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Prediction of anisotropic NMR data directly from solute-medium interaction is of significant theoretical
and practical interest, particularly for structure elucidation, configurational analysis and conformational
studies of complex organic molecules and natural products. Current prediction methods require an
explicit structural model of the alignment medium: a requirement either impossible or impractical on a
scale necessary for small organic molecules. Here we formulate a comprehensive mathematical
framework for a parametrization protocol that deconvolutes an arbitrary surface of the medium into
several simple local landscapes that are distributed over the medium'’s surface by specific orientational
order parameters. The shapes and order parameters of these local landscapes are determined via fitting
that maximizes the congruence between experimentally determined anisotropic NMR measurables and
their predicted counterparts, thus avoiding the need for an a priori knowledge of the global medium
morphology. This method achieves substantial improvements in the accuracy of predicted anisotropic
NMR values compared to current methods, as demonstrated herein with sixteen natural products.
Furthermore, because this formalism extracts structural commonalities of the medium by combining
anisotropic NMR data from different compounds, its robustness and accuracy are expected to improve

rsc.li/pcecp

1. Introduction

Anisotropic NMR data from solutes dissolved in nematic liquid
crystalline (LC) solvents or dilute lyotropic LC (LLC) solutions
have long been utilized for a variety of scientific purposes,
including structural geometry determination of small solute
molecules,” physical chemical investigations on intermolecular
interactions and LC phase transitions,> conformational deter-
mination of biomolecules,® and stereochemical and constitu-
tional studies of complex organic molecules and natural
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as more experimental data become available for further re-optimization of fitting parameters.

products.*® Theoretical prediction of anisotropic NMR para-
meters based on solute-mesogen interactions is also of long-
standing interest to the scientific community, playing an
important role in understanding intermolecular interactions
in nematic phases”® and studying molecular geometries when
experimental determination of solute order parameters, in
particular those based on the singular value decomposition
(SVD) method,° is ineffective. Examples of the latter include,
characterizing a homo-oligomer,'™"* analysing conformational
dynamics of flexible molecules,"”™*® and structure determina-
tion using extremely sparse experimental data.'® Solvated poly-
meric gels are also widely utilized as alignment media for solute
geometry determination,”®*' but theoretical investigation into
solute—gel interactions involved in molecular alignment is rarely
explored.”*

Orientational order of a solute can arise from a combination
of steric, electrostatic, and dispersive interactions with the
alignment medium. Although highly desirable from both a
theoretical and practical standpoint, deconvoluting the relative
importance of different interactions in a real alignment system
is extremely challenging. In particular, the partition function of
a many-body interacting system cannot be factored into indivi-
dual partition functions associated with specific energy types.
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Consequently, energy components of different interactions
have intertwined effects on order parameters. Over the past
three decades, various experimental investigations®>*>® and
computational simulations*’ " have primarily concluded that
steric interactions tend to represent a dominant mechanism of
solute ordering in apolar nematic solvents while electrostatic
interactions are less impactful (note: apolarity by the LC
nomenclature refers to the head-tail symmetry of a nematic
phase instead of no electric dipole moment in the nematogen).
In a somewhat parallel line of research, anisotropic NMR data
prediction of macromolecules ordered in dilute aqueous LC
systems have also attracted substantial interest and found
useful applications in the past two decades. The prevalent
prediction method called PALES originally considered only
the steric obstruction mechanism but nevertheless yielded
remarkably accurate predictions even for charged proteins
dissolved in neutral phospholipid bicelle solutions.'* A later
expanded version of PALES incorporated both steric and elec-
trostatic interactions to predict protein/DNA alignhment in
dilute charged LC media such as the mesophase of the fila-
mentous phage Pf1, in which electrostatic interaction plays a
more significant role than in charge-neutral media.*”

In light of these earlier studies, our goal in this article was to
formulate a method to overcome the current challenges in
modelling steric interaction. Accurate account of steric contri-
bution to solute ordering is not only important for its own sake,
but also provides a solid basis for further evaluation of electro-
static and dispersive components. Although a mean-field
anisotropic potential resulting from decoupling of the relative
position and orientation of two interacting bodies is often used
to approximate long-range interactions, applying this approach
to short-range steric interaction can be problematic due to the
strong interdependence of position and orientation.’ Methods
that have proven effective so far resort to numeric calculation of
solute order parameters by integrating all solute positions and
orientations near a medium structural model, which avoids
decoupling the positional and orientational variables or using
any mean-field potentials.'”'®?” A major limitation of this
approach, however, is that an appropriate geometric model
for the medium must be available. For large biomolecules, a
highly simplified medium model often suffices, such as an
infinite plane for the phospholipid bicelle medium or a cylin-
der for a rod-shaped medium like bacteriophage as used in
PALES. Small organic compounds, however, can sample much
finer structural details on the medium surface, thus demand-
ing more comprehensive medium models. Clearly, MD simula-
tions or force-field calculations are promising approaches as
atomistic models can be employed for both medium and
solute. Unfortunately, an atomistic model may not be feasible
for some alignment media. For example, many types of poly-
meric gels have stereocenters with undefined chirality along
the chain. If each stereocenter has an equal probability for
R and S as in an atactic polymer, even a short six-unit frag-
ment can have forty-eight stereo-configurations (considering
head-tail symmetry of polymers having opposite end-chain
chiralities), each of which can interact differently with a solute.
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Obviously, modelling all possible stereoisomers at the atomis-
tic level will be computationally impractical. The situation is
exacerbated by conformational heterogeneity due to lack of
regular secondary structure in the gel polymer. With these
variabilities, a microscopic model is out of the question even
for a fully relaxed gel, not to mention a gel deformed by
mechanical strain. Furthermore, unlike in the LC mesophase,
the anisotropic phenomenon of a strained gel lacks quantita-
tive descriptors, obfuscating the physical picture of how aniso-
tropy can be further transferred to a solute. It is tempting to
depict the anisotropy of a strained gel by analogy to that of the
LC, but fundamental differences between them forbid direct
theoretical translation. For example, the LC is a spatially
homogeneous solution of repeating structural units (meso-
gens), whereas the solvated gel is a heterogeneous environment
containing an immobile solid phase with no apparent repeat-
ing structural units. Consequently, certain key elements in the
LC theory, such as mean-field approximation and description
of system anisotropy by mesogen order parameters, are not
applicable to the gel.

Herein, we develop a decomposition method that approx-
imates the gel surface manifold as a positional and orienta-
tional arrangement of several repetitive local landscapes, with
each having a different shape. This decomposition allows
introduction of order parameters, defined for each local land-
scape based on its orientational distribution on the entire gel
surface, into the description of the gel anisotropy, thus leading
to an orientational order transfer formalism similar to that of
the LC system. As far as anisotropic NMR prediction is con-
cerned, only the five rank two order parameters of each land-
scape are relevant. In the special case of a rod-shaped mesogen
or a disc-shaped mesogen aggregate (e.g., a lipid bicelle), only
one rank two order parameter that describes the alignment
amplitude is sufficient thanks to their axial symmetry. Here,
however, we do not impose cylindrical symmetry on local
landscapes, thus allowing more diverse landscape types to be
generated. With proper parametrization of landscape shape,
two or three rank two order parameters and two or three shape
parameters are required for each landscape, depending on
whether medium chirality is considered. Thus, the surface
decomposition method avoids not only the inadequacy of an
oversimplified model that has only one landscape of axial
symmetry such as a rod or a plane, but also the unmanageable
complexity of an atomistic medium model that would require
an astronomical number of parameters to be considered if
completely unknown. The total number of local landscapes
required for an alignment medium and their shapes and order
parameters can be determined and optimized by maximizing
the agreement between predicted and measured anisotropic
NMR data from experimental databases and performing statis-
tical analysis on the outcome. The modeled alignment medium
can be used to predict the expected anisotropic NMR data of
other compounds of interest and then compared with their
experimental values acquired in the same type of alignment
medium to confirm or refute proposed compound structures.
The surface decomposition concept was examined using
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experimental data from sixteen complex natural products, with
results displaying increasingly improved agreement as higher
levels of parametrization, ie. larger numbers of local land-
scapes, are used. The statistical significance of employing high
levels of parametrization is analysed by F-tests. The robustness
of this method was further cross-validated by leaving out data
points of two challenging molecules during the parameter
optimization stage. The anisotropic NMR data for these two
molecules were predicted with the optimized parameters using
the reduced training dataset and compared to experimental
data. The results from this cross-validation confirms good
prediction accuracy and tolerance for over-parametrization of
the surface decomposition method proposed. Direct order
parameter prediction with the overall degree of accuracy
observed in this work promises to overcome a known limitation
in SVD based analyses when applied to some aforementioned
scenarios.

2. Theory

In Section 2.1, we first develop a formalism for parametrization
of sterically-induced alignment in a dilute lyotropic LC (LLC)
medium. Our derivation is based on classical molecular statis-
tical theory of LCs and aims to establish a relationship between
the order parameters of the solute and the mesogen, which we
refer to as an order transfer equation (OTE). In Section 2.2, we
develop the theoretical counterpart for sterically-induced align-
ment in a polymeric gel. Proof for all equations in the theory
section is given in the ESL

2.1 Liquid crystal with a mesogen model

We consider a simplified LC alignment system containing N
mesogens and only one solute, ignoring solute-solute inter-
action. We also assume that mesogen ordering is not perturbed
by the solute at a low concentration. Deduction based on the
molecular statistical theory under the usual mean-field approxi-
mation leads to the following equation for the orientational
distribution function (ODF) of the solute:

= Ve
FO = 44y~ el

1)

The ODF f(a) describes the probability density of finding the
solute at an orientation a with respect to (wrt) the laboratory
frame. V is the total sample volume. (V.(a)) is the average
excluded volume between one solute and one mesogen, which
can be considered the average volume excluded from a meso-
gen with an ODF of f,(am) due to the presence of a solute at
orientation a, or equivalently the average volume excluded from
a solute at orientation a due to the presence of a mesogen with
an ODF of f,(an):

(Vex(a)) = Jdamfm(am)Jdr{l - exp[f[)’UHB(a,am7 ;)]} (2)
Here, a,, is the mesogen orientation wrt the laboratory frame.

fm(am) is the mesogen’s ODF. r is the solute-mesogen relative
position vector. f§ is the inverse product of Boltzmann constant
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and the temperature, (kgT)"*. U™® (a, an, r) is the hard-body
potential, which is infinite if the solute and mesogen overlap,
or zero otherwise, thus leading to a “0 or 1” binary outcome for
the Boltzmann factor exp[—fU"®(a, a.,, r)]. Since the denomi-
nator in eqn (1) is a normalization factor independent of a,
eqn (1) shows that the solute prefers an orientation that
minimizes (Ve(a)). Note that (Ve (a)) is on the order of single
molecular volume, which is much smaller than V. For a dilute
LLC solution, if we further assume N(V(a)) « V such that
|:1 _ <VeX(a)>} Nz 1— N(Vex(a))
V vV
order term, we obtain:

by truncation after the 1st

V= N{Vu(@)
K@)~ et — v
(3)

Vi = g datVeta)
Vex 18 (Vex(@)) averaged over all solute orientations, which is
equivalent to the excluded volume calculated as if the mesogen
or the solute are randomly rotating around each other (see the
ESIT). Calculating Vi, between two arbitrary anisotropic bodies
is a well-known challenge.*® Here, we can ignore the effect of
Vix since the dilute LLC approximation satisfying NVe, « V
leads to:

fla) m gy Peld)) (@)

82 82
Not surprisingly, (Vex(@)) remains the most critical part. Noting
that the steric potential only depends on relative orientation
and position, we can replace the integration over the mesogen
orientation wrt the laboratory-frame (a., in eqn (2)) with that
over its orientation wrt the solute frame, thus obtaining an
alternative form for eqn (2):

(Vex(a)) = stzfm(Ra)Jdr{l —exp[-pU"B(Q,r)]}  (5)

The orientational relations between the solute, medium and
the laboratory-frame are depicted in Fig. 1. Here we focus on
the uniaxial order scenario, because the biaxial mesophase is
rarely used for NMR. The mesogen orientation can then be
defined by the position of the uniaxial director (red vector a,,)
in the mesogen frame (blue frame) using polar and azimuthal
angles 0y and ¢y (Fig. 1a). Likewise, the solute orientation can
be defined by the director position in the solute frame (green
frame a) using 05 and ¢s (Fig. 1b). The uniaxial director in most
experiments coincides with the laboratory-frame Z axis, except
for a variable-angle NMR experiment with a spinning LC
sample®* or a constrained gel.>® The relative orientation is
depicted by Euler angles o, 5, and 7y that rotate the mesogen
frame onto the solute frame by the intrinsic Z-Y'-Z" conven-
tion (Fig. 1c). Accordingly, the integral [df is given by
'g"docj'gdﬁ sin ﬁjﬁ"dy. The director position in mesogen and
solute frames is related by a,, = Ra, where the rotation operator
R corresponds to the solute-mesogen frame transformation.
Substituting eqn (5) into eqn (4), performing multipole
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Fig. 1 Orientational relationships of the mesogen and the solute in the laboratory frame. (a) orientation of the mesogen in the laboratory frame,
described by the director vector a,,; (b) orientation of the solute in the laboratory frame, described by the director vector a; (c) relative orientation 2

between the mesogen and the solute, described by Euler angles «, 8, and y.

expansion for both fy(a) and f,,(Ra), and equating the coeffi-
cients of the 2nd order spherical harmonics, yields the
OTE below:

VEon~ 3 5, foay fens @
= (6)
X Jdr exp[fﬁUHB(Qv")]}

The coefficients \/4?7% Y, and 1/ <Y’"> are the rank two

order parameters of the solute and the mesogen, respectively,
where the angle bracket denotes orientational averaging. The
connection between solute and mesogen order parameters
given in eqn (6) is useful because it shows how orientational
order is transferred from the mesogen to the solute through
their anisotropic interaction potential. We should point out
that the relatively simple relationship shown in eqn (6) is made
possible by the dilute LLC approximation; otherwise, their
connection is rather complicated, involving combinatorial
terms of order parameters of different ranks (see the ESIT).
Because anisotropic NMR only reports on the 2nd moment of
the ODF, we focus on rank two (I = 2) order parameters here,
although eqn (6) is also valid for higher ranks. As shown in the
ESI,T the order parameter here is in fact the complex conjugate
of the conventional definition, chosen as such to simplify the
notation. Rod or disc like mesogens have axisymmetric order,

4 1
for which only the 1/%[( YY), term, ie., 5(3 cos? Oy — 1), is

relevant leading to further simplification, but here we retain
the general asymmetric version because of its connection to the
surface decomposition method for polymeric gels to be intro-
duced later. The Wigner D matrix D2, (R) is in the o, f, and 7
order (Fig. 1). Note that the double integral in the curly bracket
is a volumetric quantity after normalization by 8n”, and thereby
the entire item inside the curly bracket is a pure number. The
double integral over €2 and r has some remarkable character-
istics. In the isotropic sample space where all relative orienta-
tions are allowed, the Boltzmann factor is 1 and the integral is

This journal is © the Owner Societies 2022

zero due to the symmetry of D2, (R). This integral is also zero
at positions where overlapping occurs at all orientations
because the Boltzmann factor is zero. This integral builds up
only over regions with partially allowed orientations. These
characters simply reflect that the solute acquires ordering only
within a shell immediately outside the mesogen’s van der
Waals (vdw) surface, as expected. The spherical harmonic order
parameters are related to the Saupe ordering matrix, which is
more frequently used in NMR studies, by eqn (7).

S =[50 ((73) + (177) = 3 79)
S = =35V + (¥5) - 5(¥9)
5= (1)

_ )
S0 = 8= iy om((13) ~ (152)
oy - ()

= 5 = (D) + (751)

All anisotropic NMR parameters can be readily calculated from
the Saupe ordering matrix.

Clearly, evaluating the double integral in eqn (6) is a crucial
step in predicting solute alignment. Although implemented
somewhat differently in the original reports,'™"® the numerical
simulation strategy as used in PALES, P3D, and other related
methods can be understood based on the following procedure.
First, we identify the minimal enclosing ball (MEB) of the
solute, which is the smallest sphere that encloses the solute’s
vdw volume. Then we consider the process of rolling the MEB
over the medium’s vdw surface (vdwS, shown as the innermost
purple surface in Fig. 2) and mapping out the closed surface
traced by the MEB center. We refer to this surface as the MEB-
accessible surface (MEB-AS, shown as the outermost gray mesh
in Fig. 2). Another surface resulting from this process is the

sz = Szx =
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(a)

Fig. 2 Relationship between three surfaces: MEB-AS (gray), MEB-ES (red),
and vdwS (purple). (a) and (b): comparison of MEB-AS and MEB-ES
generated with rygg of 2 and 5 A, respectively; (c): a pocket of high
concave curvature on the vdwS is smoothed to a concave surface on
the MEB-ES with a curvature of —rweg ™% (d): a convex surface on the vdwsS
has the same curvature with the corresponding region on the MEB-ES.

MEB-excluded surface (MEB-ES, shown as a red mesh in Fig. 2),
representing the mesogen’s surface boundary against the MEB.
Obviously, the MEB-AS and MEB-ES are identical to the well-
known solvent-accessible surface (SAS) and solvent-excluded
surface (SES), respectively, except that here the probe radius is
the MEB radius (rvgg) of the solute in lieu of the solvent. The
MEB-AS and vdwS divide the space surrounding the mesogen
into three zones. The space outside the MEB-AS is an isotropic
zone where the solute freely rotates. As previously discussed,
this zone is irrelevant for steric alignment calculation although
it may be of interest for long-range electrostatic interactions.
The space enclosed by the vdws is a forbidden zone, which also
makes no contribution to solute ordering. However, the space
between the MEB-AS and vdwS constitutes the interaction zone,
which encompasses the positional grids that a numeric simula-
tion algorithm should sample. In the general case of an asym-
metric mesogen, the double integral in eqn (6) is evaluated by
a six-dimensional integration that fixes the orientation and
position of the mesogen, moves the MEB center of the solute on
the 3D grid points inside the interaction zone (three-
dimensional Cartesian integration over r) while uniformly
sampling all solute orientations at each grid point (three-
dimensional spherical integration over £), and sums up
Dyrn? (R) exp[—BUMB(R,r)] (only Dy, (R) exp[—pUMB(R,r)]
in case of axisymmetric order) at each orientation-position
combination. Integration over reduced positional dimensions
is possible by taking advantage of mesogen structural symme-
try, as in the cylindrical and planar models of PALES.

Note that the MEB-ES is not involved in these methods
where explicit medium models are used, but it plays an
essential role in our surface decomposition method as shown
later. A serious limitation with these methods is that an
appropriate mesogen model is needed, i.e., the purple vdwS
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in Fig. 2 must be known during numeric integration. Unfortu-
nately, even a qualitatively correct model can be unavailable for
a polymeric gel due to its chemical complexity as previously
mentioned. To address this issue, we will develop a para-
metrization-based formalism for alignment prediction in poly-
meric gels or mesogens of unknown structures.

2.2 Polymeric Gel

As the simplest approximation, we treat the cross-linked gel as
a solid matrix of rigid structure. The effect of internal motions
will be qualitatively discussed at the end of this section.

By analogy with eqn (1)-(3), we can obtain the following ODF
for a solute in a constrained gel:

. V- Vex(a)
fs(a) TR (-

Vex(a) = Jdr{l —exp[—BU(a,r)] } (8)

. 1
Ve’x = @J’da Vex (a)

There are some noteworthy differences between LLC’s and gels
that are manifested in these equations. First, the entire cross-
linked gel is treated as one giant molecule that remains
stationary in the laboratory frame, thus N = 1 and the mean-
field approximation used in the LC system is no longer needed.
Consequently, the equation for f(a) in eqn (8) is exact. Second,
unlike a LC mesogen whose position and orientation are in a
dynamic equilibrium, the solid gel matrix is considered immo-
bile, so the volume excluded from a solute of orientation a is
not averaged over the medium’s orientation, differently from
eqn (5). Third, eqn (8) does not explicitly need the dilute
medium approximation, ie., neither V. (a) « V nor Vg « V
is required.

The primary focus of this work is to generate a method for
calculating V., (a) in the absence of a global medium model.
The immediate challenge is that the gel surface, described by
the vdwsS, is unknown and potentially highly complex with
various convex and concave features (see purple surface in
Fig. 2). At least in principle, with an extensive experimental
database, it should be possible to extract key structural para-
meters of the gel, which can in turn be used to predict the
alignment of other compounds of interest. From a parametri-
zation standpoint, it is highly desirable to decouple V.(a) using
parameters that depend only on the solute or the gel. Unfortu-
nately, such decoupling is extremely challenging, in no
small part due to the presence of concave features on the gel
surface, and any method of practical utility likely entails drastic
simplification or oversimplification. In the surface decomposi-
tion method, we approximate the unknown vdwS of the gel
with a MEB-ES and further decompose the MEB-ES as an
orientational-positional ensemble of a few representative local
landscapes (LSqep). Each LS,., has a unique shape idealized as a
paraboloid of two principal curvatures or a twisted paraboloid
with an additional twist curvature (described in Section 3). Each
LS;.p follows a certain orientational and positional distribution
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on the gel surface. This treatment leads to tremendous variable
deduction, because: (1) the positional distribution of a LS,
does not affect solute orientational order; (2) only the 2nd
moment of a LS,.p’s orientational distribution, involving at
most five, and with appropriate landscape representation, only
two or three order parameters, contributes to the observation of
anisotropic NMR data.

MEB-ES is essentially a vdwS smoothed by a rolling sphere
that has some remarkable properties associated with the pros
and cons of this approach.

Property 1: The MEB-ES superimposes well with the vdwS in
most cases, except at cavities of comparable size to the solute.
For example, in Fig. 2a and b the MEB-ES (red) is generated over
the same vdwS (purple) with a rygg of 2 and 5 A, respectively.
The MEB-ES and vdwS superimpose well in Fig. 2a, where the
vdws is either convex, concave with small cavities, or concave
with a large cavity capable of fully accommodating the 2 A MEB
(see lower-left side). Note that the quality of superposition is
relative to the MEB size, i.e., deviation much smaller than rygg
is not expected to cause significant error in V.,(a) calculation.
In Fig. 2b, however, a larger MEB of 5 A that is comparable in
size to the lower-left cavity causes pronounced deviation
between the MEB-ES and vdwsS. Such deviation overestimates
Vex(a@) if the solute has high shape anisotropy that allows it to
enter a cavity with certain but not all orientations, which is a
shortcoming of our method. For example, a 2 x 2 x 5 A
ellipsoid (rygs = 5 A) can conceivably enter the lower-left cavity
along its long axis, but such entry is denied by the corres-
ponding MEB-ES (Fig. 2b). Despite this shortcoming, the MEB-
ES is clearly a much more faithful representation of the vdws
than other far oversimplified models such as a cylinder.

Property 2: The MEB-ES is dependent on rygp but not the
shape of the solute. This property is obvious because the MEB-
ES is generated with a rolling sphere. As solute shape is
decoupled from the MEB-ES, the mere dependence on rygg is
relatively easy to cope with. For example, an average MEB-ES
can be parametrized with a database containing solutes of
similar sizes such that variations due to rygg are small. In this
work, our database contains 16 natural products with ryeg
varying from 5.5 to 7.8 A, covering the typical size range of
small molecules. It is also worth noting that the dependence on
rveg is small if the medium surface mostly has either very small
or very large cavities, according to Property 1.

Property 3: The MEB-ES cannot have a concave curvature
higher than rygg . This is because any greater concave curva-
ture on the vdwsS is smoothed to rygp - by the rolling MEB; see
for example Fig. 2c. There is no such restriction for a convex
curvature because rolling the MEB does not change convex
curvatures; see for example Fig. 2d. Property 3 is a specific
example of Property 2 that requires consideration in construct-
ing a consistent model for surface decomposition.

Property 4: Point-to-point (p2p) mapping exists between
MEB-AS and MEB-ES, established through the normal vector
to the MEB-ES. This property provides the basis for using the
MEB-ES for surface decomposition. The p2p mapping is easily
seen for a convex MEB-ES region. As shown in Fig. 3a, a MEB
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placed at a point P, on the MEB-AS must make one and only

one contact Pg with a local convex surface of the MEB-ES. The
— N\

vector PpPa is the normal vector of MEB-ES at Pg. This p2p
correspondence is also obvious in a concave region with a
curvature lower than rygs ‘. However, mapping is not p2p
for a concave curvature equal to rygp . As discussed in
Property 3, any concave curvature higher than rygg ' is
smoothed to rypg ', so this particular curvature can occur
frequently on the MEB-ES. For example, Fig. 3b shows a MEB
of rygp placed at P, contacts a patch of surface on the MEB-ES
of curvature rygp © instead of one point as in the convex case.
The 1-to-co correspondence between MEB-AS and MEB-ES
causes a ‘“division by zero” problem for the numeric method
to be described later. However, this problem is avoidable by
slightly modifying the surface generation process: we first
create a somewhat smoother exclusion surface MEB-ES’ using
a ball of radius ryp that is slightly larger than rygg, and then
generate the associated accessible surface MEB-AS’ by rolling a
ball of radius rygp over MEB-ES’. According to Property 3, any
concave curvature on the MEB-ES’ must be lower than rygg
because ryg > 'mes. Consequently, a p2p mapping between
the MEB-AS’ and MEB-ES’ exists for a ball of rygz. The outcome
of these operations is illustrated in Fig. 3c, in which MEB-AS’
and MEB-ES’ are shown as gray and red meshes, respectively.
Differently from Fig. 3b, now the same MEB only contacts a
single point on the MEB-ES’, establishing the p2p mapping. To
facilitate visualization, Fig. 3c uses a ryp Substantially larger
than rygg (7 vs. 5 A), but any arbitrarily small increment (set to
0.1 A in this work) suffices to avoid the 1-to-co problem.
Therefore, the MEB-ES’ and MEB-AS’ are virtually identical to
those generated with the exact rygp for any meaningful preci-
sion, and we do not make explicit distinction in what follows.

With the gel surface now approximated by the MEB-ES, we
calculate V.,(a) by moving and rotating the solute between the
MEB-AS and MEB-ES. The p2p mapping suggests a polar
sampling method. We can visualize the MEB-AS as a polygonal
mesh, such as the gray mesh displayed in Fig. 2. If the MEB-AS
is approximated with N surface polygons, there will also be N
corresponding local landscapes on the MEB-ES. According to
Property 4, a MEB placed at P, within each polygon unit must
be tangential to a corresponding local landscape at Py (see
Fig. 3a and c). A polar positional sampling scheme can then be
constructed to calculate V.,(a), by moving the MEB center of a
solute of fixed orientation a from P, towards Py along the
normal vector and summing up all overlap-causing positions.
For overlap detection, the vdw boundary of the solute is
generated with the atomic vdw radius obtained by OPLS-AA.*®
If the N local landscapes are further clustered into n LS,.p’s
based on shape similarity, V(@) is approximated by:

n N;
Vex(a) =~ EA,- Z J
=1 =1

+ VMEB_ES

TMEB

. drwi(r){1 — exp[-BU™® (a,a;,7)] }

)
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Fig. 3 Point-to-point mapping between MEB-AS (gray) and MEB-ES (red) (a): a p2p correspondence exists at a convex region; (b): smoothing a high
concave curvature leads to a 1-to-oo correspondence; (c): smoothing the vdwsS in (b) using a slightly larger MEB ensures a p2p correspondence.

The ith LS, occurs N; times on the MEB-ES (obviously
n
> N; = N). Its corresponding MEB-AS polygon has an area of
i=1

A;. One can consider dividing the MEB-AS into unit polygons of
equal area, but this is unnecessary, as it will become evident
that only the percentage area of the i-th LS., over the total
MEB-AS area is relevant. The integration boundary for the one-
dimensional variable r is between P, and Pg along the normal
vector, with 7 being the distance of the MEB center to Pg. w,(r) is
a pure number that dictates positional sampling density along
the normal vector. w,(r) is needed for the polar sampling
method because for a convex surface at Pg, going from Py to
P, is accompanied by spatial expansion, whereas for a concave
surface it is accompanied by spatial contraction. Accordingly,
as r increases, w,(r) should increase in the former case but
decrease in the latter case to ensure uniform spatial sampling.
For example, if the MEB-ES is a cylinder of radius R, w{r)

R+

should scale by R not employing w(r) would over-
MEB

sample positions closer to the cylinder. The exact form of
wy{(r) depends on the shape of the LS., and will be given in
the “Landscape Parametrization” section. The term a; is the
laboratory-frame orientation of the j-th occurrence of the i-th
LSiep. The steric potential U;™ depends on the three-
dimensional structure of the solute, the shape of the i-th
landscape, and their relative orientation and position. Vyep ks
is the volume enclosed by the MEB-ES (red mesh in Fig. 2).
Clearly, eqn (9) approximates the total excluded volume as the
sum of the excluded volume between the MEB-AS and MEB-ES
(evaluated by the sum of integrals) and the volume enclosed by
MEB-ES (Vep gs), which is considered completely inaccessible
to the solute.

In the next step, we consider that the N; occurrences of the
i-th LS., on the MEB-ES follow a laboratory-frame orientational
distribution described by an ODF f;. Of course, such an ODF can
always be defined based on an orientational histogram, regard-
less of whether the nature of the distribution is dynamic as for
a mesogen in the LC or static as for the LS., for a gel. Then
eqn (9) can be equivalently written as:

Voula Z AN, Jd f(am>J;Mmd’ i) (10)

x {1 —exp[—BU™(a,am,7)|} + VnmEB_ES
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To highlight its similarity to eqn (2), we reuse the label a,, here
to represent the laboratory-frame orientation of a LS;.p, which
was earlier used for mesogen orientation in eqn (2) (here we
denote the subscript m as “medium”). The transition from
eqn (9) and (10) is easy to see by realizing that N; f; (an,)da,, is
the number of times that the i-th LS., occurs at orientation ap,.
Like the LC case, we can recast eqn (10) into an alternative form
based on the relative orientation 2 between the solute and
LSrep:
MEB

dr w;(r)
0 (11)

x {1 —exp[—BU™(R,7)]} + Vmes_es

Vex(a) = iAiNinQﬁ(Ra)J

The orientation relation is depicted in Fig. 1 like the LC case,
except that here the blue frame is associated with a LS, in
lieu of a mesogen. Note that in the LC equations, r is a
three-dimensional position vector associated with Cartesian
positional sampling, whereas in eqn (9)-(11) r is a one-
dimensional length associated with polar sampling. Because
A;N; is the subsurface area on the MEB-AS due to the i-th LS.,
and the double integral over £ and r is the average exclusion
length between MEB-AS and MEB-ES, their product corre-
sponds to the excluded volume associated with the i-th LS;cp.
Substituting eqn (11) into eqn (8), performing multipole expan-
sion for fy(a) and f(Ra) on both sides of the equation, and
equating the coefficients of the 2nd order spherical harmonics
leads to the following OTE for the gel, analogous to eqn (6) for
the LC:

4n 2 4n SP;
S5 5 {8n2(V Vr)JdQD’”’"( )

m'==2 i= I

X JFMEBdF wi(r)exp[~pU;! B(Qv")]}

0

(12)

4, , .
Here 1 /?< Yy") . are the order parameters of the i-th LSyep. S is

n
the total surface area of the MEB-AS <S =3 AI»N,«), and P; is
i=1

the percentage of surface area due to the i-th landscape (SP; =
A;N;). Note that the term inside the curly bracket is a pure
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number that connects the solute order parameters to those of
LSrep’s-

We should note here that the order parameters of a LS., are
fundamentally different from those of a LC. First, the LC is in a
dynamic equilibrium with the sample in heat exchange with the
environment and its order parameters are averaged over all
system microstates over time. In contrast, the gel matrix is
treated as a static structure, somewhat resembling a particular
LC microstate with uniaxial mesogen distribution that is frozen
in time. Second, the LC order parameters are naturally defined
because the system contains repeating units, i.e., the mesogens,
whereas the gel landscape order parameters can be defined
only because we artificially create repeating units by represent-
ing certain local surfaces with the same LS. A simple example
is shown in Fig. 4, which shows part of the cross-section of an
elliptic cylindrical MEB-ES (red dashed line), the corresponding
MEB-AS cross-section (gray line), and the MEB (green circle).
Three Po-Pg pairs are selectively displayed, highlighting three
different landscape curvatures and orientations (blue frames
with Z-axis pointing towards the eyes) at Pg. If we represent all
local landscapes on the dashed ellipse with the same LS,
(cross-section shown in red solid line at the three Py’s), we can
then define the order parameters of this LS., based on its
orientational distribution along the elliptic circumference.
Third, a LC is often attributed with axisymmetric order because
its repeating unit (mesogen) has approximate cylindrical sym-
metry. In contrast, a LS., is a local surface which cannot be
assumed to have cylindrical symmetry and consequently axi-
symmetric order cannot be assumed, although a LS., can have
lower symmetry that enables reduced order parameters as
described later. Note that the lack of axial symmetry does not
contradict uniaxial order, which is observed by a constrained
gel with no orientational preference within the laboratory-
frame XY plane.

Fig. 4 Approximation of an elliptic cylinder with a single LS,¢p.
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As previously mentioned in Property 2, in this work we focus
on gel surface parameterization for solutes of similar sizes, due
to the dependence of the MEB-ES on rygg. Accordingly, all

4 !
rves — dependent parameters, namely \/?n< Y5") ., SP;, and Vi,

can be considered identical for all solutes during database
fitting, allowing further simplifications. First, P; can be

4 /
absorbed into 4 /%( Yy >I, because only their product is impor-

tant. As a result, the modified order parameters, still labeled as

4 / . :
?TE( Yy >l. and simply referred to as order parameters in what

follows, reflect both orientational order and relative impor-

tance of each LS, (due to P;). Second, in eqn (12)

S
8> (V = Vi)
can be replaced by the inverse of a normalization factor Z.
Hence a simplified equation is obtained as below:

4 1 & & /4 , R
VE0ms =7 0 3y 5 ) { fomome
m==2 i=1 (13)

X JrMEB dr w(r)exp[—pU (2, 7)]
0

The double integral in the curly bracket is numerically calcu-
lated based on landscape curvatures that are determined
together with landscape order parameters during database
fitting. The LS., curvatures and order parameters can then
be used to predict the order parameters of other solutes of
similar sizes to database compounds. If all data are collected
under identical alignment conditions, the same normalization
factor, Z, applies to all solutes and thereby can be determined
from database fitting. In this work, however, we combine data
collected with both compressed and stretched gels polymerized
at different concentrations and cross-linking ratios to maximize
available data for parametrization. Hence, we are not con-
cerned with predicting the alignment amplitude but only
alignment asymmetry and orientation, which are minimally
affected by polymerization conditions and straining methods.
Accordingly, the normalization factor Z is ignored (by setting Z
to 1 A) during fitting, thus the quality of prediction is evaluated
by the scale-invariant coefficient of determination, 7, instead
of the Q-factor.

An argument could be made that a parametrization with a
single average MEB-ES may become problematic if a wide range
of solute sizes is incorporated in the database because of high
variability in individual MEB-ES’es for compounds of different
sizes. But to what extent this poses an issue also depends on the
medium surface structure. As mentioned, in regard to Property
1, the MEB-ES resembles the actual vdwS regardless of solute
size if the vdwS is predominantly convex or concave with either
very small or very large cavities. Only when the vdwS contains
many medium-sized cavities that are accessible to some but not
other solutes in the database, the MEB-ES becomes critically
dependent on solute size and the validity of applying eqn (13)
to database fitting degrades. Clearly, the susceptibility of the
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method to solute size distribution is closely related to the
shortcoming in approximating the vdwS with the MEB-ES for
a solute of high shape anisotropy as discussed in Property 1.

Finally, the order transfer relationship (eqn (12) and (13)) is
derived based on a static gel, but it is also applicable if the
polymer undergoes slow mainchain motion or fast sidechain
motion, the rate being compared to the rotational and transla-
tional diffusion of the solute. In case of slow mainchain
motion, one can imagine constructing an ensemble of MEB-
ES’es associated with different dynamic states of the gel, which
after surface decomposition still reduce to several LSip’s
and associated order parameters just like a single MEB-ES
(population amplitudes can be absorbed into LS., order para-
meters), although a larger number of LS,.,’s may be necessary
for parametrizing multiple dynamic states. In case of fast
sidechain motion, one can imagine employing a single MEB-ES
to represent the average exclusion surface, to which the
surface decomposition method can be applied without change.
However, our method does not account for intermediate time-
scale motions because they can interfere with solute diffusion
in the interaction zone.

2.3 Liquid crystal without a mesogen model

Surface decomposition can also be applied to a dilute LLC
system in which a suitable mesogen model is unavailable
for direct excluded volume calculation. In this case, the vdwS
of a single mesogen is approximated by a MEB-ES and decom-
posed into an orientational and positional arrangement of
several LS.p’s. eqn (11) can then be used to evaluate the
excluded volume due to one orientationally fixed mesogen.
Next, (Vex(@)) in eqn (5) can be calculated by averaging
eqn (11) over all mesogen orientations in all microstates,
resulting in an equation formally identical to eqn (11) except
that the landscape ODF f; is accounted for over all micro-
states. All subsequent steps are the same as those previously
described in Section 2.2, eventually leading to the same OTE in
eqn (12) and its simplified version in eqn (13) under the
uniform solute size approximation. Consequently, and usefully,
the surface decomposition method provides a unified formal-
ism to parametrize solute alignment in both LCs and gels. It is
interesting to note that two different ODFs can be defined for a
LS;.p on the mesogen surface: besides the ODF f; defined in the

laboratory frame and averaged over all microstates, a second
ODF f; can be defined in the mesogen frame and averaged over
only one mesogen surface. Not surprisingly, the two ODFs
derived for the LS., can be correlated by the ODF of the
mesogen f;,, and consequently the corresponding order para-
meters can be related as well. Additional details can be found in

the ESL.¥

3. Landscape parametrization

Steric interaction between a solute and a LS., is calculated by
numeric integration over r and £ using the polar sampling
strategy. This simulation must proceed on the basis of a
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proposed LS., shape. In this section, we focus on methods to
parametrize three-dimensional surfaces using a minimal set of
shape parameters. These shape parameters all have the dimen-
sion of a curvature, ie., length ™. Like the order parameters,
these shape parameters will also be determined by fitting to an
experimental database.

3.1 Paraboloid landscape

The simple paraboloid as described by eqn (14) can generate
many qualitatively different landscape types (Fig. 5).

y= —%(kxxz +k.2*) (14)

Here, k, and k;, are the principal curvatures at the origin, whose
principal directions are along the Xy, and Zy, axes, respectively.
The origin coincides with Pg on the MEB-ES. The Yy, axis is the
normal vector to the MEB-ES at Pg. By varying the principal
curvatures, various landscapes can be generated, including a
plane (k, = k, = 0), aridge (k, > 0, k, = 0), a valley (k, < 0, k,=0),
a hump (k. > 0, k, > 0), a basin (k. < 0, k, < 0), or a saddle
(ke > 0, k, < 0). Note that a positive or negative ky, is
associated with a convex or concave curvature, respectively.
The ridge and the valley are the convex and concave faces of a
parabolic cylinder, respectively; the hump and the basin are the
convex and concave faces of an elliptic paraboloid, respectively;
the saddle has both convex and concave features and is a face
of a hyperbolic paraboloid—note that both faces of a hyper-
bolic paraboloid are saddle surfaces. It should be further noted
that x> and z> are symmetric in eqn (14), so exchanging the
values of x and z rotates the landscape by 90° but does not
change its shape. Different orientations of a landscape are
accounted for through landscape order parameters as pre-
viously mentioned.

The principal curvature frame (PCF) Xy-Yv—Zy in Fig. 5
corresponds to the blue frame with the same axis labeling in
Fig. 1. The normal vector Yy, is the polar sampling axis. The
location of the solute during simulation is indicated in Fig. 5.
To calculate the double-integral in eqn (13), the solute’s MEB
center is moved between 0 and rygp on the Yy axis with a 0.2 A
step-size while a total of 52 488 solute orientations are sampled
at each positional step by uniformly rotating the solute around
its MEB center. Orientational uniformity is confirmed by
solute order parameters being effectively zero when the steric
interaction potential is omitted in eqn (12). The scaling factor
for positional sampling density, ie., w(r) in eqn (10)-(13)
(the subscript i is omitted here without causing ambiguity), is
given by:

(1 4 kor)(1 + kor)

wir) = (1 4 kyrmes)(1 + kzrmes)

(15)

The term r is the distance of the MEB center to the origin.
According to Property 3, any concave curvature must be lower
than rygs , i.e., the inequality must be satisfied: 1 + ky,"ves >
0. The “division by zero” problem with k,;, = —rygs " is avoided
by generating the MEB-ES using a slightly enlarged MEB as
described in Property 4. This operation is implemented by
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Fig. 5 Paraboloid landscapes. (a) A plane with k, = k, = 0 A~ (b): a ridge with k, = 0.1 A"*and k, = 0 A= (c): avalley with k, = —0.1A"*and k, =0 A1 (d): a
hump with k, = 0.1 A" and k, = 0.1 A= (e): a basin with k, = —0.1 A"t and k, = —0.1 A=* (f): a saddle with k, = 0.1 A"t and k, = —0.1 A=%. A molecule of
caulamidine A is displayed to show the solute location during the polar sampling simulation.

constraining 1 + ky./meg > 0 during database fitting. For
example, the minimization process automatically flattens a
high curvature valley of k, = —0.150 A™* to —0.099 A™* for a
solute of ryps = 10 A (which is enlarged by 0.1 A to a rygg of
10.1 A thus leading to the highest possible concave curvature of
—0.099 A™', as described in Property 4), but no flattening is
performed for a solute of rygs = 5 A. By doing so, different
LScp's can be generated in accordance with solute size when
needed. Although there is no direct restriction on a positive
(convex) curvature (Property 3), the highest realistic curvature is
one generated by a hydrogen atom of the medium. Therefore,
besides 1 + ky.rmgs > 0, we also require k,, < 0.83 At
corresponding to a hydrogen vdw radius of 1.2 A.

Because a paraboloid has no cylindrical symmetry unless
k. = k., the orientational ordering is generally not axisymmetric.
However, a paraboloid has at least two reflection planes of
symmetry, namely the Xy-Yy and Zy-Yy plane, which also
allows order parameter reduction. For a paraboloid residing on
an achiral or atactic medium, the orientational principal axis
frame (PAF) must coincide with its PCF (the orthogonal frame
formed by two principal directions of curvature and the normal
vector). This is because a paraboloid with an orientation
defined by (Oy, ) (Fig. 1) has an equal probability of adopting
three other orientations, namely (1 — Oy, M), (Om, T — @u), and
(m — Onp, T — @), associated with simultaneous reflection of the
entire medium and the director about the Xy~Yy; and/or Zy—Yy
planes. Straightforward calculation based on eqn (7) shows that
this 4-fold equivalency nullifies the off-diagonal Saupe ele-
ments: Sy, Sy, and S, iLe., the Saupe ordering matrix is
diagonalized in the PCF. As a result, only two diagonal elements
are needed to depict the ordering of a paraboloid: S,, and S, (as
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the Saupe ordering matrix is traceless, S, is a dependent
parameter).

In terms of parameter fitting, solute ordering by a para-
boloid landscape can be parametrized with four variables,
including two curvatures: k. and k,, and two landscape ordering
matrix parameters: Sﬁy and SZ, (the superscript L indicates the
parameters are related to a LS., but not a solute). Hence
n Lep's requires 4n variables. But since we are not concerned
with absolute alignment amplitude, we can fix the SZ, of the
first landscape to 1 and optimize its Sjy and all order para-
meters in a relative sense, leading to a total of 4n — 1 variables
for n Lyep's.

3.2 Twisted paraboloid landscape

Due to the reflection symmetry of a paraboloid, surface decom-
position solely based on paraboloid landscapes is not expected
to fully describe solute alignment in a chiral medium. In fact,
even an achiral molecule with conformational flexibility gen-
erally lacks internal reflection symmetry. Note that being
achiral only means that the molecule has two equally probable
conformations related by mirror reflection, but neither con-
formation itself necessarily has internal reflection symmetry.>”
For example, if the exchange between the two conformers is
hindered, the two conformers become atropisomers. Consider-
ing the restricted mobility in a cross-linked gel matrix, even an
achiral gel can therefore have local structural asymmetry
despite global reflection symmetry. Of course, such asymmetry
is even more expected for an atactic medium which has local
chemical chirality. To take local structural asymmetry into
account in a most simple fashion, we consider a twisted
paraboloid by adding a twist curvature to eqn (14), as described

Phys. Chem. Chem. Phys., 2022, 24, 20164-20182 | 20173



Published on 11 August 2022. Downloaded on 9/24/2022 7:25:29 PM.

PCCP

by the following parametric equation:

X cos(k,z’) —sin(k,z’) 0 x
1,
y | = | sinkiz) cos(kiZ) 0 Y+ k! +§kzzz
z 0 0 1 S
0
— | k! +1k-z’2
X 2 y4
0

(16)

Here, (x/, ¥', 2') is a point on a paraboloid as described by
eqn (14). Twisting is generated by rotating the parabolic cross-
sections at different layers along the Zy, axis by a phase of k2’

. . 1.
around a vertical axis located at x’ =0 and y = —k, ' — Ek"z 2,

The twist curvature, k;, describes how rapidly a cross-section
twists along the Zy axis, with k, = 0 indicating no twisting, in
which case the landscape reduces to a regular paraboloid as in
Fig. 5. At different Z layers, both the amount of rotation and the
rotation axis are different, because they are dependent on 2’
(note that 2’ = z in eqn (16)). Some representative landscapes
generated by eqn (16) are displayed in Fig. 6. In each landscape,
seven parabolic cross-sections along Zy, are marked in dark red,
and the parabolic vertex at each layer is traced by a cyan curve
to facilitate visualization. Fig. 6a—e were generated by twisting
the ridge, valley, hump, basin, and saddle shown in Fig. 5b-f,
respectively, by a twist curvature k, of 0.05 A~'. Note that
twisting along Zy; destroys the equivalence between X,; and
Zyy axes, i.e., exchanging the x and z values in eqn (16) leads to
a different shape, unlike the paraboloid case. For example,
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twisting a saddle with k, < 0, k, > 0 or a saddle with &, > 0,
k, < 0 leads to qualitatively different landscapes, as shown in
Fig. 6e and f, respectively (corresponding comparisons for other
landscape types are not shown).

An important consideration in parametrizing an asymmetric
landscape is that Property 3 must be satisfied to ensure the
generated landscape is a valid local surface on the MEB-ES.
In the ESI,} we show that a landscape created with eqn (16) has
principal curvatures of k, and &, at the origin, regardless of k.
Furthermore, like the regular paraboloid, the normal vector is the
Ym axis and the principal directions are the Xy, and Zy; axes at the
origin. Therefore, the same curvature constraint as in the regular
paraboloid case, i.e., 1 + ky,/mes > 0, ensures the resulting twisted
paraboloid is a valid local surface on the MEB-ES.

Twisting “handedness” is dictated by the sign of k. All
landscapes in Fig. 6 were created with k, = 0.05 A~'. Their
enantiomers can be created with k, = —0.05 A™* (figures not
shown). For a chiral medium, twisted paraboloids generated by
eqn (16) with the correct sign of k, can reasonably be employed
as LS,.p’s. For an achiral or atactic medium, the left- and right-
handed landscapes are both present and must occur with equal
probability, in which case eqn (13) should be expanded accord-
ing to landscape handedness:

S0mi~ 4 35 |50, {Jaeni @

m'==-2 i=1 e=R,S

[ senten]- )
0

17)

Each LS., can be either left- or right-handed, indicated by the
subscript e. Opposite enantiomers interact differently with a

(d)

Fig. 6 Twisted paraboloid landscapes. (a): a twisted ridge with k, = 0.1 A% k, = 0 A, and k. = 0.05 A~* (b): a twisted valley with k, = —0.1 A7, k, = 0 A~?
and k; = 0.05 A1 (c): a twisted hump with k, = 0.1 A~ k, = 0.1 A~%, and k, = 0.05 A=* (d): a twisted basin with k, = —0.1A~% k, = —0.1 A% and k, = 0.05 A~*
(e): a twisted saddle with k, = 0.1 A~ k, = —0.1 A7%, and k. = 0.05 A~ (f): a twisted saddle with k, = —0.1 A™%, k, = 0.1 A~ and k, = 0.05 A~L,
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chiral solute, described by steric potential U® (e = R or S).
Previously we have shown that for a regular paraboloid, the
ordering PAF coincides with its PCF. A twisted paraboloid is
somewhat different, namely, the normal vector Yy is still an
ordering principal axis but the principal curvature directions
Xu and Zy; are not necessarily so. Like the paraboloid, four
orientations of equal probability exist for any frame residing on
an achiral or atactic medium surface, namely (On,@m),(T —
vy om)y (Ov, T — @), and (T — Oy, m — @u). Of these, (On,om)
and (m — Op,m — @M) are associated with one landscape, while
(m — Om,nm) and (Oy,m — @) are associated with its enantio-
mer. Straightforward calculation shows that the order para-
meters (Y,™"?); z;s have zero imaginary part, which leads to
S5 = 551% = 0, i.e., the normal vector Yy, is an ordering principal
axis for both left- and right-handed landscapes. In contrast,
SRS may not be zero, suggesting Xy; and Zy; are not necessarily
ordering principal axes, although the sum of S%, and S%, is zero.
Calculation also shows that the Saupe ordering matrices of left-
and right-handed landscapes have identical diagonal elements:
SR =85, 8K =55, and SX = S5,. Based on these relations, the Saupe

XXy Lyy Yy
ordering matrix for a twisted paraboloid can be parametrized by:

L L
~SL—SL 0 0

M8 = Ry(+/ — bs)

(e}

SLo0 (18)

0 0 St

where 1/2;(4- / — Bg) is a rotation operator about the Y-axis by an
angle of +fs and —fs for left- and right-handed landscapes,
respectively (s is between 0 and «t). The Saupe ordering matrix
can be easily converted to spherical harmonic order parameters
using the reverse relationships in eqn (7).

In terms of parameter fitting, three curvatures, namely &, k,,
and k, and three parameters related to the Saupe ordering
matrix, namely S%, Sﬁy, and fs, need to be determined for each
LS;cp of the twisted paraboloid type. For an achiral or atactic
medium, contribution from opposite handedness is calculated
by simultaneously inverting the signs of k and fis and combined
using eqn (17). For a chiral alignment medium (not studied
here), only the correct handedness should be chosen for
calculation by eqn (13). For n different LS,.p’s, 6n — 1 para-
meters need determination after fixing the S, of the first LS,
(or the first enantiomeric pair of LS,cp’s in case of an achiral or
atactic medium) to 1.

4. Parameter optimization by database
fitting

Since the solute order parameters to be predicted are parame-
trized as functions of shape and order parameters of a series of
representative landscapes, the prediction accuracy critically
depends on obtaining reliable landscape parameters. In this
section we describe the computational workflow that yields the
optimal curvatures and order parameters of representative
landscapes using an experimental database.
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Landscape curvatures and order parameters are optimized
by the Nelder-Meade (N-M) simplex method®® that minimizes
the differences between predicted NMR data and those in an
experimental database. Only rigid molecules are included in
the database; including flexible molecules would require opti-
mizing the geometries of major conformational states and
calculating their Boltzmann populations, which would add
unnecessary uncertainty to parameter optimization. Of course,
parameters optimized from rigid molecules can later be used to
predict alignment of flexible molecules. We will follow up on
this topic in a separate communication. Importantly, all experi-
mental data should be measured with the same type of align-
ment medium. For example, RDCs collected in poly-methyl
methacrylate (PMMA) gels and poly-hydroxyethylmethacrylate
(poly-HEMA) gels should not be mixed in the same database,
because they correspond to different landscape parameters. In
this study we only utilize data collected in PMMA gels. We
include data collected with different PMMA concentrations and
cross-linking ratios because these factors only influence align-
ment amplitude but not alignment asymmetry and
orientation.”® We also include data from both stretched and
compressed gels because different straining methods yield data
that are simply correlated through a scaling factor.”"*° Data
from compressed gels are sign inverted for compatibility with
data from stretched gels. We included RDC and/or RCSA data
based on availability.

Fig. 7 summarizes the key steps in the optimization of LS.,
shape and order parameters. First, the number of LS,.;’s to use
for surface decomposition must be specified. Obviously, using
too few LS,.,’s may not adequately depict complex surface
features exhibited by the medium, while using too many LS.p’s
not only consumes excessive computational resources but also
increases the risk of over-parametrization. Therefore, we start
with only one LS., whose Saupe order matrix and curvatures
are randomly initiated, except that its S, is set to 1. Inside the
N-M simplex block (dotted green box in Fig. 7), a series of
automated steps are undertaken to maximize the agreement of
predicted data with experimental data by varying landscape
curvatures and order parameters. When the minimization is
completed, a set of optimized order parameters and curvatures
are obtained for the 1st LS. To sufficiently sample the
minimization surface, the simplex block is independently
executed 400 times, each time with a random set of initial
values for order parameters and curvatures. Results from the
best run, ie., the run that yields the highest agreement with
experimental data, are accepted for the final optimal para-
meters. Next, we repeat the same process but with two LSp’s.
All parameters are optimized by 400 independent executions of
the simplex block, each time initializing the parameters for the
1st LS., using values optimized in the first round but randomly
initializing parameters for the 2nd LS. Results from the best
of the 400 runs are accepted. If including the 2nd LS.,
significantly improves agreement with experimental values, a
new round with three LS,.;’s is performed. This process con-
tinues iteratively, each time conducting 400 all-parameter
minimizations after initializing existing LS,c,’s with optimized
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Fig. 7 Flow chart to determine landscape parameters by simplex minimization.

values from the previous round and randomly initializing the
newly added LS;.p, until the improvement in agreement from
adding a new LS, becomes insignificant. To evaluate the
likelihood of over-fitting as the number of LS,., increases, the
entire process described above is cross validated by using a
subset of data for parameter optimization and the remaining
data for testing.

Steps inside the dotted simplex block are mostly based on
descriptions in the theory section. First, initial values of land-
scape curvatures (k, and k, for a paraboloid, or k,, k,, and k, for a
twisted paraboloid) and Saupe ordering matrix parameters
(Sfy and S, for a paraboloid, or SJL,y, SL, and fs for a twisted
paraboloid) are assigned for each L., as previously described.
Next, the Saupe ordering matrix is converted to spherical
harmonic order parameters using the reverse relationships in
eqn (7). In an independent process, the double-integral in
eqn (13) is numerically calculated with the polar sampling
method, based on landscapes generated with the initially
assigned curvatures. Note that prior to this calculation, concave
curvatures may need to be adjusted to satisfy Property 3.
Calculating the double-integral is the rate-limiting step in the
workflow, which involves a four-dimensional integration (three
orientational dimensions and one positional dimension). Next,
solute order parameters are calculated using eqn (13) (the
normalization factor Z is set to 1 A as previously described) if
paraboloid-type landscapes are used, or eqn (17) if enantio-
meric pairs of twisted paraboloid landscapes are used. After
this step, RDCs and RCSAs can be predicted either directly from
the spherical harmonic order parameters, or from Saupe order-
ing matrices after conversion by eqn (7). Agreement between
predictions and experimental values is evaluated by the coeffi-
cient of determination 7> based on a single regressor y = fix, in
which x and y are the predicted and experimental values,
respectively. No y-intercept is allowed because the regression
line between predicted and measured data is expected to pass
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through the origin. Coefficients of determination from all
solutes in the database are multiplied together and sign
inverted, labeled as — []r?, which is used as the minimization
target to achieve best overall prediction. Landscape order
parameters and curvatures are reassigned by the N-W simplex
method after each iteration to minimize — []r>. The updated
parameters then enter the next iteration until a convergence
criterion is met that indicates — [] 7> has reached a minimum.

Finally, we note that arbitrarily setting SE, of the first LS;ep to
1 seemingly causes an issue when a negative S, is called for.
However, because r> does not differentiate positively vs.
negatively correlated agreement owing to the sign flexibility of
the slope (f) in the single regressor, setting the wrong sign for
the first S,, will simply strengthen a negative correlation after
simplex minimization. Hence, a few extra steps after each
round of 400 runs are undertaken (dashed orange block in
Fig. 7), which employ the Pearson’s R (R;,) to determine the sign
of correlation. If a positive R, is seen for all solutes, the
optimized Saupe ordering matrices are kept as they are as the
final parameters regarding the given number of LS;.,’s. How-
ever, if a negative Ry, is seen for all solutes, the signs of all Saupe
ordering matrix elements should be inverted for the final
record. Note that R, should be either all positive or all negative
among different compounds. Presence of both positive and
negative signs would indicate either method failure or incon-
sistency in the database, e.g., combing data from compressed
gels without sign inversion with data from stretched gels can
cause mixed signs of Ry,

5. Results and discussion

The surface decomposition method was tested on an experi-
mental database including RDC and/or RCSA data of 16 natural
products of various structural complexity, including strychnine
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(1), estrone (2), retrorsine (3), aquatolide (4), caulamidine
A (5), 10-epi-8-deoxycumambrin B (6),"° mefloquine (7),*°
menthol (8),*° ludartin (9),"" parthenolide (10), yohimbine
(11),** santonin (12),** sesquiterpenoid-13 (13),** artemisinin
(14),"> 19-OH-eburnamonine (15),*® and eburnamonine (16).*>
Most of these compounds are highly rigid with a single pre-
dominant conformation. Retrorsine has three low energy rota-
mers regarding the hydroxymethyl group, but because the
major rotamer constitutes over 90% of the population in
chloroform and all three rotamers have very similar global
geometries, only the major rotamer was considered during data
fitting. All data were measured in PMMA gels cross-linked with
ethylene glycol dimethacrylate (EGDMA). RDC and/or RCSA
data for most compounds are taken from existing publications,
and data for 2, 3, 4, 5, and 10 were collected during this study
and are listed in the ESL.{

Prediction methods based on surface decomposition are
referred to as either Pi or TPi, where P or TP indicates a
paraboloid landscape or a twisted paraboloid landscape,
respectively, and the number i denotes the number of LS,¢,’s
employed. For example, P2 stands for a method using two
paraboloid landscapes. Because the PMMA gel is atactic, the TP
model engages pairs of landscape enantiomers. For example,
TP3 represents a method using three enantiomeric pairs of
twisted paraboloids. For comparison, we also examined predic-
tions based on the simple cylindrical medium model, included
in Table 1 as “cylinder”. The cylinder radius is the only
adjustable parameter in this model. The plane model was not
explicitly considered because it represents a special case of the
cylinder model, ie., a cylinder with an infinite radius, and
therefore is accessible by the cylinder model through simplex
minimization. Landscape curvatures and order parameters in P
and TP models, or the cylinder radius in the cylinder model,
are optimized as described in Section 4. The final prediction
results and optimized landscape parameters are summarized in
Table 1.

Although a crude approximation, the cylinder model coupled
with axisymmetric order predicts reasonably well—many com-
pounds display 7> above 0.8 and all compounds have positive and
significant R;, correlations (Table 1). Simplex minimization con-
verges to a high cylindrical curvature of 0.827 A~* (corresponding
to a radius of 1.21 A), thus favoring a thin rod model over a plane
model, as expected for a PMMA polymer. However, as shown in
Fig. 8a (blue curve), r* is not very consistent among different
compounds, displaying some outliers significantly below average,
such as 2 (+* = 0.64) and 5 (r* = 0.43).

Next, we evaluated different P models, starting with P1 and
increasing the LS., number by one at a time up to P6. With
only one LS., P1 already achieves significantly better agree-
ment with experimental data than the cylinder model, improv-
ing ] r* from 0.06 to 0.23. As shown in Fig. 8a (orange vs. blue),
r? is greatly improved for compounds that are poorly predicted
by the cylinder model (see 1, 2, 3, and 5 for example), although
degraded r” is seen for 12. The agreement consistency is also
greatly improved, with 7> falling in a narrower range of 0.8-1.0
for all sixteen compounds (orange curve). The improvement in
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both quality and consistency of agreement is owing to two
additional fitting parameters, one associated with local surface
curvature on an orthogonal direction, namely, k., and the other
associated with order asymmetry of the medium, namely, Sy,
(note that the cylinder model assumes an axisymmetric order).
Not surprisingly, fitting with increased numbers of LS.;,’s from
P1 to P6, which adds two curvature parameters and two order
parameters with each LS., increment, boosts overall agree-
ment progressively. As clearly shown in Fig. 8b (green vs.
orange), P6 displays substantially better agreement over P1
in terms of both quality and consistency. Correlation plots of
P6-predicted vs. experimental RDCs (red) and/or RCSAs (blue)
for all sixteen compounds are shown in Fig. 9.

We further performed F-tests to evaluate whether the
improved fitting by employing more LS..p’s is statistically
significant. The degree of freedom (DF) is calculated as 80
(5 x 16) minus the number of parameters in each model, giving
79, 77,73, 69, 65, 61, and 57 for the cylinder and P1-P6 models,
respectively. Note that DF calculation is not based on the total
number of datapoints, which is 283 for all 16 compounds, but
5m, with m being the number of compounds present (m = 16).
This is because data in the same compound are not indepen-
dent variables but interconnected through the 5 solute order
parameters, ie., if the 5 order parameters are known, all data
can be determined based on the fixed 3D geometry such that
each compound can have at most 5 degrees of freedom. Based
on this reasoning, the sum of squared errors (SSE) is calculated
as the sum of average squared errors of each compound in
order to give equal weightings to all compounds, which yields
673.1, 592.1, 481.0, 389.0, 359.0, 324.2, and 296.9 Hz? for the
cylinder and P1-P6 models, respectively. Based on this statis-
tical setup, the resulting P-value between the simpler model
and the next model is 0.007 for cylinder vs. P1, 0.004 for P1 vs.
P2, 0.005 for P2 vs. P3, 0.258 for P3 vs. P4, 0.178 for P4 vs. P5,
and 0.277 for P5 vs. P6. The very small P-values from the
cylinder model up to P3 clearly justifies the usage of more
complex models. Starting from P4, however, the statistical
significance of adding additional fitting parameters drops,
indicating potential over-parametrization.

To further assess the likelihood of over-parametrization, we
next cross-validated the prediction accuracy by omitting the
experimental data of 2 and 5 from the landscape parameter
training set, reserving these data for testing the trained para-
meters. Compounds 2 and 5 are chosen as challenging cases
since they are poorly predicted by the cylinder model. Fig. 10
shows the rge.” of 2 (blue) and 5 (orange) and the geometric
mean r” of the remaining fourteen training compounds ((r*),
gray). The cylinder and P1-P6 models are evaluated for cross
validation purposes. Prediction accuracy as reflected by reee”
clearly improves from the cylinder model to P3, although P2
yielded lower accuracy than P1 possibly due to instabilities
from insufficient fitting parameters. From P4 to P6, prediction
accuracy gradually degrades presumably because of over-
parametrization, which is consistent with the F-test results,
but the degradation is modest. The (r?) for the training set
increases monotonically with more sophisticated models as
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Table 1 Prediction results and optimized landscape parameters by different methods
Compound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rues (A) 6.9 7.2 6.5 7.0 6.5 5.8 7.1 5.9 5.5 6.0 6.0 7.8 5.9 5.9 6.9 7.2
Cylinder R, 086 080 087 096 066 094 098 097 098 092 098 097 099 099 092 0094
r 075 064 075 092 0.43 0.88 096 094 095 0.85 0.96 0.93 099 098 0.85 0.88
[17*=0.06
ke =0.827 A%, SL = 1.000
P1 R, 096 090 092 095 094 093 099 097 097 094 097 091 099 099 097 100
r 092 080 084 090 0.88 0.87 097 094 094 0.89 0.94 0.83 098 098 094 0.99
[17*=0.23
LSyep #1: ke = 0.347 A™", k, = 0.580 A™", SI; = —1.000, S}, = —0.043
P2 R, 097 094 097 096 093 094 099 097 098 096 096 092 099 099 097 098
r 093 088 093 091 0.86 0.89 098 094 095 092 0.93 0.84 099 098 093 0.97
[17*=0.30 . )
LSyep #1: ke = 0.265 A7, k, = 0.697 A", SZ, = —1.000, Sy, = 0.185
LSpep #2: ke = 0.827 A, k, = 0.821 A™", S, = —0.119, S, = —0.287
P3 R, 098 097 096 096 094 095 099 098 098 098 098 094 099 098 097 0.99
r 096 093 092 093 0.89 091 099 096 096 096 0.96 0.88 099 096 095 0.98
[17*=0.40
LSyep #1: ke = 0.155 A%, k, = 0.679 A™', SL, = —1.000, S}, = 0.230
LSpep #2: ke = 0.827 A, k, = 0.821 A", S, = —0.127, Sy, = —0.198
LSyep #3: k. = 0.830 A™", k, = 0.039 A™", S, = —0.246, Sy, = —0.090
P4 R, 098 097 095 096 095 097 100 098 098 098 098 095 099 097 098 099
r 097 094 090 092 0.90 0.94 099 097 096 096 0.95 091 098 095 095 0.97
[17*=0.43 . .
LSyep #1: ke = 0.154 A™", k, = 0.682 A™", SL, = —1.000, Sy, = 0.123
LSyep #2: ke = 0.827 A, k, = 0.825 A", S, = —0.130, Sy, = —0.189
LSrep #3: ke = 0.829 A, k, = 0.040 A™", SE, = —0.246, Sy, = —0.090
LSyep #4: ke = 0.648 A™", k, = 0.290 A™", S, = —0.258, Sy, = 0.112
P5 R, 098 097 097 097 096 097 100 098 098 099 098 095 099 098 098 099
r 096 095 095 093 091 0.94 099 097 096 097 0.96 091 099 095 096 0.97
[17*=0.48 . )
LSyep #1: ke = 0.155 A™", k, = 0.682 A™", SI, = —1.000, Sy, = 0.123
LSpep #2: ke = 0.775 A, k, = 0.823 A", S, = —0.034, Sy, = —0.190
LSrep #3: ke = 0.823 A, k, = 0.040 A", SL, = —0.246, Sy, = —0.090
LSyep #4: ke = 0.652 A™", k, = 0.260 A™", S, = —0.262, Sy, = 0.112
LSyep #5: ke = 0.710 A™', k, = 0.827 A™", SI, = 0.182, Sy, = 0.004
P6 R, 097 098 098 097 096 098 1.00 099 098 099 098 096 099 098 098 098
r 095 096 096 094 092 0.96 099 097 096 097 0.96 0.92 098 095 096 0.96
[17*=0.50 . .
LSyep #1: ke = 0.154 A7, k, = 0.682 A™', SZ; = —1.000, Sy, = 0.126
LSyep #2: ke = 0.780 A™", k, = 0.825 A™", S%, = —0.039, Sy, = —0.186
LSpep #3: ke = 0.821 A, k, = 0.042 A™", S, = —0.249, S}, = —0.083
LSrep #4: ke = 0.652 A, k, = 0.260 A", S, = —0.307, Sy, = 0.120
LSpep #5: ke = 0.717 A", k, = 0.827 A7, S%, = 0.169, Sy, = 0.003
LSyep #6: k. = 0.382 A™", k, = 0.400 A™", S}, = 0.137, Sy, = —0.019
TP1 R, 095 089 094 097 096 094 098 098 096 096 096 094 099 099 098 0.9
r 091 079 089 094 0.92 0.88 097 095 093 092 0.93 0.88 097 097 096 0.98
[17*=0.27
LS,ep enantiomer pair #1: k. = 0.113 A™", k, = 0.712 A™", k, = £0.188 A™", SL, = —1.000, S}, = —0.022, fs = £0.727
TP2 Ry, 097 095 097 097 092 093 099 097 098 097 097 094 100 099 097 098
r 094 091 093 093 0.85 0.87 098 094 095 093 0.94 0.88 0.99 097 094 0.97
[17*=0.32
LS,ep enantiomer pair #1: k, = 0.269 1}*1, k, =0.542 1}*1, k, = £0.210 A;l, S%, = —1.000, Sy, = 0.185, fs = £0.270
LS,ep enantiomer pair #2: k, = 0.775 A™', k, = 0.826 A™", k, = F0.013 A™", %, = —0.422, Sy, = —0.285, f5 = £0.206
TP3 R, 098 097 096 096 095 095 099 098 098 098 098 094 099 098 098 0.9
r 096 094 091 093 090 091 099 096 096 097 0.96 0.88 099 096 095 0.98
[17*=0.41
LS,p enantiomer pair #1: k. = 0.155 1}*1, k, = 0.682 1}*1, k, = £0.000 1}*1, Sz, = —1.000, Sy, = 0.231, fs = £3.126
LS,ep enantiomer pair #2: k, = 0.822 1}*1, k, = 0.824 ,:(1, k, = 40.002 1}*1, 8%, = —0.126, Sy, = —0.197, fs = £0.173
LS,ep enantiomer pair #3: k. = 0.830 A", k, = 0.039 A", k, = £0.000 A™", SL, = —0.248, Sy, = —0.091, f5 = £0.004
TP4 R 097 097 1.00 097 095 0.97 1.00 097 098 098 0.99 094 099 098 097 0.99

rf 0.94 0.94 0.99 0.93 0.90 0.95 0.99 0.94 0.96

[17*=0.44

LSyep enantiomer pair #1: k. = 0.153 A", k, = 0.639 A, k, = £0.070 A", S%, =
LSyep €nantiomer pair #2: k. = 0.826 A™*, k, = 0.824 A", k, = £0.014 A", S%, =
LSyep €nantiomer pair #3: k. = 0.827 A, k, = 0.037 A", k, = £0.040 A", S%, =
LSep enantiomer pair #4: k. = 0.650 A™", k, = 0.239 A", k, = £0.070 A™", S, =
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0.97 0.97 0.88 0.98 0.95 0.94 0.97

—1.000, Sy, = 0.128, fs = +0.052
—0.132, Sy, = —0.190, fs = £1.559
—0.430, Sy, = —0.090, fs = £0.431
—0.255, Sy, = 0.112, fs = £0.004
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compounds based on the cylinder, P1, and P6 models; (b): Overall congruence for all sixteen compounds as reflected by Hr2 from using prediction

models of increasing levels of parametrization.

expected and appears to reach a plateau after P4. These results
suggest that P3 is the most suitable model for the fourteen
training compounds because rgc.> and (r*) are both high and
similar.

To take local chirality of PMMA into account, we also
evaluated four TP-based models: TP1-4. TPi is expected to yield
higher agreement with experimental data than the corres-
ponding Pi, because it contains two additional fitting para-
meters for each LS., employed, namely a twist curvature k.
(eqn (16)) and an Euler angle fis (eqn (18)). The improvement is
observed as expected but tends to be moderate, especially when
more than two LS,.,’s are employed, e.g., [] r* increases from
0.23 in P1 to 0.27 in TP1, from 0.30 in P2 to 0.32 in TP2, from
0.40 in P3 to 0.41 in TP3, and from 0.43 in P4 to 0.44 in TP4
(Table 1). It is also clear from Table 1 that as larger numbers of
LS.p’'s are used, the twist curvature optimizes to very small
numbers for all LS,.,’s, which suggests that several regular
paraboloid-type landscapes are adequate surface descriptors
for the PMMA gel. The lack of benefit from introducing surface
chirality is clearly shown by F-tests as well, with P-values of
0.057 for TP1 vs. P2, 0.510 for TP2 vs. P2, 0.985 for TP3 vs. P3,
and 0.568 for TP4 vs. P4. This result is presumably because the
stereocenters on an atactic PMMA polymer have random chir-
ality and therefore cannot combine constructively to form a
local surface of significant asymmetry.

It is worth noting that for all Pi and TPi models, fixing the S%, of
the first LS, to 1 during simplex optimization yielded negative
Ry’s for all compounds, which indicates that a negative sign
should be assigned to this S%. As previously mentioned, assigning
a wrong sign to the first S%, does not cause any issue when [] 7 is
used as the target of minimization. However, all S, and S;, values
should be sign flipped after simplex optimization to effect a
positive correlation between predicted and measured data. For
this reason, Table 1 only reports the sign inverted Saupe ordering
parameters that yield positive Ry’s for all compounds.

Landscape curvatures determined from simplex minimiza-
tion can provide insight into gel surface structure. Notably, only

This journal is © the Owner Societies 2022

positive curvatures are obtained after minimization (Table 1),
suggesting that the MEB-ES associated with the PMMA gel
surface is dominated by convex landscapes. Based on curva-
tures from different Pi models, the MEB-ES appears to contain
two general types of landscapes. One type is a nearly sym-
metrical hump (Fig. 5d) with high curvatures on both X and Z
directions, such as LS., #2 in P2-P6 (see Table 1). The other
type is a highly asymmetric hump with a high curvature on one
direction and a low curvature on the other direction, visually
resembling a ridge (Fig. 5b), such as LS., #1 and #3 in P3-P6.
P1 contains only one LS., with intermediate curvatures, likely
due to the need to satisfy both landscape types with limited
parameters, but as more LS..;’s are employed for surface
decomposition, the segregation into hump-like and ridge-like
landscapes becomes clearer. In the context of PMMA polymer
structure, it is tempting to speculate that the hump-like land-
scape is related to a bulging side group such as the methyl or
methyl ester, whereas the ridge-like landscape is related to the
main polymer chain. The lack of concave representatives in the
optimized LS,p’s is likely because the solute molecules in the
database are large in comparison to the gel surface cavities
such that concave surfaces are poorly accessible (compare
Fig. 2a and b). No correlation is observed between rygg and
r> (Table 1), ie.,, the agreement between prediction and
measurement is independent of solute size, which is also
consistent with a predominantly convex MEB-ES (Property 1).
Finally, we should emphasize that the surface decomposi-
tion method uses medium structural descriptors as fitting
variables to reproduce solute anisotropic NMR data based on
a steric interaction model. It is not expected to achieve the
same level of agreement with experimental data as other fitting
methods that directly parametrize solute order parameters, in
particular, the SVD method. However, SVD cannot make use
of commonalities in a compound database but only ensures
the best agreement for each individual compound, whereas the
surface decomposition method simultaneously achieves the
best overall agreement for all compounds in the database using
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Fig. 9 Correlation between P6-predicted (Y) and measured (X) RDCs (red) and RCSAs (blue). The predicted data are rescaled into approximately the
same range as the experimental data by a factor of (€Xpmax — €XPmin)/(Predmax — Predmin) to facilitate inspection.

medium parameters as common fitting variables. From a data
fitting standpoint, the surface decomposition method utilizes
fitting variables more efficiently than SVD or other methods
that directly parametrize solute order parameters. For example,
parametrizing solute order parameters directly requires Mm
fitting variables for m molecule, where M is 1, 3, or 5 depending
on the molecular symmetry.*”*° In the general case of an
anisotropic molecular structure, 5m fitting variables are
needed, or if the alignment amplitude is not considered as in
this work, 4m fitting variables depicting alignment asymmetry
and orientation are needed. In contrast, if the paraboloid
medium model of the surface decomposition method is

20180 | Phys. Chem. Chem. Phys., 2022, 24, 20164-20182

adopted, 4n — 1 fitting variables are required (vide supra),
where 7 is the number of LS,.;’s. When a database containing
a significant number of compounds is available, 4n can be
much smaller than 4m (in this work n < 6 while m = 16) such
that surface decomposition allows dramatic variable reduction.
Perhaps the most interesting application of surface decomposi-
tion is to differentiate structural candidates of flexible com-
pounds. The challenge with analysing a flexible molecule of
m conformations is somewhat analogous to simultaneously
fitting m compounds in a database, but even greater than
fitting a database because only one set of NMR data represen-
ting the average of m conformations are experimentally

This journal is © the Owner Societies 2022
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Fig. 10 Cross validation of prediction accuracy by the cylinder and P1-P6
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available. With medium parameters determined from a suffi-
cient database of rigid compounds, the surface decomposition
method can potentially allow flexible structural differentiation
without employing any fitting variables, which can either
complement SVD-based methods®*™> as an independent
means of verification or provide analyses when SVD-based
methods are inapplicable (vide supra).

6. Conclusion

In this study we proposed an alignment prediction method for
sterically ordered compounds. This method does not require a
global structural model for the alignment medium. It works
by decomposing the alignment medium surface into simple
elemental landscapes, whose shapes and orientations are
parametrized by surface curvatures and order parameters,
respectively. An order transfer equation was developed to con-
nect these landscape parameters to the order parameters of the
solute, which therefore allowed prediction of anisotropic NMR
data. The landscape parameters, ie., curvatures and order
parameters, determined by fitting predictions to an experi-
mental database can be used to predict the alignment of an
arbitrary compound of interest. The surface decomposition
method represents a general approach to predict steric align-
ment because it can handle a wide variety of surface landscapes
and arbitrary medium symmetry. The idealized medium
models, such as the cylinder and disc models of axisymmetric
order as commonly adopted for dilute LLC media, are special
cases, which the surface decomposition method can reduce to
under simplified conditions. Not surprisingly, for the structu-
rally complex PMMA gel, the surface decomposition method
achieves greatly improved agreement between predictions and
experimental measurements. Importantly, this method is not
prone to over-parametrization and predicts alignment signifi-
cantly more accurately than the cylinder model according to
cross validation tests. The mathematical framework developed
here is general and could likely be applied to other popular
alignment media when steric interaction is the dominant
alignment mechanism. The ability to accurately predict the
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alignment allows a researcher to minimize the number of
anisotropic NMR measurements in order to determine the
structure and the stereochemical configuration of organic
small molecules and natural products. Even more importantly,
this approach potentially expands the scope of anisotropic
NMR applications to highly flexible molecules that have tradi-
tionally been considered intractable for anisotropic NMR.

Finally, the limitations of this method should also be
mentioned. First, the prediction considers steric interaction
between the alignment medium and a monomeric solute
structure but does not account for solute-solute interactions
that can result in solute oligomers or aggregates that can
interact with the medium differently than a monomeric solute.
We previously noted that the experimentally obtained align-
ment orientation of estrone in a PMMA gel was unexpected
based on a qualitative assessment of its molecular shape likely
due to the low solubility of estrone in chloroform.** In this
work, a mixed solvent system with 95% CDCIl; and 5% DMSO-d,
(v/v) was used for estrone and retrorsine (see SI), which
improved solubility and yielded anisotropic NMR data that
are consistent with predictions based on a monomeric solute
structure (Table 1). Second, ignoring electrostatic interactions
may be a source of error for some medium-solvent-solute
systems. While nonspecific charge-charge interactions are
expected to be weak for neutral media and solutes, the for-
mation of hydrogen-bond can cause more significant orienta-
tional preference that is not predicted by a steric model. In this
work, we have considered optimizing for an energy factor to
facilitate a potential hydrogen-bond donor on the solute to face
towards the landscape surface, assuming that the donor may
form a hydrogen bond with the PMMA acrylate group, but we
did not observe improvement over a pure steric interaction
model, suggesting at least in the PMMA gel, hydrogen bonding
with the solute is unlikely a significant mechanism of align-
ment. From a practical standpoint, stable hydrogen bonding
of the solute with the medium contributes to resonance
line broadening and represents an undesirable interaction.
Whether a pure steric interaction model is also applicable to
other organic alignment systems requires further investigation,
but nevertheless, adequately accounting for the dominant
steric interactions using the surface decomposition method
allows more meaningful evaluation on the relevance of other
intermolecular interactions.
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