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Stable recursive auxiliary field quantum Monte Carlo algorithm in the canonical ensemble:
Applications to thermometry and the Hubbard model
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Many experimentally accessible, finite-sized interacting quantum systems are most appropriately described by
the canonical ensemble of statistical mechanics. Conventional numerical simulation methods either approximate
them as being coupled to a particle bath or use projective algorithms which may suffer from nonoptimal scaling
with system size or large algorithmic prefactors. In this paper, we introduce a highly stable, recursive auxiliary
field quantum Monte Carlo approach that can directly simulate systems in the canonical ensemble. We apply
the method to the fermion Hubbard model in one and two spatial dimensions in a regime known to exhibit a
significant “sign” problem and find improved performance over existing approaches including rapid convergence
to ground-state expectation values. The effects of excitations above the ground state are quantified using an
estimator-agnostic approach including studying the temperature dependence of the purity and overlap fidelity
of the canonical and grand canonical density matrices. As an important application, we show that thermometry
approaches often exploited in ultracold atoms that employ an analysis of the velocity distribution in the grand
canonical ensemble may be subject to errors leading to an underestimation of extracted temperatures with respect
to the Fermi temperature.
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I. INTRODUCTION

In many settings in condensed matter physics, the grand
canonical ensemble, in which the number of particles in a
system is allowed to fluctuate subject to a fixed chemical
potential, is the ensemble of choice for modeling systems
at finite temperature. This is a natural framework due to the
approach to the thermodynamic limit for electrons in solids
or the existence of a particle (or quasiparticle) reservoir in
transport geometries, heterostructures, and superconductors.
However, there is a growing number of important scenarios
in which the number of particles is fixed and small, including
trapped atom systems composed of a finite number of atoms
confined in box-style traps [1–3], nuclear systems with a
fixed number of nucleons [4–8], and molecules containing
a fixed number of electrons [9,10]. All such systems are
more accurately described by the canonical ensemble in which
the number of particles cannot fluctuate. Moreover, many
ground-state algorithms in condensed matter are formulated
in the canonical ensemble [11–14] and finite-temperature al-
gorithms [10,15–18] that can converge to these algorithms’
ground-state results without spurious particle-number fluctu-
ations can shed a brighter light on the mechanisms behind
low-temperature quantum phase transitions and crossovers.
Other examples where systems need to be treated within
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the canonical ensemble include determining the operationally
accessible entanglement in indistinguishable many-body sys-
tems in the presence of a U (1) superselection rule limiting
physically allowable operations [19–21] and the determina-
tion of thermonuclear rates for astrophysics [22].

Efficiently describing interacting systems in the canonical
ensemble has nevertheless been a longstanding challenge,
particularly for second-quantized algorithms. Unlike in the
grand canonical ensemble, in which partition functions and
other quantities can be evaluated without placing any con-
straints on the number of particles [23], evaluating quantities
in the canonical ensemble requires an explicit consideration
of particle-number constraints. At a physical level, these con-
straints give rise to interesting, nontrivial correlations among
the occupations of different states—higher-order expectation
values of occupation numbers do not factorize, even in the
noninteracting limit [24]. However, at a numerical level, these
constraints can make the analytical and computational eval-
uation of canonical ensemble quantities substantially more
cumbersome [25].

One approach for modeling interacting systems in the
canonical ensemble that circumvents the imposition of di-
rect constraints is the use of projection techniques [8,26].
In these algorithms, canonical ensemble quantities are pro-
jected out from the grand canonical partition function at a
suitably tuned chemical potential [27]. This approach has been
fruitfully employed to study a wide variety of problems in
nuclear physics [5,8] and, more recently, condensates [28,29].
Nonetheless, because this algorithm relies on projecting out of
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the grand canonical ensemble, it is accompanied by the same
computational overhead as typical finite-temperature grand
canonical simulations and can develop numerical instabilities
for large particle numbers or when reasonable chemical poten-
tials cannot be identified, for example near first-order phase
transitions [30]. Recently, techniques for rapidly determining
a chemical potential where it can be readily identified have
been proposed, but these techniques still do not inherently
operate in the canonical ensemble [27,31,32]. Approaches that
directly take physical constraints into account therefore have
the potential to lead to methods that are not only more stable
but also more computationally efficient.

Recently, a new auxiliary partition function (APF) formal-
ism has been proposed that enables the recursive computation
of N-particle partition functions and related quantities for
noninteracting systems from smaller particle-number quan-
tities, thus explicitly taking particle-number constraints into
account [24]. In essence, the APF formalism views the canon-
ical ensemble partition function as a sum over the probabilities
of varying numbers of particles occupying different subsets of
states. Unlike previous such recursions for noninteracting sys-
tems [25], the APF formalism is able to arrive at expressions
for canonical ensemble partition functions using only positive
subquantities, and hence it is significantly more numerically
stable. While this technique has been successfully applied to
such noninteracting systems as harmonic oscillators and rings
of bosons [24], the APF algorithm and alternative recursions
have yet to be generalized to interacting systems.

In this paper, we present a new, highly stable recur-
sive algorithm for the simulation of interacting systems in
the canonical ensemble. This algorithm marries the finite-
temperature auxiliary field quantum Monte Carlo (AFQMC)
algorithm [33,34], which has long been used to model
finite-temperature interacting systems, with the new APF
formalism [24], which has previously only been applied to
noninteracting systems. The key realization that enables this
marriage is that the Hubbard-Stratonovich (HS) transforma-
tion [35–37], which reconstructs the properties of interacting
systems by integrating over an appropriately weighted en-
semble of noninteracting systems [38], can be exploited
to construct interacting partition functions and related ob-
servables in the canonical ensemble by integrating over
noninteracting APF partition functions. Our algorithm can
therefore stably describe interacting systems in the canoni-
cal ensemble by sampling noninteracting partition functions
and other finite-temperature quantities generated using the
APF formalism and then integrating over those samples. This
markedly improves on our previous work which was built
on the significantly less stable Borrmann recursion algorithm
for noninteracting gases [25,39]. To highlight the stability of
our new algorithm, we show that: (1) our new interacting
algorithm is stable down to substantially lower temperatures
than previous algorithms and (2) it has a lower computational
scaling than previous projection algorithms.

With this highly stable algorithm, we proceed to ana-
lyze differences in the convergence of the energy, sign, and
information-theoretic measures such as the purity and fidelity
[40,41] to the ground state between the grand canonical and
canonical ensembles. To do so, we focus on the Hubbard
model of interacting fermions in one and two dimensions

as an instructive example because it manifests the strong
correlation often resulting in a sign problem that is hardest
to model via modern simulation techniques. We find that
because higher-energy states are more readily accessed in
the grand canonical ensemble, grand canonical energies tend
to be higher and purities lower at any given temperature,
meaning that the grand canonical ensemble converges more
slowly to the ground state. We substantiate these findings
with analytical expressions describing how these quantities
should converge to the ground state in both the interacting
and noninteracting limits. We furthermore demonstrate that
these differences have substantial practical implications for
the thermometry of cold atom systems: If the temperature of
cold atom systems containing a fixed number of particles is
estimated based on the grand canonical ensemble, then this
leads to temperature predictions that can be as much as 53.2%
lower than in the more realistic canonical ensemble picture
according to the analysis we present below.

We begin in Sec. II by presenting our new algorithm and
its underlying formalism, showing how recursive relations for
the partition function and one- and two-body quantities can
be determined using the APF method and subsequently inte-
grated into the AFQMC algorithm. We also demonstrate the
formal relationship between our recursive algorithm and the
previously used projection algorithm. In Sec. III, we present
our results regarding the increased stability of our algorithm,
before illustrating the differences in system energies, puri-
ties, and fidelities as measured in the two ensembles using
the Hubbard model as a salient example. We exemplify the
practical consequences of these differences for thermometry
in Sec. III D. Last, we conclude in Sec. IV by discussing
further applications of our algorithm and its straightforward
extension to studying nuclear matter and bosons, for which it
has the potential to show even greater efficiency gains.

II. FORMALISM

A. The finite-temperature AFQMC algorithm

The central quantity in finite-temperature theories is the
partition function, from which all other properties can be
derived. Historically, the focus of finite-temperature meth-
ods has been to obtain or otherwise sample from the grand
partition function, Zµ, associated with the grand canonical en-
semble, in which the internal energy and particle number are
allowed to fluctuate around average values that can be tuned
by the temperature T and chemical potential µ, respectively
[23].

The grand partition function can be expressed as the trace

Zµ = Tr[e−β(Ĥ−µN̂ )], (1)

where β = 1/(kBT ), kB denotes the Boltzmann constant, Ĥ
denotes the many-body Hamiltonian, and N̂ is an operator
corresponding to the total number of particles which is the
sum over the occupations over the set of (possibly degenerate)
states. In order to facilitate its subsequent sampling, the grand
partition function can be discretized into L imaginary time
slices, each of which can then be approximately factored into
short imaginary time one- and two-body propagators via a
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Suzuki-Trotter factorization [42,43],

Zµ = Tr

[
L∏

l=1

e−"τ (Ĥ−µN̂ )

]

≈ Tr

[
L∏

l=1

[e−"τ K̂/2e−"τV̂ e−"τ K̂/2]

]

, (2)

where "τ = β/L represents an imaginary time slice, K̂ is the
collection of all one-body operators, and V̂ is the collection of
all two-body operators. The exact grand partition function is
recovered in the limit "τ → 0. This factorization enables us
to ignore the noncommutation of the one-body and two-body
operators up to a systematic and controllable error of O("τ 3).

While one-body propagators, e−"τ K̂ , may be neatly
expressed as matrices in a given basis [44], two-body prop-
agators, e−"τV̂ , may not be as easily determined. In auxiliary
field-based methods, including determinant quantum Monte
Carlo [33,45] and AFQMC [11,46], two-body propagators
of the form e−"τV̂ are linearized by re-expressing them as
integrals over one-body propagators [35] using the Hubbard-
Stratonovich transformation [35–37,47]. Assuming as we will
below that the two-body propagator can be written as

V̂ =
∑

γ

λγ v̂2
γ , (3)

where the v̂γ denote linear combinations of one-body opera-
tors and the λγ denote their contributions to the sum, then

e−"τV̂ =
∫

DσGσV̂σ (4)

according to the HS transformation, where σ represents
an auxiliary field, Gσ represents the Gaussian probability
of sampling that field, and V̂σ denotes the collection of
one-body operators as a function of that field. Crucial to
this paper, Eq. (4) signifies that propagators for interacting
systems can be rewritten as integrals over propagators for
noninteracting systems. Based on this transform, all of the
one-body operators from different time slices, i, are then
combined, i.e., Ûσ =

∏
i e−"τ K̂/2V̂σi e

−"τ K̂/2, and the full
grand canonical partition function may be expressed as

Zµ = Tr
(∫

DσGσ eβµN̂Ûσ

)

=
∫

DσGσ Tr(eβµN̂Ûσ )

=
∫

DσGσ det(I + eβµUσ ), (5)

where taking the trace over all fermion occupations results in
a determinant [44].

The partition function can then be sampled to evaluate such
observables as energies, average occupations, and correlation
functions [33,34]. In particular, Wick’s theorem is valid in the
grand-canonical ensemble, which enables a powerful simpli-
fication of expectation values of products of operators (e.g.,
correlation functions) into factorized sums and differences
of shorter products of expectation values of those operators
[48,49].

B. Recursive relations for the canonical partition function

While computing properties in the grand canonical ensem-
ble is appropriate for many systems and can be analytically
or computationally convenient, in many situations in which
the particle number remains fixed, a canonical treatment is
more suitable. Computing the canonical ensemble partition
function proceeds along the same lines as computing the grand
canonical one with the critical exception that the trace must
be taken with the constraint of fixed particle number N . More
specifically, the N-particle, canonical ensemble partition func-
tion may be expressed as

ZN = TrN (e−βĤ ), (6)

which can be factored and transformed in a similar manner to
the grand partition function to obtain

ZN =
∫

DσGσ TrN (Ûσ ), (7)

where we have added the subscript N to the trace to differenti-
ate it from that in Eq. (1). Because Ûσ is a one-body operator,
its matrix form, Uσ , can be diagonalized in the single-particle
space

Uσ = P!P−1, (8)

where we omit the σ dependence on the right side for clar-
ity. We then introduce the effective single-particle spectrum
' = diag({λγ }) = diag({exp(−βε̃γ )}), based on the follow-
ing relations

Ûσ =
∑

γ

exp(−βâ†
γ ε̃γ âγ ) =

∑

γ

λ
n̂γ
γ , (9)

and the basis transformation

â†
γ =

∑

i

〈i|γ 〉â†
i , âγ =

∑

i

〈γ |i〉âi , n̂γ = â†
γ âγ . (10)

Since Ûσ is an independent-particle propagator that only
depends on the auxiliary field vector, σ , the effective single-
particle spectrum, {ε̃γ }, is independent of the particle number.
For an N-particle, Ns-site system, taking the trace while con-
straining the particle-number yields [39]

TrN (Ûσ ) = TrN




∑

γ

exp(−βâ†
γ ε̃γ âγ )





=
∑

)N

〈)N |
∑

γ

exp(−βâ†
γ ε̃γ âγ )|)N 〉

=
∑

)N

∑

γ

λ
nγ
γ . (11)

Here, )N is used to represent the set of N-particle states,
and thus

∑
)N

≡
∑

n1+···+nNs =N and nγ denotes the number of
particles in the γ th eigenstate. For fermions, nγ = 0, 1. The
key implication of Eq. (11) is that, for a specified field σ , the
single-particle spectrum can be decoupled from the particle
number. Hence, the many-particle energy given such fields is
simply the sum of all of the single-particle energies.

This key fact enables us to move beyond previous
projection-based approaches and calculate Eq. (11) in a re-
cursive fashion, where we utilize the recursive approach to
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calculating canonical ensemble partition functions first devel-
oped for ideal gases. Specifically, the partition function can be
obtained using the well-known Borrmann recursion [25,50],

ZN = 1
N

N∑

k=1

(ζ )k−1zkZN−k, (12)

where zk =
∑Ns

j=1 λk
j and ζ takes the values of −1 and 1 for

fermions and bosons, respectively. However, in the context
of noninteracting gases, the fermionic version of Eq. (12) is
known to suffer from numerical instabilities [51,52], which
were also encountered in a previous version of our canonical
AFQMC algorithm [39], leading to the emergence of an addi-
tional unphysical sign problem.

We can gain some intuitive understanding of the reasons
behind such numerical instability for the case of fermions
at low temperatures. In addition to the alternating signs in
Eq. (12), the contribution of high energy levels to the fac-
tors zk can be filtered out by limited numerical precision.
This is expected to have a minimal effect on low-temperature
Bose gases, as their thermodynamic properties rely heavily
on the occupation of low energy levels. In contrast, the ther-
modynamic properties of low-temperature Fermi gases are
governed by much higher energy levels in the vicinity of the
Fermi level.

Here, we build on our previous work [39] to propose a more
numerically stable and accurate method for computing the
canonical trace via a recursive formula based on the recently
developed auxiliary partition function formalism [24]. Given
a set {λi = e−βε̃i} of Boltzmann factors that correspond to the
single-particle energy spectrum {ε̃i}, we can build the desired
N-particle partition function recursively by including one of
the levels in each recursive step, i.e.,

ZN = λ jZ
{λi}\λ j

N−1 + Z {λi}\λ j

N , (13)

where the notation {λi}\λ j implies that we exclude the specific
level j from the set {λi} (see Ref. [24] for extensive details).
This recursion does not suffer from the problems of Eq. (12)
because it is inherently positive. Yet, the unbounded nature
of the Boltzman factors λi can make achieving the desired
numerical precision difficult, especially at low temperatures.
This can be addressed with a simple trick. We modify Eq. (13)
by inserting an arbitrary multiplicative factor Aj (to be de-
termined below) with the inclusion of each λ j and apply the
modified equation on the modified set {Bλi}, where B is an
additional constant (also to be determined). This results in a
modified recursion relation

Z̄N = Aj
(
Bλ j Z̄

{λ j}\λ j

N−1 + Z̄ {λ j}\λ j

N

)
, (14)

and we can recover ZN from the resulting Z̄N via

Z̄N = BN ZN

∏

j

A j . (15)

This suggests that we can enhance the performance of the
APF recursive approach for calculating ZN through a clever
choice of the constants {Aj} and B. In order to do so, we rear-
range the fugacity expansion for the grand-canonical partition
function, Zµ, in terms of the canonical partition functions,

ZN = TrN e−βĤ ,

Zµ =
∑

N

eβµN ZN . (16)

Dividing by the grand canonical partition function and remov-
ing the summation over N results in an expression for the
particle-number probability distribution given by

Pµ(N ) = eβµN ZN

Zµ

. (17)

For noninteracting fermions, Zµ =
∏

j[1 − p(µ)
j ]−1 [23],

where

p(µ)
j = eβµλ j

1 + eβµλ j
(18)

is the probability of occupying the jth energy level. This
yields

Pµ(N ) = eβµN ZN

∏

j

[
1 − p(µ)

j

]
. (19)

If we compare Eq. (19) with Eq. (15), then we can iden-
tify Pµ(N ) with Z̄N by choosing Aj = 1 − p(µ)

j and B = eβµ,
which, when substituted into Eq. (14), results in a recursion
relation for the number probability distribution

Pµ(N ) = p(µ)
j P{λi}\λ j

µ (N − 1) +
[
1 − p(µ)

j

]
P{λi}\λ j

µ (N ). (20)

In contrast with Eq. (13), all terms in the above equation are
bounded between 0 and 1, which further ensures their numer-
ical stability and automatically avoids numerical arithmetic
overflow issues caused by extremely large λi values. Also,
setting N = 0 in Eq. (17), we see that 1/Zµ = Pµ(0), which
enables us to re-express Eq. (17) as

ZN = ZN

Z0
= eβµN Pµ(N )

Pµ(0)
, (21)

where Z0 = 1.
We note that in Eq. (21), the chemical potential µ is an

algorithmic parameter that can take on any value without
changing the value of the canonical trace. It need not be
the many-body chemical potential, which is otherwise dif-
ficult to determine for an arbitrary system. To increase the
numerical stability of Eqs. (20) and (21), it is best to select
a µ around the Fermi level, where Pµ peaks at N . A good
choice is eβµ = |λNλN+1|1/2, assuming that {λi} is sorted as
|λ1| < |λ2| < · · · < |λNs |.

It is worth mentioning that the particle-number distribution
Pµ(N ) can be viewed as a Poisson-binomial distribution [53],
which can be expressed as

Pµ(N ) :=
∑

SN

∏

i∈SN

p(µ)
i

∏

j∈S̄N

[
1 − p(µ)

j

]
, (22)

where it is constructed from the probability p(µ)
i of success-

fully occupying N energy levels at a given chemical potential
and temperature out of a total number of independent (non-
interacting) and nonidentical Bernoulli trials [24], where the
corresponding set of independent success probabilities is rep-
resented by {p(µ)

i }. Here SN is a set of N occupied energy
levels selected from Ns energy levels in the single-particle
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space; S̄N denotes the complement coming from unoccupied
levels.

While we have focused our presentation of our formalism
here on fermions, it can readily be extended to bosons, as
further detailed in the supplementary material [54].

C. Relationship between auxiliary partition function approach
and previous projection approaches

In this section, we illustrate how the more conventional
particle-number projection formalism [8,59] can be derived
from Eqs. (18)–(20) through a Fourier transform and hence
that it is analytically equivalent to the recursive approach. The
fact that these approaches are analytically equivalent will be
of value when we compare the accuracy, stability, and speed
of these methods in Sec. III A.

We begin by considering the generating function of the
partition function under the recursive relation, Eq. (13), for
any nonzero a

∞∑

N=0

aN ZN = λ j

∞∑

N=1

aN Z {λ j}\λ j

N−1 +
∞∑

N=0

aN Z {λ j}\λ j

N

= (1 + aλ j )
∞∑

N=0

aN Z {λ j}\λ j

N . (23)

By iteratively subtracting the Boltzmann factors λ j from the
set of all levels {λi}, we arrive at

∞∑

N=0

aN ZN =
∏

j

(1 + aλ j ). (24)

Setting a = eβµeiφm , with φm = 2πm/Ns, then yields

∞∑

N=0

eβµN eiφmN ZN =
∏

j

(1 + eβµeiφmλ j ). (25)

Using the discrete Fourier transform of the delta function at N ,
δN =

∑Ns
m=1 eiφmN/Ns, we can solve for eβµN ZN and recover

the particle-number projection result for the canonical trace
that was first proposed in Ref. [8],

ZN = e−βµN

Ns

Ns∑

m=1

e−iφmN
∏

j

(1 + eβµeiφmλ j )

= 1
Ns

Ns∑

m=1

e−βµN e−iφmN Z̃µ(m). (26)

As we shall demonstrate below, the recursion formalism
and the projection formalism have equivalent accuracy with
recursion having slightly improved scaling [O(N3

s + NsN ) vs
O(N3

s + N2
s ) after considering the N3

s cost of the eigendecom-
position] for computing the partition function.

D. Recursive computation of density matrices
and correlation functions

The expectation value of the one-body density operator
can be evaluated using the same eigendecomposition of the
field-dependent propagator matrix, Uσ = P'P−1, with ' =

diag({λi}), which leads to

〈ĉ†
i ĉ j〉N =

∑

α

Piα〈n̂α〉N P−1
α j , (27)

where 〈n̂α〉N is computed recursively in O(N ) operations
[50,60] as

〈n̂α〉N = λαPµ(N − 1)
eβµPµ(N )

(1 − 〈n̂α〉N−1) (28)

with the initial condition 〈n̂α〉0 = 0. When λα is large, 〈n̂α〉N
is close to 1 and the right-hand side of Eq. (28) may develop
numerical round-off errors. To avoid this, we reverse the re-
cursion and compute the “hole” distribution function for large
values of λα ,

1 − 〈n̂α〉N = eβµPµ(N + 1)
λαPµ(N )

〈n̂α〉N+1 (29)

with the initial condition 〈n̂α〉Ns = 1 at unit filling.
The expectation value of the two-body density operator can

be computed in a similar fashion

〈ĉ†
i ĉ j ĉ

†
k ĉl〉N =

∑

α,β

[
PiαPkβ〈n̂α n̂β〉N P−1

βl P−1
α j

+ PiαPkβ〈n̂α − n̂α n̂β〉N P−1
β j P−1

αl

]
(30)

and the two-level correlations can be expressed as

〈n̂α n̂β〉N =
{〈n̂α〉N α = β

λβ 〈n̂α〉N −λα〈n̂β 〉N

λβ−λα
α )= β

, (31)

which can be viewed as the lowest-order canonical ensem-
ble generalization [51,61] of Wick’s theorem [49], recently
extended to the case of degenerate spectra [24]. These expres-
sions are used throughout the rest of the paper to compute
energies, particle densities, and correlation functions.

E. Model system: Fermion Hubbard model

While our formalism generalizes to any two-body Hamil-
tonian, for the sake of subsequent discussion, we will focus
on the fermion Hubbard model due to the strong correlation it
exhibits and its relevance for the description of many useful
chemical and material systems. This model’s Hamiltonian
may be expressed as

Ĥ = −t
∑

i j,σ

(ĉ†
i,σ ĉ j,σ + H.c.) + U

∑

i

n̂i,↑n̂i,↓, (32)

where ĉ†
i,σ (ĉ j,σ ) are anticommuting fermionic creation

(anihilation) operators such that ĉi ĉ†
j + ĉ†

i ĉ j = δi j and n̂i,σ =
ĉ†

i,σ ĉi,σ is the local spin-resolved density for hopping pa-
rameter t and interaction strength U . In our subsequent
illustrations, we pose different challenges to our formalism
by varying the strength of the electron correlation, U/t , the
filling (average number of electrons per site), 〈n〉 = (

∑
i n̂i↑ +

n̂i↓)/Ns, and number of sites, Ns, in our model. We measure
energies in units of the hopping parameter t in our simulations
and set t = 1 in the remainder of this work.
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FIG. 1. Stability with which different canonical ensemble algo-
rithms can compute the partition function of a 100-site Hubbard
chain with a randomly generated set of Hubbard-Stratonovich fields
for β = 10 for different total particle numbers N . The inset depicts
the occupation numbers of all of the energy levels at half-filling
(N = 50).

III. RESULTS AND DISCUSSION

A. Accuracy, stability, and speed of our recursive approach

In order to assess the utility of our approach, we begin
by characterizing its accuracy, stability, and relative speed.
Because our APF-based algorithm no longer involves taking
the difference between products of probabilities or partition
functions, we expect it to be substantially more stable at low
temperatures, enabling us to model larger systems closer to
their ground states. While we have previously demonstrated
this increased stability for noninteracting spin models [24],
here we demonstrate that this algorithm is equally stable for
interacting systems.

To illustrate the stability of our algorithm for a non-
interacting system directly relevant to our final interacting
simulations, we compute the canonical partition functions and
occupations of a version of the Hubbard model whose solu-
tions can be derived analytically. As described in Sec. II A,
in order to fully account for the two-body interactions in the
AFQMC formalism, one employs the Hubbard-Stratonovich
transformation to integrate over many possible random instan-
tiations of noninteracting systems parameterized by different
auxiliary fields. While the partition function of a general, in-
teracting system is not analytically solvable, we can compute
the partition function for a system parameterized by a single
set of fields as a function of N and compare its results to those
from the projection algorithm.

In Fig. 1, we plot the logarithm of the canonical par-
tition function vs the number of electrons computed using
the Borrmann, APF, and projection algorithms for a 100-site
Hubbard chain with a randomly generated, but known set of
Hubbard-Stratonovich fields at β = 10. As is evident from
the scale on the plot, this is a stringent test of the stability
of these algorithms because of the exceedingly large and
small values of ZN that can be assumed in this model. Due
to binomial combinatorics, the partition function can be ex-
pected to peak at half-filling. This is correctly captured by
the APF and projection algorithms but not by the Borrmann

recursion. While all algorithms are able to accurately compute
the partition function at low fillings, the Borrmann recursion
quickly loses its stability (and therefore accuracy) relative to
the other algorithms at larger fillings. As previously observed
[39], this is because the Borrmann recursion relies on sums
overs terms with alternating signs that can cancel each other
out. The instability of the Borrmann algorithm can similarly
be observed in recursions for the average occupations for all
of the different energy levels, k, as presented in the inset of
Fig. 1. Here, the Borrmann recursion is not only unable to
reproduce the expected noninteracting Fermi-Dirac-like dis-
tribution, but even predicts unphysical negative occupations.
In contrast, both the APF and projection algorithms agree
regardless of filling, providing clear evidence that the APF
formalism is highly stable for noninteracting systems. Given
that the interacting partition function may be obtained by
integrating over such noninteracting partition functions, the
same stability observed in these simulations of noninteracting
instantiations of the Hubbard model should naturally extend to
simulations of the fully interacting model, as presented below.

Having demonstrated that both the APF and projection
algorithms are highly stable, we next compare their com-
putational scaling. Both algorithms make heavy use of full
matrix diagonalizations at an O(N3

s ) cost. However, due to
its use of a Fourier sum, the projection algorithm sums over
Ns Fourier components with each component computing a
Fourier-frequency-dependent partition function of a single-
particle space of size Ns. In contrast, the APF algorithm only
requires N iterations, where each iteration involves comput-
ing the occupation probability of Ns single-particle levels.
Ultimately, this results in the recursive algorithm having an
O(N3

s + NsN ) scaling for computing partition functions and
occupation numbers (one-body densities), whereas the pro-
jection algorithm has an O(N3

s + N2
s ) scaling. Thus, there

is a clear benefit to using the APF method for filling frac-
tions below unity. The two algorithms also possess different
prefactors: The projection algorithm requires an additional
rescaling step to avoid numerical overflow when the values
of the Fourier components exceed the available floating point
maximum at a given precision, while the APF algorithm is
automatically stabilized as the calculations are mapped to
probabilities that take values in the range [0, 1]. This points
to the recursive algorithm being more efficient, particularly at
low fillings and for large system sizes.

The increased efficiency of the recursive algorithm is re-
flected in the upper panel of Fig. 2, which shows the wall time
required for each QMC step of a random sample drawn from
an HS-transformed Hubbard model with U = 2 and β = 12
for varying numbers of sites. As computing a full QMC step
involves both leading and subleading contributions to the
overall scaling of the algorithms, the plots in the upper panel
are reflective of the differences between the total execution
times of both algorithms. In particular, the inset depicts the
total speedup of the APF algorithm relative to the projection
algorithm. The O(N3

s ) diagonalization step is identical for
both methods, so in the lower panel, we additionally plot the
wall time to compute the canonical partition function, ZN (σ ),
which only reflects subleading contributions to the scaling, for
both methods. Regardless of the size of the system and the
filling, we find that our APF algorithm is always faster than
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FIG. 2. Comparison of the runtimes (shorter is better) of our APF
algorithm against the more conventional projection algorithm for
QMC samples drawn from Hubbard models with varying numbers
of lattice sites, Ns, with U = 2 at two different fillings 〈n〉 = 1 and
〈n〉 = 0.2, and β = 12. Runtimes are plotted for computing a single
QMC step (upper panel), which reflects both leading and subleading
contributions to the scaling, and the full partition function (lower
panel), which reflects only subleading contributions to the scaling.
The inset in the upper panel shows the speedup (larger is better) per
QMC step of the APF algorithm relative to the projection algorithm.
Runtimes for 〈n〉 = 1 are denoted by the squares, while those for
〈n〉 = 0.2 are denoted by the triangles.

the projection algorithm, in line with our scaling derivations.
While one would expect the similar O(N3

s ) contributions to
the scaling to dominate the wall times of both algorithms, we
nonetheless see from the inset that the APF algorithm remains
10–15% faster than the projection algorithm over a wide range
of system sizes. This speedup leads to a significant practical
gain in the efficiency of the APF algorithm relative to the
projection algorithm, especially for larger system sizes and
fillings. We also observe that the time to run the projection
algorithm remained roughly the same for different filling frac-
tions, while the wall time of the APF algorithm significantly
decreased at lower fillings. Performing linear regression on
the log-log data in Fig. 2 quantifies the overall N2

s scaling
of the subleading contributions to the wall time (as given
by the slopes of the regression lines) and reduced prefactor
(as given by the regression intercepts) of the computationally
more efficient APF method.

FIG. 3. Convergence of the energy per electron in the canonical
(CE) and grand canonical (GCE) ensembles as a function of the
inverse temperature for a 6 × 6 Hubbard model at half-filling with
U = 4. Both the main panel and inset demonstrate the enhanced
convergence in the canonical ensemble.

Although both algorithms could potentially be furthered
optimized, we believe that the scalings described here are
those representative of typical implementations of these al-
gorithms. As further discussed in the supplementary material
[54], computational complexities can also be worked out for
the evaluation of the level occupations and their correlation
functions. We find that the cost to compute occupations and
related observables follows roughly the same scaling as for
calculations of the partition function.

B. Ground-state convergence properties

1. Convergence of the energy to the ground state

Having demonstrated the markedly improved stability of
our new method, we can now not only assess how it per-
forms on fully interacting systems, but contrast the different
physics that emerges in the canonical vs the grand canonical
ensemble down to relatively low temperatures. To appreciate
these disparities, we begin by comparing how the energies of
the Hubbard model converge to their ground-state energies
at fixed N and µ. The two ensembles are most effectively
compared by choosing a grand canonical µ such that the
average number of particles is given by 〈N̂〉µ = N .

In the past, the convergence of the energy to its ground-
state value with decreasing temperature has commonly been
used to assess the relative contribution of thermal quasipar-
ticle excitations above the ground state to the overall state
of the quantum system. These excitations are also a key
contributor to the free energy, the key property describing
finite-temperature thermodynamics.

In Fig. 3, we plot the energy per electron vs the inverse
temperature for the 6 × 6 Hubbard model at half-filling with
U = 4 (and t = 1). Both the canonical and grand canonical
ensembles yield predictably large energies at high tempera-
tures due to the higher thermal energy enabling the electrons
to access higher energy states, and then converge to roughly
the same energy at lower temperatures (large β). For all val-
ues of β, the canonical ensemble energy is lower, with the
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largest difference occurring at intermediate temperatures. This
is because a larger number of higher energy states are acces-
sible to the electrons in the grand canonical ensemble than
in the canonical ensemble due to number fluctuations. This
difference between ensembles grows with increased filling
and decreased lattice size, which is in line with the intuition
that differences between the ensembles should decrease as
the thermodynamic limit is approached. Interestingly, despite
the differences in their state spaces, both ensembles appear to
converge to the same ground-state energy on the scale of Fig. 3
at low temperatures. As we shall show next, the energy turns
out to be too blunt of a metric to detect subtle and potentially
important differences between ensembles.

2. Convergence of the purity and fidelity to the ground state

Given the similar convergence of the energy to the ground
state in both ensembles discussed in the previous section,
one may ask if there are more fundamental metrics sensitive
to differences between the two ensembles. Indeed, the two
ensembles are composed of different states that are accessible
at different temperatures which should lead to differences in
their convergence to the ground state.

For any finite-sized system, there exists a crossover tem-
perature below which the system is effectively in its ground
state. This can serve as a more direct indicator for compar-
ing the convergence rate between ensembles than by directly
comparing the β dependence of the total energy. To quantita-
tively determine the crossover temperature, we are inspired by
information theory and turn to the measurement of the purity

P = Trρ̂2, (33)

where ρ̂ is the thermal density matrix. The purity quantifies
how mixed a given finite-temperature state is: In general, any
finite-temperature state is mixed and cannot be represented as
a single vector in Hilbert space, resulting in a purity of less
than 1, P < 1. Thus, quantitative deviations of the purity from
the identity can provide insights into the convergence to the
ground state in a more general fashion than investigating any
individual physical quantity whose T = 0 value may not be
known in general.

The purity can be computed in QMC through a replica trick
[62,63] by rewriting it in terms of a ratio of partition functions

Trρ̂2 = Z (2β )
Z2(β )

=
∫
σ1,σ2

Tr
(
Ûσ1Ûσ2

)
∫
σ1,σ2

Tr
(
Ûσ1

)
Tr

(
Ûσ2

)

=
∫
σ1,σ2

Z (σ1 ∪ σ2)
∫
σ1,σ2

Z (σ1)Z (σ2)
. (34)

Here Z (σ1) and Z (σ2) are the usual partition functions (in ei-
ther the canonical or grand canonical ensembles) as a function
of their Hubbard-Stratonovich fields σ1 and σ2. Z (σ1 ∪ σ2) can
be viewed as the partition function for a connected ensemble
propagating from 0 to 2β. The ensemble switching technique
[64,65] can then be adopted to efficiently sample this ratio of
partition functions.

Although there is no known closed form for the purity, one
can still expand ρ2 in terms of a system’s energy levels, and in
the ground-state (large-β) limit, only the leading term remains

FIG. 4. The purity, P , of a 6 × 6 Hubbard model at half-filling
with U = 2 and U = 4 as a function of temperature for the canon-
ical (CE) and grand canonical (GCE) ensemble. Different symbols
correspond to different interaction strengths and the lines are a guide
to the eye. The inset shows ln(1 − P ) as a function of the inverse
temperature β, with the crossover to linear behavior (fitted lines)
indicating convergence to the ground state [see Eq. (35)].

(see the supplementary material [54] for a full derivation),

P ∝ 1 − 2e−β"E . (35)

In the canonical ensemble, "E exactly corresponds to the
energy gap between the ground state and first excited state,
while in the grand canonical ensemble, "E represents an ef-
fective energy gap that contains contributions from states with
N − 1 and N + 1 particles as subleading terms. As a result, a
temperature below which the system falls into its ground-state
region can be revealed by the onset of linear behavior when
plotting ln(1 − P ) vs β. In Fig. 4, we show the purity vs
temperature for Hubbard models simulated in the canonical
and grand canonical ensembles for two interaction strengths
U , and fit ln(1 − P ) linearly against the inverse temperature in
the low-temperature region in the inset. As before, simulations
performed in the canonical ensemble converge more rapidly
to the ground state than those performed in the grand canon-
ical ensemble, as indicated by the uniformly larger canonical
purities for any given U . The canonical and grand canonical
ensemble purities also show the greatest agreement for U = 4
for β > 6, when ln(1 − P ) begins to significantly deviate
below zero, which echoes the convergence for β > 6 seen
earlier in the energy.

However, in contrast to the relative convergence of the
energy, the purity reveals additional trends rooted in the
underlying physics of the finite-temperature crossovers. In
particular, ln(1 − P ) can be seen to crossover from exhibiting
roughly constant behavior at high temperatures to exhibiting
linear decay with decreasing temperature (increasing β), as
predicted by Eq. (35). This is a clear indicator that the sys-
tem has crossed into a regime that is resolving the ground
states. By fitting the linear decay of ln(1 − P ), we can also
extract the energy gap "E from the slope of the regression
lines. While it can be statistically challenging to fit curves
to such small purity values in the presence of Monte Carlo
uncertainties, our fitting procedure yields gaps of −0.0816
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and −0.1051 for the canonical ensemble at U = 2 and U = 4,
respectively, and −0.0182 and −0.0275 for the grand canoni-
cal ensemble at U = 2 and U = 4, respectively. Interestingly,
the more negative canonical ensemble slopes suggest that the
canonical ensemble gaps are larger than the effective grand
canonical gaps, which is supported by the fact that more
midgap states may be present in a grand-canonical treatment.
Moreover, based on the effective gaps extracted, the systems
with U = 4 possess larger gaps than those with U = 2, which
is expected given the direct correlation between larger U and
larger "E . A more detailed discussion of the information that
can be obtained from the purity is presented in the supplemen-
tary material [54].

Although the purity has provided a more detailed glimpse
into the physics of the crossovers that occur in the different
ensembles, it is not a measure that directly compares the two
ensembles. One metric that can draw such a direct comparison
is the fidelity, F (ρ, ρ ′), that measures the similarity between
two density matrices ρ and ρ ′.

In this case, the thermal density matrices in the two en-
sembles, ρN and ρµ, describe states that are not pure, and
the mixed-state fidelity can be defined as the Hilbert-Schmidt
inner product of ρN and ρµ normalized by the two purities
[41,66],

F (ρN , ρµ) = Tr(ρNρµ)
√

Tr
(
ρ2

N

)
Tr

(
ρ2

µ

) . (36)

It is straightforward to show that under this definition, the
fidelity is normalized and reaches its maximum value of 1 if
and only if ρN = ρµ, and that it is also symmetric under the
exchange of ρN and ρµ, F (ρN , ρµ) = F (ρµ, ρN ). Note that
the trace in the numerator is taken over the whole Fock space,
so the matrix form of ρN is expanded from the N-particle
Hilbert space to the Fock space with varying particle numbers,
but is only nonzero in the N-particle block. Moreover, when
the number operator, N̂ , commutes with the Hamiltonian,
as is the case for the Hubbard model, ρµ is block-diagonal
in the particle number regardless of the interaction strength.
This fact allows us to simplify the numerator of Eq. (36) to
Tr(ρNρµ) = Pµ(N,β )Tr(ρ2

N ). After some algebra, we arrive
at

F (ρN , ρµ) =
√

Pµ(N, 2β ) =

√
e2βµN ZN (2β )

Zµ(2β )
, (37)

which allows F (ρN , ρµ) to be directly measured within our
AFQMC simulations, as the ratio between partition functions,
ZN (2β ) and Zµ(2β ), can be measured through the same en-
semble switching technique as was employed in the purity
calculations.

In the ground-state limit (β → ∞), the fidelity has a sim-
ilar limiting behavior as the purity, which can be derived by
expanding the particle-number distribution Pµ(N, 2β ). A full
derivation can be found in the supplementary material [54]
and yields

F ∝ 1 − g
2

e−2β"Ẽ , (38)

where "Ẽ is again an effective energy gap that includes the
effects of the gap for the system of N particles as its leading

FIG. 5. Fidelity as a function of temperature for a 6 × 6 Hubbard
model at half-filling with U = 2 and U = 4. The inset fits ln(1 − F )
to the inverse temperature from β = 8 to β = 14 and extends to β

values where ln(1 − F ) deviates from a linear fit. The error bars in
the inset figure are smaller than the symbols.

term and the gaps for the systems of N + 1 and N − 1 particles
as its subleading terms. g represents an effective degeneracy
that accounts for the potentially unresolved spacing of the en-
ergy spectrum. This equation implies that plotting ln(1 − F )
against β is expected to possess linear scaling in the large-β
limit.

In Fig. 5, we show the fidelity vs temperature as well
as ln(1 − F ) vs β in the inset. From this plot, we see that
the fidelity is larger for U = 4 than U = 2, meaning that, at
low temperatures, the ensembles are more similar for larger
U values. This is likely because larger U values result in a
larger gap, which limits how many additional grand canonical
states the system can access beyond those occupied in the
canonical ensemble. From the inset, we additionally observe
how ln(1 − F ) becomes linear in β at low temperatures, as
predicted by Eq. (38). A larger effective gap is again observed
for the more strongly interacting case with U = 4, which
possesses a more negative slope than for U = 2. The con-
siderable deviation of the fidelity from unity, even at a very
low temperature (T < 0.1), can be understood from Eq. (37),
which definitively captures how particle-number fluctuations
can continue to contribute to the grand canonical density ma-
trix, even in the limit of large systems when approaching the
ground state.

Although the gaps obtained may not yet be as accurate as
those obtained from excited-state calculations, these examples
illustrate that the purity and fidelity are much more informa-
tive metrics of convergence than the energy alone, and provide
additional information that can be exploited to estimate gaps
from finite-temperature simulations.

C. Sign problem in the canonical ensemble

After observing how the canonical ensemble converges
more rapidly to the ground state, one may ask if this provides
a practical way of more readily accessing β → ∞ quantities
than in the grand canonical ensemble. After all, it is reason-
able to assume that if the energy and wave function converge
more rapidly in the canonical ensemble, perhaps one can more
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FIG. 6. Average sign vs filling fraction in the canonical (CE) and
grand canonical (GCE) ensembles of a 6 × 6 Hubbard model with
U = 4 and β = 10.

readily gain access to low-temperature physics before a severe
sign problem sets in at certain fillings.

To address the interplay between convergence to the
ground state and the emergence of a physical fermion sign
problem, we compute the average sign at different fillings
for a variety of temperatures and interaction strengths. The
behavior of the sign as a function of filling presented in Fig. 6
is representative of what we more widely observe: In general,
the average sign in the canonical ensemble is less than that
in the grand canonical ensemble at any given filling. Just as
in the grand canonical ensemble, the sign at certain fillings
is at or near 1, reflecting special symmetries and indicating
that the system can be modeled with no approximations at
polynomial cost. However, away from these special fillings,
the average sign decreases, meaning that either exponentially
more samples must be taken to converge average observables
or sign mitigation strategies must be employed. Unfortunately,
where the sign problem is present, the canonical sign problem
appears to be more severe. This is likely a consequence of
the fact that the canonical ensemble more quickly converges
to the ground state: The same states that lower the canonical
energy relative to the grand canonical energy are those that
give rise to a more significant sign problem. This presents a
practical tradeoff. While the canonical ensemble more rapidly
converges to the ground state with decreasing temperature, it
does so with an increased sign problem, signifying that sim-
ulations in the canonical ensemble do not allow for a way to
mitigate costs associated with simulating many-body systems
of fermions. The ground state of the fermion Hubbard model
at most fillings possesses a significant sign problem; the more
rapidly this ground state is approached, the more rapidly a
sign problem emerges, regardless of ensemble.

D. Impact on thermometry: Differences between canonical
and grand canonical ensemble observables

While the energy and sign are two of the most commonly
measured observables in stochastic many-body simulations,
densities and correlation functions enable the most direct
comparisons with experiments. One may therefore ask what
significant differences may exist between canonical and grand

canonical densities. This is not an idle question: Many re-
cent cold atom experiments estimate the temperature of their
trapped gases assuming that the constituent particles interact
according to the grand canonical ensemble [1,67]. Although
this is valid at large particle numbers, many such experiments
are performed in a mesoscopic regime in which only a finite
number of particles are present. Making this assumption when
the thermodynamic limit has not been reached can lead to
inaccurate estimates of the system temperature, resulting in
incorrect phase diagrams and potentially unfounded efforts to
further reduce temperatures.

To make clear the effect of choosing the incorrect ensemble
on the determination of temperature in a finite closed quan-
tum system, it is illustrative to consider the simplest extreme
example of one particle (N = 1) distributed among Ns = 2
energy levels {0,"}. In the canonical ensemble,

〈n1〉1 = 1
1 + e−β"

; 〈n2〉1 = e−β"〈n1〉1, (39)

while in the grand canonical ensemble, these average occupa-
tions depend on the chemical potential µ,

〈n1〉µ = 1
1 + e−βµ

; 〈n2〉µ = e−β("−µ)

1 + e−β("−µ)
. (40)

In Eq. (40), µ is chosen such that 〈n1〉µ + 〈n2〉µ = 1, which
yields µ = "/2. Using this value in Eq. (40) and equating
occupation numbers between ensembles (the quantity most
directly accessible in thermometry experiments through the
velocity distribution) would require using an inverse tem-
perature in the grand canonical ensemble that is twice that
of the physical canonical temperature, i.e., βµ = 2β ≡ 2βN .
This would result in a 100% error in the extracted temperature
(when the incorrect ensemble is chosen), with grand canonical
simulations always predicting a lower temperature than the
physical one.

While this is obviously an extreme (toy) example, ther-
mometry errors can persist to larger systems that include
interactions that affect other measurable quantities. For exam-
ple, second-order fluctuations in the particle number provide
an even clearer way to explore the impact of choosing the in-
correct ensemble. This can be quantified by the site occupancy
correlation function

〈n̂in̂j〉 = 〈(n̂i,↑ + n̂i,↓)(n̂j,↑ + n̂j,↓)〉, (41)

where i, j are D-dimensional site indices. This correlation
function is more naturally studied in momentum space via the
static charge structure factor at wave vector k, given by the
Fourier transform of Eq. (41):

Ck = 1
Ns

∑

i,j

eık·(i−j)〈n̂in̂j〉, (42)

which is, in principle, measurable in cold atom experiments
through, e.g., Bragg spectroscopy [68–71]. To quantify the
difference between ensemble predictions for such a quantity,
we compute Ck at k = (π ,π ) to expose antiferromagnetic
correlations for a two-dimensional Hubbard model at U = 2
and filling 〈n〉 = 2×23

36 as a function of inverse temperature β
as shown in Fig. 7. The odd number of electrons was chosen
due to the existence of the large gap and the increased spacing
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FIG. 7. Charge structure factor at k = (π ,π ), C(π ,π ), as a func-
tion of inverse temperature β in the canonical (CE) and grand
canonical (GCE) ensembles for a 6 × 6 Hubbard model at U =
2, 〈n〉 = 2×23

36 ≈ 1.28. The inset shows the heatmap of the difference
in the charge structural factors, δC(π ,π )(βN , βµ), as a function of the
inverse temperature in the canonical and grand canonical ensembles.

of low-lying energy levels. The grand canonical ensemble
simulations off of half-filling are implemented by tuning the
chemical potential dynamically [27] during the Monte Carlo
step to ensure |〈n〉µ − 1.28| < 1 × 10−3. The deviation at
each temperature is clear, with the canonical structure factor
having a consistently larger value due to suppressed fluctu-
ations. The inset shows a heat-map of the difference δCk
for each temperature β ≡ βN , with the y axis representing
the effective inverse temperature βµ needed to minimize the
difference between ensembles (the horizontal shift in the main
panel needed to align the two curves). Deviations of the
minimum from the line βµ = βN captures potential errors in
thermometry when using the incorrect ensemble. The max-
imum deviation in the heatmap over the temperature range
we study appears to be (βN ,βµ) ≈ (4.4, 9.4), which leads
to a 53.2% thermometry error. Such large errors underscore
the dramatic errors that can arise from an incorrect choice of
ensemble and that can be addressed using the new techniques
presented in this work.

IV. CONCLUSIONS

In summary, we have presented and illustrated applications
of a new, significantly more stable recursive algorithm for
determining the physics of interacting systems in the canoni-
cal ensemble. This algorithm integrates the auxiliary partition
function formalism, a highly stable means of computing the
properties of noninteracting systems in the canonical ensem-
ble, into the auxiliary field quantum Monte Carlo framework
by exploiting the Hubbard-Stratonovich transformation. We
demonstrate the stability of this algorithm and then showcase
its potential applications by studying differences in the way
that the canonical and grand canonical ensembles converge
to the ground state. This convergence is quantified using
information theory metrics by comparing the purity of finite-
temperature states generated within the grand canonical and
canonical frameworks. We find that the canonical AFQMC
results in a suppression of the mixed state and improved

fidelity with the ground state as T → 0 in a practical simu-
lation.

As an experimentally relevant application, we show that a
grand canonical treatment of the thermometry of cold atom
and other systems with fixed particle numbers can lead to
underestimates of the temperatures of those systems, cloud-
ing investigations of their thermodynamics. This is becoming
more pressing as studies of trapped homogeneous ultracold
fermions push into a regime of smaller T/TF where they are
more poorly described by the grand canonical ensemble [2].
Moreover, this work has direct implications for the study of
nuclear matter, which possesses fixed nucleon numbers and
has traditionally been modeled using the projection algorithm
[5–8].

The fact that we find our algorithm to be more compu-
tationally efficient than oft-used projection algorithms opens
the door to a wealth of potential new applications. To date,
most projection algorithms have been limited to system sizes
of tens, to at the very most, low hundreds of particles, with
application to smaller nuclei and “toy” condensed matter sys-
tems. In its present form, without many algorithmic advances
or computational fine-tuning, our algorithm can readily model
systems with many hundreds of particles. This opens the
door to more accurate numerical descriptions of cold atom
quantum simulators or mesoscale devices where discrete
particle-number fluctuations can influence the transport of
heat and matter [72].

Although we illustrated the performance of our algorithm
on systems of fermions because of their greater relevance
and potential to develop a sign problem, our algorithm, with
appropriate modifications, is equally applicable to systems of
bosons or particles with other quantum statistics. The fact
that the algorithm does not require explicit knowledge of
many-body chemical potentials and is stable for large systems
implies that it can see wide application in the study of quan-
tum condensates, which can be challenging to simulate in the
grand canonical ensemble [28,46].

We also anticipate that our algorithm will enable more
direct comparisons with other finite-temperature algorithms,
including the path integral Monte Carlo [17,73,74], den-
sity matrix quantum Monte Carlo [10,16], and emerging
finite-temperature coupled-cluster theories [75,76], all of
which are formulated in the canonical ensemble. Beyond
the algorithmic, our work will furthermore enable seam-
less canonical ensemble simulations from high temperatures
to the ground state where most simulations are inherently
performed in the canonical ensemble. This will provide
critical insights into how finite-temperature physics gives
rise to ground-state physics in correlated systems with
decreasing temperature without the noise induced by spuri-
ous particle-number fluctuations. Given the correlations that
fixed-particle-number constraints impose on the occupancies
of different states, we moreover anticipate that fluctuations
and therefore the physics of systems in the canonical en-
semble will be fundamentally different. We look forward to
the new such canonical ensemble physics this algorithm will
reveal.

All codes, scripts, and data needed to reproduce the results
in this paper are available online [77,78].
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