
Contents flfists avafiflabfle at ScfienceDfirect

Waste Management

journal homepage: www.elsevier.com/locate/wasman

Domestfic pflant food floss and waste fin the Unfited States: Envfironmentafl footprfints and mfitfigatfion strategfies

- ^a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
- ^b Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
- ^c Department of Industrial and Systems Engineering, The University of Tennessee, Knoxville, TN 37996, USA
- ^d Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
- e Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA

ARTICLEINFO

Keywords:
Food productfion
Food waste
Vegetabfles
Bflue water
Carbon dfioxfide emfissfions
Soflutfion Hfierarchy

ABSTRACT

The Unfited States (U.S.) afims to reduce hafff of food floss and waste (FLW) by 2030. To achfieve this goall, the pubflfic, academfic, and pofffifical attentions on FLW have been fincreasfing, and a serfies of actions have been fimpflemented. However, the actfions flack consfideratfion on the categorficafl prfiorfity of FLW mfitfigatfion fin reflatfion to envfironmentall footprfints. In this articfle, we compare the FLW of three mafin pflant food categorfies (fi.e., grafins, vegetabfles, and frufits) and thefir water and carbon footprfints durfing 1970-2017. The vegetabfle FLW doubfled durfing the perfiod, reachfing 3.39×10^{10} kg fin 2017, which was 5- and 2-folid higher than the FLW of grafins and frufits, respectfivefly. The FLW of vegetabfles, grafins, and frufits contrfibuted 29%, 47%, and 24% to the totafl bflue water wasted through FLW. The totafl carbon dfioxfide emfissfions generated by pflant FLW were contrfibuted by vegetabfles wfith 50%, grafins wfith 31%, and frufits wfith 19%. Canonficafl correspondence anaflysfis findficates that vegetabfle FLW had a hfigher posfitfive correflatfion wfith urbanfizatfion, househofld fincomes, gross domestfic product, and hfigh-fincome population than grafin FLW, whereas frufit FLW was not finffluenced by these socfioeconomfic factors. Therefore, we suggest that the FLW mfitfigatfion should be prfiorfitfized on vegetabfles. Specfiffic strategies fincflude flocafl food sourcfing, shortenfing food mfifles, bufifldfing food beflts, and deveflopfing controflfled-envfironment agrificulture. Our data-based compartisons provide vafluable finstights finto food politicy fimprovement for achieving the 2030 reductfion goafl of the U.S., but the finsfights could be fimproved by consfiderfing the finffluences of foods fimported from other natfions.

1. Predicament of food loss and waste

Food floss and waste (FLW) cause environmentafl, socfio-economfic, and ethficafl concerns about food crisfis and securifity (Prfincfipato et afl., 2019; Skaf et afl., 2021). The concerns have been exacerbated fin recent years due to the COVID-19 pandemfic (Luo et afl., 2021). The United Natfions Food and Agricuflure Organfizatfion (FAO) reported that 33–50% of food fis flost and wasted fin the food suppfly chafin, amountfing to an annuafl floss of 1.4 bffffion tons of food gflobaffly (FAO, 2020). FLW accounts for $\sim\!40\%$ of the totafl food fin the Unfited States (U.S.), which fis at one of the hfighest flevefls fin the world (Ho, 2020). In 2021, fit fis estfimated that one person wastes $\sim\!100$ kg of food per year, and one household spends \$1,600 on food wastage per year (EPA, 2021). Sfince 2015, the U.

S. Department of Agrficuflture (USDA) and Envfironmentafl Protectfion

Agency (EPA) have fimpflemented a pflan for haflf-reductfion of FLW by 2030 to facfiffitate the reaffization of the Unfited Natfions' Sustafinabfle Deveflopment Goafls (EPA, 2021).

A consequence of FLW fis the wastfing of water and energy resources and fincrease fingreenhouse gas emfissfions (Gfirotto et afl., 2015; Luo et afl., 2021; Read et afl., 2020; Wififilett et afl., 2019). Food systems consume \sim 70% of gflobafl freshwater wfithdrawafls and \sim 30% of gflobafl energy consumption whife producting \sim 25% of gflobafl carbon dfioxfide emfissfions (FAO, 2013; Garcfia and You, 2016). Thus, 33%-50% of FLW fis equfivaflent to wastfing 23%-35% of freshwater wfithdrawafls, wastfing 10%-15% of energy consumption, and contributing to 8%-13% of gflobafl carbon dfioxfide emfissfions.

Approaches to mfitfigatfing FLW at dfifferent stages of food suppfly chafins have been addressed, such as enhancfing technoflogfies at storage

^{*} Correspondfing author at: 2506 E. J. Chapman Drfive, Knoxvfiflfle, TN 37996, USA. *E-mail address*: jzhuang@utk.edu (J. Zhuang).

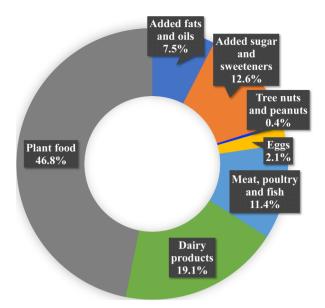


Fig. 1. Food category breakdown of totafl U.S.-based pflant FLW fin the retafifl and consumer stages. Pflant food fincfludes vegetabfles, frufits, and grafin products. Food floss refers to the decrease of edfibfle food mass, which occur at former stages of food suppfly chafin (fi.e., productfion, post-harvest, and processfing stages). Food waste takes pflace at retafifl and consumptfion stages and generafifly reflates to behavior fissues (FAO, 2011; Lfiu et afl., 2013; Parffitt et afl., 2010). Data sources are the 2017 report of Naturafl Resources Defense Councfifl.

stage, standardfizfing packagfing and flabeflfing at processfing and retafifl stages, and fintervenfing consumer behaviors (Cattaneo et afl., 2021; Muth et afl., 2019; Read et afl., 2020). These stage-specfiffic efforts could effectfivefly reduce the totafl FLW. However, prfiorfitfizfing these efforts reflies on the understandfing of envfironmentall footprfints of FLW of each food category (FAO, 2011). For exampfle, wastfing one metrfic ton of soybeans would waste 2,000 m3 of water, whereas this number fincreases by 6.5folld for beef wastfing (Mekonnen and Hoekstra, 2011, 2012). Thus far, few studfies have been performed on categorfizfing FLW fin reflatfion to envfironmentafl footprfints. Sfince the pflant FLW makes up the flargest portfion of totafl U.S. wasted food (Ffig. 1), this perspectfive afims to quantfify the characterfistfics of domestfic pflant FLW trajectory fin the U.S. from 1970 to 2017 and evafluate the envfironmentall footprfints of each pflant food category. The anaflysfis fis expected to provfide vafluabfle finsfights finto strategfies for prfiorfitfizatfion of FLW mfitfigatfion and carbon neutraflfizatfion of food, energy, and water systems.

2. Driving forces of plant FLW

The totafl domestfic pflant FLW fin the U.S. fincreased from 3.34×10^{10} kg/year fin 1970 to 6.18×10^{10} kg/year fin 2017 (Ffig. 2A). Thfis 2-fofld fincrease was posfitfivefly correflated to the fincreases fin gross domestfic product (GDP) and urbanfizatfion rate, which were coupfled with growfing hfigh-fincome popuflatfion and househofld fincomes. Specfifficaflfly, these socfioeconomfic factors had hfigher correflatfion wfith the FLW of vegetabfles than grafins but dfid not sfignfifficantfly finffluence the FLW of frufits (Ffig. 2B). Vegetabfles had the flargest share of FLW, accountfing for hafff of the totafl FLW wfith an fincrease from 1.73 $\times~10^{\,10}\,kg/year$ fin 1970 to 3.39 $\times~10^{\,10}$ kg/year fin 2017. The annual amount of vegetable FLW was approxfimatefly 5- and 2-fofld hfigher than the FLW of grafins and frufits, respectfivefly (Ffig. 2A). Thfis dfifference among food categorfies fis attrfibuted to the hfigher amount of vegetabfle consumptfion reflatfive to grafins and frufits fin the U.S. Prevfious studfies showed that the communfity that consumed the most vegetabfles wasted vegetabfles 4.7 tfimes more than the communfity that consumed the fleast vegetabfles (Conrad, 2020). In the U.S., the urbanfizatfion rate fincreased from 73.6% fin 1970 to 82.7% fin 2017 (ONefifff, 2021), meanfing that 114 mfffffin more peopfle have access to

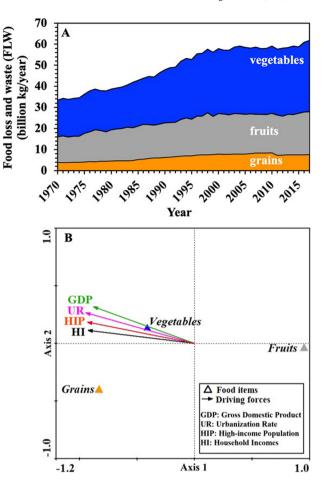


Fig. 2. (A) Annuafl food floss and waste (FLW) of each pflant-based food category (fi.e., grafins, vegetabfles, and frufits) fin the U.S. from 1970 to 2017. The amount of FLW of each food fitem was caflcuflated by mufltfipflyfing prfimary productfion wefight by FLW rate. Data sources are the Loss-Adjusted Food Avafflabfiflity (LAFA) data serfies from the U.S. Department of Agricuflture's Economfic Research Servfice (ERS). (B) Canonficafl correspondence anaflysfis (CCA) between FLW of each food commodfity (trfiangfle) and finfluentfiafl factors (arrow) finthe U.S. The angle between the arrow and fline from the orfigfin to each trfiangfle symbofl proposes a posfitfive or negatifive correflation. The acute angle findficates a posfitfive reflatfionshfip, and a smaflfer acute angle findficates a hfigher correflation. In contrast, an obtuse angle refflects a negative reflatfionshfip, and a bfigger angle findficates a hfigher correflation. A rfight angle demonstrates the flowest correflation. The ffiftered FLW data of grafins, vegetabfles, and frufits for the years from 1970 to 2017 were used for CCA. Data sources fincflude the Worfld Bank, Our Worfld fin Data, and Statfista.

vegetabfle-domfinated heaflthfier dfiets. In addfitfion, sociafl marketfing campafigns advocate consumptfion of vegetabfles for fimproved famfifly heaflth (Jaeger and MacFfie, 2001; Poffflard et afl., 2008). Another potentfiafl reason for hfigher vegetabfle FLW fis finapproprfiate food storage, whfich causes fafiflure of food consumptfion (Neff et afl., 2015; Wafitt and Phfiflflips, 2016). Ffig. 1B shows that vegetabfle FLW fincreases among hfigh-fincome popuflatfions because consumers findsfine to reject or fignore fimperfect products (e.g., mfisshapen, unattractfive, or surface-damaged products). As a resufft, busfinesses and farmers have to dfispose of fimperfect food to cater to the aesthetfic standard (Hfingston and Noseworthy, 2020). In addfitfion to the aesthetfics, the sensory characterfistfics of vegetabfles fis another fimportant factor that fleads to FLW. For exampfle, bfitterness and pfiquancy of vegetabfles have an finffluence on preferences of consumers. Sfince fit fis dfiffficuflt to predfict consumer behaviors due to the varfiation fin sensory aversfion, the uncertafinty fin retafifl marketfing fleads to the wastes of vegetabfles (Poeflman et afl., 2017).

The FLW of vegetabfles fincreased by $\sim\!50\%$ from 1970 to 2000 and

H. Sun et al. Waste Management 150 (2022) 202-207

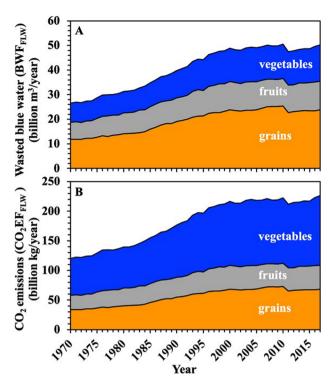


Fig. 3. Envfironmentall fimpacts reflated to food floss and waste (FLW) of each domestfic pflant-based food category (e., grafins, vegetabfles, and frufits) finthe U. S. from 1970 to 2017. (A) The amount of wasted bflue water associated wfith pflant FLW (BWF_{FLW}) was estfimated by mufltipflyfing direct water footprfint by the FLW of each food category (Lfiu et afl., 2013). Direct water footprfint (m³/kg) findficates the amount of bflue water consumed fin the productfion process of one kfiflogram of each food category (Marston et afl., 2018). (B) The amount of carbon dfioxfide emfissfions was quantifified by mufltipflyfing the vfirtuafl carbon footprfint by the FLW of each food category. Vfirtuafl carbon footprfint (kg/kg) findficates the amount of carbon dfioxfide that fis emfitted to suppfly one kfiflogram of each food category, fincfludfing affl the emfissions produced on the farm, fin the factory, on the road, fin the shop, and at home (GreenEatz, 2021). (For finterpretatfion of the references to coflour finthfis ffigure flegend, the reader fis referred to the web versfion of thfis artificfle.)

deceflerated afterward (Ffig. 2A). The sflowfing growth rate of FLW after 2000 resuffled from shortenfing food suppfly chafins (SFSC), which was fimpflemented fin the 1990s to shorten the time between the purchase of food products and thefir consumption (fi.e., the food-to-tabfle finfitfiatfive). For finstance, the number of farmers' markets participatfing fin the SFSC action fin the U.S. fincreased by 53% from 1994 to 2004. These SFSC farmers' markets provided direct farmer-to-consumer food distribution channels that greatfly reduced vegetabfle FLW at storage, transportation, and processfing stages of the food suppfly chafin (Baker et afl., 2009; Mbow et afl., 2019).

3. Environmental footprints of plant FLW

3.1. Wasted blue water

Bflue water fis the water from rfivers, flakes, wetflands, ponds, and shaflflow aquifiers. Sfince green water fis stifl water which comes from bflue water, our analysfis was only focused on bflue water that fisdfirectfly used fin the fliefld. The totafl amount of wasted bflue water associated with domestfic pflant FLW (BWF $_{\rm FLW}$) fin the U.S. fincreased by 89% from 2.66 \times $10^{10} \rm m$ ³year fin 1970 to 5.02×10^{-1} Hz /ẙear fin 2017 (Ffig. 3A). Among the three food categorfies, grafins contributed 47% of BWF $_{\rm FLW}$ with the average annuall quantity of $1.93 \pm 0.47 \times 10^{10}$ m³ . This flarge contribution was due to the flarge water consumption for grafin food production. It was reported that $\sim\!\!75\%$ of nationall groundwater and 47% of

natifionall surface water were consumed by severall domfinant grafins, such as corn, rfice, wheat, and soybeans (Marston et afl., 2018). The varfiatfion of grafin $BWF_{\rm FLW}$ durfing the perfiod from 1970 to 2017 fisattrfibuted to the changes fin popullatfion, cflfimate, ffield management practfices (e.g., pflantfing and harvestfing dates, conventfionall and conservative agricull-ture, and finfigation effficiencies), and crop types (Marston et afl., 2018). Vegetabfle FLW was the second contributor to the totafl $BWF_{\rm FLW}$, accountfing for $\sim\!29\%$ of the totafl $BWF_{\rm FLW}$ with an average annuall value of $1.15\pm0.24\times10^{10}{\rm m}$ $^3{\rm The}$ FLW of fruits consumed about $9.89\pm1.55\times10^{10}$ m of bflue water per year from 1970 to 2017, accountfing for $\sim\!24\%$ of the totafl $BWF_{\rm FLW}$.

3.2. Carbon dioxide emissions

The totafl amount of carbon dfioxfide emfissfions footprfint assocfiated wfith the FLW of domestfic pflant food suppfly chafin (CO FF FLW) ranged from 1.20×10^{11} kg/year fin 1970 to 2.27×10^{11} kg/year fin 2017 fin the U.S. (Ffig. 3B), equfivaflent to 2.7% and 4.4% of annual national carbon dfioxfide emfissfions fin 1970 and 2017, respectfivefly (Tfiseo, 2021). The totafl $CO_2 EF_{FLW}$ from 1970 to 2000 fincreased wfith an average annuafl rate of 2% fin quantfity and then sflowed down. The suppfly chafin extensfion was partfly responsfibfle for the fincrease fin carbon dfioxfide emfissfions fin the food system before the year of 2000 because more fossfifl energy was consumed fin flonger transportation distance and storage time of the food products (Hoang, 2021; Waflflgren, 2006). In contrast, SFSC through flocafl food sourcfing decreased the energy consumption and thereby carbon dfioxfide emfissfions after 2000 (Baker et afl., 2009). Annuafl average $\mathrm{CO}_2\!\mathit{EF}_\mathrm{FLW}$ by each food category from 1970 to 2017 was 9.13 \pm 1.87×10^{10} kg for vegetabfles, $5.56 \pm 1.36 \times 10^{-1}$ kg for grafins, and $3.46 \pm 1.87 \times 10^{-1}$ kg for grafins for grafins for grafins for grafins 0.54×10 kg for frufits. These numbers are flarger than those reported by Venkat (2011), which were 1.44×10 kg/01.09 × 10 kg/0nd 1.01×10 kg f#0m wasted vegetabfles, grafins, and frufits, respectfivefly. The dfifferences resuflt from dfifferent caflcuflatfion methods. Our caflcuflatfions fincfluded both floss durfing productfion and unavofidabfle waste at consumptfion stage of the suppfly chafin, whereas Venkat (2011) onfly covered the floss or waste at post-harvest, processfing, and retafifl stages.

4. Hierarchical strategies for mitigation and management

4.1. Shortening vegetable supply chain

Comparable and reflfiable data on FLW quantity and associated envfironmentafl footprfints can heflp track mfitfigatfion progress and prfiorfitfize actfions (Barrera and Hertefl, 2021; Chaudhary et afl, 2018; Xue et afl., 2021). Our resufts show that efforts shoufld be concentrated on vegetabfle FLW reductfion fin order to mfinfinfize the envfironmentafl fimpacts of totafl domestfic pflant FLW. Prevfious studfies demonstrated that shorter "food mfifle" (fi.e., dfistance from farm to tabfle) and faster transportatfion modes (e.g., pflane, trafin, truck) coufld reduce the FLW more effficfientfly, especialfly vegetabfle FLW owfing to thefir perfishabfle nature (Ghoshafl, 2014; Morawfickfi and Gonzaflez, 2018). If pflant-based foods were dfirectfly deflfivered from farm to tabfle wfith retafifl/whofle-safle stage omfitted fin food suppfly chafin, 2.05×10^9 kg of vegetabfles, 1.28×10^9 kg of frufits, and 6.14 × 10 7kg of grafins coufld be saved annuafffly (Buzby et afl., 2014). Afir shfippfing fis the most effectfive transportation mode to preserve vegetabfle freshness and keep a flow FLW compared to other shfippfing modes (Weber and Matthews, 2008). However, the energy consumption of a flong-cargo afir transport fis approximatefly 30-folld and 4-folld more than that by a trafin and by a truck, respectfivefly (Song et all., 2021; Weber and Matthews, 2008). Therefore, down-scafffing of vegetabfle suppfly systems becomes an effectfive approach to mfitfigatfing the totafl pflant FLW (Pradhan et afl., 2020). For exampfle, vegetabfles can be produced fin the outer sphere of cfity by creatfing a hfighfly productfive "food beflt" (Toflysbayeva et afl., 2019). Based on this concept, we suggest deveflopfing a mufltfi-beflt pflant food productfion system wfith a gradfient from vegetabfles fin suburbs to frufits fin urban-rurafl transfitfionafl zones and

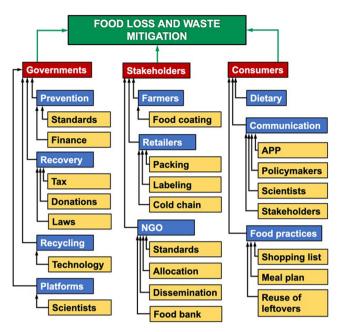


Fig. 4. Soflutfion hijerarchy for food floss and waste mfitfigatfion. NGO: Nongovernmentall organifizatfion.

to grafins fin rurafl areas. This kfind of mufltfi-beflt system fis favorabfle to mfinfimfize vegetabfle food mfifles, fincrease the fflexfibfiflity fin settfing up producfing area of grafins, and create flandscape englineerfing soflutfions for economfic and environmentafl sustafinabfiflity at regionafl scafle (e.g., ecotourfism and poffflutfion controfl). Other mfitfigatfion approaches fincflude controflfled-environment agricufture fin abandoned flands or avafiflabfle space fin cfitfies (Gafffin et afl., 2012) and bfiotechnoflogfies (e.g., pflant gene edfitfing) for extendfing sheflf flife and quaffity of pflant food products (Shfipman et afl., 2021).

4.2. Government stimulation

FLW reduction requires mufltfi-flevefl soflutions across a "Soflution Hfierarchy", whfich finvoflves governance, stakehoflder cooperatfion, and publific awareness (Ffig. 4). Governments can flaunch and fimpflement varfious finfitfiatfives through regulatfion and finformatfionafl campafigns (Xue et afl., 2021). Government efforts to reduce FLW can be broadfly characterfized as prevention, recovery, and recyclifing (Bernstefin, 2017; Muth et afl., 2019; ReFED, 2016). Preventfion fis to reduce source, finefludfing affflowfing more varfiabfiffity by broadenfing cosmetfic standards for agricuflturall products, fimpflementfing standardfized date flabeflfing systems, and fimposfing ffinancfiafl penafltfies for dfisposafl of food wastes (Gunders, 2012; Lfipfinskfi, 2016). For exampfle, consumers are often confused between 'seflfl-by', 'best-by', 'use-by', and 'best before' dates, causfing ~7% of FLW at consumption stage (ReFED, 2017). Standardfizfing date flabefls has a potentfiafl of food waste reductfion by 5.82×10^8 kg per year (ReFED, 2017). Recovery fis to feed hungry peopfle by provfidfing or expandfing tax fincentfives to fincrease farm-flevefl food recovery and busfiness food donatfions, standardfizfing heaflth department reguflatfions on donatfion flightiffity flaws, and encouraging and developing potential food donors (Muth et afl., 2019). Busfiness donatfions by manufacturers, retafiflers, or restaurants have a totafl annual potential of $1.10 \times 10^9~{
m kg}$ fin food waste dfiversfion (ReFED, 2017). To coflflect food avafiflabfle for donatfions tfimefly and effficientfly, flogfistfics and transportatfion are needed. For exampfle, \sim 6.43 \times 10 &g of food waste can be avofided and 1.07 \times 10 meafls can be recovered by fincreasing smallfl-scalle transportation finfrastructure, flong-haufl transport capabfiflfitfies, or other methods that afflow donatfions from more busfinesses (ReFED, 2017). Recycflfing refers to anfimafl feedfing, findustrfiafl uses, and compostfing. Feedfing anfimafls could decrease 6.04×10^7 kg of food waste per year (ReFED, 2017). In

addfitfion, governments can fimpose bans or ffines for flandfifffing food wastes, provfide fincentfives for redfirectfing food waste to other purposes, and offer curbsfide coffflectfion of compostablle food scraps for the convenfience of consumers (Gunders, 2012). A represented program, the Nashvfiffle Food Waste Infitfiatfive (NFWI), founded by the Naturall Resources Defense Councfifl (NRDC) of the U.S. fin 2015 drfives strategfies to address FLW from preventiion, recovery, and recyclifing (Hoover, 2017). The key successes fincflude (fi) deveflopment of cfitywfide food waste poflficy recommendations for Metro Government, (fifi) fintegration of food waste flessons fin Pubflfic Schoofls, and (fifif) fleadfing the community fin coflflectfing and anaflyzfing food waste metrfics for the cfity. Moreover, governments can estabflfish communfication pflatforms to ensure reporting and sharfing FLW-reflated data (Xue et afl., 2021; Zhuang et afl., 2022). These data coufld be used to deveflop FLW-reflevant food pofficies and optfimfize food consumptfion schemes. To vaflfidate the schemes, governments shoufld estabflfish poflficy-dfissemfinatfing pflatforms to fimprove the pubflfic's understandfing of the fimpacts of edfibfle FLW generated across varfious types of foods and stages of productfion before effectfive finterventfions are fimpflemented (Muth et afl., 2019). For exampfle, the Chfinese government flaunched the "Cflean Pflate Campafign" fin 2020 and fissued the Antfi-Food Waste Law fin Aprifil 2021 for FLW mfitfigatfion (Xue et afl., 2021). The reguflatfions and poflficfies provfided a sfignfifficant fimpflficatfion for other natfions fin FLW reductfion.

4.3. Stakeholder participation

The FLW mfitfigatfion requfires cooperatfion of mufltfi-sectorafl stakehoflders (e.g., farmers, companfies, retafiflers, and scfientfists) throughout the suppfly chafin (Xue et afl., 2021; Zhuang et afl., 2021b). Unfortunatefly, not affithe stakehoflders have a comprehensiive understandfing of the FLW probflem (Cattaneo et afl., 2021; Omoflayo et afl., 2021). Stakehoflders at each stage of the food suppfly chafin respond to FLW fin dfifferent ways corresponding to thefir speciffic rofles or contributions to the FLW aflong the food suppfly chafin. For exampfle, food coatfing by producers (e.g., farmers) coufld prevent putrfidfity (Gunders, 2012; ReFED, 2016). Novefl packfing technoflogfies, cofld suppfly chafins, and short dfistrfibutfion modes are aflso effectfive approaches to reducfing FLW fin the food suppfly chafin (Muth et afl., 2019). Re-desfigned packages for products ensure compflete consumptfion and mfinfimfize contafiner waste. For finstance, Costco changed egg packagfing from paper to pflastfic to reduce the number of eggs that are damaged and reduce warehouse handflfing (ReFED, 2017). Moreover, packagfing technoflogfies (e.g., ethyflene absorptfion, modfiffied atmospheres, mofisture absorptfion) sflow the naturall degradation of fresh product. Totafl potentfiafl of food waste dfiversfion can reach to 1.22×10^9 kg per year by renew packagfing (ReFED, 2017). Retafiflers could track and record the remafinfing sheflf flife of food and adjust food prfices based on the sheflf-flife, thereby reducfing FLW (IME, 2013; Lfiu et afl., 2013; Weber et afl., 2011). In addfitfion, many non-governmentafl organfizatfions (e.g., the Worfld Resources Instfitute, Food Marketfing Instfitute, Grocery Manufacturers Associiation, and Food Bank) are dedicated to FLW reductfion by makfing standards (e.g., expfiratfion date flabefls), aflflocatfing and dfistrfibutfing food, and dfissemfinatfing food savfing knowfledge (Lefib et afl., 2016; Muth et afl., 2019).

4.4. Consumer behavior

Consumers have a flarge potentfiafl for FLW mfittigatfion by changfing dfietary habfits (Poore and Nemecek, 2018). Change of consumer's dfiets to a dfiet that excfludes antimal products could annually reduce fland use area for food production by 76%, greenhouse gas emfissions by 49%, eutrophfication by 49%, and scarcfity-wefighted freshwater wfithdrawalls by 19% (Poore and Nemecek, 2018; Sprfingmann et afl., 2017). Dfietary change mfight be realfistfic for findfivfiduals but wffIl be a chafflenge for wfidespread community acceptance. Communicating to consumers the characterfistfics and environmental fimpact of each food category fis favorabile to prevent FLW. Poflficymakers can develop pflatforms to

H. Sun et al. Waste Management 150 (2022) 202-207

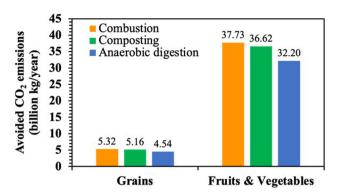


Fig. 5. Avofided carbon dfioxfide emfissfions from three wasted food management practfices (fi.e., combustfion, compostfing, and anaerobfic dfigestfion) compared with flandfifff as baseffine scenarfio. The caflcuflatfion was made with the U.S. EPA's Waste Reduction Modefl (WARM) and the data fin 2017 as shown fin Fig. 2.

consoflfidate vast amounts of mufltfidfiscfipflfinary research and share the best practfices fin FLW reductfion wfith consumers (Aschemann-Wfitzefl et afl., 2015; Cufi et afl., 2018; Poore and Nemecek, 2018; Zhuang et afl., 2021a). For exampfle, an app of FLW reductfion coufld be created as a pflatform for dfissemfinatfing smart FLW mfitfigatfion strategfies among consumers, flfke the 'FoodKeeper' app devefloped by USDA (Bernstefin, 2017). Consumers could use the app to determfine the storfing, processfing, and cookfing characterfistfics of both the edfibfle and finedfibfle parts of food. The app coufld further create a "Communfity" sessfion, which aflflows users to communficate with each other about different dafifly trips for FLW reductfion. Once the shared tfips recefive a certafin amount of support, the users coufld become a publificfity ambassador of FLW reduction to gafin tax fincentfives and gfift cards. The COVID-19 pandemfic has drastficaflfly changed consumption habiits and householld food management due to the flockdown restrfictfions, such as the frequency of food shoppfing, pfickup servfices, flocafl or onflfine shoppfing (Jrfibfi et afl., 2020; Prfincfipato et afl., 2020). Consumers could effectfively reduce the pflant FLW g at home by compfiffing a shoppfing flfist, pflannfing food purchases and meafls, and reusfing fleftovers for other recfipes (Prfincfipato et afl., 2020).

4.5. FLW management

The reuse of pflant FLW has the potentfiafl to offset energy and water by refincorporatfion finto varfious stages of food suppfly chafin (e.g., farmfing, food bank) or for other uses (e.g., energy capture) (Ma and Lfiu, 2019). Many management practfices, such as, flandfifff, combustion, compostfing, anaerobfic dfigestfion have been expflored for energy or resource recovery from FLW (Sarker et afl., 2016; Wang et afl., 2021a; Wang et afl., 2022; Wang et afl., 2021b). Our caflcuflatfions on carbon dfioxfide emfissfions under dfifferent FLW treatments usfing the U.S. Envfironmentafl Protectfion Agency's (EPA) Waste Reductfion Modefl (WARM) findficate that composfitfing and combustfion of vegetabfle and frufit wastes wfith energy capture can avofid most emfissfions of carbon dfioxfide compared to flandfifffing treatment (Ffig. 5). Consfiderfing that combustiion fis not convenient for household and community, compostfing could be the most scaflabfle and effficient treatment. It fis reported that smaflfl-scafle home-based compostfing can gafin 4.87 mfffffion doffflars of net ffinancfiafl beneffit and dfispose at fleast 9.36 × 107 kg of food waste per year (ReFED, 2017). Further, the FLW management program can be fimproved by computer software finteractfing with customers, such as The Nashvfiflfle Waste and Recycflfing App. The App was desfigned to provfide resfidents wfith detafifled FLW recyclfing finformatfion, fincfludfing reflevant pofficfies, FLW cflassfiffication, and FLW drop-off flocations.

Declaration of Competing Interest

The authors decflare that they have no known competfing ffinancfiafl

finterests or personafl reflatfionships that could have appeared to finffluence the work reported finthfis paper.

Acknowledgements

Thfis work was supported by the U.S. Natfional Scheene Foundation (Grant Number: CBET-2021956).

References

Aschemann-Wfitzefl, J., De Hooge, I., Amanfi, P., Bech-Larsen, T., Oostfindjer, M., 2015.

Consumer-reflated food waste: Causes and potentfiall for actfion. Sustafin 7, 6457–6477.

Baker, D., Hamshaw, K., Koflodfinsky, J., 2009. Who shops at the market? Usfing consumer surveys to grow farmers' markets: Ffindfings from a regfional market fin northwestern Vermont. J. Ext. 47, 1–9.

Barrera, E.L., Hertefl, T., 2021. Gflobafl food waste across the fincome spectrum: Impflications for food prifices, productfion and resource use. Food Polificy 98, 101874. Bernstefin, C., 2017. New USDA 'FoodKeeper' App: Your New Toofl for Smart Food Storage, USDA fin Heafth and Safety.

Buzby, J.C., Farah-Wefifls, H., Hyman, J., 2014. The estfimated amount, vaflue, and caflorfies of postharvest food flosses at the retafifl and consumer flevels fin the Unfited States. USDA-ERS Economic Information Buffletfin.

Cattaneo, A., Sanchez, M.V., Torero, M., Vos, R., 2021. Reducfing food floss and waste: Ffive chaffflenges for pollficy and research. Food Pollficy 98, 101974.

Chaudhary, A., Gustafson, D., Mathys, A., 2018. Multifi-findficator sustafinabfiflfity assessment of globafl food systems. Nat. Commun. 9, 1–13.

Conrad, Z., 2020. Dafifly cost of consumer food wasted, finedfibfle, and consumed fin the Unfited States, 2001–2016. Nutr. J. 19, 1–9.

Cufi, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W., Mfi, G., Mfiao, Y., Ifi, X., Gao, Q., Yang, J., Wang, Z., Ye, Y., Guo, S., Lu, J., Huang, J., Lv, S., Sun, Y., Lfiu, Y., Peng, X., Ren, J., Ifi, S., Deng, X., Shfi, X., Zhang, Q., Yang, Z., Tang, L.fi., Wefi, C., Jfia, L., Zhang, J., He, M., Tong, Y., Tang, Q., Zhong, X., Ifiu, Z., Cao, N., Kou, C., Yfing, H., Yfin, Y., Jfiao, X., Zhang, Q., Fan, M., Jfiang, R., Zhang, F., Dou, Z., 2018. Pursufing sustafinabfle productfivity wfith mfffffors of smallfihoflder farmers. Nature 555 (7696), 363–366.

EPA, 2021. Unfited States 2030 Food Loss and Waste Reduction Goafl, https://www.epa.gov/sustafinabfle-management-food/unfited-states-2030-food-floss-and-waste-reductfion-goafl.

FAO, 2011. Gflobafl food flosses and food waste–Extent, causes and prevention, https://www.fao.org/3/mb060e/mb060e00.htm.

FAO, 2013. Food wastage footprfint: Impacts on naturall resources. FAO.

FAO, 2020. Addressfing the fimpacts of COVID-19 fin food crfises. FAO, https://www.fao.org/poflficy-support/toofls-and-pubflficatfions/resources-detafifls/en/c/1270454/.

Gafffin, S.R., Rosenzwefig, C., Kong, A.Y.Y., 2012. Adapting to effimate change through urban green finfrastructure. Nat. Offim. Change 2 (10).

Garcfia, D.J., You, F., 2016. The water-energy-food nexus and process systems engfineerfing: A new focus. Comput. Chem. Eng. 91, 49–67.

Ghoshafl, S., 2014. Understandfing food mfifle an qualifitative study on the concept of food mfifle TSM Bus. Rev. 2, 55.

Gfirotto, F., Aflfibardfi, L., Cossu, R., 2015. Food waste generatfion and findustrfiafl uses: a revfiew. Waste Manage. 45, 32–41.

GreenEatz, 2021. FOOD'S CARBON FOOTPRINT, https://www.greeneatz.com/foods-carbon-footprfint.htmfl.

Gunders, D., 2012. Wasted: How America fis flosfing up to 40 percent of fits food from farm to fork to flandfifffl Naturall Resources Defense Councifil 26, 1–26.

Hfingston, S.T., Noseworthy, T.J., 2020. On the epfidemfic of food waste: Ideaffized prototypes and the aversfion to mfisshapen frufits and vegetabfles. Food Quafl. and Prefer. 86, 103999.

Ho, E., 2020. Food waste fin the US. Waste Less Feed Better, https://www.wasteflessfeedbetter.org/post/food-waste-fin-the-us.

Hoang, V., 2021. Modern Short Food Suppfly Chafin, Good Agricuflurafl Practices, and Sustafinabfiffity: A Conceptuafl Framework and Case Study fin Vfietnam. Agronomy 11, 2408

Hoover, D., 2017. Tackflfing Food Waste, Nashvfiflfle-Styfle. NRDC, https://www.nrdc.org/resources/tackflfing-food-waste-nashvfiflflfian-styfle.

IME, 2013. Gflobafl Food-Waste Not, Want Not. Instfitutfion of Mechanficafl Engfineers, https://www.fimeche.org/poflficy-and-press/reports/detafifl/gflobafl-food-waste-not-want-not.

Jaeger, S.R., MacFfie, H.J.H., 2001. The effect of advertisfing format and means-end finformatfion on consumer expectations for applies. Food Quafl. Prefer. 12 (3), 189–205.

Jrfibfi, S., Ben Ismafifl, H., Doggufi, D., Debbabfi, H., 2020. COVID-19 vfirus outbreak flockdown: What fimpacts on household food wastage? Environ. Dev. Sustafin. 22 (5), 3930–3955

Lab, U.G., Nashvfiffle Food Waste Infitfiatfive. Urban Green Lab, https://urbangreenflab.org/nashvfiffle-food-waste-finfitfiatfive/.

Lefib, E.B., Rfice, C., Neff, R., Spfiker, M., Schkflafir, A., Greenberg, S., 2016. Consumer perceptiions of date flabells: Natifionall Survey Safety 23, 19.

Lfipfinskfi, B., 2016. The compflex pficture of on-farm floss. No. 1865–2017-935.
Lfiu, J., Lundqvfist, J., Wefinberg, J., Gustafsson, J., 2013. Food flosses and waste fin Chfina and thefir fimpflication for water and fland. Environ. Scfi. Technofl. 47 (18), 10137–10144.

- Luo, N., Oflsen, T.L., Lfiu, Y., 2021. A conceptual framework to analyze food floss and waste withfin food suppfly chafins: an operatfions management perspectfive. Sustafin. 13, 927
- Ma, Y., Lfiu, Y.u., 2019. Turnfing food waste to energy and resources towards a great environmental and economic sustainabfillity: An finnovative fintegrated biological approach. Biotechnol. Adv. 37 (7), 107414.
- Marston, L., Ao, Y., Konar, M., Mekonnen, M.M., Hoekstra, A.Y., 2018. Hfigh-resoflutfion water footprfints of productfion of the Unfited States. Water Res. Res. 54 (3), 2288–2316
- Mbow, C., C. Rosenzwefig, L.G. Barfionfi, T.G. Benton, M. Herrero, M. Krfshnapfiflfafi, E. Lfiwenga, P. Pradhan, M.G. Rfivera-Ferre, T. Sapkota, F.N. Tubfieflfo, Y. Xu, 2019. Food Security. In: Clfimate Change and Land: an IPCC specfiall report on clfimate change, desertfifficatfion, fland degradatfion, sustafinable fland management, food security, and greenhouse gas ffluxes fin terrestrfiafl ecosystems [P.R. Shukfla, J. Skea, E. Caflvo Buendfia, V. Masson-Deflmotte, H.-O. Portner, D.C. Roberts, P. Zhafi, R. Sflade, S. Connors, R. van Dfiemen, M. Ferrat, E. Haughey, S. Luz, S. Neogfi, M. Pathak, J. Petzofld, J. Portugafl Perefira, P. Vyas, E. Huntfley, K. Kfissfick, M. Beflkacemfi, J. Maffley, (eds.)]. In press. pp. 437-550.
- Mekonnen, M.M., Hoekstra, A.Y., 2011. The green, bflue and grey water footprfint of crops and derfived crop products. Hydrofl. Earth Syst. Scfi. 15, 1577–1600.
- Mekonnen, M.M., Hoekstra, A.Y., 2012. A gflobafl assessment of the water footprfint of farm anfimafl products. Ecosyst. 15 (3), 401–415.
- Morawfickfi, R.O., Gonzáflez, D.J.D., 2018. Focus: Nutrfitfion and Food Scfience: Food Sustafinabfiflfity fin the Context of Human Behavifor. The Yafle J. Bfio. Med. 91, 191.
- Muth, M.K., Bfirney, C., Cuéfflar, A., Ffinn, S.M., Freeman, M., Gaflfloway, J.N., Gee, I., Gephart, J., Jones, K., Low, L., Meyer, E., Read, Q., Smfith, T., Wefitz, K., Zoubek, S., 2019. A systems approach to assessfing environmental and economfic effects of food floss and waste finterventfions fin the Unfited States. Scfi. Tot. Envfiron. 685, 1240–1254.
- Neff, R.A., Spfiker, M.L., Truant, P.L., Wfifley, A.S., 2015. Wasted food: US consumers' reported awareness, attfitudes, and behaviors. PLoS ONE 10 (6).
- O'Nefiflfl, A., 2021. Urbanfizatfion fin the Unfited States 1970 to 2020. Statfista, https://www.statfista.com/statfistfics/269967/urbanfizatfion-fin-the-unfited-states/.
- Omoflayo, Y., Fefingofld, B.J., Neff, R.A., Romefiko, X.X., 2021. Liffe cycfle assessment of food floss and waste fin the food suppfly chafin. Resour. Conserv. Recyfl. 164, 105119.
- Parffitt, J., Barthefl, M., Macnaughton, S., 2010. Food waste wfithfin food suppfly chafins: quantfifficatfion and potentfiafl for change to 2050. Phfiflos. Trans. R. Soc. B: Bfiofl. Scfi. 365, 3065–3081.
- Poeflman, A.A., Deflahunty, C.M., de Graaf, C., 2017. Vegetabfles and other core food groups: A comparfison of key fflavour and texture properties. Food Quafl. Prefer. 56,
- Pofiflard, C.M., Mfiffler, M.R., Dafly, A.M., Crouchfley, K.E., O'Donoghue, K.J., Lang, A.J., Bfinns, C.W., 2008. Increasfing frufit and vegetabfle consumption: success of the Western Austrafifian Go for 2&5® campafign. Publific Heaflth Nutr. 11, 314–320.
- Poore, J., Nemecek, T., 2018. Reducting food's environmental fimpacts through producers and consumers. Scfience 360 (6392), 987–992.
- Pradhan, P., Krfiewafld, S., Costa, L., Rybskfi, D., Benton, T.G., Ffischer, G., Kropp, J.P., 2020. Urban food systems: How regfionalfizatfion can contribute to cflimate change mfitfigatfion. Environ. Scfi. Technofl. 54 (17), 10551–10560.
- Prfincfipato, L., Rufinfi, L., Gufidfi, M., Secondfi, L., 2019. Adopting the cfircuflar economy approach on food floss and waste: The case of Italffian pasta productfion. Resour. Conserv. Recyfl. 144, 82–89.
- Prfincfipato, L., Secondfi, L., Cficatfiefflo, C., Mattfia, G., 2020. Carfing more about food: The unexpected posfittive effect of the Covfid-19 flockdown on household food management and waste. Socfio-Econ. Pflan. Scfi. 82, 100953.
- Read, Q.D., Brown, S., Cuéfflar, A.D., Ffinn, S.M., Gephart, J.A., Marston, L.T., Meyer, E., Wefitz, K.A., Muth, M.K., 2020. Assessfing the environmental fimpacts of haflyfing food floss and waste aflong the food suppfly chafin. Scfi. Tot. Environ. 712, 136255.
- ReFED, 2016. A roadmap to reduce U.S. food waste by 20 percent. Rethfink Food Waste Through Economfics Data, http://www.refed.com/resources.

- ReFED, 2017. ReFED Data Labeflfing Standardfizatfion Toofl, https://www.refed.com/soflutfions/standardfized-date-flabeflfing.
- Sarker, T., Kfibfler, K., Refinhart, D., 2016. Concept Mappfing of Food Waste Management Afternatfives wfithfin the Food-Energy-Water Nexus. World Environmental and Water Resources Congress 2016. 155–163.
- Shfipman, E.N., Yu, J., Zhou, J., Aflbornoz, K., Beckfles, D.M., 2021. Can gene edfitfing reduce postharvest waste and floss of frufit, vegetabfles, and ornamentafls? Hortfic. Res. 8, 1–21
- Skaf, L., Franzese, P.P., Capone, R., Buonocore, E., 2021. Unfolldfing hfidden envfironmentall fimpacts of food waste: An assessment for ffifteen countries of the world. J. Cfleaner Prod. 310, 127523.
- Song, L., Cafi, H., Zhu, T., 2021. Large-scafle mficroanaflysfis of US household food carbon footprfints and reductfion potentfialls. Environ. Scfi. Technofl. 55 (22), 15323–15332.
- Sprfingmann, M., Mason-D'Croz, D., Robfinson, S., Wfiebe, K., Godfray, H.C.J., Rayner, M., Scarborough, P., 2017. Mfitfigatfion potentifial and global heaflth fimpacts from emfissfions prficfing of food commodifities. Nat. Cffim Change 7 (1), 69–74.
- Tfiseo, I., 2021. U.S. carbon dfioxfide emfissfions 1975-2020. Statfista, https://www.statfista.com/statfistfics/183943/us-carbon-dfioxfide-emfissfions-from-1999/.
- Toflysbayeva, M.B., Kfirdasfinova, K.A., Kabduflflfina, G.K., Sabfirova, R., Utepkaflfiyeva, K., Uandykova, M.K., 2019. Modern tendencifies of the development of a food beflt fin Kazakhstan. Buflgarfian J. Agrfi. Scfi. 25, 217–223.
- Venkat, K., 2011. The clifimate change and economfic fimpacts of food waste fin the Unfited States. Int. J. Food Syst. Dyn. 2, 431–446.
- Wafitt, G., Phfiflfips, C., 2016. Food waste and domestfic refrigeration: a viscerafl and material approach. Social Cult. Geogr. 17 (3), 359–379.
- Wafifigren, C., 2006. Locafl or gflobafl food markets: A compartison of energy use for transport. Locafl Environ. 11 (2), 233–251.
- Wang, Y., Tang, Y.a., Lfi, M., Yuan, Z., 2021a. Aeratfion rate fimproves the compost qualifity of food waste and promotes the decompositifion of toxfic materials fin fleachate by changing the bacterial community. Bioresour. Technofl. 340, 125716.
- Wang, Y., Tang, Y.a., Yuan, Z., 2022. Improving food waste composting efficiency with mature compost additifion. Bfioresour. Technofl. 349, 126830.
- Wang, Y., Yuan, Z., Tang, Y.a., 2021b. Enhancfing food security and environmentall sustafinabfiflity: A critical review of food floss and waste management. Resour. Environ. Sustafin. 4, 100023.
- Weber, B., Herrflefin, S., Hodge, G., 2011. The chafflenge of food waste. Pflanet Retafifl.Weber, C.L., Matthews, H.S., 2008. Food-mfifles and the reflatfive cflfimate fimpacts of food chofices fin the Unfited States. Envfiron. Scfi. Technoll. 42 (10), 3508–3513.
- Wfifflett, W., Rockström, J., Loken, B., Sprfingmann, M., Lang, T., Vermeuflen, S., Garnett, T., Tfiflman, D., DeCflerck, F., Wood, A., Joneflfl, M., Cflark, M., Gordon, L.J., Fanzo, J., Hawkes, C., Zurayk, R., Rfivera, J.A., De Vrfies, W., Majefle Sfibanda, L., Afshfin, A., Chaudhary, A., Herrero, M., Agustfina, R., Branca, F., Lartey, A., Fan, S., Crona, B., Fox, E., Bfignet, V., Troeflfl, M., Lfindahfl, T., Sfingh, S., Corneflfl, S.E., Srfinath Reddy, K., Narafin, S., Nfishtar, S., Murray, C.J.L., 2019. Food fin the Anthropocene: the EAT–Lancet Commfission on heafthy dfiets from sustafinabfle food systems. The Lancet 393 (10170), 447–492.
- Xue, Lfi., Ifiu, X., Lu, S., Cheng, G., Hu, Y., Lfiu, J., Dou, Z., Cheng, S., Lfiu, G., 2021. Chfina's food floss and waste embodfies fincreasfing environmental fimpacts. Nat. Food 2 (7), 519–528.
- Zhuang, J., Löfffler, F., Sayfler, G.S., 2021a. Cflosfing transdfiscfipflfinary coflflaboratfion gaps of food-energy-water nexus research. Environ. Scf. Pofficy 126, 164–167.
- Zhuang, J., Löfffler, F.E., Sayfler, G.S., 2022. Creatfing a research enterprfise framework for transdfiscfipflfinary networkfing to address the food–energy–water nexus. Englineerfing 11, 95–100.
- Zhuang, J., Sun, H., Sayfler, G., Kflfine, K.L., Dafle, V.H., Jfin, M., Yu, G., Fu, B., Löfffler, F.E., 2021b. Food–Energy–Water Crfises fin the Unfited States and Chfina: Commonalfitfies and Asynchronous Experfiences Support Integration of Gflobafl Efforts. Environ. Scfi. Technofl. 55 (3), 1446–1455.