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Abstract

1.

Thermal constraints imposed by the environment limit the activity time of ec-
totherms and have been a central issue in ecophysiology. Assessing these re-
strictions is key to determining the vulnerability of species to changing thermal

niches and developing conservation strategies.

. We generate an explicit tortoise model of thermal constraints at both micro and

macroclimate scales based on thermophysiology parameters and environmen-
tal operative temperatures during a biologically significant period. As a study
model, we use a vulnerable species of gopher tortoise Gopherus evgoodei, whose
primary habitat is the tropical dry forests in northwestern Mexico.

Our mechanistic model is based on a monitoring of 5years of environmental
operative temperatures (T,). Here, we use the hours of activity (h,) and hours
of thermal restriction (h)), calculated from the voluntary temperature range of
G. evgoodei with respect to T, to project and compare the thermal constraints
across space and time. In addition, this model was projected using a pessimistic
climate change scenario for 2070 (RCP 8.5).

The results show that the period of activity of G. evgoodei, predicted by h, and h,,
is limited by the frequency and availability of T, and differs significantly through-
out the year and among years. In addition, under the RCP 8.5 scenario, we pre-
dict that h_ will increase considerably and exceed the critical value (3.1 h,) placing
this species as highly vulnerable.

We discuss and compare the period of potential activity, thermoregulation strat-
egies, and costs and benefits with other Gopherus species. Finally, we identify
critical areas throughout its range to develop management strategies for pro-

tecting this Mexican endemic tortoise.
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1 | INTRODUCTION

Thermoregulation is key to the survival, performance and fitness of
ectotherms, since critical physiological functions (e.g. growth rate,
sex determination, locomotion and foraging) are optimized within a
narrow range of body temperatures. Therefore, the precision with
which organisms regulate their body temperature is related to and
limited by the thermal quality of their environments (Vickers &
Schwarzkopf, 2016). Thermal constraints on energy and activity-
time budgets have been a central issue in reptile ecophysiology
(Angilletta, 2001; Grant & Dunham, 1988; Grant & Porter, 1992;
Porter & Tracy, 1983). In particular, Dunham (1993) demonstrated
that a 2°C variation in air temperature severely constrains the activ-
ity time of the lizard Sceloporus merriami, reducing energy gain and
population growth rate, and therefore can accelerate their extinc-
tion (see also Adolph & Porter, 1993; Dunham & Overall, 1994; Huey
etal., 2010).

According to Dunham (1993), thermal restrictions imposed by
the environment limit the activity of a reptile. For example, on hot
days, reptiles use burrows and shelters to avoid exposure to extreme
temperatures during the day and reduce potential overheating.
If air temperature increases as predicted by current climate mod-
els, reptiles will spend longer periods in shelters, reducing critical
foraging time, so that the net energy gain becomes insufficient for
reproduction. This approach was modelled by Sinervo et al. (2010)
in a global study to predict the extinction risk of lizards by climate
change. According to Sinervo et al. (2010), reduction in activity time
is expressed as hours of restriction (h,), or hours of forced inactivity,
defined as the cumulative hours each day when the environmental
operative temperature (T,) exceeds a thermal threshold [e.g. pre-
ferred temperature (Tp) or voluntary maximum temperature (VT__ )],
thus restricting lizard activity in both time and space. Above that
threshold, performance declines and the species cannot survive ex-
cept for a limited period of time, which is further constrained when

the maximum critical temperature (CT__ ) is exceeded. Sites in which

max
activity time has been reduced to 3.85 h, (as a critical value) per day
are the same sites in which lizard populations have become locally
extirpated because they are already close to their thermal limits.

Recent studies have been performed using h, to predict the
species geographical distribution (Caetano et al., 2020), determine
environmental thermal constraints (Gadsden et al., 2020; Medina
et al., 2016) and assess vulnerability to global climate change (Ceia-
Hasse et al., 2014; Kubisch et al., 2016; Lara-Reséndiz et al., 2021;
Pontes-da-Silva et al., 2018; Sinervo et al., 2018) and other stressors
(Tourinho et al., 2021). The use of these eco-physiological models
has been widely discussed, where it is desirable to incorporate po-
tential limiting processes (Caetano et al., 2020; Huey et al., 2010;
Kearney, 2013). These models are species specific because they
are explicitly constructed from the relationship between species
physiological variables (e.g. thermal requirements or thermal toler-
ances) and environmental and biophysical parameters to describe
the complexity of its thermal habitat (Buckley et al., 2010; Deutsch
et al., 2008; Kearney & Porter, 2009).

Quantifying the heterogeneity of the thermal landscape de-
pends on macroclimatic (e.g. global solar radiation, annual tempera-
ture and precipitation) and microclimatic variables of a particular
habitat (e.g. T, soil type, vegetation type). These factors are inte-
grated with the biophysical and physiological properties of organ-
isms to determine the distribution of available and suitable thermal
microclimates (Grant & Porter, 1992). This distribution is defined as
the operative thermal environment, and all activities such as ther-
moregulation, foraging, digestion, mate acquisition, predation and
inactivity are constrained to occur within this distribution (Dunham
et al,, 1989; Grant, 1990; Grant & Dunham, 1988). Therefore, ac-
cording to Grant and Porter (1992), body temperature and activity
times of ectotherms are the result of (a) trade-offs between these
resource gains and losses; (b) performance constraints derived from
temperature-dependent capacities influencing digestion, locomo-
tion and other vital functions; and (c) the constraint that thermally
suitable microclimates are available in sufficient frequency in the ec-
totherm's home range for activity to occur (see also Angilletta, 2001;
Grant, 1990; Porter & Tracy, 1983).

These limitations are especially important for desert tortoises, as
the selection of a suboptimal thermal microclimate can lead to hy-
perthermia and even death by overheating (Hailey & Coulson, 1996;
Moulherat et al., 2014; Swingland & Frazier, 1980; Voigt, 1975). In
particular, desert tortoises of the genus Gopherus experience seri-
ous problems when their body temperature exceeds 40°C, which
can even be lethal after only a few minutes of exposure (Hutchison
et al., 1966; Voigt, 1975). In fact, gopher tortoises spend much of
their lives in burrows and other types of shelters to avoid daily and
annual thermal extremes (Bailey et al., 1995; Nagy & Medica, 1986;
Zimmerman et al., 1994). Despite being herbivorous, they spend lit-
tle time active on the surface. For example, tortoises in the Sonoran
and Mojave deserts hibernate over 100days per year (Averill-Murray
etal., 2002), although there are records of more than 200days (Bailey
et al., 1995). In addition, Gopherus tortoises spend considerable time
inside burrows during their activity season (late spring, summer and
fall). In total, they spend 98.3% of ‘inactivity’ per year in a burrow
(Nagy & Medica, 1986). Therefore, only 1.7% of the year involves sur-
face activity (153 hr/year), in which a substantial proportion of time is
devoted to foraging (Marlow, 1979; Nagy & Medica, 1986). Thus, they
can be considered as the most elusive animals of the desert.

The tortoise, Gopherus evgoodei, is a recently recognized diurnal
species that inhabits tropical dry forests (TDFs) in northwestern
Mexico (Edwards, Karl, et al., 2016). Because of the cooler thermal
environments that characterize TDFs, G. evgoodei has one of the
lowest active body temperatures among tortoises (T,; Lara-Reséndiz
et al., 2022; Sinervo et al., 2017). In contrast, other species in the
genus that inhabit desert environments have higher field active body
temperatures, for example, G. morafkai and G. agassizii. In addition,
the distribution of G. morafkai abuts that of G. evgoodei. Thus, dif-
ferences in body temperatures between desert and forest tortoises
may reflect heterogeneity in thermal opportunity.

In this study, our main objective was twofold. The first goal is
to generate an explicit model of thermal constraints at both micro



LARA-RESENDIZ €T AL.

Functional Ecology 3

and macroclimatic scales integrating thermal biology parameters and
environmental operative temperatures across multiple years for G.
evgoodei. The second aim is to project our model on the entire geo-
graphical distribution and in a climate change scenario. This approach
is key to determining the vulnerability of the species, orienting con-
servation efforts through management of wildlife habitats and re-
ducing the negative impacts of climate warming changes on tropical
species. In particular, we ask when are tortoises expected to be ac-
tive, where are thermal opportunities optimal and what is the dura-
tion of time that tortoises may be active? We next examine how these
constraints vary throughout its distribution range and under a pes-
simistic climate change scenario (2070-RCP8.5). Last, we determine
to what extent are the patterns of tortoise activity explained by the
thermal constraints? To answer these questions, we first gathered
data on environmental operative temperatures during a biologically
significant period (5years) and the thermal requirements of G. evgoo-
dei (Lara-Reséndiz et al., 2022) to measure thermal restrictions during
daily and seasonal activity. Finally, we model the hours of activity and
thermal restriction to project them throughout its geographical dis-

tribution according to the protocols described above.

2 | MATERIALS AND METHODS

2.1 | Studysystem

Gopherus evgoodei (Testudinidae) is a recently described species that
is considered a vulnerable species by the International Union for
Conservation of Nature (Edwards et al., 2018). However, the tor-
toise does not have protection by the Mexican government (Edwards
et al., 2018). A previous study of the thermal biology of G. evgoodei
determined that its average T, is 29.4+3.2°C (min-max: 25.3-35.1°C)
sensus Hertz et al., 1993) was 27.1-31.6°C
(Lara-Reséndiz et al., 2022; Sinervo et al.,, 2017). It is an herbivorous

and the setpoint range (T_.;
species that reaches a carapace length between 250 and 300mm
(Edwards, Karl, et al., 2016; Van Devender et al., 2002). Its primary
habitat includes TDFs and thorn scrub in southern Sonora-Chihuahua
and northern Sinaloa, Mexico (Edwards, Karl, et al., 2016). Unlike the
habitats of its sister species (G. agassizii and G. morafkai), the TDF en-
vironment experiences marked seasonality providing a well-developed
forest canopy that attains a height of 12m. The understorey envi-
ronment is a warm, humid and shady microhabitat, which serves as a
thermal refuge during the middle of the year (Lara-Resendiz, In Press).
The vegetation is composed of tropical species including Bursera spp.,
Ipomea arborescens, Lysiloma divaricatum, Handroanthus impetiginosa,
Haematoxylum brasiletto, and many other trees and large shrub species
(Robichaux & Yetman, 2000). In addition, G. evgoodei shares this habitat
with other representative tropical reptiles (e.g. Rhinoclemmys pulcher-
rima, Anolis nebulosus, Heloderma horridum exasperatum, Ctenosaura
macrolopha, Boa sigma, Micrurus distans, Drymarchon melanurus and
Leptophis diplotropis, Bury et al., 2002; Schwalbe & Lowe, 2000).

TDFs in Mexico are a major biodiversity hotspots (Myers
etal.,, 2000). TDFs are under a rising threat of habitat fragmentation,

where dense continuous forests are being cleared for both livestock
and agriculture (Trejo & Dirzo, 2000). The climate of TDF is charac-
terized by a main rainy season in the summer (July to September-
November) and a secondary one in the winter (December to
January). Due to this bi-seasonal pattern of rains, periods of drought
rarely extend beyond one season, so rains provide water and food
in the hottest part of summer. The dry season begins in late January
until the beginning of the summer rains, although it can be extended
up to 8months (November to June). Mean annual air temperature is
21-22°C with 10 and 41°C as minimum and maximum temperature
and freezing temperatures are rare.

2.2 | Environmental operative temperature (T )

As part of the Mexico Tortoise Project, a long-term study of avail-
able T, for G. evgoodei has been conducted at the Sierra de Alamos-
Rio Cuchujaqui Reserve in Sonora, Mexico between 2012 and 2017
(Lara-Resendiz, In Press; Lara-Reséndiz et al., 2022; Rosen, 2014).
This protected natural area is recognized by the UNESCO's Man and
the Biosphere Program. At this site, G. evgoodei's habitat consists
of rocky outcrops and crags and the vegetation is primarily tropi-
cal plant species (described above). We monitored a preserved TDF
site within the reserve (26.97°N and 108.94°W; elevation 550 m).
Precipitation at an elevation of 400-600m varies between 620 and
700mm/year (Bury et al., 2002).

Environmental operative temperature models were constructed
to mimic the size and shape of the G. evgoodei shell. Each model was
built using a copper sheet (thickness: 0.66 mm), cut, bent, riveted
and sealed with solder and silicone. The size of each model was as
follows: 250-300mm length, 200-220 mm width and 150-170mm
height. These domed, hollow and waterproof models were painted
using leaf-green colour (Rustoleum™ Spray Paint) to approximate
Gopherus reflectivity. These models were previously described and
calibrated (see Lara-Resendiz, In Press; Lara-Reséndiz et al., 2022;
Rosen, 2014). This methodology has been widely used in tortoises
(Bakken & Angilletta, 2014; Dzialowski & O'Connor, 2004; O'Connor
et al., 2000; Spotila et al., 2014; Zimmerman et al., 1994).

Environmental operative temperature was monitored using
six models with temperature data loggers (Hobo® Pro v2) that re-
corded temperature every 30 min for 24 hr from October 2012 to
September 2017. To prevent the sensor from touching the walls of
the model, each sensor was suspended in the middle of the interior
of the model. All the models were sealed with silicone and screws to
avoid the entry of water and wind once the data logger was inserted
in the shell. The models were previously calibrated, with a highly sig-
nificant linear correlation between the tortoise temperature (T;) and
T, (r=0.94,n=623,p<0.001; T, = 6.875+[0.783 * T ]; see details
in Lara-Resendiz, In Press). Therefore, we assume that the copper
models accurately measured the T, available for G. evgoodei under
field conditions.

The selection of study sites and the location of the models were
based on the observation of tortoises during previous fieldwork
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(Rosen, 2014) with the purpose characterizing in detail the thermal
landscape available to G. evgoodei. All models were placed directly on
the substrate and distributed in typical microhabitats including a vari-
ety of potential microclimates with different levels of solar exposure,
soil conditions and vegetation, but always located in the vicinity of tor-
toise refuges or resting areas and never in open areas (Rosen, 2014;
Zimmerman et al., 1994). According to observations obtained from
fieldwork and literature, the peak period of activity of G. evgoodei
occurs during the months of May and October and is mainly diurnal
(Edwards, Karl, et al., 2016; Lara-Reséndiz et al., 2022; Rosen, 2014).
Permits to place the models were granted by the Area de Proteccion
de Flora y Fauna Sierra de Alamos-Rio Cuchujaqui (CONANP) and the
landowners. The data on thermal physiology of G. evgoodei, used as
inputs for the ecophysiological models, were obtained from previous
publications (see Lara-Resendiz, In Press; Lara-Reséndiz et al., 2022;

Rosen, 2014); therefore, this study did not require ethical approval.

2.3 | Hours of activity (h,) and hours of restriction (h,)

To obtain a general function based on the relationship between h,
and h, daily maximum, mean and minimum air temperature data
(T ., T

max’ Tmean’ Tmin) Were obtained from a meteorological station near

Alamos (www.conagua.gob.mx). The function RichHobo of R pack-
age MAPINGUARI was used to estimate a generalized logistic regression

model (Richards growth curve) betweenh_ and T, - VT, _. (minimum

min
voluntary temperature: lower 5% of body temperature recorded
in the field) and h, and T_, - VT .. (maximum voluntary tempera-
ture: 95% of body temperature in the field), respectively (Caetano
et al., 2020; Sinervo et al., 2018). Where average h, across the days
of the activity season (May-October) is computed integrating the
thermal threshold (voluntary temperature range; 25.3-35.1°C; Lara-
Reséndiz et al., 2022) and T, data each day by hours. Here, to calcu-
late h, and h, we only use T_ from May to October and from dawn till
dusk according to the seasonal and daily activity time of G. evgoodei.
In our model, h, has a value of 1 for T,>35.11°C or O for T,<35.1°C
and h, has a value of 1 when T, >25.31°C or O for T <25.3°C.
Because h, was calculated from the low threshold (25.3°C) to obtain
the total number of h,, the difference between h, - h_per day was

obtained. The equation of h, and h_ in the code was:
h,=Asym/((1+M*exp (=K*(Tin=VTmin—[Inf1]))"(1/M)))

and h, =Asym/((1+M*exp (=K*(Trax—VTmax—[INf1])) *(1/M))),

where Asym is the asymptote, M is the shape parameter, K is the

slope and Infl is the inflection point.
2.4 | Species distributional records and
ecophysiological layers (present and future)

Data for the geographical distribution of G. evgoodei were obtained
from a variety of sources: Global Biodiversity Information Facility

(GBIF, 2021), Madrean Discovery (www.madreandiscovery.org), our
prior field sampling (Lara-Resendiz, In Press; Lara-Reséndiz et al., 2022;
Rosen, 2014; Sinervo et al., 2017) and the literature (Edwards, Karl,
et al, 2016; Edwards, Vaughn, et al., 2016). Localities with points
having uncertain localities, identification or otherwise unusable lo-
cality descriptors were removed from the dataset. This geographical
information was used to crop surfaces automatically in the function
EcophysRaster of r package Marincuarl (Caetano et al., 2019; Caetano
et al., 2020). A 1.5° projection margin was considered from the most
extreme points of presence to cut the climatic surfaces and create
the ecophysiological layers (h, and h,). These layers were constructed
based on the hours of activity (h,) and hours of restriction (h ) over the
whole year. Here, the approach of Sinervo et al. (2010) was applied
using the MapINGUARI R package (Caetano et al., 2020), which incorpo-
rates the extrapolation of biological processes, in this case, thermal
physiology (voluntary thermal range) and two important climatic vari-

ables for tortoises: (a) maximum air temperature (T__ ) and (b) minimum

max

air temperature (T,

(http://www.worldclim.org) at a spatial resolution of 30 arc s (~1 km,

in)- We obtained these variables from WorldClim

Hijmans et al., 2005). We simulated the daily variation in temperature
by making a sine wave between maximum and minimum temperature
at each cell considering the voluntary temperature thresholds (VT :
25.3°Cand VT : 35.1°C) of G. evgoodei (see Sinervo et al., 2010; also
see Caetano et al., 2019; Caetano et al., 2020). Both h, and h, were pro-
jected for the year 2070 under a pessimistic climate change forecast
(RCP8.5). These were computed using T, . and T, variables from the
Max Planck Institute (MPI-ESM-LR). This model has been validated for
its ability to predict contemporary climate change during the control
period (Anav et al., 2013) and used in a wide range of reptiles (Lara-
Reséndiz et al., 2021; Pontes-da-Silva et al., 2018; Sinervo et al., 2017;
Sinervo et al., 2018). We adopted a metric of critical hours of restric-
tion for G. evgoodei using the 95% percentile of present-day h, values,
as in the model developed by Sinervo et al. (2010). If a site was pre-
dicted to exceed its present critical h, value, we assumed it would be
at risk of extirpation.

Finally, a one-way ANOVA or ranks (Kruskal-Wallis H test)
to compare thermal constraints by year and activity season was
used based on the data conforming to the statistical assumptions.
SigmaPlot version 11 (Systat Software) and R software (R Core
Team, 2021) were used for statistical analysis and graphing. We
built the maps with our ecophysiological layers using QGIS (QGIS.
org, 2021). Figures and tables in the text show mean +standard de-

viation, sample size (n) and temperature range (min - max).

3 | RESULTS

3.1 | Microclimate constraints: Environmental
operative temperature, h, and h,

The maximum average T, in the canopy was in April (31.9 +12.3°C;
11.5-72.1°C), May (37.0+13.5°C; 12.9-71.8°C), June (39.0 + 11.8°C;
10.5-72.9°C) and July (30.9 +6.3°C; 16.62-66.8°C), while August,
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September and October maintained constant average temperatures
(28.29+4.1, 29.4+6.2 and 28.7+8.7°C; 10.7-69.5°C) and the av-
erage temperature was lower in the remaining months (between
20.7£7.6 and 26.7 +9.4°C; 3.5-69.5°C). Figure 1 shows T_ through-
out the year and day, while Figure 2 shows the T, levels with re-
spect to the voluntary temperature of G. evgoodei in a contour plot.
The months that maintained the highest percentage of T, within
their range were June, July, August, September and October be-
tween 37.1 and 66.4% and the rest of the months between 11.3 and
30.2% (Figure 3a). Regarding T,>35.1°C were during June (40.8%),
May (36.6%), April (23.7%) and October (20%), while the rest of
the months were between 2.6% and 15.9%. The highest percent-
ages of T,<25.3°C were from November to March (62.5%-85.5%).
On the other hand, concerning the time, the highest percentages
of T, within the voluntary range were between 15:00 and 23:00hr
(48.5%-80.7%; Figure 3b); while the lowest hours of potential ac-
tivity were between 07:00 and 10:00hr (47%-60.2%) and between
00:00 and 06:00hr (35.7%-45.7%). These last periods registered the
highest percentages of T, outside the voluntary range (Figure 3b).
Hours of activity and restriction for G. evgoodei in Alamos,
Sonora are presented in Figure 4. In addition, we related h, and h,

with environmental temperatures (T_. , T and T

min’ Tmean max) to predict en-

vironmental signal drives on the activity patterns of G. evgoodei
(Supplementary Material). The equations for h_ and h_are:

highest values were in 2013, 2017 and 2016 (6.4+2.5and 8.5+1.9
ha, respectively). Also, h, was differed among months (H, = 430.87;
p<0.001; Figure 5), the lowest values occurred between April and
June (2.9+2.4 and 4.3+1.9 h)), while the highest values occurred
between July and October (5.6 +2.3 and 10.2+2.3 h_; Figure 5b).
On the other hand, h, was statistically different between years
(H, = 95.193; p<0.001) the lowest values were in 2013 and 2016
(29+2.4 and 3.5+2.5 h)), while the highest values were in 2014,
2015 and 2017 (5.3+4.4 and 7.4+3.0 h; Figure 5c). Regarding
the months, the lowest average h_ was between July and October
(0.9+1.4 and 4.8+1.92 h)), while between April and June the high-
est h occurred (6.7+2.5 and 9.7 +2.3 h; Figure 5d).

3.2 | Macroclimate constraints: h, and h,
(present and future)

Hours of activity and restriction across the entire distribution of G.
evgoodei are presented in Figure 6a,b. Here, we use a polygon of po-
tential distribution of G. evgoodei (Lara-Resendiz, unpublished data)
to delimit h, and h_ values within its range. Throughout the distribu-
tion, h, varied between 1.8 and 12.3 (Figure 6a). In particular, the
southern part of the distribution (Sonora, Chihuahua and Sinaloa)
presented the highest values (>8 h.), while in the central part of

h,=(7.434)/((1+(31.971) exp( — (2.088)" (Tpyin—VTpmin—[ —4.267])))"(1/(31.971))) and

h, =(10.035)/((1+(43.567)"exp( — (7.296)" (Trax—VTmax—|6.3782])) ) "(1/(43.567))).

The comparison of h, and h, between years and months is shown
in Figure 5. Hours of activity between years were significantly dif-
ferent (H, = 118.25; p<0.001). The groups identified by Dunn's
method are shown in Figure 5. In 2014 and 2015, the lowest val-
ues were recorded (4.3+2.8 and 5.2+3.3 h,; Figure 5a) while the

the distribution there were intermediate values (6-8 h.) and in the
northern part were the lowest values (<6 ha). On the other hand, the
h, varied from O to 4 (Figure 6b). In particular, in the northwestern
area, there was a higher frequency of high values (>5 h,), while in the

rest of the range there were lower values (<4 h,).
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FIGURE 1 Environmental operative temperature values (T,) for Gopherus evgoodei during the active period in Alamos, Sonora. (a) Monthly
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min = VT...,) and preferred (szs'Tp75) temperature
= 39.5°C; Brattstrom,

max

1965) by the red dotted line and represents the risk of overheating. The boxplots show the median (black line), first and third quartiles (box),

and 95% confidence intervals (whiskers) excluding outliers.



6 Functional Ecology

LARA-RESENDIZ ET AL.

FIGURE 2 Contour plot of average

environmental operative temperature (T,)
20:00 available throughout the day and year
for Gopherus evgoodei in Alamos, Sonora.
T,<27.09°C (blue), 227.1 < 31.6°C (grey)
16:00 and >31.61°C (red).
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FIGURE 3 Frequency distribution of environmental operative temperature (T_) available for Gopherus evgoodei in Alamos, Sonora.

T,<25.3°C (blue),
(May-October).

Otherwise, h, and h, predicted for 2070 under RCP8.5 were
consistently higher than present (Figure 6c,d). With respect to h,,
the sites with the highest activity (>10 hr) increased and the sites
with the lowest activity (<5 hr) practically disappeared. This change
is most evident in the western and central distribution (Figure 6c).
The pattern of h, in the present versus the future scenario shows an
increase (Figure 7a), since the curve of h, in the present starts from
4 to 12hr, while in the future it starts from 6 to 12hr of activity.
Similarly, the h_increased in the future scenario and was manifested
throughout the entire distribution of G. evgoodei (Figure 6d). The
curves of h_in the present and future (Figure 7b) show an increasing

225.3<35.1°C (grey) and >35.1°C (red). (a) T, throughout the year and (b) throughout the day during activity season

trend. The maximum h_in the present reached up to 4 hr; however,
for the future, they reached up to ~8 hr of restriction. In our model,
the critical value of present-day h, using the 95% percentile of h,

values was 3.1 hr (Figure 7b).

4 | DISCUSSION

In this 5-year ecophysiological study, we mapped the environmental
operative temperatures of the available microclimates experienced
by G. evgoodei within the TDF with biomimetic models. Based on
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Histograms show density.

their thermal thresholds, we predicted the physiological suitability of
habitats at a spatiotemporal scale. The results show that the period
of activity of G. evgoodei, estimated using h, and h,, is limited by the
frequency and availability of T, and differs significantly throughout
the year and among years. Below, we first discuss and compare the
period of potential activity, thermoregulation strategies, and costs
and benefits with other Gopherus species. Second, we discuss the
thermal constraints throughout its distribution. Third, we relate our
h, and h, results to potential threats that alter their thermal niche.
This information is relevant for the establishment and development
of conservation strategies for this vulnerable species.

According to Grant and Dunham (1988), many of the behavioural
patterns of reptiles can be fully or partially explained by the pat-
terns of temperature availability. Our results support the effect of
temperature on the potential activity of G. evgoodei. During the dry
season in the TDF, the trees lose their leaves and allows sunlight to
pass through the canopy. As a result, thermal conditions at ground
level are warm and dry, which decreases the proportion of adequate
T,.. However, after the first summer rains, the forest canopy recov-
ers, sunlight is mostly intercepted by the canopy, and the understo-
rey becomes shady, warm and humid. In addition, the habitat has
high plant productivity, yielding high food availability for tortoises
(Robichaux & Yetman, 2000). During this wet season, the under-
storey exhibits T, adequate for the activity of G. evgoodei, which in-
creases the activity ranges of the tortoises.

Gopherus evgoodei exhibits a passive or thermoformer behaviour
with respect to environmental conditions (Lara-Reséndiz et al., 2022;
Sinervo et al., 2017). As in other tropical species, understorey

tortoises maintain their temperature by moving between ‘cold’ and
warm zones, which implies a lower cost in thermoregulation (Huey
& Slatkin, 1976). Furthermore, the average activity temperature of
G. evgoodei (29.4°C) is similar to other tropical tortoises, but lower
than other Gopherus species (~3.7°C; Lara-Reséndiz et al., 2022).
Apart from its thermoconformity strategy and its low T,, our model
predicts a bimodal activity pattern from April to late May and from
October to November, while from early June to late September the
pattern could be unimodal (Figure 2). According to this bimodal pe-
riod, tortoises that are active between 11:00 and 15:00hr have a
high risk of overheating (>50%; Figure 2), while outside this period
the risk decreases. Therefore, the narrowness of the activity win-
dow for G. evgoodei (Figures 2 and 3) supports that these tortoises
are severely limited by the reduced availability of favourable T, at
this site.

The environmental T, of G. evgoodei in TDF is strikingly different
from that experienced by G. agassizii in Mojave Desert (Zimmerman
et al., 1994) or G. morafkai in the Sonoran Desert (Rosen, 2014).
According to the thermal map by Zimmerman et al. (1994) (their
Figure 3), the time spent by G. agassizii on the surface was con-
strained by high temperatures during midday. This is consistent
with our results, however, Zimmerman et al.'s (1994) thermal map
suggests a unimodal pattern of T, (>40°C) from late June to late
September, which is opposite to the bimodal pattern of T, in the
TDF (mid-March-mid-July and early October-early November;
Figure 2). The difference in activity patterns is a result of the buff-
ering of extreme T_ by the canopy cover resulting in a near homo-
geneous thermal landscape, which favours thermoconformity. In
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contrast, tortoises in the Mojave and the Sonoran Desert require
behavioural thermoregulation to maintain T, below lethal levels
(Spotila et al., 2014). It is evident that this result emphasizes the re-
lationship of vegetation with physiological or life-history traits by
tropical tortoises. Therefore, habitat modification will have adverse
effects on the thermal quality of tortoise's habitat, which results in
higher energetic costs, a reduction in spatial and seasonal accessi-
bility and/or availability of adequate microhabitats, and constraining
activity times due to hours of thermal restriction.

With regard to climate change, the alteration of the thermal en-
vironment can result in a local extinction for this species. On the one
hand, a possible advantage of low T, is that it gives a wide safety
margin before overheating (Hailey & Coulson, 1996), there is a mar-
gin of over 7.7°C between mean CT__ and mean T, (warming tol-
erance index; Deutsch et al., 2008) and 3.3°C between VT, .« and
mean T_. The increase of h,_ in the future climate change scenario
could be considered a positive effect to G. evgoodei; however, the
critical threshold of h, (3.1 hr) is exceeded in practically the entire
range (Figure 6d). Sinervo et al. (2010) mention for lizards that if the
h, exceeds the critical value of 3.85hr, the risk of local extirpation
of a species can be as high as 100%. In our analysis using a pes-
simistic climate change scenario, few populations will remain given
the h, critical threshold. Figure éd identifies critical areas to develop
management strategies for protecting G. evgoodei in Mexico from

Month

climate warming and other threats because surface temperatures
could become lethal in the medium term.

It is clear that G. evgoodei faces different thermal challenges
throughout its range that could be buffered by thermoregulatory
behaviour (Kearney et al., 2009). For example, tortoises escape tem-
perature extremes by retreating to their burrows, which stay cooler
in the summer than outside temperatures (~8°C difference between
T, inburrow and T, on the surface; Zimmerman et al., 1994). Despite
this, climate models for northwestern Mexico indicate that towards
the end of the 21st century, days with extreme temperatures will
increase, the average summer temperature will increase between 3
and 6°C, it is expected that in this area there will be a decrease in
the availability of water, including the discharge of streams and the
frequency of rains, affecting the relative humidity and the humidity
of the soil with prolonged periods of drought (Garfin et al., 2013),
which will affect the vegetation cover in the tropical forests (Alvarez-
Yépiz, 2020; Bojorquez et al., 2019). In this sense, low food avail-
ability and strong thermal constraints on activity could explain slow
growth and delayed maturity of lizards (Tinkle & Ballinger, 1972).
Here, our ecophysiological model was based on information from
thermal niche variables and other environmental variables such as
humidity or solar radiation were not considered. As a consequence,
the use of different variables derived from nesting ecology, burrow
selection, ontogeny shifts in thermal tolerance and demography
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FIGURE 6 (a) Hours of activity (h,)
and (b) hours of restriction (h ) across the
known distribution of Gopherus evgoodei.
(c and d) show h, and h, for 2070 under

a pessimistic climate change forecast
(RCP8.5). h, and h, were calculated using
the Senoid method considering the whole
year. Histograms show density within the
potential distribution. Blue dots show the
known distribution filtered at a distance
of 10 km. Red dots show sites that exceed
the 3.1 h, threshold.

FIGURE 7 Hours of activity (h,) and
restriction (h,) of Gopherus evgoodei for
present-day (blue) and 2070 RCP8.5 (red).
Arrow indicates the h, critical calculated
from 95% quantile for present-day h,

(3.1 h).

could increase the predictability of the estimated changes observed

in our analysis (Kearney, 2013).

As pointed out by Grant and Porter (1992), the daily and sea-
sonal biophysical constraints on activity time affect: (a) individual
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daily thermoregulatory behaviour; (b) seasonal potential for growth,

storage and reproduction; (c) trophic interactions among species;

and (d) species distribution limits (also see Dunham, 1993; Dunham
& Overall, 1994). Here, we provide an estimate of variation in
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temperature availability to delineate constraints on daily and sea-
sonal activity time impinging on this tortoise. The scope of this study
does not allow us to affirm the effects of warming climate on the
population dynamics of this species (e.g. survival, reproductive suc-
cess or dispersal), but several predictions can be made. In principle,
increasing thermal restriction time would further reduce the time
available for G. evgoodei for foraging and social interactions. It could
cause imbalances in their water, energy, and electrolyte budgets
and storage levels (Duda et al., 1999). On the other hand, tortoises
could modify their thermoregulatory behaviour, selecting higher T,
that can relax the restriction time, but with higher evaporation and
overheating rates (Huey & Slatkin, 1976). Because G. evgoodei is an
herbivorous species, voluntary selection of shelters or perches with
high temperatures would maximize the efficiency of the digestion,
reproduction and growth processes (Adolph & Porter, 1993). Our
model supports that, due to the increase in h, under a pessimistic
climate change scenario, tortoises can extend activity time into twi-
light or dusk and increase foraging, the number of copulations, and
complete their biological activities when the thermal quality allows
it. This premise of extending the activity time towards scotophase
as a response to climate change has been documented in other rep-
tiles considered exclusively ‘diurnal’ (Arenas-Moreno et al., 2021;
Lara-Resendiz, 2020). Testing these hypotheses and their costs and
benefits requires additional field and laboratory studies to define
thermal restrictions in locomotion, resource processing capacity, en-
ergy budgets, foraging and biotic interactions.

Finally, desert tortoises have adapted to unpredictable periodic
climatic conditions (Duda et al., 1999). Although droughts in tropical
communities rarely extend beyond one season, our data demon-
strate that environmental constraints (h, and h ) varies among years.
According to available data for G. agassizii in the south-central Mojave
Desert during a drought year, average monthly temperatures during
the spring are slightly warmer, whereas temperatures during the
productive year are generally cooler. Also, the productive year has,
on average, a warmer autumn than the drought year, as tempera-
tures remain above normal from August through November (Duda
et al,, 1999). Faced with extreme disturbance events, behavioural
modifications have been documented in ectotherms, for example,
gopher tortoises avoid leaving their burrow, even during a full year
of drought (Duda et al., 1999) or lizards that decreased or modified
their activity patterns (Ballinger, 1981; Westphal et al., 2016). These
environmental constraints represent a challenge to meet their en-
ergy demands over prolonged periods; therefore, we are currently
conducting studies of inter-year variation of rainfall and productivity
on parameters such as effective surface activity time and ‘inactivity’
within burrows, home ranges and mobility in response to thermal
variation and will make our conclusions more general to future man-
agements and conservation plans.
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