EMBEDDING UNIVERSALITY FOR II;, FACTORS WITH PROPERTY (T)

IONUT CHIFAN, DANIEL DRIMBE, AND ADRIAN IOANA

ABSTRACT. We prove that every separable tracial von Neumann algebra embeds into a II; factor
with property (T') which can be taken to have trivial outer automorphism and fundamental groups.
We also establish an analogous result for the trivial extension over a non-atomic probability space of
every countable p.m.p. equivalence relation. In addition, we obtain two new results concerning the
structure of infinitely generic II; factors. These results are obtained by using the class of wreath-like
product groups introduced recently in [CIOS21].

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Property (T), introduced by Kazhdan in [Ka67], is a fundamental representation-theoretic property
of groups which has a wide spectrum of applications to several areas including ergodic theory, group
theory and operator algebras. In operator algebras, it was first used by Connes in [Co80] to prove
that the II; factor L(G) arising from a countable icc property (T) group G has countable outer
automorphism and fundamental groups. Connes and Jones then defined a notion of property (T)
for IT; factors and showed that a group II; factor L(G) has property (T) if and only if G does [CJ85].
In the last 20 years, property (T) has been instrumental in the advances made in the study of von
Neumann algebras via Popa’s deformation/rigidity theory (see the surveys [Po06, Val0,1018]).

Olshanskii [0195] and Delzant [De96] proved that every non-elementary hyperbolic group H is
SQ-universal: every countable group embeds into a quotient of H. Since property (T) passes to
quotients, taking H to be a hyperbolic group with property (T) implies that every countable group
embeds into a countable group with property (T), as noted right after [De96, Théoreme 3.5].

Our main result establishes an analogue of this fact for II; factors. Moreover, we have:

Theorem A. Any separable tracial von Neumann algebra (M,T) embeds into a II; factor with
property (T). Moreover, the following hold:

(1) For every acylindrically hyperbolic group H, M embeds into a II; factor QQ which is generated
by a representation w : H — U(Q). Thus, if H has property (T), then Q has property (T).
(2) M embeds into a property (T) II, factor P with Out(P) = {e} and F(P) = {1}.

For a IT; factor P, we denote by Out(P) = Aut(P)/Inn(P) the outer automorphism group of P and
by F(P) ={r(e)/7(f) | e, f € P projections, ePe = fPf} the fundamental group of P [MvN43].

Before putting Theorem A into context, we note that it leads to a characterization of separability
for tracial von Neumann algebras. Indeed, since II; factors with property (T) are finitely generated
by [Po86] and thus separable, the following result is an immediate consequence of Theorem A:

Corollary B. A tracial von Neumann algebra (M,T) is separable if and only if it embeds into a
I, factor with property (T).
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Theorem A implies that the family of separable II; factors with property (T) is embedding universal:
any separable II; factor embeds into one with property (T). This settles in the positive [AGKE20,
Question 6.3.21].

Remark 1.1. (Non)embeddability results for II; factors (see [PV21] for a survey of such results)
lead to examples of (non)embedding universal families. Embedding universal families include those
consisting of all separable I1; factors which have one of the following properties: are McDuff, are
single generated, do not have property Gamma, are prime, do not have Cartan subalgebras. Indeed,
if M is a separable II; factor and R is the hyperfinite II; factor, then M ®R is McDuff and thus single
generated [GP98|, while Mx*L(Z) is a non-Gamma I1; factor which is prime [Pe06] and has no Cartan
subalgebras [Io12]. On the other hand, the family of II; factors with Haagerup’s property [CJ85] and
any countable family of separable IT; factors [0z02] are not embedding universal. It is open whether
the family of all IT; factors L(G) arising from icc countable groups G is embedding universal.

Remark 1.2. The Connes Embedding Problem (CEP) asks if every separable II; factor embeds
into the ultrapower, R*, of R, where w is a free ultrafilter on N [Co76]. By Theorem A, the CEP
is equivalent to asking whether every property (T) II; factor embeds into R“. Thus, a negative
answer to the CEP, announced recently in [JNVWY20], implies the existence of a non-embeddable
IT; factor with property (T).

Remark 1.3. As shown in [FHS11, Section 6|, there exist separable II; factors M which are
locally universal in the sense that the ultrapower M“ contains a copy of every separable 11 factor.
Together with Theorem A, this result implies the existence of locally universal II; factors with

property (T).

Part (1) of Theorem A can be viewed as a II; factor analogue of the SQ-universality of acylindrically
hyperbolic groups established in [DGO11, Theorem 8.1(a)]. We refer to [CIOS21, Section 3.2] for
the definition of acylindrically hyperbolic groups and only note here that this class contains all
non-elementary hyperbolic groups. In particular, Theorem A(1) applies to cocompact lattices H
in the rank one simple Lie group Sp(n, 1), n > 2, as such H are hyperbolic and have property (T).
Theorem A(1) highlights a striking difference between the type I1; representations of H and those
of icc lattices G in higher rank simple Lie groups (e.g. SL,,(R), m > 3). Work of Peterson [Pel4]
(see also [Be06, BH19]) shows that L(G) is the only II; factor generated by a representation of G.
In contrast, Theorem A(1) shows that the family of II; factors generated by representations of H
is embedding universal.

An immediate consequence of part (2) of Theorem A, itself new to our knowledge, is that every
separable II; factor embeds into a separable II; factor with trivial outer automorphism group. To
further discuss Theorem A(2), denote by T the family of all II; factors P with property (T) which
satisfy Out(P) = {e} and F(P) = {1}. In a major breakthrough in [Po01], Popa discovered the
first examples of II; factors P with F(P) = {1}. The existence of II; factors P with Out(P) = {e}
and F(P) = {1} was obtained in [IPP05]. However, none of these II; factors have property (T).
Only recently, property (T) II; factors P with F(P) = {1} were found in [CDHK20]. Most recently,
the fact that 7T is nonempty was proved in [CIOS21]. To elaborate on the last result, we note that
Popa’s strengthening of Connes’ rigidity conjecture (see [Po06, Section 3]) predicts that L(G) € T,
whenever G is an icc property (T) group with Out(G) = {e} and no characters. Confirming this
conjecture for an uncountable class of groups, it was shown in [CIOS21, Corollary 2.7] that 7T~
contains a continuum {L(G;)}ier of nonisomorphic property (T) group II; factors. In particular,
T is uncountable. Theorem A(2) moreover shows that 7T is embedding universal. Our next main
result further strengthens this fact. Denote by II; the family of all separable 11y factors.

Theorem C. There is a map II; xR > (M, s) — Py € T such that M embeds into Py, and
if P,y s stably isomorphic to Py then M = N and s = t, for every (M, s),(N,t) € II; x R.
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Next, we state an analogue of Theorem A(2) for countable p.m.p. equivalence relations using
Zimmer’s notion of property (T) [Zi81] in this context. While it remains open whether any countable
p-m.p. equivalence relation R is contained in an ergodic countable p.m.p. equivalence relation with
property (T), we prove this for the trivial extension of R over a non-atomic probability space:

Theorem D. Let R be a countable p.m.p. equivalence relation on a probability space (X, u). Let
Ay ={(y,y) | y € Y} be the trivial equivalence relation on a non-atomic probability space (Y,v).
Then R x Ay embeds into a countable ergodic p.m.p. equivalence relation S on X XY such that
L(S) € T. In particular, S has property (T), Out(S) = {e} and F(S) = {1}.

Finally, we mention two applications of Theorem A to the structure of the so-called infinitely generic
I1; factors introduced in [FGHS13]. First, extending the main result of [Go20], we prove that, given
an infinitely generic II; factor @), any separable full II; factor P admits an embedding P — Q¥
with factorial relative commutant (see Theorem 6.2). Secondly, we prove that any infinitely generic
II; factor @ is super McDuff, i.e., its central sequence algebra Q' N Q¥ is a I; factor (see Theorem
6.4).

Comments on the proof of Theorem A. The proof of Theorem A relies heavily on the class of
wreath-like product groups introduced recently by Osin, Sun and two of the authors in [CIOS21].
Specifically, to prove the main assertion of Theorem A, we combine the following two facts:

(a) Let G € WR(A, B) be a wreath-like product of two infinite groups A and B. Then any
homomorphism 7 : A — U(M) generating a II; factor M extends to a homomorphism
7 : G — U(N) which generates a II; factor N containing M (see Proposition 3.8). This
new II; factor N is a wreath-like product of M and B, in a sense defined in Section 3.

(b) There exists a property (T) group G € WR(Fs3, B), for some group B.

Fact (a) is a consequence of the existence of a special cocycle semidirect product decomposition of G
observed in a preliminary version of [CIOS21] (see Lemma 2.13). Fact (b) was proved in [CIOS21]
(see Theorem 2.2).

If M is a II; factor generated by 3 unitaries, then there is a homomorphism 7 : Fg3 — U(M)
generating M. Combining (a) and (b) implies the existence of a II; factor N which contains M
and is generated by a representation of a property (T) group and thus has property (T). Since
every separable tracial von Neumann algebra is contained in a II; factor generated by 3 unitaries
(in fact, in a II; factor which is single generated and thus generated by 2 unitaries [GP98]), we
conclude that every separable tracial von Neumann algebra is contained in a II; factor with property
(T). This implies the main assertion of Theorem A. Part (1) of Theorem A also follows since, as
shown in [CIOS21] (see Theorem 2.2), one can take G in (b) to be a quotient of any acylindrically
hyperbolic group. Finally, to prove part (2) of Theorem A we use that in (b) one can take B to
be an icc hyperbolic group with property (T) and trivial outer automorphism group. Additionally,
we adapt techniques from Popa’s deformation/rigidity theory used in [CIOS21] to show that if
G € WR(A, B) has property (T) and no characters, then any II; factor N constructed as in (a)
has trivial outer automorphism and fundamental groups (see Theorem 4.1).

Acknowledgments. We would like to thank Sorin Popa for helpful remarks.

2. PRELIMINARIES

2.1. Wreath-like product groups. The proofs of our main results rely on the class of wreath-like
product groups introduced in [CIOS21]:
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Definition 2.1. [CIOS21] A group G is called a wreath-like product of two groups A and B if it is
an extension of the form {e} — ®pecpdy — G 5B {e} such that A, =2 A and gAyg~ ' = As(g)bs
for every b € B and g € G. The set of all wreath-like products of A and B is denoted by WR(A, B).

It is clear that the usual wreath product group AAB = AB) x B belongs to WR(A, B). A remarkable
fact established in [CIOS21] is that although non-trivial wreath products never have property (T)
(A B fails (T) if A is non-trivial and B is infinite, see [BAHVO08, Proposition 2.8.2]), there is an
abundance of wreath-like products with property (T). This is illustrated by the following result.

Theorem 2.2. [CIOS21] Let A be any finitely generated group.

(1) There exists a property (T) group G with no nontrivial characters which belongs to WR(A, B),
for some icc property (T) hyperbolic group B with Out(B) = {e}.

(2) Every acylindrically hyperbolic group H admits a quotient which belongs to WR(A, C), for
some group C.

For parts (1) and (2), see [CIOS21, Theorem 6.9] and [CIOS21, Theorem 4.20], respectively.

2.2. Tracial von Neumann algebras. A tracial von Neumann algebra is a pair (M, T) consisting
of a von Neumann algebra M and a faithful normal tracial state 7 : M — C. We denote by U(M)
the group of unitary elements of M and by Aut(M) the group of T-preserving automorphisms of M.
By von Neumann’s bicommutant theorem, if S C U(M), then S” C M is equal to the von Neumann
algebra generated by S. For u € U(M), we denote by Ad(u) € Aut(M) the inner automorphism of
M given by Ad(u)(xz) = uzu*. The group of all inner automorphisms of M is denoted by Inn(M).
For a set I, we denote by (M7, 7) the tensor product tracial von Neumann algebra ®;c;(M, 7). For
J C I, we view M7 ¢ M, in the natural way. For i € I, we write M* instead of M1,

A tracial von Neumann algebra (M, 7) is a II; factor if it is infinite dimensional and has trivial
center. A II; factor M has property (T), in the sense of Connes and Jones [CJ85], if there exist
F C M finite and § > 0 such that if H is a Hilbert M-bimodule and £ € H is a unit vector with
maxgcp ||[2€ — || < 6§, then there exists n € H, n # 0, such that yn = ny, for every y € M. If M is
a Iy factor such that M = 7(G)”, for a property (T) group G and a homomorphism 7 : G — U(M),
then M has property (T) (see the proof of [CJ85, Theorem 2] or [Po86, Theorem 4.1.7]).

2.3. Equivalence relations. Let (X, 1) be a probability space, which we will always assume to be
standard. Let R be a countable p.m.p. equivalence relation on (X, ) [FM77]. We endow R with
the o-finite Borel measure vg defined by vg(A) = [y |A”| du(z), where A* = {y € X | (z,y) € A}.

For z € X, we denote by [z|g its R-equivalence class. The automorphism group of R, denoted
Aut(R), is the group of all § € Aut(X, u) such that 6([z]r) = [0(z)]r, for p-almost every z € X.
The full group of R, denoted [R], consists of all § € Aut(R) such that §(z) € [z]|g, for p-almost
every © € X. Note that [R] is a normal subgroup of Aut(R). The outer automorphism of R is
defined as Out(R) = Aut(R)/[R]. The fundamental group of R, denoted F(R), is the multiplicative
subgroup of R’ consisting of all quotients u(A)/u(B), where A, B C X are non-null measurable
sets such that RN (A x A) =RN(B x B).

Associated to R is a tracial von Neumann algebra L(R) [FM77]. This is generated by a copy of
L°°(X) and the image of a homomorphism u : [R] — U(L(R)) such that ugfuj = fo0~!, for every
f €L®(X) and 0 € [R]. We have a homomorphism

i : Aut(R) — Aut(L(R))
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given by i(¢)(ug) = ugpp—1 and i(@)(f) = fo @', for every ¢ € Aut(R), f € [R] and f € L>®(X).
Then i([R]) € Inn(L(R)) and 4 descends to an injective homomorphism Out(R) < Out(L(R)).
Moreover, we have that F(R) C F(L(R)).

In [Zi81, Definition 2.1], Zimmer introduced a notion of property (T) for countable p.m.p. equiv-
alence relations. Let R be a countable ergodic p.m.p. equivalence relation on a probability space
(X, ). If L(R) has property (T), then R has property (T). This is because property (T) for R is
equivalent to L(R) having property (T) relative to L°°(X) in the sense of [Po86, Definition 4.1.3],
and the latter condition holds if L(R) has property (T).

2.4. Cocycle actions. In this subsection, we discuss several notions of cocycle actions on von
Neumann algebras, groups and equivalence relations.

Definition 2.3. A cocycle action of a group B on a tracial von Neumann (M, 1) is a pair (8, w)
consisting of two maps 5 : B — Aut(M) and w : B x B — U(M) which satisfy the following

(1) BpBe = Ad(wp,c)Bpe, for every b, c € B,
(2) wp,cWhe,d = Bp(We,d)Wp ca, for every b,c,d € B, and
(3) wpe = weyp = 1, for every b € B.

Definition 2.4. Let (3,w) be a cocycle action of a group B on a tracial von Neumann algebra
(M, ). The cocycle crossed product von Neumann algebra M Xg,, B is a tracial von Neumann
algebra which is generated by a copy of M and unitary elements {u}sep such that wpau) = By(z),
UplUe = Wp Upe and T(xup) = 7(x)dp ., for every b,c € B and x € M.

The above notions have well-known analogues for groups (see, e.g., [Br82, pages 104-105)):

Definition 2.5. A cocycle action of a group B on a group A is a pair («, v) consisting of two maps
a: B — Aut(A) and v : B x B — A which satisfy the following

(1) apae = Ad(vp,c) e, for every b, c € B,
(2) v cUbe,d = p(Ve,d)Vb,ca, for every b,c,d € B, and
(3) Vbe = vep = e, for every b € B.

Definition 2.6. Let («,v) be a cocycle action of a group B on group A. Then the set A x B
endowed with the unit e = (e, e) and the multiplication operation (z,b) - (y,c) = (xay(y)vp,, be) is
a group, denoted A X, , B, and called the cocycle semidirect product group. Moreover, we have a

short exact sequence {e} — A SNy Xaw B 2 B — {e}, where i(a) = (a,¢) and v(a,b) = b.

While the above terminology (cocycle actions and cocycle semidirect products) is not standard in
group theory, we adopt it in this paper by analogy with the von Neumann algebra case.

Conversely, as is well-known and easy to see, any extension arises as a cocycle semidirect product:

Lemma 2.7. Let A, B be groups and consider a short exact sequence {e} — A= G L B — {e}.
Let k : B — G be a map such that v(ky) = b, for every b € B. Define a : B — Aut(A) and
v:Bx B — A by letting oy, = Ad(kp) and vy = kbkckb_cl, for every by,c € B. Then (a,v) is a
cocycle action of B on A and § : A xq B — G given by 6(a,b) = i(a)ky is an isomorphism.

The next lemma, whose proof is straightforward, relates the above two notions of cocycle actions.

Lemma 2.8. Let (a,v) be a cocycle action of a group B on a group A. Let (8, w) be a cocycle action
of B on a tracial von Neumann algebra (M,7) and © : A — U(M) be a homomorphism. Assume
that mo a, = By o and wye = 7(vpc), for every b,c € B. Then m extends to a homomorphism
T:AXqy B —= UM xg,, B) given by 7(a,b) = m(a)uy, for every a € A,b e B.
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Definition 2.9. Let R be a countable p.m.p. equivalence relation on a probability space (X, u). A
cocycle action of a countable group B on R is a pair (v,w) consisting of two maps v : B — Aut(R)
and w : B x B — [R] which satisfy the following

(1) YYe = WpcYbe, for every b,c € B,
(2) wpcwbe,a = Ad(7p)(We,d)wp cd, for every b, c,d € B, and
(3) whe = wep = Idx, for every b € B.

The following lemma, which uses the notation from Subsection 2.3, is immediate:

Lemma 2.10. Let R be a countable p.m.p. equivalence relation on a probability space (X, p) and
(v,w) be a cocycle action of a countable group B on R such that u({x € X | w(x) € [z]r}) =0, for
everyb € B\{e}. Let S be the smallest equivalence relation on X which contains R and the graph of
W, for every b € B. Then (ioy,uow) is a cocycle action of B on L(R) and L(S) =2 L(R) Xjory,ucw B.

Proof. The fact that (i oy, u ow) is a cocycle action of B on L(R) follows trivially. To prove the
second assertion, we notice that the hypothesis implies that [z]s = Ugep[v4(2)]r, for almost every
r € X. We claim that the map ¢ : (R x B,vg x ¢) — (S,vs) given by ¢(x,y, g) = (z,7,-1(y)), for
all (x,y) € R and g € B, is a measure space isomorphism, where c is the counting measure on B.

To justify this claim, it suffices to show that (vr x ¢)(¢~1(A)) = vs(A), for any Borel set A C S.
To this end, let Cy = {(z,y) € R|(x,74-1(y)) € A}, for g € B. Then we have that

(vr x (071 (A)) = Yyep Jr Lal@,1-1(y) dvr(z,y) = Fgep vr(Cy)
= 2gen Jx [Cg N [2]r] du().

Note that for almost every x € X and y € AN [z]s, there is a unique g € B such that (z,y) € A
and (z,74(y)) € R. This shows that AN [z]s = Ugepv,-1(Cy N [z]r), and therefore,

(2:2) A= [ 1a0 sl duw) = [ 30160 lekel duto).

geB

Equations (2.1) and (2.2) together with Fubini’s theorem show that (vg x ¢)(¢~1(A)) = vs(A),
proving that ¢ is a measure space isomorphism. Let V : L2(S,vs) — L%(R x B,vg x ¢) be the
unitary operator defined by V& = € o ¢, for any £ € L?(S, vs).

Denote by u : [R] = U(L(R)) and w : [S] — U(L(S)) the homomorphisms that together with a copy
of L*°(X) generate the von Neumann algebras L(R) and L(S), respectively. Denote by {ug}sen
the canonical unitaries that implement the cocycle action (i o~,uow) of B on L(R). Since R is
a subequivalence relation of S, we have [R] C [S]. It is easy to see that Ad(V*) preserves L>(X),
maps uy to wy for # € [R] and u, to wy for g € B. This implies that V*(L(R) Xjoy,uow B)V C L(S).
Since S is generated by [R] and B, L(S) is generated by L°°(X) together with {wy | 6 € [R|U B}.
Thus, we deduce that V*(L(R) Xjoy,ucw B)V = L(S), which proves the lemma. [ |

(2.1)

2.5. Wreath-like product groups as cocycle semidirect products. In this subsection we
show that wreath-like products admit a special cocycle semidirect product decomposition. For
groups A and B, we denote by o the shift action of B on AP = [I;c5 A given by op(x) = (2p-1.)ceB,
for every 2 = (z.)cep € AP and b € B. Note that o leaves invariant the normal subgroup
AB) = @y A of AB. We start by recording the following direct consequence of Lemma 2.7

Corollary 2.11. Let A, B be groups. A group G belongs to WR(A, B) if and only if it is isomorphic
to AB) Xaw B, for a cocycle action (a,v) on B on AB) such that ap(Ae) = Ape, for every b,c € B.

We continue with an example of cocycle actions satisfying Corollary 2.11.
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Lemma 2.12. Let A, B be groups. Let p: B — AP be a map such that Upe i= pbab(pc)p;cl e AB)
for every b,c € B, and p, = e. For b € B, define oy, := Ad(pp)op, € Aut(APB)). Then (a,v) is a
cocycle action of B on A®) and the cocycle semidirect product G = AP Xa,w B belongs WR(A, B).

Proof. Tt is straightforward to check that («,v) is a cocycle action. Since clearly ap(A.) = Ape, for
every b,c € B, Corollary 2.11 implies that G € WR(A, B). [ ]

The following key result, obtained in a preliminary version of [CIOS21], shows that any wreath-like
product group admits a decomposition as in Lemma 2.12:

Lemma 2.13. [CIOS21] Let G € WR(A, B), for groups A, B. Then there is p : B — AP such that
Up e i= pbab(pc)pb_cl e AB) for every b,c € B, and p. = e, and letting oy, = Ad(pp)op € Aut(A(B)),
for every b € B, we have that G = AB) Naw B.

Proof. We have a short exact sequence {e} — @pepdy, — G = B — {e} such that A, = A and
gAyg = Ag(g), for every b € B and g € G. For b € B, fix ky € G with (k) = b. Take k. = e.

) ®peAp by

Let ¢p : Ae — Ay be the isomorphism given by ¢,(z) = kbxkb_l. Define ¢ : AéB
» = DbeBPb-

If g € G and b € B, then E(kb_lgkg(g)flb) = e and thus kb_lgka(g)flb € @®pepAp. Denote by
7 : @pepAp — Ae the quotient homomorphism given by 7((z3)pe5) = Te. Define amap 7: G — AP
by letting

Ty = (W(kb*lgka(g)qb))beB, for every g € G.

If g € G and z € BpepAp, then Tg;pTg_l = (ﬂ(kb_lgxg_lkb))beg. Write gzg~" = (ye)eeB € CpenAs.
Since kb_lyckb € Ap-1., we get that Tr(kb_lgscg_lkb) = kb_lybkb. Thus, W(kl)_lgxg_lkb) =eify,=c¢
and gpb(w(k:;lga:g_lkb)) = yp, for every b € B. This implies that

(2.3) Tngg_l e AP and cp(ngTg_l) = gxg~ !, for every g € G and x € ®pepAy.

Now, a direct calculation shows that 7 is a 1-cocycle for the action o o e : G — Aut(AB):

(2.4) 7'910'5(91)(’7'92) = Tg,g5, fOr every g1,g2 € G.

This follows by using that (o.(g,)(7g,))b = (Tg2)e(g1)-16 = F(ka_(zl)—lbwké(glgz)*lb)’ for every b € B.
Moreover, as automorphisms of A2, we have that

(2.5) e loAd(g)op = Ad(7y) 0 0. (y), for every g € G.

To justify this, note that 7(y)an(y)~! = yay ™!, for every a € A. and y = (yp)peB € DpenAp. Thus,
: (B)
if £ = (xp)pep € Ae 7, then

((Ad(7g) 0 0o(g))())o = Ad(m(k;, " ghic(g)-15)) (Te(g)-15) = Ad(ky gk (o)1) (Te(g)-15)s
and so ((p 0 Ad(1y) 0 02(¢))(%))p = Ad(gke(g)-15) (T2 (g)-15) = ((Ad(g) © ©)()). This proves (2.5).

Define p: B — AB by p, = 74, for b€ B. Let v: Bx B — AP and a: B — Aut(AgB)) be given
by vp . = pbab(pc)pgcl and ap = Ad(pp)op, for b,c € B. Then using (2.3) and (2.4) we get

(2.6) Upe = kaaa(kb)(ch)T,;i = ka’chk_bcl = cp_l(kbkbkb_cl) e AP for every b, c € B.
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Define 6 : A x,., B — G by letting 0(z,b) = @(x)ks. If (z,b), (y,c) € AP x4, B, then (2.5)
implies that Ad(ky) o ¢ = ¢ 0 Ad(7y,) © 02(x,) = ¢ © . In combination with (2.6), we derive that

0(z,0)0(y, c) = o(x)kpp(y)ke = p(x)Ad(ky) (p(y))kpke
= p(zay(y))koke = o(wap(y)vye) ko = 0((2,0) - (y, ).

This proves that 0 is a homomorphism. Since 6 is bijective, it follows that 6 is an isomorphism. B

Remark 2.14. As a consequence of [CIOS21, Lemma 4.1], if ¢ : A — Ag is an onto homomorphism
and G € WR(A, B), then we can find Go € WR(Ap, B) and an onto homomorphism QZ: G — Gy
which extends 1% : AB) — A(()B). Lemma 2.13 implies the same for arbitrary, not necessarily onto,
homomorphisms 1 : A — Ag. Indeed, let p : B — AP be as in Lemma 2.13. For b,c € B, let
= ¢¥P () € AT, By = Ad(n)op, € Aut(AéB)) and wy,. = 704(7)75," = VB (vpe) € ASB). Then
(B,w) is a cocycle action of B on A(()B), Go = AéB) Xguw B € WR(Ap, B) and U(a,b) = (B (a),b),
for a € A®) and b € B, defines a homomorphism 1; : G — G which extends 17 : AB) A(()B).

We end this section by using Lemma 2.13 to characterise wreath-like products G € WR(A, B) as
certain subgroups of the unrestricted wreath product group A” x, B.

Corollary 2.15. Let A, B be groups and denote by § : AP x, B — B the quotient homomorphism.
Then a group belongs to WR(A, B) if and only if it is isomorphic to a subgroup G of AP x, B
which satisfies that AP) ¢ G, 6(G) = B and ker(d) = AB),

Proof. If x € AB b € B, then (x,b)(A°)(x,b)~' = Ab. This implies that any subgroup G of
AB %, B such that AB) ¢ G, §(G) = B and ker(d)q) = AB) belongs to WR(A, B).

Conversely, let G € WR(A, B) and represent it as G = AP Xa,n B as in Lemma 2.13. Then A :
G — AP %, B given by \(a,b) = (apy,b), for every a € AB) b € B, is an injective homomorphism.
Since AP) c A(G), §(M(G)) = B and ker(d)xq)) = AB)  the conclusion follows. [ ]

3. WREATH-LIKE PRODUCT VON NEUMANN ALGEBRAS

In this section, motivated by Corollary 2.12, we introduce and study a notion of wreath-like product
for tracial von Neumann algebras.

Definition 3.1. Let (M, 7) be a tracial von Neumann algebra and B be a group. A tracial von
Neumann algebra N is said to be a wreath-like product of M and B if it is isomorphic to M5 x swB,
where (3, w) is a cocycle action of B on MP such that 3,(M¢) = M, for every b, ¢ € B. We denote
by WR(M, B) the class of all wreath-like products of M and B.

Example 3.2. Let A, B be groups and G € WR(A, B). Then L(G) € WR(L(A),B). To see
this, by Corollary 2.11 we have G = A(B) Xaw B, for a cocycle action («,v) on B on A®B) such
that ap(Ac) = Ape, for every b,c € B. Let (ug)gec C U(L(G)) be the canonical generating
unitaries. For b,c¢ € B, let 3, be the automorphism of L(A®)) = L(A)? induced by a; and let
Whe = Uy,,. Since L(G) = L(A)P x5, B and B5(L(A)°) = L(A)*, for every b,c € B, it follows
that L(G) € WR(L(A), B). This example will be significantly generalized in the main result of this
section, Proposition 3.8.

Lemma 3.3. Let (M, 7) be a non-trivial tracial von Neumann algebra, B an infinite group and
N € WR(M,B). Then N is a Il factor. Moreover, if M is a factor, then M C N is a reqular
irreducible subfactor.
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Recall that a subfactor P C N is called regular if its normalizer, Ny (P) = {u € U(N) | uPu* = P},
generates N and irreducible if P’ N N = C1.

Proof. We claim that (MP)' N N ¢ MP. To this end, fix a sequence (c,) C B with ¢, — co. Let
z € (MB) NN and consider its Fourier decomposition z = 3", zpup, where z, € M5, for b € B.

Let b € B\ {e}. Then z,8(y) = yxp, for every y € MP and b € B. Let y € U(M) \ T1.
For ¢ € B, let i. : M — M¢ be the canonical isomorphism. Let y, = i.,(y) € U(MP). As
Yn € UM, By(yn) € UM, 7(yn) = 7(By(yn)) = 7(y) and be,, # ¢y, for every n, we get that
lzull3 = (2686 (Yn)s Ynxs) — |7(y)*||2p|3. Since |7(y)| < 1, this gives that a, = 0. Since this holds
for every b € B\ {e}, we derive that x = z. € M®, which proves the claim.

If x € N is central, then z € M? by the claim. Since B, (M*) = M I and B, (z) = uc,2u}, =z,
for every F' C B and n, we derive that ||z||3 = (8., (x),x) — |7(z)|?>. Thus, z € C1, proving that N
is a factor. As MB C N is regular, the claim implies the moreover assertion, finishing the proof. W

Remark 3.4. Note that the proof of Lemma 3.3 shows that (M°) NN c MP for any infinite
subset S C B.

Our next goal is to give constructions of wreath-like product von Neumann algebras.

Notation 3.5. Let (M, 7) be a tracial von Neumann algebra and B be a group. We denote by

(1) v: UM )( ) — U(MP) the homomorphism given by v((x3)pep) = QpeBTs.

(2) n: ( )B — Aut(M?) the homomorphism given by 7((ys)sen) = @pecpAd(yp).

(3) B A7 U(M)P the shift action of B (which preserves the subgroup U(M)B) < u(M)B).
(4) B ~* MP the Bernoulli shift action given by A\y(z) = ®cepxy-1,, for £ = @cepre. € MB.

With this notation, we have:

Lemma 3.6. Let (M,7) be a tracial von Neumann algebra and B a group. Let & : B — U(M)?
be a map such that &,Ub(fc)fl;:l e UM)B), for every b,c € B, and & = 1. Define By = n(&) Xy €
Aut(MP) and wy. = v(ﬁbab(fc)fgcl) € U(MP), for every b,c € B. Then (3,w) is a cocycle action
of B on MP and MP xg,, B € WR(M, B).

Proof. The proof of this lemma uses the following claim, whose proof is straightforward.

Claim 3.7. \,(7(€)) = v(03(¢)), n(ap(€)) = Aen(E)N, ', for allb e B, ¢ e U(M)B), ¢ e U(M)E.

Since B,(M¢) = M, for every b,c € B, it suffices to check that (3,w) is a cocycle action. Let
b,c,d € B. Using Claim 3.7 and that n(z) = Ad(y(z)), for every « € U(M)P), we get that

BoBe = 1(&) Aen(€)Ny ) Ave = n(&)n(ap(Ee)) e = Ad(wp,e)n(Ebe) Ave = Ad(wp,c) Boe.

Moreover, as 1(y)(v(z)) = y(yzy 1), for every x € U(M)B) and y € U(M)"B, Claim 3.7 gives
Bo(we,a) = (&) (Mo (V(Ecoe(€)E41))) = n(&) (V(ow(écoe(€a)E))) = V(&bob(Ee)Tbe(&b)on(Eea) 16T

This fact implies that wp, cwpe,d = Bp(We,a)Wp,cq and hence (B, w) is a cocycle action. [ |

We now arrive at the main result of this section. Let A, B be groups and G € WR(A, B). Given a

tracial von Neumann algebra (M, 7), we show that any homomorphism 7 : A — U (M) extends to
a homomorphism 7 : G — U(N), for some N € WR(M, B).

To this end, using Lemma 2.13, we write G = AP) X0 B, where (o, v) is a cocycle action of B on
AB) given by oy = Ad(pp)op and vy = pbab(pc)pb_cl, for some map p : B — AP with p, = e.
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Proposition 3.8. Let m: A — U(M) be a homomorphism, where (M, T) is a tracial von Neumann
algebra. Define & = 78 (py) € U(M)B, for every b € B. Then &,ab(fc)ﬁl;l e UM)B), for every
b,c € M. Define By = (&) Ny € Aut(MPB) and Wp e = 'y(fbab(ﬁc)fb_cl) cU(MPB), for every b,c € B.

Then (8,w) is a cocycle action of B on MP, N := MP %z, B € WR(M, B) and there is a
homomorphism 7 : G — U(N) given by 7(z) = v(7B(z)) = Qpepn(xp) and 7(e,c) = ue, for every
z = (zp)pen € AP and c € B. In particular, if 7(A)" = M, then T(AP)) = MB and 7#(G)" = N.

Proof. Since 78 0 o}, = 0y, o P, we get that fbab(ﬁc)gl;l e U(M)B) for every b,c € M. Lemma 3.6
then implies that (3, w) is a cocycle action of B on MP and N := M® %z, B € WR(M, B). Define
7 AB) 5 Y(MP) by letting 7(z) = (78 () = Qpepm(xs), for every z = (z3)pep € AB). Then
whe = Y(&op(€)& ) = (Yor ) (pav(pe)py,.) = T(vp,e), for every b, c € B. Moreover, (70 ap)(z) =
QeccAd(T((pp)e)) (m(xp-1.)) = (By o T)(x), for every b € B and = = (x.)een € AP). Hence
Toay = fByoT, for every b € B. Altogether, Lemma 2.8 gives that 7 extends to a homomorphism
7 : G — U(N) such that 7(e,b) = up, for every b € B. The last assertion is now immediate. [

Notation 3.9. To emphasize the dependence on 7, we hereafter write (57, w™) instead of (8, w).

4. RIGIDITY FOR WREATH-LIKE PRODUCT VON NEUMANN ALGEBRAS

The following is the main technical result of this paper.

Theorem 4.1. Assume that G € WR(A, B) has property (T) and no nontrivial characters, where
A is a nontrivial countable group and B is an icc hyperbolic group with Out(B) = {e}.

Fori € {1,2}, let m; : A — U(M;) be a homomorphism with m;(A)" = M;, where M; is a II) factor.
Let N; = MP xg=; =i B € WR(M;, B) be as defined in Proposition 3.8 and Notation 3.9.

Then Nj is a II; factor with property (T) such that F(N;) = {1} and Out(N;) = {e}.
Moreover, if 0 : N7y — pNap is a *x-isomorphism, where p € No is a projection, then p = 1 and

there is uw € U(N3) such that 6(m1(g)) = uma(g)u*, for every g € G. Furthermore, there is a
x-isomorphism 0y : My — My such that 6y(m1(g)) = ma(g), for all g € A.

Proof. The proof follows closely the strategy of the proof of [CIOS21, Theorem 8.4]. If i € {1,2},
then Lemma 3.3 implies that N; is a II; factor. Moreover, since G has property (T) and the
homomorphism 7; : G — U(N;) satisfies 7;(G)” = N;, we get that N; has property (T). We only
need to justify the moreover assertion since this implies that F(N;) = {1} and Out(V;) = {e}.

Let 6 : N1 — pNap be a x-isomorphism. Since MQB is a factor, we may assume that p € MQB. We
claim that

(4.1) O(MP) <5y, PMPp and pMPp <5y, O(MP).

Since M; is a factor, MiB C N; is an irreducible regular subfactor by Lemma 3.3, for every i € {1,2}.
Using this fact, that N; has property (T), for every i € {1,2}, and that B is hyperbolic, (4.1)
follows from [CIOS21, Lemma 8.5]. The proof of this lemma, which relies on [PV12] (as used
in [CIOS21, Theorem 7.15]), applies verbatim by using that for every i € {1,2} we have a x-
homomorphism A; : N; — N;®QL(B) given by A;(xup) = zup @ up, for x € MZB, be B.

Since MP C Ny,pMPp C pNap are regular irreducible subfactors and the countable groups
N, (ME)JU(MEB) =2 Nyn,p (pMEPp) U (pMPp) = B areice, (4.1) together with [IPP05, Lemma 8.4]
(see also [CIOS21, Theorem 7.4]) implies that there is u € U(pNap) such that ud(MP)u* = pMPp.
After replacing 6 by Ad(u) o 6, we may thus assume that

(4.2) 6(MP) = pMPp.
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Since N, (MP)JU(MP) = Nyn,p(pMPp) JU(pMPp) = B, there is an automorphism & of B such
that 0(up) € M3 us), for every b € B. Since Out(B) = {e}, there is ¢ € B such that §(b) = cbc™!,
for every b € B. Thus, after replacing 6 by Ad(u}) o 6, we get that

(4.3) 0(up) € MPuy, for every b € B.

Recall that G = AP x,, B. By Proposition 3.8 we have that 7;(e,b) = 7a(e,b) = uy, for every
b € B. Thus, (4.3) rewrites as 0(71(e, b)) € MP7y(e,b), for every b € B. If a € AP, then
71(a,e) € MP and 7a(a,e) € MP and so 0(71(a,e)) € MPTa(a,e) by (4.2). By combining these
facts we deduce that

(4.4) 0(71(g)) € MP7,(g), for every g € G.

Consider the trace preserving action G ~* M$ given by r, = Ad(72(g)) for g € G. By (4.4), for
any g € G, there is n, € MP such that 0(71(g)) = ny72(g). Then (1y)gec is a generalized 1-cocycle
for k with support projection p: ngny = p,nyng = rg(p) and ngn = ngkg(nn), for every g, h € G.

Next, Proposition 3.8 gives that T2(z) = ®pepm2(wp), thus Kk, o (Mg) = Mg, for x = (zp)pep € AB)
and ¢ € B. If b € B, then ma(e, b) = up, hence k() = Ad(up) = B5* and thus r () (M5) = Me, for
every b,c € B. Altogether, we get 1, p) (M5) = MQbC, for every z € A®) and b, ¢c € B. Equivalently,
if e : G — B is the quotient homomorphism, then kg4 (Ms5) = Mg(g)c, for every g € G and ¢ € B.
Thus, G ~* MP is built over the action G ~ B given by g-b = £(g)b, for g € G,b € B, in the
sense of [KV15, Definition 2.5].

Since G has no nontrivial characters, by applying [CIOS21, Theorem 7.10], we get that p = 1 and
there is u € U(MP) such that 1, = uky(u)*. Thus, we derive that

(4.5) 0(m1(g)) = uma(g)u™, for every g € G.

By Proposition 3.8 we get that m;(g) = mi(g) € MF, for every i € {1,2} and g € (A).. Denote
by 6y the restriction of Ad(u*) o @ to M. Then (4.5) implies that 6p(M{) = MS and identifying
M¢ = M;, we have 0y(m1(g)) = m2(g), for every g € A. This finishes the proof. [ ]

5. EMBEDDINGS INTO PROPERTY (T) II; FACTORS

This section is devoted to the proofs of our main results. To prove Theorems A and B, we will need
the fact, observed in [GP98, Remark 1.3] and recorded below, that a separable McDuff II; factor
can be generated by 3 unitaries. Although we will not use this, note moreover that any separable
II; factor with property Gamma can be generated by 2 unitaries by [GP98, Theorem 6.2].

Lemma 5.1. [GP98] Let M be a separable II, factor and R be the hyperfinite II, factor. Let
(wi)i>1 CU(M) be a sequence of unitaries which generate M. Let u,v € U(R) be two unitaries
which generate R and (p;)i>1 C R be nonzero projections such that )~ pi = 1.

Then the unitaries 1 @ u,1 ® v, ;51 w; ® p; generate MRR.

5.1. Proof of Theorem A. Let (M, 7) be a separable tracial von Neumann algebra. Since M
embeds into a separable II; factor (e.g., we can take M x L(Fq)), part (2) of Theorem A follows
from Theorem C proven below. Thus, it remains to prove part (1) of Theorem A.

To this end, let M := (M = L(F5))®R. Since M % L(F5) is a separable II; factor, by Lemma 5.1 we
find a homomorphism 7 : F5 — U(M) such that 7(F3)” = M.
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Let H be an acylindrically hyperbolic group. By Theorem 2.2(2), H has a quotient K € WR(Fs, C),
for some group C'. Let r : H — K be the onto homomorphlsm By Proposition 3.8, there is a
cocycle action (8, w) of C' on M€ such that Q := MC¢ X g, C belongs to WR(M C) and we have
a homomorphism 7 : K — U(Q) with 7(K)” = Q. By Lemma 3.3, Q is a II; factor. Moreover, the
homomorphism 7wor : H — U(Q) satisfies (mor)(H)"” = 7(K)" = Q. Therefore, if H moreover has
property (T), then so does ). Since M embeds into M and thus into Q, this finishes the proof of
part (1) of Theorem A. [

5.2. Proof of Corollary B. Let (M, 1) be a tracial von Neumann algebra. If M is separable, then
it embeds into a II; factor with property (T) by Theorem A. Conversely, assume that M embeds into
a property (T) II; factor N. Since N has property (T), it is finitely generated by [Po86, Theorem
4.4.1] (see also [HJIKE21, Lemma 2.8]) and thus separable. Hence, M is separable as well. [ ]

5.3. Proof of Theorem C. By Theorem 2.2(1), there is a property (T) group G € W(Fs, B)
with no nontrivial characters, for some icc hyperbolic group B with Out(B) = {e}. Let R be
the hyperfinite II; factor, u,v € U(R) be two generating unitaries and (p;);>1 C R be nonzero
projections such that > .., p; = 1.

Let M be a separable II; factor and s € T. Let (ng’s))izl C U(M) be a sequence of unitaries which
generate M such that w%M’S) = sl. Let a,b,c be free generators of F3. Define a homomorphism

T(M,s) - F3 = U(M®R) by letting

s (@) = 1@ u, mae)(b) =1 ®v and  7(pre)( Zw ®pZ
1>1

By Lemma 5.1 we have that (4 (F3)" = M®R.
Applying Proposition 3.8 and Theorem 4.1 to A = F3 and 7y ) gives a II; factor Py ) := N

T(M,s)

which has property (T) and satisfies Out(P,y,s)) = {e} and F(P(pr,s)) = {1}. Since P, 4) belongs
to WR(M®R, B), it contains M®R and hence M.

Assume that P/, and Py, are stably isomorphic, for some separable II; factors M, N and
s,t € T. Theorem 4.1 implies that there is a *—isomorphism Oy : M®R — N®R such that
Oo(T(a1,5)(9)) = () (9), for every g € F3. Thus, 6p(1 ® u) = 1 ® u and 0p(1 ® v) = 1 ® v. Hence
90(1®:1:) = 1®ux, for every & € R, and there is a *-isomorphism 6 : M — N such that 6y = 6; R1Idg.
From this we deduce that ;- 61 (w Z( )) @ pi = 6o(>;>1 wg %) QDi) = D i1 wg '@ p; and

therefore 6; (wZ(M’S)) = wZ(N’t), for every ¢ > 1. In particular s = T(ng’S)) = T(ng’t)) = t. This
implies the conclusion of Theorem C with T instead of R. Since T and R have the same cardinality,

Theorem C follows. |

The final goal of this section is to prove Theorem D. To this end, we will need the following analogue
of Lemma, 5.1 for equivalence relations:

Lemma 5.2. Let R be an ergodic countable p.m.p. equivalence relation on a probability space
(X,pn). Let T be an ergodic hyperfinite p.m.p. equivalence relation on a non-atomic probability
space (Y,v). Then the following hold.

(1) There exist ¢, € [T] such that {u,,uy}’ =L(T).

(2) There exist o, 8,7y € [R x T] such that {uq,ug, uy}" =L(R x T).
Proof. (1) Let (Y,v) =[],5; ({0,1}, 3(60 + 01)) and identify 7 with the orbit equivalence relation
induced by the dyadic odometer ¢ : Y — Y given by addition by 1 = (1,0,---,0,---):

90(17 alaoaxk-i-hwk‘-i-??' : ) = (07 70717xk+1>$k‘+21' )
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Let Aj ={(zp)i>1 €Y |zy =1} and Ay, = {(zp)g>1 € Y |21 = -+ = 21 = 0,2, = 1}, for
n > 2. Then {A,},>1 is a measurable partition of Y and 2" (A,) = A,, for every n > 1. We
define 1 € [T] by letting 4, = chn‘An, for every n > 1. Denote u = uy, v = uy € L(T), po =1
and p, = 14, € L=(Y), for every n > 1. Also, denote M = {u,v}".

Since L(7) is generated by u and {py}n>1, in order to prove that M = L(7), it suffices to argue
that p, € M, for every n > 0. We will prove this assertion by induction on n.

Assume that pg, -+ ,py_1 € M, for N> 1. Asu € M and v = Zn21 ppu?’ € M, we get that

(5.1) w = Z pau’ € M.
n>N

Denote gy := Zn>N+1 Pn = 1U,>n114,- We note that gpQN leaves invariant and acts ergodically on
the set Up>ny14n = {(zk)k>1 €Y | 21 = --- = o = 0}. Thus, we have that

K
1
(5.2) Jim ZAd(quN)(pn) _ () gy =2V ""qy  in||-|l2, for every n > N +1.
o0

k=1
Since Zle Ad(quN)(w) € M, for every K > 1, and Ad(uQN)(pN) = pn, combining (5.1) and
(5.2) gives that pNu2N +ZnZN+1 oN=mgnu?" € M. Since gy = 1—2521 ppand p1,--- ,pN_1 € M,
we further derive that
(5.3) pv(® = 37 2Ny e M

n>N+1

2N="2" € M has right support equal to 1. This is because

Finally, note that u? - D oSN
there is a *-isomorphism {u}” = L°°(T) which sends u to the identity function z and the equation
22 D oSN =0, for z € T, forces 22" =1 and thus only has finitely many solutions.

In combination with (5.3), this implies that py € M, which finishes the proof of (1).

(2) By part (1), there are ¢, ¢ € [T] with {u,, uy}’ =L(T). Let @ = Idx X, f = Idx x9) € [RXT].
Let Ro C R be a hyperfinite ergodic subequivalence relation. By (1), there are (1,2 € [Ro] C [R]
with {u¢,,u¢, }” = L(Ro) and so L™(X) C {u¢,,ue, }’. Let {G}i>3 C [R] be a sequence such that

. "

{u¢ yizs € {uchcemy i || - [lo-dense. Then (L°(X) U{ucheerr)) C {uc }isy, thus {ug }is, = L(R).
Next, let {Y;};>1 be a measurable partition of Y consisting of sets of positive measure. Define
v € [R x T] by letting v|(xxy;) = G X Idy;, for every i > 1. Then uy =35 u¢, @ ly;.

Finally, let N = {uq,ug, uy}"”. Since {uq,ug}” = C1 @ L(T), we get that C1 ® L(T) C N. This
further implies that {u¢, ® 1}i>1 C N. Since {ug,}i5; = L(R), we also get that L(R) ® C1 C N.
Altogether, it follows that N = L(R x T), which proves (2). [ ]

2N—n22"

5.4. Proof of Theorem D. Let R be a countable p.m.p. equivalence relation on a probability
space (X, u). Let P be a countable ergodic p.m.p. equivalence relation on (X, ) which contains
R. Let T be an ergodic hyperfinite p.m.p. equivalence relation on a probability space (Z,v). Since
R x Ay C P x T, it suffices to prove the conclusion of Theorem D for P x 7T instead of R. By
Lemma 5.2, after replacing R by P x T, we may assume that there is a homomorphism 7 : A — [R]
such that {ur(g)}yea = L(R), where A =TFj.

In the rest of the proof, we will construct an equivalence relation S on (X2, ) which satisfies
the conclusion. First, by Theorem 2.2(1), there is a property (T) group G € W(A, B) with no
nontrivial characters, for some icc hyperbolic group B with Out(B) = {e}. Using Lemma 2.13, we
write G = AB) x, , B, where (a,v) is a cocycle action of B on AB) given by oy, = Ad(py)oy, and
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Upe = pbcrb(pc)pb;l, for some map p : B — AP with p. = e, where 0 : B — Aut(A?) denotes the
shift action.

Define the equivalence relation R on (XB, ) by ((xp)pen, (vo)ven) € RE) if (zp, 1) € R,
for every b € B, and the set {b € B | x, # y} is finite. Also, define x : [R]? — Aut(R(¥)
by letting x(¢)(z) = (wu(xs))pen, for every ¢ = (pp)oen € [R]P and x = (z3)pep € XP. Note
that x([R]P)) c [RP)]. We denote by B ~* (X5, uP) the Bernoulli shift action and note that
(M)pen C Aut(RP)). Define 7 : B — Aut(R(P)) and w : B x B — [R(P)] by letting

Ty = Ii(ﬂ'B(pb)))\b and wp . = Ii',(ﬂ'B(’Ub,C)), for every b, c € B.

Since Ay (75 (2))A, ! = w(7B(0p(2))), for every b € B and x € AB, it follows that (7,w) is a cocycle
action of B on RB). If b € B\ {e} and we let ¢ = 78(p,) € [R]Z, then 7,(x) = (¢c(xp-1.))cen, for
every © = (zc)eep X P. Thus, if (r(x),z) € RP), then the set {¢ € B | pc(xy-1,) # x.} is finite.
Since B is infinite, we get that u?({z € X | (m(z),z) € R(PF)}) =0, for every b € B\ {e}.

Let S be the smallest equivalence relation on (X?, u?) which contains R®B) and the graph of
7, for every b € B. Let u : [RP)] = ULRP))) and i : Aut(RP)) — Aut(L(R®))) be the
homomorphisms defined in Subsection 2.3. By Lemma 2.10, (8,w) := (i o T,u o w) is a cocycle
action of B on L(RP)) and L(S) = L(R®)) x4, B.

Let & = (uom)B(p) € U(L(R))P, for b € B. Then &a3(&e)é,. € UL(R)P), By = n(&) Ay and
Whe = ’y(fbab(fc)fb_cl), for every b,c € B, where 1, are defined as in Notation 3.5 for M = L(R).
Since (uom)(A)” = L(R), Proposition 3.8 and Theorem 4.1 imply that L(S) has property (T),
Out(L(S)) = {e} and F(L(S)) = {1}. Since S contains R(5), it also contains R x Ay s (e}, where
we identify X¢ with X. This finishes the proof. |

6. STRUCTURAL PROPERTIES OF INFINITELY GENERIC II; FACTORS

In this section, we apply Theorem A to obtain two new structural properties for the class of infinitely
generic II; factors introduced in [FGHS13, Propositions 5.7, 5.10 and 5.14] (see also [AGKE20, Fact
6.3.14]). Throughout this section, as in [Go20, AGKE20], we assume the Continuum Hypothesis.

Proposition 6.1. [FGHS13] There is a class of separable II; factors G satisfying the following:

(1) G is embedding universal: every separable II) factor embeds into an element of G,
(2) any embedding ™ : Q1 — Q2, for some Q1,Q2 € G is elementary, i.e., it extends to an
isomorphism Q7 = ()5, and

(3) G is the maximum class with properties (1) and (2).

The elements of G are called infinitely generic II; factors.

6.1. Embeddings into ultraproducts. A well-known question of Popa asks if every R“-embeddable
separable II; factor M admits an embedding 7 : M — R®“ such that the relative commutant
m(M) N R¥ is a factor. This question has been answered positively in some instances, including
when M is: L(F,), n > 2 [DL69]; L(SL,,,(Z)), m > 3 [Pol3]; or any II; factor elementarily equiva-
lent to R [AGKE20]. However, the problem remains wide open in general, and in particular for 11y
factors with property (T).

A variation of Popa’s question, where R is replaced by infinitely generic 11 factors, was considered
recently by Goldbring in [Go20]. Specifically, [Go20, Theorem 2.18] shows that if @ € G, then any
IT; factor M with property (T) admits an embedding in Q* with factorial relative commutant.



EMBEDDING UNIVERSALITY FOR II; FACTORS WITH PROPERTY (T) 15

By combining Theorem A with properties of wreath-like product von Neumann algebras we extend
[Go20, Theorem 2.18] to all full (i.e., non-Gamma) separable II; factors M. More generally, we
have:

Theorem 6.2. Let QQ be any infinitely generic IIy factor. Then any separable Il factor Py such
that P, N Py is a (possibly trivial) factor admits an embedding m : Py — Q¥ such that the relative
commutant (Py)' N Q¥ is a factor.

Proof. By [Go20, Lemma 2.12], given Q1,Q2 € G, a separable II; factor M admits an embedding
in ¢ with factorial relative commutant if and only if M admits an embedding in ()4 with factorial
relative commutant. Thus, we only need to show that we can find Q € G such that Py C @ and
the diagonal embedding Py C Q¥ satisfies that Pj N Q“ is a factor.

Let P = Py@R. By the proof of Theorem A there exists a II; factor N = PP Xaw B € WR(P, B)
with property (T), where B is an icc hyperbolic group.

As G is embedding universal, one can find @ € G with N C @. Since N has property (T), it
has w-spectral gap in the sense of [Po09] in any extension (in fact this characterizes property (T),
see [Ta22]) and thus N'NQ¥ = (N'NQ)¥. As Q is existentially closed, by [Gol8, Proposition
5.16] we also have (N’ N Q)" N Q = N. Altogether, these facts imply

(6.1) (N'NQR*)NQ“=((N'NQ)*)NQ”=((N"NQ)'NQ)” = N*.

We identify P€ with P. Since Py C P C N C QQ C Q%, passing to relative commutants gives that
PiNQ¥ > (N'NnQ¥) Vv (PBMIER)Y. Taking relative commutants again and using (6.1) we get

(Pé N Q(u)/ N Qw C ((N/ N Qw) V. (PB\{6}®R)UJ)/ N Qw _ (N/ N Qw)/ N Qw N ((PB\{6}®R)0J)/
= (N N (PPMEgRY)>.

Since N N (PBMERR) = Py (see Remark 3.4), we deduce that (P, N Q“) NQ“ C P¢ and thus
Z(PlNQ¥) C PfNPFY C PynN QY. This entails that Z(P; N Q¥) C Z(PjN FY) and thus
Z(P,Nn Q%) = C1, which finishes the proof. [

6.2. Super McDuff II; factors. A II; factor M is called super McDuff if its central sequence von
Neumann algebra, M'NMY, is a II; factor. Examples of super McDuff factors include the hyperfinite
IT; factor, R, the tensor product N®R, where N is any full IT; factor, and the infinite tensor product
®@nenNp, where N, are full II; factors (see [AGKE20, Section 6]). In the context of studying super
McDuff factors from a model theoretic perspective, it was asked in [AGKE20, Question 6.3.3]
whether there exists an existentially closed II; factor that is super McDuff.

A separable II; factor M is called existentially closed if for any separable tracial von Neumann
algebra N containing M, there is an embedding © : N <— M%“ whose restriction to M is the
diagonal embedding M < M% [FGHS13]. As shown in [FGHS13, Proposition 5.11], infinitely
generic I factors are existentially closed.

In this subsection, we provide a positive answer to [AGKE20, Question 6.3.3] by showing that all
infinitely generic II; factors are super McDuff (see Theorem 6.4). To establish this, we first use
Theorem A to show the class of infinitely generic II; factors that are super McDuff is embedding
universal.

Proposition 6.3. Any separable I} factor P embeds into an infinitely generic Iy factor M which
is super McDuff.
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Proof. Pick Q1 € G such that P C (1. By Theorem A there exists a property (T) II; factor Ny
such that @)1 C Ny. Since G is embedding universal there exists a II; factor Q3 € G such that
Nj C Q2. By induction, one can find an increasing sequence (Ny,),en of property (T) II; factors
and an increasing sequence (Qy)nen of infinitely generic II; factors satisfying

(6.2) PCc@QiCNCQaCNyC---CQnCN,C---

Let M be the inductive limit IT; factor arising from the sequence (6.2). Observe that by construction
we have M = U, N, ot _ UnQnWOt. Since for all n we have @,, € G, using [AGKE20, Lemma 6.3.16]
it follows that M € G.

In the remaining part we argue that M is super McDuff. As N,, has property (T), we have
N/ N M¥ = (N} N M)“ and by [Gol8, Proposition 5.16] we also have (N], N M) N M = N,,. Using
these relations and [BCI15, Lemma 2.4] we derive that

Z(N, 0 M) = Z((N, 0 M)) = (Z(Nj 1 M))* = (N1 MY 0 M) 0 NL)* = (Z(Na))* = CL.

Thus, N], N M* is a factor for all n € N. Using [AGKE20, Proposition 6.3.12] we conclude that
M’ N MY is a factor. O

Combining Proposition 6.3 with model theoretic methods from [GH16] we obtain the following.
Theorem 6.4. Any infinitely generic I, factor is super McDuff.

Proof. Let @ be an infinitely generic II; factor. By Proposition 6.3 there is a super McDuff,
infinitely generic II; factor P together with an embedding 7 : @ — P. By Proposition 6.1(2), the
embedding 7 is elementary. Since P is super McDuff and @ is McDuff, [GH16, Proposition 4.12]
implies that @ is super McDuff. O
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