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Abstract-Notebooks have gained wide popularity in scientific 
computing. A notebook is both a web-based interactive front­
end to program workftows and a lightweight container for 
sharing code and its output. Reproducing notebooks in different 
target environments, however, is a challenge. Notebooks do 
not share the computational environment in which they are 
executed. Consequently, despite being shareable they are often 
not reproducible. The application virtualization (AV) method 
enables shareability and reproducibility of applications in hetero­
geneous environments. AV-based tools, however, encapsulate non­
interactive, batch applications. In this paper, we present FLINC, 
a user-space method and tool for creating reproducible notebook 
containers. FLINC virtualizes the notebook process that enables 
interactive computation and creates notebook containers, which 
include the environment and all data dependencies accessed 
by the notebook file. It relies on provenance collected during 
virtualization to ensure the correct behavior of a notebook when 
run repeatedly in different environments. We demonstrate bow 
FLINC exports notebook containers seamlessly to non-notebook 
environments. Our experiments show that FLINC creates lighter 
weight containers as compared to equivalent non-interactive, 
batch containers, and preserves the same interactive workftow 
for the user as in current notebook platforms. 

I. INTRODUCTION 

Computational notebooks (e.g., Jupyter [1] or Apache Zep­
pelin [2]) have become a popular choice for scientific comput­
ing. Notebooks support interactive development of workflows 
in which users get immediate feedback on executed parts of a 
workflow. This is useful as users can test and debug workflows 
as they develop. The programming style induced by notebooks 
is also contrary to classical workflow systems which require 
the entire workflow to be specified upfront. Consequently, 
notebooks are being used for a variety of workflows for 
exploring data, executing models, and visualizing results. 

Sharing of notebook files (e.g . . ipynb files) allows other 
users to interactively repeat the workflow specified in the 
notebook. Consider Figure 1, which shows an example of a 
notebook file in which the workflow is specified as a sequence 
of code 'cells'. Each cell describes a step of the workflow 
computation. Data results are obtained by manually triggering 
cell execution, and are often part of the notebook file. Once a 
user shares the notebook file for reproducibility, another user 
runs all cells again and gets the same or similar result1. A 
user can also interactively change the workflow, such as the 

1 subject to non-deterministic constructs in tbe program . 
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type of plot to be generated to further validate the result. Such 
sharing and repeating improves collaborative analysis. 

While a notebook file is always shareable, it does not 
guarantee reproducibility. A notebook file is a container for 
code and data results; the container, however, does not include 
dependencies stated in the cells. Users must often download 
explicit dependencies, such as data dependencies mentioned 
in the program or dependencies mentioned in the import 
statements. But users do not automatically download implicit 
dependencies, such as the dependencies needed by GeoPandas 
and Rasterio in the notebook file of Figure 1. This creates 
a 'dependency hell' scenario, in which dependencies are 
available in the host environment in which the user originally 
developed the notebook, but not in the target environment. 

dependencies 
(c1] !pip install rasterio 

[c� 

from geopandas import gpd 
import rasterio.plot 

model execution 
lmpiexec -n 4 pitremove -z dataset 
lmpiexec -n 4 threshold dataset 

comparison 
result = model_predict(new_data) 
If resullaccuracy >= min_acc: 

print('success') 

visualization 
fig, ax = pH.subplols() 
outletPoint.plot(ax:=ax, color='red') 
network.plot{ax=ax, color='blue') 
b = gpd.polylit(dataset) 
print(" Max daily streamflow:"+b+" cfsj 

Max datly streamflow: -268.282 cfs 

Fig. 1: An illustrative notebook file N1 which combines script 
and shell execution. Shell execution is via ! commands. 

Application virtualization is a lightweight method for 
sharing code, data, and environment of an application that 
addresses 'dependency hell' scenarios. Several recent sys­
tems [3], [4], [5] use application virtualization as a method 
to audit the execution of a program, and create a container­
like package comprising all files (code, data, and environment) 
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referenced by the program during its execution. This package 

repeats the application in different environments. These system 

tools have much to offer, especially to enable computational 
reproducibility [6] of scientific models and collaborative ana­

lytics [7], [8] shared on notebook-based platforms. However, 

these systems currently assume batch workflows, which are 
classically developed with scripts and are non-interactive. 

They do not support web-based, interactive notebooks, which 

necessitates auditing client-server communication protocols 
required to enable interaction. 

A straightforward approach would be to extend application 
virtualization to the underlying client and server modules 

of the notebook system. However, we observe that such an 

extension only enables strict reproducibility of notebooks, i.e., 
a user can only repeat the audited notebook but not modify 

it, since modification introduces new communication between 

the client and server that was not previously audited. This 
is a severe limitation for notebooks which enable interactive 

development and in which users can add, modify, and delete 

cells and change their order of execution. Thus, we need 
to extend application virtualization in such a way such that 

the resulting notebook containers can be seamlessly shared, 

repeated and flexibly reproduced by changing code and data 
in different environments. Such containers must preserve the 

fundamental interactive property of notebooks-to add, modify, 

and delete cells-so that users' interaction with the new 
environment is at least as powerful as the original environment. 

In this paper, we describe how to systematically extend 

application virtualization to notebook-based platforms by 

preserving the connection information and redirecting it as 

needed. To extend, FLINC creates compatible kernels for a 
notebook file, ensuring that the file is correctly audited in the 

host environment and reproduced in the target environment. 

During audit phase, FLINC creates a lightweight notebook 
container which includes all the dependency files that are 

necessary to reproduce the notebook file. During repeat phase, 

FLINC transparently uses the lightweight notebook container 
for a notebook file in the target environment. To ensure 

repeatable execution, FLINC uses the audited provenance to 

determine if the notebook file has changed since being audited. 
If it has not changed, the container is used; otherwise the 

redirection ceases and regular execution resumes. FLINC also 
uses the provenance audited during application virtualization 

to export the contents of the container to other container­

like virtual environments. The export mechanism is particu­
larly needed to enable reproducibility of notebooks on non­

notebook platforms. 

The current implementation of FLINC is for JupyterHub 

which is the most popular notebook platform. However, the 
design of FLINC is general; FLINC only relies on two prop­

erties which are generic across all notebook platforms, namely 
interactive computation and a client-server architecture [9]. 

We have used FLINC with HydroShare [ 10], a cyber infras­

tructure for sharing geoscience data and models. To support 
notebook-based analysis, HydroShare supports multiple com­

putational environments, such as CUAHSI JupyterHub [11] 
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and CyberGIS-Jupyter for Water (CJW) [12]. These environ­

ments have their own hardware configuration and maintain a 

unique set of software dependencies to support analysis tasks 
of their user base. HydroShare allows users to interactively run 
notebooks within each environment. However, users often de­

velop workflows that must be executed across environments­
to couple with other workflows or to simply take advantage 

of improved hardware or software in the other environment. 
Currently, users can create and reproduce notebooks success­
fully as long as they remain in the same environment. With 

FLINC, a user can easily document dependencies for a non­
notebook environment or transfer packages to be executed in 

a notebook environment. 

The rest of the paper is organized as follows: section II 

describes types of reproducibility issues that users face when 

sharing notebooks. In section III, we describe the current 

model of notebook execution and sharing. Section IV describes 
the FLINC system, how it extends application virtualization 

to notebook platforms, and how it ensures reproducible 

execution in heterogeneous environments. In section IV-D we 
describe how provenance logs are used to ensure reproducible 

execution and provide flexible reproducibility. We describe 

the implementation and performance of FLINC in section V, 
discuss its generality to other platforms and packaging solu­

tions in section VI, highlight the related work in section VII, 
and conclude in section VIII with an overview and future 

directions. 

II. MOTIVATING USE CASE 

We describe the reproducibility issues that arise when 

sharing notebooks. Such issues come up regularly in cyber­
infrastructure that enable notebook-based interactive analytics 

for its users. 

Consider three scientists, Alice, Bob, and Charlie, who are 

collaboratively engaged in analyzing maximum daily stream 

flow as a function of maximum snow water equivalent. Alice, 
the primary scientist, has developed a notebook that: (i) 

downloads data for a region of interest, (ii) preprocesses it, 

(iii) uses climate data to run a simulation model; (iv) compares 
simulated streamflow data with the simulated snow water data, 
and, finally (v) plots and visualizes the fit function. Figure 1 

shows the steps divided into cells with some sample code. 

Alice develops her notebook in Python and C; it uses 

Python packages to perform preprocessing and visualization 

(steps (i), (iv) and (v)) and C and Fortran2 binaries to run 

simulation model and perform the comparison (steps (ii) and 

(iii)). Some of these are standard packages such as Numpy 

and Matplotlib, but it also includes special simulation model 
packages such as PySumma, ArcGIS, GeoPandas, Rasterio, 

PyRhessys, etc. which are specific to the field of hydrology. 
The C packages are executed by invoking the shell with a '!' 
from the notebook, as shown in cells 1 and 3. 

To collaborate, Alice has successfully repeated her notebook 
execution several times to ensure it produces the same/similar 

2 For efficiency, scientists often develop simulation models in C and Fortran. 
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results. Now, Alice wants to share her notebook with Bob and 

Charlie, who also aim to repeat her workflow. The following 

scenarios illustrate the reproducibility-related issues that arise 
at their ends: 

• Case 1: Same interface, different environments. Alice has 

shared her notebook file with Bob, who also uses a notebook 
platform to develop and test workflows. Although Bob can 
open and edit Alice's notebook file, he cannot execute it. 

Alice's notebook uses special Python and C dependencies 

that are not present in Bob's environment. While Bob is 
aware of the dependencies (Alice has documented them for 

Bob) and he could install some Python dependencies via the 

notebook file interface, he does not have sufficient privileges 
to upgrade his current environment with all dependencies, 

especially the C dependencies. 

• Case 2: Different interface, same environment. Alice has 

shared her notebook file with Charlie, who does not use 
a notebook platform, and prefers to work on a terminal 

interface. To aid Charlie, Alice has exported her notebook 
to a Python file, and also shared a Docker container which 

has all the necessary and sufficient C and Python packages. 

Charlie is able to successfully repeat Alice's workflow. 

However, he wishes to extend her model and compare the 
execution with his own workflow that is configured outside 

the container. To effectively compare, he must either import 
his own workflows and data to Alice's container or export 

Alice's shared code, data, and environment to his host 

environment. 

The reproducibility challenge in the first case arises because 
the environment is not transported with the notebook file. In 
the second case, the environment is shared, but it is not flexible 

to be extended to include new simulation models and data that 
are available outside the environment. A solution that accounts 

for these two use cases must also account for the more general, 

'different interface, different environment' use case. 

Ill. NOTEBOOK MODEL OF EXECUTION AND SHARING 

We describe the current model of interactive computing 

within notebook platforms and sharing notebooks. 

Notebook platforms operate in a client-server architecture, 

as shown in Figure 2. Users edit notebook files and execute 

in a read-eval-print-loop (REPL)-style via a web browser. In 
REPL-style, an interactive process reads cell-worth of code 

and executes it. The next read-evaluate (akin to a loop), which 
is specified in the next cell, proceeds from the computational 
state of the previous evaluation. Notebook files assign each 
cell evaluation with a sequence number. The notebook file 

preserves this sequence, and it shows a safe order for cell 

re-execution, thus obtaining the same result at a later time. 

On notebook platforms, the server (remote or local) main­

tains the kernel, a programming language-specific interactive 

process that runs independently and maintains the state of 

the notebook file computations as it progresses. For example, 

Jupyter notebook platform supports the !Python kernel for 
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Fig. 2: A notebook platform architecture consisting of the 

web-based notebook client and the notebook server. A client 
connects to the server process, which interacts with one of the 

available kernels. The resulting kernel process is configured 

with an environment. 

Python programs, Xeus Cling for C++ programs [ 13] and 

Xeus-sql for SQL-based programs [14]. 

Since the kernel maintains the state of the notebook com­

putation, it is also aware of the computational environment 

and any dependencies in the environment under which the 
computation runs. For example, if the !Python kernel of a 

Jupyter platform contains Apache Spark in its environment, 

then possible notebooks that will necessarily compute and 
execute are notebooks that include the Spark library and use 

the specific version of Python interpreter used in the !Python 
kernel. If the notebook specified in Figure 1 is executed within 

this platform, it will report dependencies such as GeoPandas 

and Rasterio, as missing. Typically, for executing a variety of 
notebooks, the kernel is configured to run in a container or a 
virtual environment (such as Anaconda) that is aware of the 

dependencies and software packages required to support the 
notebooks. 

Since notebook files do not transport environments, users 

adopt certain practices to make notebooks repeatable across 
heterogeneous environments. One practice is to only use 

Python dependencies in a notebook. With this restriction, users 

can install Python dependencies in their user space of the 
target environment. For example, in the notebook in Figure 1, 

the user is allowed to install 'rasterio' in cell 1 within the 

user space. The kernel recognizes this instruction and will 
therefore successfully execute it. An alternate practice is to 

create Docker containers and share the notebook file as part 
of a container image. 

Neither of the practices generalize to all kinds of notebooks 

or fundamentally resolve the reproducibility issue. As the ex­

ample illustrates in cell3, scientific computing notebooks often 
combine Python with C, Fortran, and shell utilities to concep­

tualize a workflow and its steps. For non-Python languages, 

installing dependencies in user space is often not sufficient as 

the install requirements vary per computing platform. Custom 

libraries are generally not available through standard package 

managers, and often do not properly follow official packaging 

guidelines. Further, installing all the required dependencies 

with their correct versions is a manual and labor-intensive task. 
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Fig. 3: The workflow of notebook reproducibility using Audit and Repeat Kernels on two different computational environments. 

The solid green arrows represent FLINC instructions. 

IV. FLINC: LIGHTWEIGHT NOTEBOOK CONTAINERS 

Figure 3 shows the FLINC architecture which creates, 

repeats, and exports notebook containers in different environ­

ments. Single dashed arrows show normal execution and solid 

double arrows show FLINC control and data flow. The term 

notebook container is generic-it only refers to all necessary 

and sufficient dependencies required by the notebook file. In 
practice, it can be an encapsulated package or a namespace 

isolated container; we do not distinguish between the con­

tainerization medium. 

A. Creating and Repeating Notebook Containers 

FLINC adapts and extends application virtualization (AV) to 

the interactive client-server architecture of notebook platforms. 

The key idea in application virtualization is to use the Linux 

system utility strace to monitor the processes associated with 

an executing program and record its interactions with the 

operating system for resources. strace internally relies on the 

ptrace system call to attach itself to the executing program, 

which intercepts system calls to the operating system for 

resources such as access to files and spawning of processes. 

The accessed resources are copied and virtualized into a 

container-like package [3]. 

AV can also be used to audit an interactive program or 

audit client-server programs that include network connections, 

since network connections also take place via system calls. 

Unlike previous work [15], [16], we do not need to audit 

both the client and the server in notebook platforms, since 

the kernel performs all the computation. The client program 

is the notebook file which is already shareable. Therefore, in 

FLINC, we extend AV to the server-side kernel only. 

In extending AV to the kernel, we distinguish between two 

primary, but independent, features of a notebook platform: 

supporting REPL-based interactive development, and sharing 

of notebook files. We observe that sharing is distinct, and often 

follows interactive development. Virtualizing the kernel during 

interactive development is redundant as the user does not 

wish to share a half-baked program. Therefore, to virtualize 

for sharing, FLINC creates two additional kernels: an audit 
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kernel and a repeat kernel. Thus, for example, if the notebook 

file of Figure 1 chose Python-3.4 as the kernel for interactive 

development, then FLINC will create two additional kernels, 

Python-3.4-audit and Python-3.4-repeat, for virtualization and 

sharing. 

The audit kernel is a clone of the default kernel except the 

interactive programming language-specific process spawned 

by the default kernel is now observed using strace and 

any access for a file resource is encapsulated in a package. 

By observing this language-specific process which executes 

code from the notebook file, and is therefore aware of the 

environment variables and any datasets or binaries accessed 

by the notebook file, the audit kernel is able to encapsulate 

all the necessary and sufficient dependencies. 

The audit kernel creates a notebook container which con­

tains all the dependencies that a notebook file accesses. A 

crucial part of this container is the connection information used 

by the notebook to connect to the kernel process. However, 

an important dependency missing from it is the notebook file 

itself. This dependency is missing because the audit kernel 

- owing to client-server architecture - is unaware of the 

notebook file and only executes the code that is communicated 

via socket messages. While in our current implementation, 

the user can use FLINC to add the notebook file to the 

container post execution, notebook files can continue to be 

shared outside the container as they are routinely shared. The 

absence of the notebook file in the container, however, creates 

issues when repeating since files may change externally. We 

address such issues in Section IV-B. 

To repeat the notebook file in a new target environment, 

it must execute using the dependencies from the notebook 

container. In general, the notebook file by default will attempt 

to make a connection to the kernel process resident in the 

target environment. To reroute this connection to the notebook 

container, the repeat kernel substitutes the old connection 

information in the container with the new connection informa­

tion. The connection information is an environment variable 

that is typically read by application virtualization methods 

before creating a container. This substitution is achieved 

Authorized licensed use limited to: DePaul University. Downloaded on May 30,2023 at 13:45:44 UTC from IEEE Xplore.  Restrictions apply. 



5

dynamically to support interactive development. The dynamic 

substitution method is also used to support any changes to 
external dependencies such as data files or newer versions 
of a library and accessed by notebook files. Note that such 
changes are not the same as changing the notebook file, which 

we describe in Section IV-B. 

A notebook platform that hosts different kinds of kernels 
for interactive development can use FLINC to create corre­

sponding audit kernels for each hosted kernel. Thus, if the 
notebook platform hosts two kernels, then FLINC can create 
two audit kernels. The platform, however, only needs to create 
only one repeat kernel, which is specific to the location where 
the notebook containers are stored. 

B. Ensuring Reproducible Execution with FLINC 
In FLINC, the audit kernel creates the notebook container 

which includes all dependencies used by the notebook file, 
except the notebook file itself. This absence of notebook file 
in the container creates two issues when using the container 

to repeat the notebook file: First, it is not possible to map 
the container contents to the specific version of a notebook 

file which was initially used to generate the container. Con­
sequently, given a notebook file, the container may execute, 
but it is not possible to guarantee that execution is the same 

as during audit or repeat. Second, the outputs of the container 
are included in the notebook file and not the container. These 
outputs are often necessary to compare reproducible execution. 

We illustrate these issues through a use case. 
Consider the notebook file N1 of Figure 1, which Al­

ice intends to share with Bob. For this, Alice has con­
tainerized N1 using the audit kernel, which now contains 
all the referenced files such as python3.8, pytorch.py, re­
sent18.model, weather2016-2018.dat, and other configuration 
files. She shares with Bob the container and the notebook 
file N1. Bob is able to successfully repeat N1 and then 

creates another version of the file N2 by modifying N1 's 
threshold parameter and by adding a data transformation step 
to the training dataset, as shown in Figure 4. N2 executes 

without any failures but a different threshold value modifies the 
generated output file, and the addition of data transformation 
steps change the internal system call sequence. Since the 
result of N2 is similar to that of N1, the user might think 
that the notebook reproduced correctly. However, there is no 
valid means to compare the result produced from the previous 

execution as outputs are sent via messages. Consequently, the 
container does not map its contents to the specific version 
of a notebook file, which was initially used to generate that 

container. 
We solve this issue by auditing per cell provenance of 

the application during creation of the container. The per 
cell provenance is generated by differentiating between the 
contents of the notebook file and its execution, and maintaining 

a map between the cell code and its provenance generated 

during execution. 
Let N be a notebook file consisting of cells N = 

[ c1, c2, ... , en], where ci represents the ith execution of the cell. 
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dependencies 
(c,J !pip install rasterio 

from geopandas import gpd 
import rasterio.plot 

pre-processing 
(c2) threshold = 1 0000 1 

gpa.reaa_ 1 elouueiJ 
dataset = rasterio.open(DEM) 

data transformation 
dataset = encode (dataset) 
dataset= transform( dataset) 

model execution 
!mp1exec -n 4 pitremove -z ataset 
!mpiexec -n 4 threshold dataset 

comparison 
[csJ res ult = model_predic1(new_data) 

If resullaccuracy >= min_acc: 
print("success') 

llisualizatlon 
[c6] fig, ax = plt.subplots() 

oulletPoint.plot(ax=ax, color=�ed') 
network.plot(ax=ax, color='blue, 
b = gpd.potyfit(dataset) 
print(' Max daily streamflow:"+b+" cis") 

Max da11y streamflow: -268.282 cis 

Fig. 4: The notebook N2 is the modified version of notebook 

N1 in Figure 1. Bob changes the threshold and adds cell c3 
containing data transformation. 

Let program state psi be the state of the notebook program at 
the beginning of each cell as observed by the audit kernel. The 
program state at any point of execution consists of the values 
of all variables and objects used by the program at that point 
- intuitively, it is all the contents of the memory associated 
with the program. So, for example, for the notebook N2, the 
corresponding program states are [ps0,ps1, .•• ,ps5], in which 

psi-l denotes the program state just before cell Ci executed. 
The state ps0 which is just before the first cell is executed, 
includes the value of the connection file and any initial input. 

The audit kernel receives the code for cell Ci and after 
its execution, it maintains the following details about each 
program state psi: 

• code hash, hi, computed by hashing the code in cell i, and 
• state lineage, gi, which is determined by combining three 

features: (i) the predecessor cell's lineage, (ii) the sequence 
of system events Ei that are triggered by program instruc­

tions in the cell i and finally (iii) the hashes hi of the associ­
ated external data dependencies. Thus, 9i = {9i-t. Ei, hi}, 
where Ei is the ordered set of system call events in the cell 
and hi is the hash of the content accessed by the event Ei. 
Initially, go = {}. 
We emphasize that the execution of the program code in cell 

i (and the code in previous cells) resulted in psi. Therefore, 

psi at the end of a cell's execution depends on its (i) initial 
environment, (ii) code that is run, and (iii) external input data. 

The environment is determined by the execution state at the 

start of the cell. Thus, (i) and (ii) are captured via 9i-l and 
Ei. Further, every external input data file is accessed via a 
system call event. For each such event, we record a hash of 
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the file's content in hi3• 
To establish reproducible execution, FLINC stores the de­

tails about a notebook file in the container during audit time. 

During repeat, it establishes equality between states after the 

execution of the cell, i.e., it determines if the cells are (i) equal 

with respect to their code, and (ii) have identical state lineage 

Yi (note that state lineage of ith cell depends on state lineage 

of previous cell). We state this formally as: 

Definition 1 (State equality). Given two program versions L1 
and L2, state psi in L1 is equal to state psi in L2, denoted 
psi =psi, if and only if (i) hi = hj, (ii) Yi = Yi· 

Program states do not remain equal when cell code is edited, 

which changes the hash value of that cell and any subsequent 

cell state. Equating state lineage depends on the system events 
audited during the creation of the container. Since in FLINC, 
system events are audited at the level of system calls, there 

are some pre-processing steps that are necessary to establish 
equality, such as accounting for partial orders, abstracting real 

process identifiers. We describe these issues in Section IV-D. 

C. Flexible Reproducibility with FLINC 
So far we have considered notebook containers that are 

created and repeated within the interactive client-server archi­
tecture of the notebook platform. In our motivating use case, 

such notebook containers improve sharing and reproducibility 

for users such as Bob who also use notebook platforms that 

are hosted in a different environment. We now consider how 

notebook containers can help users such as Charlie, with 

whom Alice would also like to share the notebook container 

but such users are neither operating on a notebook platform nor 

are they familiar with the REPL-style notebook programming. 
FLINC extends application virtualization to export the 

contents of a notebook container to non-notebook isolated en­

vironments. By exporting, FLINC creates a new environment 

for the user, similar to the notebook container, but into which 
users can add or remove files or change existing notebook 

files. Figure 3 shows the export action in FLINC. 
The export is based on a log of all files, collected as part of 

the auditing phase. For correctness, FLINC does not copy the 
files in the log, but collects the lineage of all cells and uses the 

specification of the external input data to determine the soft­

ware packages that must be installed in the new environment. 
Typically, each external input data file is accessed via a system 

call event. Since access is based on file paths, the system event 

also knows the path of the external input data file in the source 
environment. Export maps each file to its software library 

package by using the path specification as software package 

files are generally only accessible from within the software 
package. Thus, for example, if the lineage of a cell specifies 

accessing the external input file l ibcrypt o . s o  .1. 1, then 

the software library to install is l ibs s l  as this software 

library is mentioned in the file path to l ibcrypto . s o . 1 .1. 
Once export determines the appropriate software packages 

and libraries used by the notebook application, it determines 

3 Such hashes are typically obtained while copying content in the container. 
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the version for each of them. Due to the presence of vari­

ous packaging standards and the lack of strict enforcement 

of packaging guidelines, identifying the correct version of 
an installed package is challenging and depends on some 

programming language-specific rules. Identifying the specific 

version of a software package is also not a guarantee that a 

package manager will always install the specific version of 

the package, which is a function of naming convention and 

organization adopted by the package manager. For example 
in Python, two popular packaging conventions are wheels 
and eggs which respectively use the dist-info and egg-info 
formats for storing the package metadata. If either of these 

files/directories are present for a package, we explore the 

package directory to find the version of that package. The 

*-info files or directories contain a METADATA folder which 

contains the version information. However, it is not required to 

have that folder and we found several packages which did not 
contain the folder. We then search for a file named version.py 

or a similar name in the installed package directory and scan 

that file to find the version of the package. Nevertheless, 
for prominent programming languages such as C, C++, R, 

and Fortran, FLINC follows standard conventions as a best 

effort to find version numbers, though the conventions do not 

guarantee identification. 

After determining the packages, FLINC instantiates new 

virtual environments. In particular, FLINC maintains a sep­
arate directory where software packages are copied and in­

stalled. For example, in Python this will be a virtualenv and 
in C/C++, these packages are installed in a user-configured 

location such as tmp or usr. 

D. Processing Provenance logs for Export and Reproducible 
Execution 

Application virtualization captures the execution of a pro­

gram using the ptrace system call which captures the details 

of each instruction executed by the program using operating 
system primitives. In FLINC these events are captured on 

a per cell basis in a provenance log. Each line in the log 

file corresponds to a system event that took place as a result 
of an instruction executed within that cell, and contains the 

instruction timestamp, process identifier, instruction type, and 

the operands of that instruction. This log represents the lineage 
of the interactive kernel process modeled as an activity. 

In export, we process the inferred provenance to determine 
(i) files that are inputs to activities, (ii) files that are read by 
activities, and (iii) files that are outputs. Within this classifica­

tion, we determine files that are in user directories versus files 

that are in system directories. This is necessary as system files 
that are read by activities determine which packages to install. 

We note that the log is noisy in that it also contains information 

about temporary files, outputs, and process memory execution. 

We filter such files as this is execution-specific information and 

not relevant for determining which packages to install. 

For reproducible execution, we must establish state equality 

per Definition 1. Lineage equality implies that at end of cell 

i of version N1, Yi is the same as that at end of cell i 
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Notebook Area Size w/ Size w/o Primary Dependencies Description 
Output Output 

FlowFromSnow Hydrology lOSK 6.5K NumPy, Matplotlib Simple linear regression analysis on USGS stream-
flow data and climate data. 

HAND Hydrology 515K 6.9K NumPy, Matplotlib, TauDEM, Ras- Calculates height above the nearest drainage 
teriO, GeoPandas (HAND) using digital elevation model. 

NatGas Data Science 250K 40K NumPy, Matplotlib, openpyxl Market analysis of natural gas by running market 
simulation of 35 years based on economic indicators. 

AIFinance Data Science 25K 9.1K NumPy, Matplotlib, Scikit-leam, Deep neural network to predict stock prices in the 
Keras, TensorFlow short term using financial news data. 

FashionMNIST Data Science 7.5K 7.1K NumPy, Matplotlib, Torch Vision Image classification using convolutional neural net-
works on the Fashion-MNIST dataset. 

TABLE 1: Characteristics of the five notebooks in the dataset used in our experiments. 

of version N2• This is true if and only if the sequence of 

system call events (and their parameters)-till i in N1 and 

i in N2-exactly match. But if a cell, e.g., forks a child 

process, which itself issues system calls, then each version's 

sequence will contain the parent calls and the child process 

calls interleaved in possibly different orders. To address this 

problem, we initially separate the events of all cells into PID­
specific sequences and then compare corresponding sequence 

to generate the provenance. Note all time and process spe­

cific information is abstracted. Memory accesses cannot be 
abstracted and we just count the number of accesses in a cell. 

V. EXPERIMENTS 

FLINC relies on application virtualization to create note­
book containers. We reused application virtualization as avail­

able with Sciunit [ 17], [4], and modified it to support transpar­

ent connection of repeat kernel with the container. The audit 
and repeat kernels are wrappers over the Sciunit Python API, 

and FLINC adds per cell information to the resulting logs 

obtained via execution. 
To conduct our experiments, we used HydroShare [ 10] 

which is an open source platform used by geoscientists for 

collaborative and reproducible research. HydroShare provides 

tools for managing and publishing models and data by lever­

aging interactive development and access to cloud services. It 

supports multiple computational platforms where users can de­

velop and share their scientific models. Two of these platforms 

are CyberGIS Jupyter for Water (CJW) [ 12] and CUAHSI 

JupyterHub [11]. They provide users with basic hardware 

and software setup to support dependency management and 

isolation through the use of one or more kernels. Users can use 
the pre-existing kernels or create their own kernel in their user 
space. We run our experiments on these two platforms using 

notebooks which use Python, C, and Fortran dependencies. 
The experiments were run on a Docker instance with memory 

size of 30GB and disk size of 64GB, and running Ubuntu 
20.04 on a 64 bit machine with 8 CPU cores. 

Our dataset of experiments consists of five notebooks. They 

are written in Python and C language and also invoke utilities 
via shell commands. Each notebook corresponds to a different 

use case; two from the field of hydrology and three from 

data science. The hydrology notebooks perform water flow 

analysis using data from different sources with the help of 

standard hydrological models. In the data science notebooks, 
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Fig. 5: Comparison of execution times and storage size for the 
five notebooks using each of the three methods: running the 

Python file with Sciunit, running the notebook with its own 

kernel, and running the notebook with Sciunit kernel. 

two notebooks use machine learning algorithms to analyze 

and predict market behavior and the third notebook performs 

image classification using neural networks. We describe the 
important characteristics of our notebooks in Table I. 

We perform two different experiments with FLINC using 
our dataset. First, we study the overhead incurred during note­

book execution due to application virtualization. We analyze 

the execution time and storage size in both the audit and 
repeat modes of notebook execution using the audit and repeat 
kernel respectively. We term this the Interactive-AV method. 

We compare the performance of the FLINC method against 
two other methods. The first method is executing a Python 

file that corresponds to the notebook, but one that uses the 
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(a) Notebook Execution Time (b) Notebook Repeat Time (c) Notebook Execution vs Repeat Time 

Fig. 6: Comparison of average execution and repeat times using each of the three methods: running the Python file with Sciunit, 
running the notebook with its own kernel, and running the notebook with Sciunit kernel. 
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Fig. 7: Comparison of average export times using each of the 
three methods: creating virtual environment with Sciunit ex­
port, creating Docker base container, and creating the Docker 
container with the required dependencies. 

application virtualization in batch mode. We term this method 
Batch-AV. Comparison with this method will help us learn the 
overheads, if any, due to interactive computation. The second 
method is the base performance of the notebook using the 
original kernels (i.e, without application virtualization). We 
term this method No-AV method. 

Figure 5 shows the execution time and the corresponding 
storage footprint generated by the three methods for each 
notebook. Figure 5a shows that the execution time using 
Interactive-AV for each notebook, except HAND, is less than 
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running the Python file of the same notebook using Batch­

AV. We speculate that this behavior is due to notebook server 
optimizations for the MPI modules used by HAND and the 
context switch for the MPI shell commands called from the 
Python code. For each container created using lnteractive­

AV, there is very little to no increase in the container size 
as compared to the containers created using Batch-AV, as 
shown in Figure 5b. We also compute the average time it takes 
across all notebooks and across multiple (3 runs) runs of each 
notebook to execute and repeat using the three approaches. We 
observe that running a notebook with Interactive-AVis "'38% 
faster than running the Python file of the same notebook using 
Batch-AV, and has low overhead over the base execution time 
of the notebook using its own kernel, as shown by Figure 6a. 
Comparing the time to repeat the notebooks, lnteractive-AV 

spends "'7% less time than Batch-AV, as shown in Figure 6b. 
Comparing with itself, Interactive-AV spends about 26% less 
time to repeat the notebook than to execute the same notebook 
during audit mode, shown by Figure 6c. With No-AV, the 
repeat and execution times are exactly the same. 

In our second experiment, we compute the time taken to 
create the new virtual environment using the export function­
ality in FLINC. We term this method FLINC Export and we 
compare it with the time required to create a corresponding 
Docker container using the same set of dependencies. We term 
that Docker Container. The baseline for this experiment is the 
time taken to create Docker base image from Ubuntu 20.04, 

termed Docker Base. 

Figures 7 and 8 show the results that FLINC requires 46% 
less time than Docker to create a new virtual environment on 
the target system and install the required dependencies. The 
virtual environment created by FLINC is also lean compared 
to the size of containers created by Docker. Docker containers 
are, on average, 91% larger in size for all our notebooks 
compared to the containerized environment created by FLINC. 

In summary, executing and repeating a notebook using 
FLINC adds little overhead in terms of execution time com­
pared to running the notebook itself, and uses less time 
compared to running the notebook with Batch-AV method. 
Compared to Docker containers, FLINC takes almost half the 
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time to create a new virtual environment and about half the the fundamental concepts of FLINC can be applied to other 

storage footprint to store the virtual environment. operating systems as well. 
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Fig. 8: Comparison of average sizes using each of the three 
methods: creating virtual environment with Sciunit export, cre­

ating Docker base container, and creating the Docker container 
with the required dependencies. 

VI. DISCUSSION 

We discuss the generality of FLINC while encapsulating 
and sharing dependencies. FLINC is an open-source sys­
tem [18]. Currently, we do not focus on the medium of 

containerization or the format of the resulting container, which 
is beyond the scope of this paper. The objective in FLINC 
is to automatically determine the dependencies and provide 

a sandbox instead of manually creating a package and then 
sandboxing it. If the container is a package then one of the 
emerging format such as Flatpak [19] or NEXTSTEP/MacOS 

bundles [20] can be used. If the container has namespace 
isolation, then Docker or Singularity images can be used. 

FLINC currently depends on ptrace, a process tracing utility 
that is only available on Linux platforms. While this restricts 
FLINC to Linux, the fundamental concepts in FLINC can 
also be extended to other operating systems through the use of 
event tracing systems specific to them. For example, as shown 
previously [21] the Process Monitor (procmon) application 

on Microsoft Windows and Mac OS X kernel's auditing of 
system calls with OpenBSM reporter collects the same fidelity 
of provenance and content details as ptrace on Linux. Thus 
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VII. RELAT ED W ORK 

Notebooks are increasingly becoming part of cyberinfras­
tructure for scientific computing [22], [10]. Policies and 

standards with respect to reproducible notebooks [23] are 
also emerging. Several current efforts aim to determine the 
most appropriate notebook platform for scientific computing 

and data exploration. [9] provides an excellent survey of 
about 60 different notebook platforms. They state REPL­

style interactive computation and client-server architecture as 

two distinctive properties of notebook platforms. We have 
developed FLINC keeping these two properties as invariant. 

There are several notebook extensions that improve the 
reproducibility of notebooks during interactive development. 
Nodebook [24] is a plugin for Jupyter that checkpoints note­

book state in between cells to force in-order cell evaluation; 
Dataflow notebooks [25] extend Jupyter with immutable 
identifiers for cells and the capability to reference the results 

of a cell by its identifier. Both of these are specialized 
notebook clients that aim to impose a strict order of notebook 
execution and capture their provenance. This order is important 

during repeated interactive development. Use of FLINC is post 
interactive development for collaborative analytics. 

The issue of reproducing notebooks in different environ­

ments was already recognized by [9]. [26] addresses this 

problem by context-aware migration of a notebook cell for 
execution on another platform. This is achieved through a 

JupyterLab extension which analyzes the execution of each 
cell and uses a hand-crafted knowledge base to decide the 

environment in which to perform computation. FLINC focuses 
on the reproducibility of the entire notebook with minimal user 
intervention. 

Several methods describe the process and specifications 

to capture programs executions and convert them into self­
contained environments. They include methods such as 
PRUNE [27] and TOSCA [28] which require users to explic­

itly define all the code, data, and dependencies with their sys­
tem and users often need to learn new standards and languages 
to use them. In our work, we use application virtualization 

which is a generic approach to build container-like packages 
without modifying applications, and predominantly uses the 
ptrace system call to automatically create a container-like 

package [3], [29]. Some prominent tools that use AV are 
Sciunit [4], [30], Reprozip [31], and Care [32].As this paper 

shows, AV must be extended to apply to notebook platforms. 

Further as we show in this paper, for notebooks, the redirection 
model must also be extended when repeating within notebook 

platforms due to the client -server architecture. The export 

method is similar to the copying of dependencies used in [33], 
[34], but we make it further flexible by bypassing calls to files 

that are not within the container. 
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VIII. CONCLUSION 

Notebooks are increasingly becoming popular in scien­
tific computing, and are adopted for programming analysis, 
modeling, and visualization tasks. Reproducing notebooks is 
critical as target environment continues to evolve, especially in 
collaborative analytics. In this paper, we have highlighted that 
notebook files do not transport their underlying environments 
despite being easy to share. To address this limitation, we 
have presented FLINC a system that supports interactive 
and flexible reproducibility of notebooks. FLINC adapts and 
extends application virtualization (AV), an already popular 
method for addressing computational reproducibility, to note­
books. FLINC monitors notebook execution and captures 
them to create isolated notebook containers. It extends AV 
to accept new network connections from a notebook file and 
redirect them to the notebook container. We show how FLINC 
guarantees reproducibility despite new connections in target 
environments, and also exports notebook containers. Exper­
iments show that FLINC provides efficient reproducibility 
of notebooks and takes significantly less time and space to 
execute and repeat notebook as compared to Docker containers 
for the same notebooks. In the future we plan to generalize 
FLINC to multiple OSes and make FLINC available for high­
performance computing workflows. 
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