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A B S T R A C T

Pig production system has significant impacts on global climate and environment; the greenhouse gas (GHG)
annual emission from China’s pig production system accounts for more than 4% of which from world’s animal
husbandry. This study applied DEA and LCA methods with statistics of China’s pig production, compared the
environmental impact in each stage before and after optimization, aimed to calculate the resource input and
energy consumption in pig production system, and realize lower investment and higher efficiency. The results
showed that the optimized method could reduce 55.69 MJ energy consumption from each pig; the environmental
impact potential of global warming, environmental acidification and eutrophication decreased by 1.56%, 0.6%
and 0. 072%. Considering the Chinese pig breeding market in 2018 as an example, with a total of 693.824
million pigs sold, the optimized GHG emission reduction would be equivalent to the GHG emitted by producing
1.92812 ´  105 vehicles.

1. Introduction

Adequate protein intake is essential for health and development of
human beings. Animal-derived proteins are of superior quality due to
their amino acid patterns and good digestibility. For example, the
nutritional value of pork protein is higher than that of most plant-
derived food (such as protein in grain-derived food)(Murphy and
Allen, 2003). The essential amino acid composition of pork is relatively
similar to that of casein, which is considered the “ideal protein” for
nutritional research(Cheng et al., 2005). Pork is easy to digest and has
high nutritional value; therefore, it is a high-quality meat product. To
meet the dietary protein intake requirements of adults recommended by
the Chinese Nutrition Society, the average daily animal food intake per
person should be 125–200 g, and livestock and poultry meat should
account for 50–100 g (Zhu et al., 2005). Pork is the most widely pro-
duced and consumed meat globally (FAOSTAT, 2019). Over the past two
decades, pork consumption has increased by 56.59% globally. In addi-
tion, according to the Organization for Economic Cooperation and
Development (OECD), meat consumption is likely to increase by 40 Mt
by 2028 due to increases in the global population and income( OECD,

2019).
China is the largest pork producer and consumer globally. In 2018,

the pork output in China reached 54.03 Mt (USDA data), accounting for
47.80% of the global pork production. In the same year, China’s pork
consumption accounted for 49.60% of the total consumption worldwide
(Han, 2019) . Moreover, by 2028, China’s pork production will reach
58.05 Mt (OCED, 2019). The pig production system in China provides
more than a third of the global meat products (Zhu and Chen, 2018).

According to Food and Agriculture Organization(FAO), the impact of
animal husbandry on the environment deserves profound reflection
(FAO, 2006). Greenhouse gas (GHG) emission from livestock and its
secondary products were estimated to be 51% of the total emission
worldwide, much more than that estimated by FAO (Goodland and
Anhang, 2009). According to Gerber et al. (2013), the annual GHG
emission of global animal husbandry is 7.1 Gt CO eq, equivalent to
14.50% of the global anthropogenic GHG emission. Based on the data
from the World Resources Institute(WRI data), since 2018, agricultural
production has become the second largest source of GHG emission
worldwide, with animal husbandry accounting for more than 60% of
emissions. Furthermore, animal husbandry continues to make a
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significant contribution to the global GHG emission(Buratti et al., 2017)
.

The total GHG emission of pig production systems in 2013 reached
6.68 Mt CO eq(Gerber et al., 2013) , which accounted for 9% of the
GHG emission generated by animal husbandry. In addition, the pig
production system is considered the main factor causing environmental
acidification and eutrophication due to the significant nitrogen and
phosphorus emission only during the storage and transportation of pig
manure(Vries and Boer, 2010) . Therefore, pig production has a major
influence on global climate change and environmental problems.
Although it is essential to ensure a stable increase in pig production to
meet the needs of a growing global population, it is equally critical to
monitor the associated resource and energy inputs, quantify the envi-
ronmental impact of each production stage, and optimize the production
systems. Furthermore, it is crucial to balance the economic benefits and
environmental impacts of pig production, to achieve sustainable animal
husbandry development. Optimizing China’s pig breeding processes
could effectively improve production efficiency, enhance resource uti-
lization efficiency, and reduce GHG emissions, which correspond to SDG
12 (responsible consumption production) and SDG 13 (climate action)
(SDG Goals, 2015).

Data envelopment analysis (DEA) is generally accepted as a
nonparametric method of estimating the relative efficiency of several
homogeneous units. The method systematically calculates the resource
input and energy consumption during a production process to achieve a
quantitative optimization of the production process and considers the
dynamic economic and environmental efficiency in production (Asmild
and Hougaard, 2006; Liu et al., 2020; Wang et al., 2015).

In recent years, DEA and life cycle assessment (LCA) have been
collectively used in research evaluating the environmental and eco-
nomic performance of various agricultural production systems, such as
planting, animal husbandry or fishery. Samuel-Fitwi et al.(2012) and
Diego et al. (2011) used to apply this method to severally evaluate the
environmental impact of aquaculture and dairy farming. Ian et al.(2012)
used this method to improve the environmental impact during grape
planting. Lozano et al.(2009) and Mohammadi etal.(2015) respectively
applied this method to shell production and rice production to improve
operational and environmental efficiency and to boost economic
performance.

LCA is a powerful tool for evaluating the environmental performance
of complex systems and is widely used in assessing the impacts of pig
production (Liu and Zhao, 2012; Mcclelland and Arndt, 2018; Robles
and Sastafiana, 2018; Vries and Boer, 2010). Feed production is a hot-
spot and contributes to most of the impact across several environmental
impact categories (Li et al., 2019). The raw materials, resources and
energy required for feed production and the transportation of raw ma-
terials and finished products increase the impact of pig production on
the environment (Hayo et al., 2005; Nguyen et al., 2012). Previous
studies were mostly based on pig production data, wherein LCA was
used to quantify various environmental impacts. The complexity of
production restricts the evaluation of diverse environmental impacts,
particularly the continuous optimization of resource input and energy
consumption in production, which may affect the evaluation of envi-
ronmental impacts. Moreover, an incomplete understanding of the
process of resource input and energy consumption in pig production
restricts our accurate evaluation of various environmental impacts of pig
production.

Integrating DEA-LCA in pig production processes could facilitate the
development of an optimized process with optimal resource and energy
input and a reduced environmental footprint. The objective of the study
was to assess the effects of optimization of resource input and energy
consumption of pig production on the environmental impacts, calcu-
lated by DEA-LCA model on public data at various scales in different
provinces in China. LCA calculations were also performed to quantify
changes in various environmental impact categories before and after
optimization of the pig production system. The results of the present
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study could facilitate the formulation of supportive schemes for GHG
and other environmental emission reductions of various relevant aspects
of pig production in China and minimize global GHG emissions in ani-
mal husbandry.

2. Materials and methods

2.1. Data collection

The data of this study were obtained from the cost-income data of
major grain products and pig production at different scales in China in
2018, included in “Compilation of National Agricultural Product Cost
Income Data” released by the National Development and Reform
Commission People’s Republic of China(NDRCPRC, 2019), and “China
Statistical Yearbook”(NBSPRC, 2019)and “China Animal Husbandry and
Veterinary Yearbook” published in the same year by the China Bureau of
Statistics(MARAPRC, 2018). Statistical observations revealed that 163
days was the average feeding time of different scales of pig production in
China in 2018. The input of pig production mainly included piglets,
concentrated feed, water, electricity power, coal, diesel and labor, with
live pigs as output.

Previously, researchers have mostly used objective pig production
data from a specific area in a certain year to study production efficiency.
To reflect the production efficiency of pigs at different feeding scales in
different areas, during data processing, in this study, we adopted the
weighted average value of pig production data with different feeding
scales in various regions of China. The specific process was as follows:
the scale weight value was determined using the feeding quantity and
number of households with different feeding scales, by comparing the
scale quantity with the total feeding quantity. For example, for 1–49
heads, the feeding number was 25, and the number of households was
35,718,766. For 50–99 heads, the feeding quantity was 75, and the
number of households was 1,209,265. For 100–499 heads, the feeding
quantity was 250 and the number of households was 603,091. After the
sum of the three products was compared with the total feeding quantity,
the weight coefficient of the loose feeding scale (less than 500 heads per
year) was finally determined to be 0.77. The weight coefficients of small
scale (less than 3000 heads year ), medium scale (less than 10,000
heads year ), and large scale (more than 10,000 heads year ) were also
calculated by the same method, which were 0.1, 0.05 and 0.08,
respectively. Subsequently, the weighted average input-output data of
pig production in each region were substituted into a DEA model for
optimization, and LCA was used to evaluate the change in environ-
mental impact potential in different production stages.

2.2. DEA analysis

DEA method was used to measure the production efficiency of pig
production in China, and the relationship between the input and output
and production limits was explained theoretically. DEA method includes
two models: constant return to scale (CRS) and variable return to scale
(VRS)(Yusuf and Malomo, 2007; Zhang et al., 2012). CRS is a model
with constant returns to scale, which measures the technical and scale
efficiencies, whereas VRS is a model with variable returns to scale,
which measures pure technical efficiency. The underlying logic of these
models is to compress the input to determine the output, which indicates
that the input of inefficient decision-making units should be reduced, or
the output should be expanded to determine the input.

Using DEA, three efficiencies were estimated: technical efficiency
(TE), scale efficiency (SE) and pure technical efficiency (PTE). TE refers
to the degree of production efficiency of technology during its stable use
(Li et al., 2019). SE refers to the degree at which the scale economies
attain a certain production point as compared to their scale efficiency
point. PTE refers to the level of operational management and production
technology of a certain production point compared to other technical
efficiency points (Yan and Xu, 2012). Coelli (1996) in their study
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Fig. 1. Analysis of pig production efficiency (adapted from Coelli, 1996).

established a DEA analysis model of pig production efficiency (Fig. 1) to
explain the relationship between these three efficiencies.

In Fig 1, under the CRS condition, the projective point of point P is P ,
the input-oriented TE of point P is PPc, and the TE can be expressed as
TECRS =  APc. In the case of VRS, the projective point of point P is Pv, the
TE is PPv, and the PTE is TEVRS =  APv. The measurement difference of the
aforementioned two TEs is PcPv, which is caused by scale inefficiency;
hence, the scale efficiency can be expressed as SE =  APc. Considering the
three efficiency formulas, it can be observed that the TE of CRS is
divided into PTE and SE, that is, TE =  TE ´  SE.

To optimize the resource input of pig production, the energy-saving
value of each input was initially calculated; thereafter, the reduced
resource consumption of each input was obtained by dividing it by the
energy equivalent corresponding to the input. The energy equivalents
and references used in this study are listed in Table 1.

The actual energy input in the production process was used as the
input of DEA model through Dwelling Energy Assessment Procedure
(DEAP) software to identify the inefficient input. Based on the actual
energy input of pig production, DEAP software can clarify the energy
input redundancy of inefficient production by comparing different
production efficiencies. The conserved energy was evaluated by sub-
tracting the ideal value from the actual value of energy consumption,
and it was further converted into a reduced resource input by dividing it
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by the corresponding energy equivalent. Eventually, LCA method was
used to estimate the environmental impact changes caused by the
optimization of the resource input in a pig production system.

2.3. Life cycle assessment

LCA method provides a comprehensive quantitative assessment of
the environmental impact and resource consumption of a product during
the entire life cycle “from cradle to grave” (Mcauliffe et al., 2016). The
assessment results can be used to improve the resource and environ-
mental burdens throughout the life cycle(Cecilia et al., 2017) . The main
steps of LCA method include: purpose and scope determination, in-
ventory analysis, environmental impact assessment, result interpreta-
tion, and improvement analysis (Jiang et al., 2019; Wang et al., 2015).
This study applied LCA method to calculate the changes in energy
consumption and environmental impact of pig production before and
after improving DEA model.

2.3.1. Purpose and scope determination
The first step of LCA is to define the purpose and scope of research,

which includes analyzing the purpose of LCA, the boundary of the
evaluated product system, the functional units, and other issues, which
are crucial for evaluating the depth and breadth of LCA (ISO 14044,
2006b; ISO 14040, 2006a). In the present study, LCA method was used to
calculate the changes in environmental impact of pig production
before and after DEA model optimization. Agricultural resources pro-
duction was considered as the initial phase, followed by crop cultivation
& feed production stage and pig breeding stage; eventually, the envi-
ronmental output pollutants generated from treatment of manure were
defined (Fig. 2). The functional unit of this study is a full-grown pig
ready for slaughter. The average weight of finishing pigs is 122.55 kg.

Table 1
Energy equivalent value of pig production input unit: Megajoule per functional
unit.

Input Functional Unit Energy equivalence References

Piglet kg 13.67 Shi et al. (2015)
Corn kg 14.43 He et al. (2020)
Soybean Meal kg 15.15 He et al. (2020)
Wheat Bran kg 11.72 Zhang et al. (2012)
Electric power kWh 10.71 Jia et al. (2010)
Coal kg 29.31 Jia et al. (2010)
Diesel oil kg 41.16 Liu et al. (2012)
Labor Force d 19.61 Song et al. (2014)

Fig 2. Boundary of pig production system.
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2.3.2. Inventory analysis
Divide the unit process and collect data according to the principles of

continuity and functionality of production process and the main char-
acteristics of pig production stage (Hui et al., 2016). The present value
input and ideal input of pig production is used as the data of LCA model to
measure various environmental impact changes. The different stages
take into consideration gas emissions and pollutant emissions generated
by electric power consumption in the process of fertilizer production;
resource consumption and pollutant emission of chemical fertilizer and
the use of agricultural machines during crop cultivation and pig
breeding, electric power consumption during feed production; resource
consumption and pollutant emissions of feed, piglets, diesel, electric
power and other inputs during pig breeding; and electric power con-
sumption of manure treating equipment and resource consumption and
pollutant discharge generated during the manure treatment.

Pig feeding mainly depends on the concentrate feed, which includes
70% corn, 9% soybean cake, 7% wheat bran, 4% rapeseed meal, 4%
cottonseed meal, 2% fish meal and 4% other mineral components (Liu et
al., 2012) As rapeseed meal, cottonseed meal and fish meal in the feed are
present in minor components and the content in different feeds shows
marked variation, this study mainly focuses on the corn, soybean cake
and wheat bran in the feed. The feeding period of live pigs is 163 days,
the average weight of piglets is 17.68 kg (approximately 50 days old),
the average weight at slaughter is 122.55 kg, the average amount of feed is
1.99 kg per head d , and average manure excretion is 3.50 kg per head d
. Manure is treated via aerobic and anaerobic fermentation. The electric
power consumption of composting equipment in the process of aerobic
composting is 3.00 kW�t , and the converted electric power
consumption of mixing equipment and biogas electric power generation
equipment in the process of anaerobic fermentation is 1.63 kW�t     (Pei,
2012).

2.3.3. Impact evaluation
The third step of LCA is to analyze and evaluate the environmental

impacts of diverse production systems. In this study, the equivalent
coefficient method was used to convert similar pollutants into the
environmental impact potential of reference (Brentrup et al., 2004), to
evaluate the environmental impact of pig production. The character-
ization factors used in this study are all from Chinese Life Cycle Database
(CLCD), and the characterization factor for eutrophication potential
calculation are: 1 for PO3  , 3.06 for TP, 0.42 for NO  , 0.35 for NH3, 0.33
for NH+ and 0.1 for COD. The characteristic factors of environmental
acidification potential calculation are:1 for SO , 1.88 for NH , 0.7 for
NOx. The characteristic factors for the calculation of global warming
potential are: 1 for CO , 21 for CH , 2 for CO and 310 for N O. The
results of the environmental impact assessments are presented in
Table 5.

2.3.4. Sensitivity analysis
The sensitivity analysis of inventory data is also referred to contri-

bution rate analysis, which refers to the sensitivity of inventory data to
each index and the contribution rate under a linear relationship. If the
inventory data, which is an input or an output in a unit process, changes
by 1%, LCA index will also change by a certain percentage. The ratio of
these two percentage changes is called inventory sensitivity. If an in-
ventory dataset is sensitive to a characteristic index, it means that when
we change the data of the process, it will have a greater impact on the
results.

3. Results and discussion

3.1. Pig production efficiency

In this study, we calculated the TE, PTE and SE of pig production
using CRS and VRS models. The results are summarized in Table 2.
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Table 2
Efficiency of pig production in China.

Efficiency category             Minimum       Average       Maximum       Standard
deviation

Technical Efficiency            0.68                0.97             1.00                0.07
Pure Technical                    0.80                0.98             1.00                0.05

Efficiency
Scale Efficiency 0.85 0.99 1.00 0.03

Table 3
Variation of functional unit energy input based on DEA method Unit: MJ head-1.

Input Energy values Energy Saving
Now                    After optimization

Piglet 241.69 231.78 9.91
Concentrated feed 3987.88 3985.07 2.81
Labor force 98.24 90.09 8.14
Electric power 70.64 51.67 18.96
Coal 51.14 37.36 13.77
Diesel oil 7.86 5.76 2.10
Total 4457.45 4401.73 55.69

The average values of TE, PTE and SE of pig production in China
were all lower than 1 (Table 2), which indicated the possibility of
optimizing the energy and resource investment of pig production in
China. At the same time, the standard deviation of TE was the highest
(0.07), indicating greater variation compared with PTE and SE. Hence,
attention should be directed to TE in the production process.

The backgrounds of different breeding provinces, breeding scales
and breeding modes in China revealed a remarkable impact on TE (Li,
2019). Compared with northeast China, northwest China lacked feed
supply and faced transportation issues. Owing to the more developed
economy in north China, the labor and land costs increased, which
affected technology improvement in breeding production and reduced
the technical efficiency of pig production(Leng et al., 2018) ; therefore,
the advantages of scale economy in pig production and advancement in
breeding technology should be considered (Key and McBride, 2007).
China should focus on improving the production based on pig breeding
technology, optimizing production conditions, and enhancing manage-
ment measures to fundamentally increase the survival rate and meat
yield of pigs (Li and Xiong, 2019).

3.2. Energy consumption

Various energy inputs were reduced after optimizing the parameters
of the pig production system, and each pig could reduce the energy input
to 55.69 MJ (Table 3). Energy savings of electric power, coal, and diesel
were 26.84%, 26.93% and 26.72%, respectively. For example,
compared with a traditional piggery (the raw material for heating in the
piggery is coal-fired heating, and the coal consumption and heat con-
sumption of the heating in the piggery are positively related to its heat
transfer coefficient. The wall of the heating piggery is made of 240 mm
thick clay bricks, and the roof is generally made of colored steel tiles and
asbestos tiles. The windows of the piggery are mainly plastic steel
windows, and the doors of the piggery are generally iron doors.), the
savings in terms of coal, heat, energy and water consumption in the
fermentation bed model piggery is significantly higher(Hou et al.,
2019). The input optimization of piglets could also reduce the energy
consumption from 241.69 MJ head to 231.78 MJ head . The piglets in
the relatively quiet environment (55–60 dB was stimulated with 75–77
dB noise. The respiratory rate decreased by 15% and then returned to a
normal level after 1 h. The average daily weight gain of piglets under
60–63 dB sound management was 2.50% higher than that under 75–77
dB. The quiet rest environment reduced the respiratory rate of piglets,
led to daily weight gain (Cheng et al., 2021) and enhanced nutrition (Jin
et al., 2021). Addition of plant extracts(Jiang et al., 2021; Wang et al.,
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Table 4
Variation of functional unit resource based on the DEA method Unit: MJ head-1.

Input / Output Unit Resource values
Now After optimization

Input
Piglet kg 17.68 16.96
Concentrated feed kg 324.62 324.39
Water m3 7.88 7.72
Electric power kWh 6.59 4.82
Coal kg 1.74 1.27
Diesel oil kg 0.22 0.16
Output
live pig kg 122.55 122.55

2021) could also promote the growth performance of piglets, which is
conducive to the health of piglets. The reinforcement of labor manage-
ment could also reduce energy consumption from 98.24 to 90.09 MJ
head . The situation of male dominance in agriculture and farm man-
agement changed gradually (Thingbaijam et al., 2019), which urged the
producers to rely on technology to feed pigs and operate farms (Yang,
2015); however, in a certain period, it was almost impossible to optimize
the feed input, which is the necessary nutrient source for pig breeding.

3.3. Resource use

The energy savings of each input in Table 3 were compared with the
corresponding energy equivalent in Table 1 to obtain the reduced
resource consumption of the pig production system. The current
resource consumption and resource consumption after efficiency opti-
mization were summarized in Table 4, which was used as the compar-
ison data of environmental impact changes in LCA model.

Resources, Conservation & Recycling 185 (2022) 106483

3.4. Environment effects

The environmental impact potential value of eutrophication, envi-
ronmental acidification and global warming during pig production can
be calculated according to formula (1). The environmental impact types
were selected based on the material consumption and pollutant
discharge in four stages of pig production, and the data used were ob-
tained from the public data described in Section 2.1.

EP(x) =  
∑

E P ( x ) i  =  
∑ [

Q ( x ) i  ´ EF (x ) i
]

(1)

In the aforementioned formula, E is the potential value of the
environmental impact of the system; EP(x)i is the potential value of the
emission substance i on the environmental impact; Q(x)i is the emission
value of emission substance i; EF(x)i is the equivalent coefficient of the
emission substance i on the environmental impact. The results of the
environmental impact potential were illustrated in Fig. 3.

(1) The potential value of eutrophication caused by pig production
was 0.97 kg PO eq head , which mainly occurred in the planting stage of
the feed crops, accounting for 61.61% of the total impact. Excessive
application of chemical nitrogen fertilizer and phosphorus fertilizer
during the planting of feed crops led to numerous residues entering the
water body(Zhang et al., 2021; Zhao et al., 2021), which intensified the
degree of eutrophication. Corn productivity in China was 0.75, and the
average input efficiency of chemical fertilizers was 0.45, which had
immense potential for decreasing fertilizer input (Zhang et al., 2018).
The “Chemical Fertilizer and Pesticide Reduction” guidelines imple-
mented by the state to achieve zero growth of chemical fertilizers and
pesticides were well received and responded to by the agricultural
producers, which was promising for reducing eutrophication (Deng,
2016).

(2) The potential value of environmental acidification caused by pig
production was 3.16 kg SO eq head , which mainly occurred during
crop cultivation & feed production stage and manure treatment stage,

Fig. 3. Contributions of different stages of pig production to environmental impact.
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accounting for 34.43% and 56.06% of the total emission of the process.
The total amount of feed required to produce one pig emitted 1.09 kg
SO eq substances during the process of feed crop planting and feed
production, which led to environmental acidification. This is mainly due
to the application of nitrogen fertilizer, a large amount of nitrogen ox-
ides and ammonia will be discharged in the feed plant production stage,
and a large amount of ammonia will be discharged in the manure
treatment stage. Sala et al. (2017) have clearly pointed out that nitrogen
oxides, sulfur dioxide and ammonia are the main substances causing
environmental acidification. Under natural conditions, soil environ-
mental acidification should have been a relatively slow process; how-
ever, in recent years, the high input (mainly nitrogen fertilizer input in
this study) and unbalanced fertilizer use has immensely enhanced soil
acidification and nutrient consumption (Liebig et al., 2002), which was
specifically reflected in the decreased soil pH value (Huang et al., 2004).
Organic matter enhancers, such as green manure and crop straw
returning, are widely recommended to improve the crop yield and soil
quality (Shisanya et al., 2009).

In the manure treatment stage, one pig produced 1.77 kg SO eq,
with NH gas discharged by thaerobic composting process as the main
pollutant source. Aeration crucially affects the emission of NH and
other gas during the composting process. At present, there are mainly
two methods to control nitrogen loss in the composting process. One is to
change the process conditions, the other is to add additives in the
composting process. The process conditions changed by the former
mainly include appropriate temperature control, ventilation and
increasing water content. The additives added by the latter mainly
include the following categories of carbon rich substances, such as peat,
straw, biochar, zeolite, bentonite, calcium superphosphate, etc. (Yang
et al., 2005; Chowdhury et al., 2014).

(3) The global warming potential of pig production was 142.75 kg
CO eq head , which was mainly attributed to the agricultural resources
production, crop cultivation, feed production and manure treatment.
The data analysis revealed that the agricultural resources production
stage emitted 28.29 kg CO eq, and CH N O and CO emission from pig
farms accounted for 12.68%, 44.04% and 43.28%, respectively (Zhang
et al., 2019). The planting, farming and irrigation of feed need the input
of chemical fertilizer, pesticide and energy; the feed processing needs
energy; the production of chemical fertilizer, pesticide and energy needs
the exploitation of coal, oil and natural gas. Large-scale enclosed
industrialized pig farms require tremendous energy for lighting, heating,
cooling, automatic feeding, water supply and maintaining air circulation
(Wang et al., 2010), which consumes a large amount of fossil fuels
during agricultural production. The government should further
strengthen the pollution control of agricultural production industry and
promote agricultural production enterprises, such as chemical fertilizer
factories and energy providers, to reduce pollutant emissions via com-
bination of punishment and incentives. They could further optimize the
collection of drainage dues (Zhang and Zhang, 2016), and increase
subsidies for environmental protection technology investment of agri-
cultural production enterprises(Huang and Wang, 2011).

In general, 72.47 kg CO eq could be emitted at the manure treat-
ment stage, most of which included CO , N O, and CH , because
anaerobic fermentation and aerobic composting would produce a large
amount of GHG (Yang et al., 2016). Farms should enhance the treatment
of manure waste, such as covering manure waste stored in open air.
Surface mulching, particularly straw mulching can reduce methane
emission from liquid manure by an average of 38% (Sommer et al.,
2000). CH is produced by anaerobic fermentation of organic matter in
the manure. Therefore, dry cleaning of manure was advocated instead of
soaking manure and flushing them with water (Zhu et al., 2006).
Reducing the stacking time of manure (Olesen et al., 2006) by incor-
porating an anaerobic digestion unit to recover biogas in the form of CH
would prove beneficial. A pig farm with an annual output of 10,000 pigs
could receive an annual GHG reduction of 504 t CO eq by implementing
a biogas project.
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Table 5
Environmental impact changes of functional unit pigs before and after DEA
optimization.

Environmental                Unit                Impact values                          The impact of
Impact Types                                         Now           After                       the reduction

optimization

Eutrophication kg PO3- 0.97 0.97 0.00
eq head-1

Environmental kg SO eq 3.16 3.14 0.02
acidification head-1

Global warming kg CO eq 142.75 140.53 2.22
head-1

Moreover, 34.05 kg CO eq could be emitted while planting feed
crops. CO and N O were the main sources of pollutants, accounting for
43.78% and 55.93% of the GHG emission. The CO emission mainly
comes from the diesel consumption in the process of crop cultivation and
the power consumption in the process of feed processing. The field
production process of food crops (wheat and corn) is an important
emission source of N O. Farmland management includes fertilization,
irrigation, farming and straw management, in which reasonable nitro-
gen application is the most direct factor to reduce N O production and
emission (Li et al., 2020). At the same time, the application of agronomic
measures such as crop rotation and tillage, irrigation, organic fertilizer
and straw returning, phosphorus and potassium fertilizer and medium
and trace element management can also effectively reduce N O pro-
duction and emission (Hoben et al., 2011; Maharjan et al., 2014). The
development and application of urease inhibitor, nitrification inhibitor
and release-controlled fertilizer also provide a way to reduce N O
emission from farmland (Zhu et al., 2019). Another effective means to
reduce pollutant emission is to improve the productivity of planting feed
crops. Studies have reported that by nutrient management, applying
controlled-release fertilizers(Dora and See, 2021), farmyard fertilizer
and N-P-K fertilizer (Mete et al., 2015), foliar fertilizer (Moreira et al.,
2017), biochar (Aller et al., 2018), changed land farming system (no
tillage, conservation tillage, etc.), and inter-cropping could remarkably
increase the yield of crops such as soybean and corn (Ashworth et al.,
2017; Zhan et al., 2020) and reduce soil erosion.

After calculating the environmental impact type and actual impact
value of pig production, the ideal value after optimization was calcu-
lated via comparative analysis of DEA method. The reduced environ-
mental impact value was obtained by determining the difference
between the actual and ideal values. The results are presented in Table 5.

In the present study, the indicators of eutrophication, environmental
acidification, and global warming potential of pigs were 0.97 kg PO eq
head , 3.16 kg SO eq head , and 142.75 kg CO eq head , respec-

tively, which were higher than those reported by Liu et al. (2012). This
may be attributed to the data obtained from different scales of pig
production in China, including numerous individual pig farmers. The
input efficiency of individual pig farmers was low, which could pre-
sumably have profound impact on causing environmental pollution.
After optimization based on the DEA method, the environmental impact
values of various types were reduced, and the impact of global warming
could be reduced by up to 2.22 kg CO eq head .

Eventually, after comparing the current environmental impact
values of eutrophication, environmental acidification and global
warming produced by pigs with the values optimized by the DEA
method (Fig. 4 and Table 5), the values of all environmental impact
types were reduced. Through DEA model optimization, the three types
of environmental impacts decreased to 99.93%, 99.40% and 98.44% of
the current potential values. Among these, the decline in the environ-
mental impact of global warming was the most obvious. Considering
693.824 million pigs produced in China in 2018 as an example, the
potential global warming impact of the process could decrease by
1.5425 ´  10 kg CO eq. According to the estimation of Lindsay.
(2014）, the carbon emission per kilogram in the production and
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Fig. 4. Total environmental impact at each stage of pig production before and after optimization.

Fig. 5. Estimation of GHG emission reduction in Chinese pig production in 2018 after optimization.

manufacturing process of ordinary gasoline vehicles is approximately
4–7 kg CO eq. Therefore, the carbon emissions associated with
manufacturing an ordinary gasoline car is approximately 8 t CO eq.
Therefore, the optimizedGHG emission reduction is relative to the GHG
emitted by the production of 1.92812 ´  10 cars. Based on the results of
studies by China’s National Forestry and Grass Administration, a tree
could fix 18 kg CO year , and the decline in the potential environ-
mental impact of global warming of China’s pig industry through DEA
model optimization was equivalent to fixing by approximately 8.5694 ´
10 trees. Considering the poplar used in calculating mature forestry
carbon sequestration as an example (the canopy density of poplar
planting was ³  0.2, 900 trees could be planted per ha), the decline in the

global warming impact potential of China’s pig industry could be
equivalent to an increase of 9.5216 ´  10 ha of forest area (Fig. 5).

3.5. Results of sensitivity analysis

Sensitivity analysis was used to evaluate the sensible parameters on
environmental impacts. The sensitivity ratio (SR) is the ratio between
the environmental impact change and parameter change, which in-
dicates the change of overall environmental impact of the system after
the change of a certain parameter (Huang et al., 2012). Combined with
the previous environmental impact calculations, it is found that the
environmental impact caused by pig producing process mainly comes

7
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Table 6
SR analysis results.

Adjustment content

Application rate of chemical fertilizer reduced by 10%
Electric power for pig raising reduced by 10%

AP EP GWP

0.99         0.88         0.75
1.02         0.71         0.84

Resources, Conservation & Recycling 185 (2022) 106483

the work reported in this paper.

Data Availability

Data will be made available on request.

from the crop cultivation process, in which the excessive use of chemical
fertilizer is the main reason for the great environmental impact at this
stage. At the same time, many stages of pig producing process involve
the consumption of electric power. Therefore, in sensitivity analysis, the
amount of chemical fertilizer application and the electric power con-
sumption for pig producing were discussed as two analysis parameters.
In the study, both chemical fertilizer application and the electric power
consumption were reduced by 10% to calculate the SR value.

Following a reduction in chemical fertilizer application by 10%, the
environmental impacts of eutrophication, acidification and global
warming decreased by 9.90%, 8.80% and 7.50%, respectively (Table 6).
It can be concluded that the strategy of "Reducing the application of
chemical fertilizers" proposed by the Ministry of Agriculture and Rural
Affairs People’s Republic of China can well promote the cleaner pro-
duction of China’s pig industry and effectively reduce environmental
pollution. However, to varying extent of implementation of this strategy
in different regions of China, it also leads to the uncertainty of the
environmental impact of pig breeding.

In addition, reduction of electric power consumption by 10%
reduced the environmental impacts of eutrophication, acidification and
global warming by 10.20%, 7.10% and 8.40%, respectively (Table 6).
Therefore, the change of electric power consumption can significantly
affect the environmental impact of pig producing. Improving the hard-
ware facilities, the heat preservation and ventilation of the pig house,
and applying the biological fermentation bed technology, are all effec-
tive ways to reduce heat consumption in the pig house, so as to further
reduce the environmental impacts (Hou et al., 2019).

4. Conclusion

The optimization of resource input and energy consumption in Chi-
nese pig systems decrease global warming, acidification and eutrophi-
cation. The integration of data envelopment analysis and life cycle
assessment can facilitate the optimization process. Optimizing China’s
pig production processes could effectively improve production effi-
ciency, enhance resource utilization efficiency, and reduce greenhouse
gasses emissions, which correspond to SDG 12 (responsible consumption
production) and SDG 13 (climate action). However, the reduction in use
of chemical fertilizer and electric power are more effective ways to
reduce greenhouse gas emissions than the optimization of resource input
and energy consumption.
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