

hydrology, mainly flood control. 

The results suggest that the peak flow in SC-WW was higher than the 

SC-MS where its reach at own maximum (approximately 0.43 (m3/ 

month)/m2)) in October 2018. Fig. 7a and b show the spatial imperme- 

ability coefficient and land cover variability across the study area. This 

information was collected from USGS datasets which were later updated for 

the study area using GIS. The impermeability factor was classified 

between 0 and 100 %, where the red color indicates the most imperme- 

able areas across the study area (Fig. 7a). The land cover variability map, 

which mostly carries the land surface roughness and, therefore, 

Manning's roughness coefficient (Ryan et al., 2022), was applied to 

simulate flow through TUFLOW (Fig. 7b). According to these figures, the 

distinct parts of the West Wood zone upstream and outside the do- main 

of the Muse Street zone have not practically contributed to the aquifer 

recharge during the flood event. 

Basin water storage capacity, the amount of water stored in the soil, 

depending on the soil type and texture, generally follows the distribution 

pattern presented in Fig. 8. This figure depicts the basin soil storage capac- 

ity dynamics recorded at 15-min intervals using SWC sensors embedded in 

boreholes. The maximum amount of 40 % was shown as the basin storage 

capacity in the proximity of the SWC sensor, located at the downstream 

part of the West Wood zone. Since this region benefits the areas within by 

near-zero permeability, based on Fig. 7, which illustrates 13 % as the 

minimum soil water storage capacity, 1 % was considered for the standard- 

ization of layers. 
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Fig. 13. a) The standardized map for flood depth distribution, b) The standardized map for the distribution of the impervious surface. 

 

 

 
 

The spatial distribution of soil moisture across the study area versus the 

standard one is illustrated in Fig. 8. Since this study was first accomplished 

to assess the urbanization effects on the recharge process, we analyzed the 

land surface and river network's contribution to recharge into the aquifer 

using MODFLOW. Figs. 9 and 10 indicate the contribution of the land 

surface and river network to the total inflow in the Muse Street and 

Westwood zones, respectively. 

Table 1 summarizes the results for the contribution of individual re- 

charge components to the total inflow. According to this table (Table 1), ur- 

banization decreased the natural recharge into the aquifer while the 

leakage from the riverbed remained constant. Also, urbanization decreased 

approximately 30 % of the total inflow into the groundwater. It is worth 

noting that Table 1 represents the total leakage from the riverbed and 

percolation from land surfaces across the studied basins. 

The two-dimensional flood volume for a historic 24-h rainfall event of 

242.2 mm with a 100-year return period was simulated using TUFLOW. 

The computational base hydrograph was also established by the SCS 

method, which devoted 20 min as the precipitation duration (Fig. 11). 

Finally, the hydraulic model was implemented in Aquaveo SMS once the 

precipitation volume was achieved. 

The results of the hydraulic model, in the initial step, indicated good 

accordance with the maximum discharge and a relative difference with 

peak discharge volume as well as time to peak. These differences can be 

attributed to the weakness of flood routing in the hydraulic method and 

the different methods applied to calculate losses in SCS-CN. Also, differ- 

ences might be referred to the hydraulic equations of two-dimensional 

TUFLOW, which was applied under two different conditions of losses, 

including the Initial (IL) and Continuous Losses (CL). Table 2 shows the 

initial and continuous losses corresponding to the various land covers. 

 
3.2. Soil water storage capacity in the base distribution 

 
Fig. 12 shows the spatial map for the historic flow depth (moisture) dis- 

tribution implemented under PMP across the study area. The graphs in gray 

and blue colors, respectively, represent outflow and in-flow corresponding 

to the PMP amount. The amount of saturated moisture was determined 

using linear regression. The maximum and minimum moisture was allo- 

cated to the location with maximum (equivalent to Sandy Creek West 

Wood sensor point) and minimum flow depth, respectively. 

Fig. 13a and b illustrate the spatial distribution for flood depth as the 

initial output of the TUFLOW and infiltration, respectively, which were 

the basis for determining the soil water storage capacity distribution across 

the basin. All the components were standardized using fuzzification in 

GIS to develop a distinct index to assess the basin moisture conditions. 

This way, their initial domain was changed to a new one between 0 

and 100, referring to the components' low and high values. 

Fig. 14 illustrates the basin water storage capacity obtained by 

spatial composition of the standardized flood depth and impervious sur- 

faces presented in Fig. 13a and b proceeds in GIS, respectively. Accord- 

ing to this figure, the maximum and minimum values of 40 % and 1 % 

were respectively obtained from the southern parts of the aquifer close 

to the Sandy Creek West Wood sensor and the areas with low permeabil- ity 

or flood depth close to zero. 
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Fig. 14. The spatial map of soil water retention capacity coefficient (Sb) within the study area. 

 

 
 

Fig. 15 depicts the results for the TUFLOW based on the effective flood 

magnitude of the SCS-CN equations (Appendix, Fig. 16). This figure illus- 

trates the spatiotemporal variations of the probable maximum flood from 

its start to reach the peak. 

Fig. 17 shows the soil storage index (ɸsc) versus soil moisture ratio 

(W/P) indices resulting from the standard and modified SCS-CN 

methods using the theoretical model and in-situ SWC sensors data. This 

figure shows a distinct difference between the estimated maximum soil 

moisture ratio and soil storage indexes resulting from the standard and 

modified SCS-CN methods. Such a difference implied that soil 

storage was satisfied soon through modified SCS-CN compared to the 

standard SCS-CN. 

3.3. First-order analysis of the basin shape reliability 

 
Depending on the basin form factor, a natural classification with a 

median limit was used on the form factor (a) extent to investigate the effect 

of the distribution index. Therefore, the values of a = 0.2371, a = 0.4732, 

and a = 1.2361, as well as their equivalent distributions, were used to de- 

termine the mean and standard deviation of the β probability distribution. 

The closest fit to data was achieved at β =1 and α = 5. Fig. 18 depicts the 

division for basin form factor between 0 and 2. 

Table 3 summarizes the statistics (mean and standard deviation) for the 

basin form factor obtained by the modified SCS-CN method, as presented in 

Fig. 18 (X2 values). Also, this table includes the correlation coefficient that 
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Fig. 15. Two-dimensional distribution of net flood from initiates to reach the peak. 

 

 
 

corresponds to the experimental value resulting from standard SCS-CN cal- 

culations (X1 values). According to Table 3 of the performance assessment 

criteria results, the maximum correlation between modified and standard 

SCS-CN methods was shown when the form factor (a) was equal to 0.4732. 

Fig. 19 shows the distribution of the finite state function of the ran- 

domly generated value for the two variables of X1 and X2 corresponding 

to the different amounts of the form parameters (a1, a2, and a3). These ran- 

dom values were generated using coding in Python 3.8. Afterward, the form 

factor was estimated using the calculated values as summarized and pre- 

sented in Table 4. 

According to the results of the first-degree linear function, X1-X2, it 

is expected that the failure threshold will happen with the probabilities 

of 55.235 %, 53.79 %, and 34.203 % corresponding to the basin form 

 

factor values including a = 0.2371, a = 0.4732 and a = 1.2361 

(50 % base). Therefore, the equivalent discharge was calculated as pre- 

sented in Table 5. 

The SCS synthetic unit hydrographs resulting from the hydraulic model 

output, which were calibrated using standard and modified SCS-CN 

methods, are presented in Fig. 20. While the standard and modified SCS- 

CN methods are from the same family, they estimated different flood 

volumes due to the basin form factor (a) that the modified SCS-CN benefits. 

According to Fig. 19, the modified SCS-CN method accurately captured the 

soil moisture dynamics. Also, the simulation hydrograph using SCS-CN and 

TUFLOW hydraulic model followed the same pattern; however, there's a 

delay in their time to peak. Their differences in time to peak can be attrib- 

uted to the different methods to estimate losses and the lack of flood rutting 

     

    Mesh Module Depth 
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Fig. 17. Distribution of soil water storage capacity index (ɸsc) versus soil moisture ratio (W/P) obtained from the standard (Blue-colored) and modified (Red-colored) SCS-CN 

methods using the theoretical model and VWC sensor data. 

 
 

process in the hydraulic method. Table 6 represents the statistical summary 

of the simulation processes using the standard and modified SCS-CN. 

Table 6 represents different values for the flow volumes simulated by 

the hydraulic model using the standard and modified SCS-CN. The flow vol- 

umes based on the modified SCS-CN simulation were substantially higher 

than those obtained by applying the standard SCS-CN method as the contin- 

uous losses. It means that the modified SCS-CN intensified the flow volume 

as the vital information in designing and establishing any construction 

downstream by supporting more safety. Table 6 illustrates valuable points 

regarding in- and out- peak flow as the initial losses. Accordingly, the 

439.6 m3/s in-flow during the initial losses led to approximately 

15 m3/s peak outflow under the standard SCS-CN method. While for the 

410.2 m3/s as an inflow, a slightly high peak outflow was shown under 

the modified SCS-CN simulation. 

 
      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

 

 

 

Fig. 18. The classification for the basin form factor based on possible limits and average initial value (Wang, 2018). 
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Table 3 

The performance criteria results values presented by Wang (2018) 

Shape Parameter R2 STD (SCS CN⁎) Mean (SCS CN⁎) STD (SCS CN) Mean (SCS CN) 

a1 = 0.001 0.592627193 0.132750789 0.897195387 0.097593923 0.929182879 

a2 = 0.2371 0.593103016 0.125241150 0.905617675   

a3 = 0.4732 0.593338096 0.116978677 0.914602541   

a4 = 1.2361 0.587654023 0.082957795 0.948820629   

a5 = 1.999 0.279731626 0.026494084 0.999091017   

 X2   X1  

 

 
 

 
Fig. 19. Generated random data based on the mean and standard deviation for the first to third distribution from left to right. 

 

The TUFLOW performance evaluation results showed 0.4916 as Nash– 

Sutcliffe in the standard SCS-CN method, while it was increased to 

0.6890 in the modified SCS-CN. This difference can be attributed to the 

accuracy of calculated basin shape reliability at a = 0.473. Accord- ing 

to the results, the closest value to the basin form factor for all the 

separated individual events occurred at a = 0.417. Our results here are 

in accordance with Bartlett et al. (2016) which found that their mod- ified 

SCS-CN method shows higher performance in the simulation of the surface 

runoff than the standard SCS-CN method. 

According to the results (Table 7), the same results for the soil water 

storage capacity were shown for both standard and modified SCS-CN 

methods. It means that, while these methods resulted in different flood 

volumes, the flood distribution across the region, which specifies soil 

water storage capacity, remained constant. The results suggest the river 

network enhancement resulting from increased impermeable surfaces 

would not lead to aquifer recharge. 

 
4. Conclusion 

 
This study was established to assess the effects of increased impervious 

surfaces and the likely excess overflow through the river network on 

recharge rates. We employed the TUFLOW hydraulic code to capture the 

runoff distribution change and evaluate the river network's recharge 

dynamics. To this end, we estimated the soil water storage capacity of the 

basin under two different conditions, with and without probability distribu- 

tion functions, namely modified and standard SCS-CN. 

The SCS synthetic unit hydrograph was also developed to calibrate the 

hydraulic model. The accuracy of the SCS synthetic unit hydrograph in 

overland flow estimation and its propagation completely depends on the 

 
Table 4 

Summary of the results of the FORM reliability analysis 
 

 

Name DISTRIBUTION ANALYSIS SIMULATION 
 

  

relationship between soil moisture capacity, effective rainfall conversion 

equations, and the surface runoff hydrograph equation parameters, respec- 

tively. In comparison, flood propagation is affected by the morphological 

conditions, mainly the soil water storage capacity of the catchment. A prob- 

abilistic method of reliability analysis (FORM) and the Importance Sam- 

pling (IS) approach were employed to estimate the threshold changes of 

the maximum possible discharge at the basin. Afterward, the estimated dis- 

tribution equations were applied to calculate losses in the standard SCS-CN 

method, eventually leading to the initial accuracy of the basin shape param- 

eter. This method (FORM) works based on the sensitivity recognition of the 

basin form factor through the basic distribution equations to estimate the 

percolation rate in the standard SCS-CN by the new cumulative distribution 

probability of soil moisture capacity in the catchment. Therefore, the cali- 

brated simulations were used concerning the observed independent soil 

moisture and water storage capacity. Then, through the reliability analysis 

of the FORM factor using a linear performance function, the probability of a 

maximum flood event was estimated for the study region. In other words, 

the in-suit soil moisture records were expanded to the entire basin using a 

continuous standardized two-dimensional runoff (TUFLOW outputs) 

along with the impermeability values. Such generalization allowed us to 

estimate the flood volume using the reliability of FORM analysis based on 

distribution losses equations of the standard SCS-CN method. According to 

our findings, while considering a probability distribution function can es- 

timate the soil water storage capacity of the region differs from the standard 

SCS-CN equations, flow distribution shape during historic floods across the 

basin remains a multiplier of low-intensity events. 

Also, the findings suggest that the construction design based on modi- 

fied SCS-CN will guarantee much more safety for human systems than the 

standard SCS-CN-based design since the soil water storage capacity was 

satisfied soon through modified SCS-CN approach leading to high peak dis- 

charge and flood volume for the same precipitation event. Hence, designing 

any construction, mainly dams downstream, using the modified SCS-CN 

 
Table 5 

Number of Approximated Reliability Coefficient of Failure probability values correspond to the different amounts of basin form factor 

Simulations Number of Bins Index Beta Variation of Pf   

 

a1 10,000 72 −0.095236638 0.026198104  a1 a2 a3 

a2   −0.131601303 0.028258824  
55.235 % 53.794 % 34.203 % 
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a3   0.406936094 0.041087371  0.237 0.473 1.236 
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Fig. 20. PMF for the 6-h synthetic unit hydrograph in the extent of two possible thresholds. 

 
 

Table 6 

Statistical summary of the difference in outflow rate of the TUFLOW model 

Aquaveo SMS TUFLOW Model Summary 

SCS-CN 

 
 

 
 

Aquaveo SMS TUFLOW Model Summary 

SCS-CN* 

Peak Flow In (m3/s) 439.6 IL 13.371 Peak Flow In (m3/s) 410.2 IL 0.656 

Peak Flow Out (m3/s) 14.9   Peak Flow Out (m3/s) 16.7   

Volume at Start (m3) 0   Volume at Start (m3) 0   

Volume at end (m3) 69,226 CL 26.609 Volume at end (m3) 70,037 CL 29.571 

Total Volume In (m3) 158,534   Total Volume In (m3) 166,205   

Total Volume Out (m3) 89,163   Total Volume Out (m3) 96,109   

 
 

method will provide more safety, particularly in crowded regions. The find- 

ings implied that the excess overflow resulting from the impervious surface 

into the river network leaves the region without increasing the recharge 

into the aquifer. 
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Fig. 16. Two-dimensional distribution of net flood from initiates to reach the peak. 
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