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ABSTRACT

A hallmark of meso-scale interfacial fluids is the multi-faceted, scale-dependent interfacial energy, which often manifests different character-
istics across the molecular and continuum scale. The multi-scale nature imposes a challenge to construct reliable coarse-grained (CG) models,
where the CG potential function needs to faithfully encode the many-body interactions arising from the unresolved atomistic interactions and
account for the heterogeneous density distributions across the interface. We construct the CG models of both single- and two-component
polymeric fluid systems based on the recently developed deep coarse-grained potential [Zhang et al., J. Chem. Phys. 149, 034101 (2018)]
scheme, where each polymer molecule is modeled as a CG particle. By only using the training samples of the instantaneous force under the
thermal equilibrium state, the constructed CG models can accurately reproduce both the probability density function of the void formation
in bulk and the spectrum of the capillary wave across the fluid interface. More importantly, the CG models accurately predict the volume-to-
area scaling transition for the apolar solvation energy, illustrating the effectiveness to probe the meso-scale collective behaviors encoded with

molecular-level fidelity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131567

. INTRODUCTION

Molecular dynamics (MD) simulations provide a promising
avenue to establish the atomistic-level understanding of many com-
plex systems relevant to biological and materials science. Despite
the overwhelming success during the past decades, a remaining
bottleneck roots in the limitation of the achievable spatiotempo-
ral scales; the gap between the micro-scale atomistic motions and
many meso-scale emerging phenomena remains large. One impor-
tant problem is the nano-scale interfacial fluids, which play a crucial
role in the hydration and the assembly of the biomolecules and func-
tional nano-materials.”’ However, it is well known that such fluid
systems generally exhibit a complex and multifaceted nature on dif-
ferent scales. On the small scale (i.e., the fluid molecule correlation

length), the solvation energy is determined by the molecular reor-
ganization and scales with the volume of the void space. On the
large scale, the solvation energy is determined by the free energy for
maintaining a fluid-void interface and scales with the surface area.
The scale-dependent behavior indicates a cross-over regime of the
entropy-enthalpy transition. While theoretical understandings”~ of
this ubiquitous phenomenon have been developed, computational
modeling often relies on full micro-scale MD simulations to retain
the multifaceted properties, which, however, remain too expensive
to achieve the resolved scale for applications such as nano-scale
assembly.

To accelerate the full MD simulations, many coarse-grained
(CG) models have been developed. By modeling the dynamics in
terms of a set of CG variables with reduced dimensionality, the
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coarse-grained molecular dynamics (CGMD) simulations, in prin-
ciple, enable us to probe the collective behaviors on a broader scale.
However, in practice, the construction of truly reliable CG models
can be highly non-trivial, especially for the meso-scale interfacial
fluids. There are two major challenges. The first challenge arises
from the many-body nature of CG interactions. Specifically, the
equilibrium density distribution of the CG model needs to match
the marginal density distribution of the CG variables of the full
model. Due to the unresolved atomistic degrees of freedom, the
CG potential generally encodes the many-body interactions even
if the full MD force field is governed by two-body interactions.”
Existing approaches often rely on various physical intuitions as well
as empirical approximations’ ** that reproduce certain target ther-
modynamic quantities and/or structural distributions. For exam-
ple, the pairwise additive decomposition based on direct ensemble
averaging'"'* can recover the thermodynamic pressure but often
fail to recover the pair distribution function. Conversely, the Monte
Carlo and Boltzmann inverse approaches” " can reproduce the
pairwise distribution function, which, however, lead to the biased
predictions of the equation of state. Several studies account for the
many-body effects by introducing the configuration-independent
volume potential®** and the local density”"***’** into the pair-
wise interactions. On the other hand, the accuracy of the high-order
structural correlations as well as the direct applications to interfacial
systems remains under-explored.

In addition the many-body effect, the fluid molecules also
exhibit heterogeneous density in the interfacial vicinity. What fur-
ther complicates the problem is the fact that the interfacial fluid den-
sity distribution is scale-dependent. On the small scale, the molecular
reorganization generally leads to a wet interface with a larger density
than the bulk value. On the large scale, the fluid-void phase sep-
aration generally leads to a dry interface with lower density. The
crossover implies complex molecular correlations near the interface.
To capture this multi-faceted property, the constructed CG potential
needs to properly embody the local particle distribution other than
the homogeneous bulk distribution. Conventional structural-based
CG potential functions generally show limitations to incorporate
such information. Similar to the many-body dissipative particle
dynamics,'* recent studies employed the local density’” ™ as well
as the density gradient® as the auxiliary field variables to construct
the CG potential functions. While the CG models show signifi-
cant improvement to reproduce the interfacial density profile, the
scale-dependent interfacial energy and fluctuations have not been
systematically investigated. In Ref. 41, interfacial energy is inte-
grated into the continuum fluctuation hydrodynamic equation®’
from the top-down perspective. Fluid particles essentially represent
the Lagrangian discretization points based on the smoothed dissi-
pative particle hydrodynamics® instead of the CG molecules; the
meso-scale fluid structural properties cannot be retained. Currently,
the construction of reliable bottom-up CGMD models that faith-
fully encode the multifaceted molecular interactions remains largely
open.

In this work, we aim to address the above challenges by con-
structing CG models of meso-scale interfacial fluids based on the
deep molecular dynamics (DeePMD) scheme.”""” DeePMD is ini-
tially developed for learning the many-body interactions from the
ab initio molecular dynamics and has been applied to construct
the deep coarse-grained (DeePCG) model’ of liquid water in bulk.

ARTICLE scitation.org/journalljcp

Unlike the conventional forms of the inter-molecular potential func-
tion, the DeePMD represents each particle as an agent and the
relative positions of its neighboring particles as the local environ-
ment. Rather than approximating the total potential of the full
system by unified parametric function, the DeePMD directly maps
the local environment of each agent to the potential energy of that
particle through a neural network that strictly preserves the spatial
symmetries and the particle permutation invariance. Accordingly,
the construction does not rely on the empirical decomposition (e.g.,
pairwise, three-body) of the high-dimensional particle configura-
tion space. This unique feature is particularly suited for modeling
the many-body potential of CGMD models, where the ensemble-
averaged interaction between two CG particles further depends on
the other neighboring CG particles and cannot be represented by
a pairwise additive function. Moreover, the heterogeneous parti-
cle density distribution across the fluid interface can be naturally
incorporated into the CG potential function as the local environ-
ment of each particle. Accordingly, the constructed CG models
can accurately model the multifaceted, scale-dependent interfa-
cial fluctuations and apolar solvation without additional human
intervention.

We demonstrate the effectiveness of the CG models by con-
sidering both the single- and two-component fluids in the presence
of thermal interfacial fluctuations. As discussed in Ref. 2, the scale-
dependent hydrophobic effects can be general for solvent molecules
with attractive interactions; polymeric liquids are, therefore, used as
the benchmark problem. We compare the numerical results from
the full MD simulations and the CG description that represents each
molecule as a single particle located at the center of mass. By merely
using training samples under equilibrium thermal fluctuations, the
constructed CG models accurately predict the high-order correla-
tions, the local compressibility, and the interfacial capillary wave
for both single- and two-component fluids. In contrast, the empir-
ical CG potential constructed based on the pairwise approximation
shows apparent deviations. Furthermore, we conduct the rare-event
sampling simulations to estimate the probability of the void formu-
lation in bulk. The predictions of CG model show good agreement
with the full MD results. More importantly, the CG models accu-
rately predict the volume-to-area scaling transition for the solvation
energy, and therefore, pave the way for modeling the nanoscale
assembly in aqueous environment.

Before wrapping up this section, we note that the present
work focuses on the collective, quasi-equilibrium properties deter-
mined by the conservative potential function of a set of exten-
sive CG variables; see Refs. 46 and 47 for relevant work. For the
conformational free energy of non-extensive CG variables, several
machine-learning based approaches™ ™ have been developed; see
also a recent review’® and the references therein. Furthermore, to
accurately predict the dynamic properties, memory and coherent
noise terms’ " arising from the unresolved variables need to be
properly introduced into the CG model," """ which are left to
future investigations.

Il. METHODS AND MODELS
A. Full model of the polymeric fluids

We consider the micro-scale models of the star polymer melt
similar to Ref. 12. The full system consists of M molecules with
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a total number of N atoms. Each polymer molecule consists of a
“center” atom connected by N, arms with N, atoms per arm. The
positions of the atoms are denoted by q = [ql,qz, . ,qN], where
q; represents the position of the ith atom. The potential function is
governed by the pairwise and bond interactions, i.e.,

V@) = 2, Volas) + 2 Vah). (1)
]

where V), is the pairwise interaction between both the intra- and
inter-molecular atoms except the bonded pairs. q;; = |q; - q; is the
distance between the ith and jth atoms. V), is the bond interaction
between the neighboring particles of each polymer arm and I is the
length of the kth bond. The bond potential V), is chosen to be the
harmonic potential, i.e.,

VMD=%MU*%Y» @

where ks and Iy represent the elastic coefficient and the equilibrium
length Iy, respectively. In this study, all the physical quantities take
the reduced unit. The atom mass is chosen to be unity.

We investigate three fluid systems with micro-scale potential
governed by Eq. (1). In Sec. III A, we consider the polymeric fluids
in bulk and examine if the CG models can retain the many-body
interactions and the local compressibility. In particular, we choose
Ng =12, Ny =6, 0=2.415,¢e=1.0, ks = 1.714, and Iy = 2.77 similar
to Ref. 12. V, takes the form of the Lennard-Jones potential with

cut-off r., i.e.,
o\2 [0\
"’“4[() (%) ]

3)

where € = 1.0 is the dispersion energy and o = 2.415 is the hard-
core distance. In addition, we choose r. = 2//°s so that V, recovers
the Weeks-Chandler-Andersen potential. The full system consists of
N = 2120 polymer molecules in a cubic domain 180 x 180 x 180 (in
reduced unit) with periodic boundary condition imposed along each
direction. The Nosé-Hoover thermostat is employed to conduct the
canonical ensemble simulation with ks T = 3.96.

In Sec. III B, we consider the polymeric fluid in the presence
of fluid-void interface. Micro-scale model parameters are similar
to Sec. III A except that r. = 2.50 and kT = 1.7. Simulations are
conducted in a domain 180 x 180 x 200 with periodic boundary
condition imposed along the x— and y—direction. At the equilib-
rium, the fluid shows a clear fluid-void interface near z = 20 and
z = 180, respectively.

In Sec. I1I C, we consider a two-component polymeric fluid.
Micro-scale model of the polymer molecule is similar to the single-
component fluid system with N, =15, N, = 12, ks = 20.0, [ = 1.5,
and kT = 0.5. The full system consists of 3488 molecules in a
domain 200 x 200 x 120 with periodic boundary condition imposed
along each direction. The pairwise interaction V), is chosen to be
quadratic, i.e.,

Vi(r) = Vig(re), r<re

0, r>r.

Vp(r) =

a 2
Z—(r—rc) T < T
Vp(r) =1 (4)
0,r>re.
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Specifically, we consider two sets of the pairwise interaction:
0] at' = 6.0, a'? = 3.0, a*> = 6.0, and r. = 1.5, where a'? represents
the pairwise interaction between the component-1 and component-
2 atoms. (II) a*! = 3.0, a'? = 60.0, a'! = 3.0, v} = 1.5, 72 = 2.5, and
ri! = 1.5. The fluid shows a full mixture and interfacial separated
state for the two cases, respectively.

B. Coarse-grained models

For all of the three systems, we construct the CG models by
representing each molecule as an individual particle. The positions
of the CG particles are denoted by Q =[Q;,Q,,...,Qy], where
Q; = 2i(q) represents the center of mass (COM) of the ith molecule.
The conservative potential U(Q) is determined by the marginal den-
sity function of Q with respect to the equilibrium density function of
the full model, i.e.,

M
P(Q) — f e—V(q)/kBTH 8(31((1) _ Q,)dq/ f e—V(q)/kBqu,
i1

®)
U(Q) = ks In p(Q).

In DeePCG, a neural network U(Q;®) is used to represent
the CG potential U(Q), where @ represents the neural network
parameters. To keep the extensive property, the total energy is
decomposing into local contributions of the individual CG particles,

tﬂ@@):ﬁﬁ@@ﬂé%@L (6)

where Uy, is the local potential of an individual particle, Qi e RNix4
is the generalized coordinates of the ith particle. It represents the
local environment of the ith particle relative to its N; neighboring
particles within cutoff Rc. In particular, the jth row is defined as
Q = (s(17), s(r)xi/17,s(r)yifri o s(1i)zi[r}), - where 1 = (x,,.2))
denotes the relative position between the particle and its jth local
neighbor. s(r) is a smooth differentiable function that decays to 0
at r = R., which ensures the force also smoothly decays to zero at
the cut-off. D € RM*: is the symmetry preserving features of each
particle. The entry of D can be written as

T

X N; - N; -
Du(@’) - (kggl,j(sm);@)QL)(;gzxs(m);@)Q‘k) R

where {g1 ,j(s(r);®)}j,\:‘l and {gz,l(s(r);G))}]I.\;IZ1 are neural networks
mapping from the scalar r to multiple features, and M; and M, are
the number of customized features. D;; preserves the translational
and rotational invariance; the summation over index k ensures the
permutational symmetry. In this study, s(r) is chosen as black,

1
) r < Res,
;
171 -R 1
s(r) = 7[7 cos(n i ) + 7], R <r <R, (8)
ri2 R. — R 2
0, r> R,

where R = 0.97R. is a smooth cut-off parameter.
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In principle, U(Q;®) can be trained by minimizing the dif-
ference of the predicted force terms between the full micro-scale
and the CG models, ie., (|[VU(Q:®) - VU(Q)H2>Q, where (-)q,
represents the conditional expectation with respect to the con-
straints of Q, i.e., [T, 8(2i(q) — Q;). However, the evaluation of
the force term —VU(Q) relies on the constraint sampling with
respect to 8(2(q) — Q), which can be computational expensive.
On the other hand, we note that the instantaneous force #(Q)
follows #(Q) = -vU(Q) + Z(Q), where £(Q) is the zero-mean
fluctuation force. Therefore, we have (|VU(Q;®) - VU(Q) HZ)Q

=(|vU(Q®) + 97(Q)||2)Q + (HQZ(Q)H2>Q, where the last term
does not involve in the training. Accordingly, we can transform the
training by minimizing the empirical loss,

M .
=32 [vo@©:e) + Fi(

=1

&)

l“
Mm

1

-

where the superscript represents the index of S configurations. For
the three micro-scale models specified in Sec. I A, we collect train-
ing samples from 200—, 250—long (in reduced unit) trajectories from
the full MD simulations. In total, 5000 snapshots are used to train
the CG potential function for each case. The networks are trained
by the Adam stochastic gradient descent method.®' In particular, we
emphasize that all the training samples are collected from thermal
states. As shown in Sec. 1], the constructed CG potentials naturally
encode the many-body and heterogeneous interfacial interactions,
which enable us to accurately predict rare events such as the prob-
ability of the void formation and scale-dependent apolar solvation
energy.

I1l. NUMERICAL RESULTS
A. Bulk fluids

Let us start with the CG model of fluids in bulk. Due to the
constraint terms in Eq. (5), the marginal probability density func-
tion p(Q) generally cannot be represented in form of the simple
two-point correlation p® (Q;»Q))- Accordingly, the CG potential
function U(Q) generally exhibits the many-body nature and can-
not be exactly constructed in form of the pairwise interaction. This
limitation was verified in earlier studies on the CG modeling of poly-
meric fluids,' !> where the CG interactions are constructed based on
the pairwise decomposition, i.e.,

U(Q =3 U?(@)
i#j
(10)
du®
T(r) = ~(F5(Qy) 'e”>Qv=”

where e; = Q;/Q;; represents the unit vector between the ith and jth
particle.

To examine the model accuracy, we simulate the CG models
with U(Q) constructed in form of both Egs. (6) and (10). Figure 1
shows the obtained radial distribution functions (RDFs). Predictions
from the full MD and the reduced model based on the DeePCG
potential (6) show good agreement. In contrast, the pairwise CG
potential (10) yields pronounced over-estimations of the peak value

ARTICLE scitation.org/journalljcp

2 r . :
-=Full MD
-©-Pairwise CG
-4-DeePCG
1.5}
5> 17
051
0 A A ’4 1
0 30 40

FIG. 1. Radial distribution function g(r) of the molecule COM obtained from the full
MD simulation, the CG model using the pairwise force approximation by Eq. (10),
and the DeePCG model.

near r =16 due to the over-simplification of the many-body CG
potential using the two-body interaction; see also Refs. 11 and 12.

The many-body nature of U(Q) is also manifested in the
angular distribution functions (ADFs) p(6), where 6 is the angle
determined by the relative positions of three molecules.

2225(9 0ic) ), (11)

i ]#1 k>]

P(6;Ar) = —

where 6j; is the angle between Q;; and Qy;, and W is a normaliza-
tion factor. The summation is over all the triplet i, j, and k, such
that [Q; - Q;|| < Arc and [ Q; — Q] < Are. Figure 2 shows the ADFs
within four different cut-off regimes. Similar to the RDF, predictions
of the DeePCG model agree well with the full MD model while the
pairwise approximation yields apparent deviations.

In addition the equilibrium correlations, we further exam-
ine the fluid local compressibility. While this property plays an
important role in the nano-scale hydrophobicity, canonical solva-
tion theories generally refer to the fluids at the proximity of the
vapor-liquid coexistent phase. Here, we examine this property of
bulk fluids for the validation of the constructed many-body CG
potential U(Q); the discussion of the apolar solvation energy is post-
poned to Sec. 1 B. Specifically, we examine the rare event of the
void formation in bulk. Following Ref. 62, we define the smoothed
molecule number within a probing spherical volume centered
at Q. by

a({Q 1)=§ (1+2tanh(R_hQi)), (12)

where R is the radius of the probing sphere, Q; = |Q; - Q.| is the
distance between the COM of molecule i (or equivalently, the CG
particle) and the spherical center, and & = 1.0 represents the smooth
length.

By Eq. (12), particle number 7 is differentiable with respect to
the individual molecule position Q;. Similar to Ref. 62, we can probe
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FIG. 2. Angular distribution function p(6) of the molecule COM obtained from the full MD simulation, the pairwise CG model and the DeePCG model with different cut-off

regimes Ar.

the probability of the void formation by establishing a replica of
umbrella sampling by imposing the bias potential,

R kn
Ubias (715 1) = ?(n - ), (13)

where k;, is the magnitude of the bias potential and #; is the tar-
get value of the particle number inside the domain, as shown in
Fig. 3(a). We set k, = 21.9 and establish 40 independent simulations
with n; evenly distributed between 0 and 7.5. For each replica, we
collect 8 x 10° samples of 7 from a 1600-long trajectory. By using
the weighted histogram analysis method,*” we can stitch the joint
probability density p(#, n;) to construct p(#1). Figure 3(b) shows the
probability density p(#1) obtained from the full MD and the reduced
model. The predictions of the DeePCG model agree well with the full
MD model over the full regime of 7.

Finally, we examine the normalized density fluctuation dn/(n)
within a spherical volume of various sizes, where (n) is the average

particle number and 6n = /((# - (n))z) is the standard deviation.

Specifically, we define the particle number by Eq. (12) with two
different smooth length & = 1.0 and h = 0.1, respectively. The lat-
ter case essentially represents each molecule as a simple point and
counts the particle number as integers and, therefore, yields larger

density fluctuations. As shown in Fig. 3(c), the full MD and CG
model show good agreement for both cases, indicating that the
CG model can faithfully capture the high-order correlations and
the local compressibility beyond the continuum thermodynamic
limit.

B. Single-component interfacial fluids

In addition the many-body interactions, another hallmark of
interfacial fluids is the heterogeneous molecular distribution across
the fluid interface, which leads to scale-dependent interfacial inter-
actions and fluctuations. On the macro-scale level, the interfacial
interactions can be generally described by continuum models such
as the Young-Laplace equation;” the apolar solvation energy is pro-
portional to the interfacial area and characterized by the surface
tensor. However, on the length scale comparable to the correlation
length of the fluid molecules, the interfacial energy often exhibits
a cross-over regime representing the volume-dependent to area-
dependent scaling transition. Therefore, the meso-scale interfacial
energy provides a crucial metric to validate the accuracy of the CG
model.

First, we examine the interfacial thermal fluctuations. With
the micro-scale model specified in Sec. 1T A, the fluid molecule
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(b)

(d) [-Full MD dh=1.0
0.7 lA-DeePCG dh=1.0

=Full MD dh=0.1

0.6 {A-DeePCG dh=0.1

A : : :
0.01 0.02 0.03 0.04 0.05

FIG. 3. The density fluctuation and the molecule number distribution within a spherical probing volume. (a) A sketch of the star polymer with the black atom as the center.
Atoms in the same arm have the same color. The transparent particle represents the coarse-grained molecule. (b) A sketch of the instantaneous molecule position under
bias potential (13). The iso-surface in blue color represents the interface of the void space. (c) The probability density function of the molecule number within a spherical
volume of radius R = 16.0. The vertical dashed line represents the average molecule number under equilibrium. (d) The normalized density fluctuations within a spherical
volume of radius R between 8.0 and 16.0. The particle number is defined by Eq. (12) with the resolution length h set to be 0.1 (solid lines) and 1.0 (dashed lines).

interaction consists of both the short-range repulsion and long-
range attraction. Under the thermal equilibrium states, the fluid
system exhibits the fluid-void interfaces near z = 20 and z = 180.
The periodic boundary condition is imposed along the x— and
y— direction.

To quantify the molecule distribution near the interface at
z = 29, we define the smoothed density field p (R) by

M
ps(R) = > - W(|R - Q. h), (14)
i=1

on the Ny x Ny x N, lattice grids. Specifically, R®¥ := (x',y7, %),
where (xi,yj) = (i,j) xdl, dl=L/Nx, and K =zg—h+kxdz,
dz = 2h/N.. Q; represents the COMs of the neighboring molecules
for each grid point. W(r,h) represents the quintic spline kernel
function® with finite support k. In this study, we set h = 30.0,
dl=1.8,and dz = 0.2.

The smoothed density field p (R) enables us to define the
instantaneous surface (IS) height fz(x, y) as the iso-surface of the
fluid density,” i.e.,

ps(x.3,1(x,)) = po/2, (15)

where p, is the bulk fluid density, as shown in Fig. 4(a). Accord-
ingly, we can compute the IS density distribution p(z) along the
z-direction, where the reference position is chosen to be k(x, y) for
each grid point (x,y). As shown in Fig. 4(c), p(z) exhibits appar-
ent oscillations across the instantaneous surface. The peaks near
z = 6 and z = 16 represent the first and the second layer of the fluid
molecule near the interface. Alternatively, we can compute the den-
sity distribution p(z) with respect to the plane at the average of
the instantaneous height (i (x,y)), i.e., the Gibbs dividing surface.
Different from p(z), p(z) shows a smooth transition from 0 to the
bulk value across the interface. For both definitions, the predic-
tions from the CG model agree well with the full MD simulations.
We emphasize that the learning of the DeePCG potential does not
involve any human intervention such as the definitions of the density
field and the interface height. The consistent predictions between
the MD and CG models validate that constructed DeePCG poten-
tial U(Q; ®) faithfully captures the intrinsic fluid structure near the
interface.

To further examine the interfacial fluctuations, we evaluate the
Fourier spectrum of the instantaneous height h(x, y), i.e.,

7 1 L Ls —ik.x—ik,y
hi(K) = Pfo /0 hi(x,y)e ™Y dx dy, (16)
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FIG. 4. The fluid density and the fluctuating interface of the single-component interfacial fluid system. (a) The interface defined by Eq. (15) with molecules (red) and interface
(green). (b) A sketch of the instantaneous density field defined by Eq. (14). (c) The average density profile across the Gibbs dividing surface (GDS) and the instantaneous
interface (IS) defined by Eq. (15). (d) The ensemble average of the capillary wave spectrum of the fluctuating interface. The solid line in red represents the CWT fitting using

Eq. (17) at the low wave number.

where k = (ky, k,) is the 2D wave number. Figure 4 shows the
ensemble average of the spectrum <|h(k)|2) On the low wave num-

ber limit, the interfacial energy is governed by the surface tensor with

equi-partition distribution among the individual Fourier modes
67,68

following the capillary wave theory (CWT),”" i.e.,

<

where y is the surface tension. At low wave number, <|h(k)|2 )

B kBTL2
yik*

17)

iz(k)f)

obtained from numerical simulations shows good agreement with
the CWT theory. As the wave number increases, the spectrum grad-
ually deviates from the CWT prediction, indicating that there exist
strong correlations between the height fluctuations of neighboring
sites on the molecular scales. Nevertheless, the predictions from
the CG model agree well with the MD results over the entire wave
number regime. In particular, the good agreement in the high wave
number regime shows that the CG model can accurately capture the
local roughness of the interface, which is extremely sensitive to the
molecule spatial correlations and the many-body interactions.

Next, we examine the meso-scale, size-dependent apolar solva-
tion energy. Similar to the bulk system considered in Sec. IIT A, we
examine the probability density function of the number of molecule
P(#) within a spherical volume of radius R = 25.0. As shown in
Fig. 5(a), the predictions from the full MD and the CG model agree
well over the full regime of 7. In particular, at the quasi-equilibrium

regime, the interfacial energy is mainly determined by the fluid
compressibility; P(#) and 7 follow the quadratic relationship, i.e.,
P(#1) o< (7t — (n))?/8n’. Since both 71 and 81> scale with the volume,
the free energy —kgT In P(71) scale with the volume near (n). In con-
trast, P(71) deviates from the quadratic relationship as # decreases
and yields a larger value of P(0). The fat tail arises from the for-
mation of a clear void-fluid interface. In particular, on the scale
beyond the correlation length of fluid molecules, the local molecular
reorganization is insufficient to accommodate the phase separation.
Accordingly, the interfacial energy scales with the surface area of the
void space.

The multi-faceted nature of the interface energy can be fur-
ther examined by computing the apolar solvation free energy
AG = —kgTIn P(0) for the different sizes of the void space. By the
theory of Pratt and his co-worker,® for the small void space, AG is
governed by the molecule number fluctuations with the Gaussian
distribution, i.e.,

1 1
MG~ SksTit?[on’ + - kyT In 2780, (18)

where #12/8n? scales with the space volume 4/37R’. On the large
scale, AG is determined by the macro-scale surface tensor y, i.e.,
AG ~ 47R%y.

To quantify the cross-over regime, we conduct the thermal inte-

gration sampling of AG(R) with R between 0 and 34. The integration

force ‘{f—f is estimated by imposing the biased potential, i.e.,
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FIG. 5. (a) The probability density function of the molecule number within a spherical volume of radius R = 25.0. The red line represents the quadratic fitting; the deviation
near n = 0 arises from the formation of a clear fluid-void interface, where free energy approximately scales with the area of the interface. (b) Normalized solvation free
energy AG(R)/47R? obtained from the thermal integration sampling by Eq. (19). The transition from the volume- to area-scaling occurs between R = 15 and 25. The two
symbols represent the predictions from the probability of the void space —kg T In P(0) for R = 25 in (a). The dashed horizontal line represents the macro-scale limit with
the surface tensor y obtained from the fluctuating interface using CWT [Eq. (17)] presented in Fig. 4.

dAG(R) [¥ Q -Q,
T = Z VQ[Uhias ) ”Q, _ QCH > (19)

i=1

where Upiys(750) is defined by Eq. (13) with k, =29.20 and h = 0.4.
Figure 5(b) shows the obtained solvation energy AG(R) normal-
ized by the surface area. The predictions of the CG and the full
MD models show good agreement. In particular, at small value of R,
AG(R) /4nR* grows with R and implies the volume-scaling regime.
The transition from the volume- to the area-scaling occurs between
R =15 and R = 25. For R > 30, AG(R)/47R? approaches the value
of the macro-scale surface tensor y estimated from the interfacial
fluctuations by the CWT theory (17) shown in Fig. 4.

The scale-dependent interfacial energy is also manifested in
the solvent density distribution near the vicinity of the void space.
Figure 6 shows the normalized radial distribution function g(r + R)
adjacent to the interface. For R = 10, solvation is governed by the
local compressibility and molecule re-organization, leading to the
high fluid density adjacent to the interface. For R = 30, solvation
leads to the clear fluid-void interface and fluid density is closer to

R=10

’ ~Full MD
3 - DeePCG| |

g(R+r)

the bulk value. The CG model accurately captures the transition and
agrees well with the full MD results for both cases.

C. Two-component fluids

We first consider a two-component fluid system that takes the
parameter set (I) specified in Sec. I A. The type 1-2 potential is
lower than both the type 1-1 and 2-2 potential. Therefore, the full
MD system can maintain a full mixture state. The reduced model
is represented by the CG particles of two different types. The equi-
librium state reaches a full mixture state as well. Figure 7 shows
the radial distribution functions of the COM of the molecules. Due
to the “hydrophilic” interactions between type-1 and -2 molecules,
the pair distribution between type 1-2 shows more a pronounced
peak at R =11.5 as compared with the distribution between type
1-1 at R = 12.5. Similar to Sec. III A, we compute the angular dis-
tribution functions among the molecules of both types. For all of
the correlation functions, the CG and full MD models show good
agreement.

R=30
(b) 3.5 T T T T u
3t —DeePCG| |
25}
=
T
(@]

FIG. 6. The average equilibrium fluid density with a distance r + R, where R is the radius of the spherical void space with R = 10 (left) and R = 30 (right).
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function P(0) of the same system among the molecule COM of type 1.

Next, we consider the parameter set (II) specified in Sec. I A. distribution functions of the fluid particle on the x — y plane at dif-
Due to the “hydrophobic” interaction between the two molecule ferent regimes. Figure 8(b) shows the planar RDFs sampled at z = 60
types, the system develops into an immiscible state with a clear inter- (interface) and z = 30 (bulk). In particular, the planar RDF near

face between the two components, as shown in Fig. 8(a). To examine the interfacial regime shows more pronounced peaks and structural
the heterogeneous fluid particle distribution, we analyze the radial oscillations compared with the RDF in the bulk regime. For both
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FIG. 8. The fluid density and the fluctuating interface of the two-component, immiscible fluid system. (a) The interface defined by Eq. (16) with type-1 (blue) and type-2
molecules (red). (b) Radial distribution function g(r) of type-2 molecules on the x — y plane near the bulk (z = 30) and the interface (z = 60). (c) The average density
profile across the Gibbs dividing surface and the instantaneous surface defined by Eq. (15). (d) The capillary wave spectrum of the fluctuating interface.
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cases, the predictions from the CG model show good agreement with
the full MD simulations.

To further quantify the fluid density across the interface, we
define the density field p (R) by Eq. (14) on the lattice grids across
the average interface of the two components (i.e., GDS) and the
instantaneous height /(x, y) as the iso-surface of the fluid density of
a single component (i.e., IS). For this system, we set h = 40, dl = 2.0,
and dz = 1.0. Figure 8(c) shows the density profiles p(z) and p(z)
across the interface based on the definition of IS and GDS, respec-
tively. Similar to the single-component fluid system, p(z) shows
pronounced oscillations that represent the intrinsic multi-layer fluid
structure across the interface. In contrast, p(z) shows a smooth tran-
sition across the interface due to the ensemble-averaged definition
of the interface plane. The consistent predictions between the MD
and CG models validate the accuracy of the constructed DeePCG
potential.

Finally, we examine the thermal fluctuations across the inter-
face. Figure 8(d) shows the ensemble average of the Fourier spec-

trum density <|h(k)|2) of the instantaneous height /(x, y) defined
by Eq. (16). Similar to the single-component interfacial fluid system,
<|h(k)|2> agrees well with the CWT theory at the low wave num-

ber and deviates from the 1/[k|* scaling at high wave number due to
the local spatial correlations between the molecules. The predictions
from CG and full MD models show good agreement over the full
regime.

IV. SUMMARY

In this study, we constructed coarse-grained models of meso-
scale interfacial polymeric fluids based on the DeePCG scheme.' In
particular, the constructed CG potential can accurately encode the
many-body interactions arising from the unresolved atomistic inter-
actions, as well as the heterogeneous molecule distributions near
the interface. This unique feature ensures that the constructed CG
models can retain the consistent invariant distribution with the full
MD model and faithfully capture the multi-faceted, scale-dependent
interfacial energy without additional human intervention. The train-
ing process only requires the MD samples of the instantaneous force
field without further ad hoc assumptions and approximations of the
CG potential functions.

While we focus on the polymeric fluids in this study, the
present CG models can be generalized for complex fluids and soft
matter systems where the many-body and heterogeneous effects
are often pronounced. In particular, the constructed CG potential
functions accurately reproduce the pairwise and high-order correla-
tion functions while the empirical approximations show limitations.
Moreover, the accurate predictions of the local compressibility and
the full-range spectrum of the interfacial fluctuations demonstrate
the validity of the CG models to probe the collective behaviors across
the molecular and continuum scales. More importantly, the CG
models successfully predict the probability of the void formation
as a rare event and the transition of the volume- to area-scaling of
solvation energy. The accurate predictions on such properties show
the promise of the present models to study the challenging problems
relevant to nanoscale assembly processes,”” where the full MD simu-
lations often show limitation to achieve the resolved spatiotemporal
scale.

ARTICLE scitation.org/journalljcp

Finally, we note that the present study focuses on the quasi-
equilibrium properties of the reduced model. The zero-rate shear
viscosity of the bulk fluid predicted by the DeePCG model is 55.56%
less than the value of the full MD model. The predictive modeling of
the dynamic properties further relies on the accurate construction
of the memory and fluctuation terms that represent the unre-
solved energy-dissipation processes.'”””*"’" In addition, it is worth
exploring the construction of CG potential function with certain
generalization abilities that account for the different temperature’!
and model resolution.”” We will pursue these problems in future
studies.
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