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ABSTRACT
Containers are lightweight mechanisms for the isolation of op-
erating system resources. They are realized by activating a set of
namespaces. Since use of containers is rising in scientific computing,
tracking and managing provenance within and across containers
is required for debugging and reproducibility. In this work, we ex-
amine the properties of container provenance graphs that result
from auditing containerized scientific computing experiments. We
observe that the generated container provenance graphs are hyper-
graphs because one resource may belong to one or more names-
paces. We examine the behavior of three namespaces, namely the
PID, mount, and user namespaces, that are prominently used in
scientific computing and show that operations over namespaces do
not result in cycles in the resulting container provenance graphs.
Thus we can identify container boundaries, distinguish container
processes from host processes, and answer conjunctive lineage
queries in polynomial time. We experiment with complex lineage
queries on container provenance graphs and show the hypergraph
formulation helps us answer those queries more efficiently than a
non-hypergraph formulation.

1 INTRODUCTION
The conduct of reproducible science improves when computations
are both portable and evaluable. A container provides an isolated
environment for running computations and thus is useful for port-
ing applications on newmachines. Managing an array of virtualized
containers is becoming increasingly typical for data and code shar-
ing platforms such as Binder [2], Hydroshare [4], WholeTale [8]
that enable users to port applications and execute them repeatedly
on the platform.

Despite isolation, applications may fail to reproduce, especially
as containerized applications are run repeatedly with different in-
put datasets and parameters [19]. Since application evaluation for
reproducibility may happen at different points in time, it is essential
to track provenance of applications within containers to provide
insights and comprehend the causes of failure [13, 23]. Tracking
the provenance of containerized applications, however, raises some
unique research challenges. Containers are ephemeral with a lim-
ited lifetime [15]. Once an execution completes, the container run-
time frees up resources. This necessitates that provenance records
are archived on persistent storage so we can reuse them during
assessment and subsequent evaluations.

One possible design policy is to securely share these records
with the shared-host substrate, which provides a centralized plat-
form and is aware of the array of containers running on it. Con-
sider a shared substrate that stores the system level provenance
graph of an application run at time 𝑡 and then subsequently at
time 𝑡 ′ (Figure 1). Resolving cross-container provenance records is
challenging, as the same physical resource may appear differently
within isolated contexts and at different points in time. As shown
in Figure 1 the same file at path /ℎ𝑜𝑚𝑒/𝑤𝑜𝑟𝑘/𝑑𝑎𝑡𝑎𝑠𝑒𝑡/𝐽𝑎𝑛.ℎ𝑑 𝑓 5
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Figure 1: Container provenance graphs at different points
in time. We can match the container graph at 𝑡 , 𝑡 ′, and 𝑡 ′′

with the host view (top) if all (grey) dashed edges are known.
Current provenance systems do not explicitly model dashed
edges in grey.

is visible as /𝑡𝑚𝑝/𝑑𝑎𝑡𝑎𝑠𝑒𝑡/𝐽𝑎𝑛.ℎ𝑑 𝑓 5 first time but gets mounted
as /𝑑𝑎𝑡𝑎𝑠𝑒𝑡/𝐽𝑎𝑛.ℎ𝑑 𝑓 5 next time. An alternative approach is for
the shared substrate to be container-aware and collect records so
that only the host’s view (top view in Figure) is persisted. How-
ever, users of containerized applications are not aware of resource
specification from the host’s view, which in the case of Figure 1 is
the path /ℎ𝑜𝑚𝑒/𝑤𝑜𝑟𝑘/𝑑𝑎𝑡𝑎𝑠𝑒𝑡/𝐽𝑎𝑛.ℎ𝑑 𝑓 5. Consequently, tracking
records from both the host substrate and the container-specific
execution becomes necessary. This also necessitates that the host
substrate effectively maintains the mapping (grey lines) between
the host view and the isolated contexts.

In this paper, we consider issues in maintaining this mapping of
cross-container records at the shared substrate for container prove-
nance analysis. Container-awareness results in processes mapping
to different isolated contexts, such as 𝑃1 mapping to 𝑃 ′1 and 𝑃

′′
1 . In

addition, processes such as 𝑃2 and 𝑃3 in Figure 1 may unshare at a
later point in time 𝑡 ′′ and form a new isolated context but continue
to read the file from the same path. Thus the resulting container
provenance graph has not only pair-wise edges between files and
processes in the same isolated context, but must also maintain non-
pairwise relationships between files and the process identifiers in
different isolated contexts. We show that such higher-order relation-
ships are easily modeled as hyper graphs at the shared substrate. Hy-
pergraphs are multigraphs that allow edges between multiple nodes
of a traditional graph. We consider different lineage queries on con-
tainer hyper graphs. We show that despite being namespace-aware
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the resulting container hypergraph is acyclic and therefore con-
junctive lineage querying on namespace-aware container records
terminates in polynomial time. Our experiments show that our
hyper graph formulation applies to records collected from Docker
containers and related benchmarks, and that our queries terminate
in reasonable time.

The rest of this paper is structured as follows. We provide a
basic overview of namespaces, containers, and provenance tracking
in containerized hosts in Section 2. We then show how resources
across namespaces map to nodes in a hypergraph 3. We formulate
a directed hypergraph and describe forward lineage queries are
acyclic in Section 3.1. Section 4 describes an efficient implementa-
tion of hypergraphs with experiments. We discuss related work in
Section 5, and we conclude in Section 6.

2 BACKGROUND
We provide basic background information on Linux containers and
namespaces, and their provenance tracking.

2.1 Namespaces
An operating system namespace provides a set of processes the
illusion that they have complete control of a resource. The kernel
ensures that different instances of the same namespace are iso-
lated, allowing a global resource to be shared without any changes
to the application’s interfaces to the system. The Linux kernel
wraps various global system resources such as PIDs, hostnames,
mount points, user identifiers, time, network devices and ports,
interprocess-communication, and resource accounting information
into namespaces. Each of the namespaces provides an isolated view
of the particular global resource to the set of processes that are
members of that namespace. Figure 2 shows an example of the
mount namespace. On a Linux operating system that has just been
booted, every process runs in an initial mount namespace, accesses
the same set of mount points, and has the same view of the filesys-
tem. Once a new mount namespace is created, the processes inside
the new mount namespace can mount and alter the filesystems on
its mount points without affecting the filesystem in other mount
namespaces.

Host

A B

/

C D

A B

/

X

Namespace 1 Namespace 2

Figure 2: The behavior of mount namespaces. The root and
A and B mount points are shared but then the namespaces
can continue to grow independently.

One of the significant uses of namespaces is to support the im-
plementation of containers, a tool for lightweight virtualization.
Within containers, our examples focus on PIDs and mount point
resources, since data flow tracking heavily relies on these resources,
but our approach of modeling provenance graphs over namespaces
applies to all kinds of system resources.
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Figure 3: Sound container provenance graphs from OS-level
provenance tracking systems [12]

2.2 Containers
Linux containers may be viewed as a set of running processes
that collectively share common namespaces and system setup. In
practice, containers are usually created by a container engine us-
ing its container runtime. The container runtime will specify the
namespaces to be shared among processes running inside the con-
tainer. In general there are several runtimes such as LXC[6], rkt[7],
Mesos[1], Docker[3], Singularity[17], and Charlie Cloud[21]. Each
of these runtimes differ in their application programming interface
(API) and how they manage creation, destruction and persistence of
namespaces. Our treatment of provenance tracking is at the system
level and thus while we respect the same container boundary that
all engines recognize, our formalism is independent of the specific
APIs used by the specific runtime.

2.3 Namespace and Container-awareness in
Provenance Systems

Figure 3 shows a provenance graph of a containerized application
running on a host system that is also executing the same application.
The graph is obtained from provenance systems that track data
flows at the operating system level [14, 20]. We particularly note
that the Linux auditing mechanisms such as Linux Audit, SysDig,
and Lttng do not automatically generate such sound provenance
graphs. Current provenance tracking systems rely on a combina-
tion of host-container mapping view and namespace-labeling ap-
proaches that disambiguate and map virtual nodes with host nodes
on the provenance graph to generate sound provenance graphs.
This soundness property is demonstrated in the Figure as it shows
for a process its real identifier in the host namespace and virtual
identifiers in the containerized namespace. Similarly the virtual-
ized file path is different from the real file path even though the
underlying inode is the same.

From a querying perspective, however, the representation of
namespace information within the audited provenance graph is
sub-optimal. Consider the process id 3030 which is mentioned in
namespace 4026532270 but is truly in namespace 4026531836. Thus
queries such as “what are the processes running in namespace
4026531836?” will not return accurately. While one may argue
that all processes are in the host namespace and such a query is
easily modeled by querying all process nodes, the argument is not
true in the case of nested containers or shared mount trees, which
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Figure 4: Container queries

are often created for performance purposes. Thus determining all
the processes in a namespace will be incorrect and so will be any
query that determines the forward or backward lineage path on
which such nodes lie. Similarly the provenance semantics that file
paths of the file used by processes appear distinct in the graph, but
correspond to the same physical file are not captured.

3 QUERYING CONTAINER PROVENANCE
Sound provenance records collected by provenance tracking sys-
tems are typically maintained at the host substrate. These records
include pairwise edges between process and files, but maintain
namespace relationships as properties of the node and not as a
graph relationship. Consider a provenance query on container
graphs such as find which processes identifiers wrote to a file visible
across namespaces 1-3, will return all processes identifiers across
all namespaces since identifiers in different namespaces are not
separated. Figure 4(a) distinguishes the returned query result from
the expected one in Figure 4(b). Similarly, consider another prove-
nance query on container graphs such as find all resources that
were derived from each other in namespaces 1, 2, and 3. Figure 4(c)
shows the directed subgraph that is obtained as a result of this
query. However, the directed graph represents derivation across
all namespaces. It does not reflect the grouped derivation between
individual namespaces as shown in Figure 4(d).

We observe that to answer the above queries correctly, simple
graph edges do not capture the higher-order relation which con-
nects these multiple objects, but is more appropriately captured by
a hypergraph which is a generalized graph data structure, where an
edge can connect any number of vertices. In general, a hypergraph
is a couple 𝐻 = (𝑉 , 𝐸) consisting of a finite set 𝑉 and a set 𝐸 of
non-empty subsets of 𝑉 . The elements of 𝑉 are called vertices and
those of 𝐸 are called hyperedges. While a regular graph edge is a
pair of nodes, a hyperedge 𝑒 ∈ 𝐸 connects a set of vertices {𝑣} ⊆ 𝑉 .

A primary concern with graph-based querying is ensuring that
underlying graphs are acyclic, so conjunctive queries do not take
exponential time. In non-container system graphs, this is obtained
via versioning of process and file nodes: every write to a file after
close is versioned, and every read by a process leads to versioning
of the process nodes. With process and file nodes arising due to
namespaces as explicit nodes in a graph, we ensure that the resulting
graph is acyclic. In the following subsection we define a path in

a directed container hypergraph, and show that such a path will
never be cyclic based on namespace system calls.

3.1 Acyclicity in container provenance
Definition 3.1. A directed hypergraph 𝐻 = (𝑉 , 𝐸), where 𝑉 is a

finite set of nodes and
−→
𝐸 ⊂ {(𝑇 (𝑒), 𝐻 (𝑒)) : 𝑇 (𝑒), 𝐻 (𝑒) ∈ 𝑃 (𝑉 )

𝜙&𝑇 (𝑒) ∩𝐻 (𝑒) = 𝜙} is the set of directed edges, where 𝑃 (𝑉 ) is the
power set of 𝑉 , 𝑇 (𝑒) and 𝐻 (𝑒) are said to be the tail and the head
of 𝑒 respectively.

The head and tail represent the set of nodes where the hyperedge
ends and starts respectively. It is clear that |𝑇 (𝑒) | < 0, |𝐻 (𝑒) | > 0.

Definition 3.2. A forward edge is a hyperedge 𝑒 = |𝑇 (𝑒), 𝐻 (𝑒) |
with |𝑇 (𝑒) = 1|.

Definition 3.3. A simple directed hypergraph path from 𝑠 and
𝑡 in

−→
𝐻 is a sequence (𝑣1, 𝑒1, 𝑣2, . . . , 𝑣𝑛−1, 𝑒𝑛−1, 𝑣𝑛) consisting of (i)

nodes 𝑣𝑖 where 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖𝑖𝑛𝑇 (𝑒𝑖 ), and distinct hyperedges 𝑒 𝑗
where 1 ≤ 𝑗 ≤ 𝑛 such that 𝑠 = 𝑣1 and 𝑡 = 𝑣𝑛 and for every 1 ≤ 𝑖 ≤ 𝑛,
𝑣𝑖 ∈ 𝑇 (𝑒𝑖 ) and 𝑣𝑖 ∈ 𝐻 (𝑒𝑖 ).

Definition 3.4. A simple directed hypergraph path
−→
𝑃 = (𝑣1, 𝑒1, 𝑒𝑛, 𝑣𝑛)

from 𝑠 = 𝑣1 to 𝑡 = 𝑣𝑛 in hypergraph𝐻 is called a cycle if |𝑇 (𝑒1) | ≥ 1
and 𝑡 ∈ 𝑇 (𝑒1).

We show for different namespaces such path cycles do not exist.
• PID namespace. Cycles do not occur in PID namespaces because,

while processes may freely descend into child PID namespaces
(e.g., using setns(2) with a PID namespace file descriptor), they
may not move in the other direction. That is to say, processes
may not enter any ancestor namespaces (parent, grandparent,
etc.). Changing PID namespaces is a one-way operation. This
remains true irrespective of the type of namespace call such as
clone, unshare, setns. Thus a process’s PID namespace member-
ship is determined when the process is created and cannot be
changed thereafter. This means that the parental relationship
between processes mirrors the parental relationship between
PID namespaces: the parent of a process is either in the same
namespace or resides in the immediate parent PID namespace.

• Mount namespace. Mount namespaces are not nested and yet
cycles do not occur because use of system calls such as chroot and
pivot_root lead to unmounting of the host filesystem, making
it impossible to access any file within it in a child namespace.
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This acyclicity is true irrespective of the mount flags used during
propagation of mount points.

• User, network and UTS namespaces. These namespaces do not
create cycles as these namespaces create one-one mapping be-
tween resources in the parent and child namespaces. For example,
cycles do not occur in user namespace since uid and gid map-
pings are only set in the parent namespace for the child names-
pace. While the same user can be mapped to different identifiers
in child namespaces, the mapping only leads to a hierarchical
structure and thus avoids cycles.

4 HYPERGRAPH IMPLEMENTATION AND
EXPERIMENTS

We have mimiced hyperedge structure using n-ary relationships in
a Postgres database. Our basic objective was to identify hypergraph
structure in available container provenance graphs. We store the
incidence matrix of the hypergraph, which stores the vertices that
each hyperedge contains (rows correspond to vertices, columns cor-
respond to hyperedges, and nonzeros 𝑖 , 𝑗 designate that hyperedge
𝑗 contains vertex 𝑖). The incidence matrix allows for quickly deter-
mine if two processes are in the same namespace. We used three
container provenance graphs that were generated in [9] which were
on Docker benchmarks and Kubernetes CVEs. Table 1 shows basic
details about container provenance graphs. In #processes and #files,
the number outside bracket is the total number, including all ver-
sions of all files/processes and the number in bracket is the number
ignoring versions. Table 2 shows our result. The analysis ignores
file versioning and if a file was introduced in multiple namespaces
in a later version, and pathnames dont exist for that version, then
that is not counted.

Table 1: Log details.

Log #vertices #edges #processes #files
hotel_docker 472889 1058298 280562 (2958) 28074 (6140)
cve-2019-1002101 1023370 2176519 647336 (2223) 131024 (19842)
cve-2021-30465 1089634 3233319 655660 (3770) 77865 (12584)

Table 2: Hypergraph results

Log #hyperprocesses #hyperfiles #paths
hotel_docker 209 1499 960
cve-2019-1002101 659 5753 982
cve-2021-30465 593 1965 805

5 RELATED WORK
Containers are implemented with Linux namespaces[16]. Both con-
tainers and namespaces create challenges for provenance collection.
Clarion[12] solves the provenance clarity and soundness challenges
that exist in LinuxAudit framework[5]. Tracing the execution prove-
nance of containers became an interesting problem in the security
domain. There are systems that uses provenance to solve security
challenges such as Container Escape Detection[9].

PROV[18] defines a provenance model and its serializations.
The PROV data model (PROV-DM) does not define the concept of

container or even a more generic concept like context that can be
used to model containers. The most close concept is collection If we
model computer resources (e.g. files, processes, users) as entities, we
can add them to named collections through the HadMember relation.
This is a very simple representation of a namespace as a collection
that had members which are resources that belong to it. A more
advanced form of context should be added to PROV if we need to
model containers. PROV can be serialized with RDF or OWL. Both
of them lack the support for contexts. For RDF, PaCE[22] aims to
add context to provenance as a special entity. For OWL, C-owl[11]
defines a context by its local contents which is not shared. This is
similar to namespaces local IDs of resources. Hyper graphs [10]
model various types of objects and the relations between them. RDF
data model can be represented as hyper graph natively in System
Π[24].

6 CONCLUSIONS
The increasing interest in containers and their wide usage in nu-
merous applications inspired a careful study of their provenance.
We presented the problem of querying provenance hyper graphs
in containerized applications. We formalized the definition of hy-
pergraphs and identified hypernodes and hyperedges in real world
datasets. In the future, we plan to efficiently query large provenance
hypergraphs.
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