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Abstract. Distributed multi-target tracking is a canonical task for multi-robot
systems, encompassing applications from environmental monitoring to disaster
response to surveillance. In many situations, the distribution of unknown objects
in a search area is irregular, with objects are likely to distribute in clusters instead
of evenly distributed. In this paper, we develop a novel distributed multi-robot
multi-target tracking algorithm for effectively tracking clustered targets from noisy
measurements. Our algorithm contains two major components. Firstly, both the
instantaneous and cumulative target density are estimated, providing the best guess
of current target states and long-term coarse distribution of clusters, respectively.
Secondly, the power diagram is implemented in Lloyd’s algorithm to optimize task
space assignment for each robot to trade-off between tracking detected targets in
clusters and searching for potential targets outside clusters. We demonstrate the
efficacy of our proposed method and show that our method outperforms of other
candidates in tracking accuracy through a set of simulations.

Keywords: Multiple target tracking, sensor-based control, distributed sensor net-
work

1 Introduction

Multi-target tracking using distributed multi-robot systems (MRSs) has drawn increasing
attention over the past decades as robots become more powerful and low-cost. In a large
number of real-world scenarios, targets are likely to distribute in clusters despite lack
of prior knowledge about exact locations, including social animals, certain species
of plants, trash distributed in inhabited places, etc. In such cases, detecting a targets
indicates that some other targets are likely to appear nearby. Most existing multi-robot
multi-target tracking (MR-MTT) algorithms underperform in trading-off between having
robots to search for un-detected targets and tracking detected targets when targets are not
evenly distributed across the search space given no prior knowledge. This paper aims at
developing effective distributed tracking algorithms for unknown targets that are likely
to distributed in clusters. Such applications include the acquisition of image data from
coral reef for high-precision 3D reconstruction of its habitats, trash collection in a desert
area, flaw inspection and repair on surfaces of buildings and large machinery, detection
and sample collection of vegetation in a nature reserve, and so on. There are two key
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components to a multi-robot multi-target tracking (MR-MTT) system: an estimation
system to model and track objects as they are detected and a control system to drive the
motion of individual robots in the team towards areas that are likely to contain useful
information.

Different from single target tracking, the main challenge of MTT is matching detec-
tions to target tracks, a process known as data association, especially in the presence of
false negative and false positive detections. There are a number of standard MTT algo-
rithms, each of which solve data association in a different way: global nearest neighbor
(GNN) [9], joint probabilistic data association (JPDA) [8], multiple hypothesis tracking
(MHT) [2], and particle filters [7]. Each of these trackers propagates the posterior of
target states over time and solves the data association problem prior to tracking. An-
other class of MTT techniques is derived from random finite set (RFS) statistics [13]
and which simultaneously solve data association and tracking. We use the probability
hypothesis density (PHD) filter [12], which tracks the spatial density of targets, making
it best suited to situations where each target is not required to have a unique identity. We
recently developed a distributed PHD filter that is provably equivalent to the centralized
solution [6].

Lloyd’s algorithm [11] is one of the best-known control algorithms for distributed
target tracking, the idea of which is to represent target states by a weighting function over
the task space and to drive each robot to the weighted centroid of its Voronoi cell [5].
Comparing to other MR-MTT algorithms such as graph-based methods [1, 16], Lloyd’s
algorithm requires no prior knowledge about targets and the number of targets can be
unknown and time-varying. It drives more robots to areas where targets are more likely
to appear, while allows fewer robots to search for targets in the rest of the areas based on
the weighting function. The weighting function can be estimated online using on-board
sensors [15], and Dames in his work [6] uses the PHD as the weighting function, driving
robots to actively track targets. However, when no target is within a robot’s Voronoi
cell, the robots move erratically, reacting to any false positive detections as well as the
dynamically changing shape of their Voronoi cells. As a result, robots often stay within
empty sub-regions instead of purposefully seeking out un-tracked targets, slowing down
the rate at which they find targets. This problem is further exacerbated when a majority
of targets gather within some small subsets of the environment.

To improve tracking accuracy of clustered targets, this paper develops a novel es-
timation and control policy. We have three primary contributions: 1) we introduce a
state estimation strategy incorporating both instantaneous and cumulative target states,
which allows robots to track detected targets precisely through noisy measurements
while learning coarse distribution of targets from historical detecting outcomes, 2) we
implement the power diagram in Lloyd’s algorithm to dynamically assign optimized task
space to each robot based on its current workload and drive the robots to explore or track
targets more effectively, and 3) we demonstrate in a series of simulated experiments that
with our proposed method, the team finds and tracks targets more effectively than using
the previous algorithms in [6].



Distributed Tracking of Clustered Targets 3

2 Problem Formulation

A set of nr targets with states X = {xy,...,x,} are located within a convex open
task space denoted by £ c R>. A team of nr (possibly heterogeneous) robots R =
{r1,...,ru} are tasked with determining nt and X, both of which are unknown and may
vary over time. We assume that each robot r; knows its location ¢; in a global reference
frame (e.g. from GPS), though our proposed method can be immediately extended to
handle localization uncertainty using the algorithms from our previous work [3]. At
each time step, a robot r; receives a set of |Z;| noisy measurements Z; = {z;, z2, ...} of
targets within the field of view (FoV) F; of its onboard sensor. Note that the sensor may
experience false negative or false positive detections so the number of detections may
not match the true number of targets.

2.1 Lloyd’s Algorithm

The objective of Lloyd’s algorithm is to minimize the following functional:
n
HOW) =) [ Fllr=ail)ows 0
i=1 Y Wi

where ‘W; is dominance region of robot r; (i.e., the region that robot r; is responsible
for), || - || is the Euclidean distance, x € E, ¢(x) is the weighting function for all x € E,
and f(-) is a monotonically increasing function. The role of f is to quantify the cost
of sensing due to degradation of a robot’s ability to measure events with increasing
distance. The dominance regions “‘W; form a partition over E, meaning the regions have
disjoint interiors and the union of all regions is E [5].

The goal is for the team to minimize the functional (1), both with respect to the
partition set ‘W and the robot positions Q. Minimizing H with respect to ‘W induces
a partition on the environment V; = {x | i = argmin,_, __, [[x — gl|}. In other words,
V; is the collection of all points that are the nearest neighbor of r;. This is the Voronoi
partition, and these V; are the Voronoi cells, which are convex by construction. We call
g the generator point of V;. Minimizing H with respect to Q leads each sensor to the
weighted centroid of its Voronoi cell [5], that is

. fVi x¢(x) dx .
qi=—F———.
S, #(0) dx
Lloyd’s algorithm sets the control input for robot r; to u, (¢;), where
. 8§ 4i
ui(g) = min (dstep,”g_CIi”)—, 3)
llg —aill

g is an arbitrary goal location, and dgep > 0 is the distance a robot can move during one
time step. Robots follow this control law online, i.e., recursively move to the temporary
weighted centroids of their Voronoi cells, re-construct their cells based on their new
positions, and compute the new weighted centroids to move to. As a result, the robots
asymptotically converge to the weighted centroids of their Voronoi cells, causing the
team to reach a local minimum of Equation (2). This still holds true when ¢(x) varies
with time. Note that the original Lloyd’s algorithm works in a centralized manner.
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3 Distributed Multi-target Tracking

3.1 Instantaneous State Estimation

The sets X and Z; from above contain a random number of random elements, and thus
are realization of random finite sets (RFSs) [13]. The first order moment of an RFES is
known as the Probability Hypothesis Density (PHD) (which we denote v(x)) and takes
the form of a density function over the state space of a single target or measurement.
By assuming that the RFSs are Poisson distributed where the number of targets follows
a Poisson distribution and the spatial distribution of targets is i.i.d., the PHD filter
recursively updates this target density function in order to track the distribution over
target sets [12].

The PHD filter uses three models to describe the motion of targets: 1) The motion
model, f(x | &), describes the likelihood of an individual target transitioning from an
initial state & to a new state x. 2) The survival probability model, p(x), describes the
likelihood that a target with state x will continue to exist from one time step to the next.
3) The birth PHD, b(x), encodes both the number and locations of the new targets that
may appear in the environment.

The PHD filter also uses three models to describe the ability of robots to detect
targets: 1) The detection model, ps(x | g), gives the probability of a robot with state
q successfully detecting a target with state x. Note that the probability of detection is
identically zero for all x outside the sensor FoV. 2) The measurement model, g(z | x, g),
gives the likelihood of a robot with state g receiving a measurement z from a target with
state x. 3) The false positive (or clutter) PHD, ¢(z | ¢), describes both the number and
locations of the clutter measurements.

Using these target and sensor models, the PHD filter prediction and update equations
are:

B(x) =b(x) + / £ | E)ps (€)oo (€) de 4
E
_ Yo, (x)ﬁt(x)
0 (x) = (1 = pa(x | g))5,(x) + zzj jy(—) (5)
ne() =c(z | q) + / Uy (X)0(x) ©)
E
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where y; ,(x) is the probability of a sensor at ¢ receiving measurement z from a target
with state x.

The PHD represents the best guess of target states at current time step and is utilized
as the instant state estimation of target density, denoted by wi(x), i.e., wi(x) = v(x),x €
E. In [6] a distributed PHD filter is formulated, with each robot maintaining the PHD
within a unique subset, V;, of the environment. Three algorithms then account for motion
of the robots (to update the subsets V;), motion of the targets (in (4)), and measurement
updates (in (5)). As a result, each robot recursively re-constructs its Voronoi cell online
based on current relative locations of neighboring robots and maintains PHD locally by
communicating with neighbors to estimate target states, yielding to identical results to
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running a centralized PHD filter over the task space. In this paper, same strategies are
applied for propagating wi(x) over time in a distributed manner.

3.2 Cumulative State Estimation

Since no prior of birth model is known for the PHD filter, we typically assume that the
target birth rate is uniformly distributed. As a result, individuals do not actively search
for a target when no target is detected and could often spend a long time locating targets
that appeared in underexplored regions of the environment, degrading the tracking
performance especially when targets are clustered. To improve this, we need to estimate
online the probability of target appearance over a long period of time, i.e., the cumulative
state wc.

In a variety of scenarios, targets move randomly in some relatively fixed clusters, e.g.,
animals cluster around water sources. In such cases, the frequency of target appearance
ateach pointx € E can be regarded as time-invariant and the cumulative state estimation
is a density distribution that quantifies the best guess of the number of expected targets
at each location based on accumulated observation.

The PHD filter assumes that the number of targets follows a Poisson distribution.
The conjugate prior of this is a Gamma distribution, which describes the distribution
f(x) of the expected number of targets found at x. This is given by

a—le—,BXﬂa

(2. p) =~

W,X>0, a/,,8>0, (8)

where @ (x) is the shape parameter, which describes the total rewards obtained from the
observations at location x, and B(x) is the inverse rate parameter, which describes the
inverse of the number of historical observations sensors conduct at location x. Initially,
ap(x) = 0and By(x) = co. When a robot r; receives a measurement set Z; at time ¢ > 0,
it updates a(x), B(x) for all x € F; by

a(x) = a(x) +rw,

9
Bx) =B+, ®
where
)0 1Zi|=0
rw = {1 else . (10)

Then, for each x € E, the cumulative state estimation is given by the mode of the
distribution I'(a@(x), 8(x))

a(x)-1
_Bm e a2l 1
we(x) {0, a(x) < 1. (1h

3.3 Environment Approximation

Since it is neither feasible or physically meaningful to have a different distribution for
each point in space, it makes sense to use a subset of points to represent both wi and wc.
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In this paper, we use uniform grids to represent wi and wc over the task space. Therefore,
the integral of wi and wc in a grid is equal to the instantaneous and cumulative expected
number of targets in the grid, respectively.

3.4 Distributed Control

Optimized Space Assignment In order to optimize the assigned coverage area, each
robot is endowed a weight p? in constructing it Voronoi cell, and the monotonically
increasing function in Equation (1) becomes

Flx = gill) = lIx = qil1* = p? (12)

where p; is the power weight of robot r;. The resulting W is a additively weighted
Voronoi diagram, or power diagram, a variant of the standard Voronoi diagram, and W,
is the power cell. Recall that fx cw, WE (x) quantifies the expected number of targets to be
found in ‘W; and that the optimal partition ‘W; = {x | i = argmin,_, _, f(llx —q«l})}.
Therefore, for each robot r;, we set p; as

pr = ( / wc(x>)2, (13)
xeW;

so that the area of ‘W is approximately inversely proportional to the estimated number of
targets can be found in “W;. Thereby, robots in areas with lower expected target density
are assigned larger area to explore, which takes advantage of the search and tracking
capability of the team.

3.5 Algorithm Outline

The distributed target search and tracking algorithm is outlined as Algorithm 1. For
each robot, both instantaneous and cumulative states are initialized to null as there is no
prior knowledge about target states, and a(x) and B(x) are initialized. As robots start
to explore and receive sensor measurements, each of them exchange its location with
neighbors to compute its power cell ‘W, as outlined in lines 5-8. Then each robot updates
and broadcast the tuple {a(x), B(x), wi;(x),wc;(x)}. Lines 12-18 outline the control
strategy, which separates the team into idle robots (i.e., robots that find no target) and
busy robots (i.e., robots that find targets), and causes the robot to move according to the
following rules: When targets are detected, it drives the robot to locations with higher
instantaneous estimation of target density to better track the detected targets; On the
contrary, a robot is driven to search for targets in areas with higher cumulative estimation
of target density where targets are more likely to be found based on accumulated
experience. As a result, the team is able to optimize robot locations by taking advantage
of historical measurements and further improve the tracking accuracy of targets.
Algorithm 1 boosts the performance of our previous methods [6] in that it allows
the team to actively explore the environment and learn the characteristics of the target
distribution. In particular, robots are now able to use a combination of detailed local
information (coming from the PHD) and coarse global information (coming from «, 3)
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Algorithm 1: Distributed Search and Tracking

1 forr; € Rdo

2 wa(x) « 0,wi(x) «— 0,x € E

3 a(x)«—%ﬁ(x)eoo,er

4 while true do

5 for r; € Rdo

6 Receive measurement set Z;

7 Exchange state g; with neighbors N;

8 Compute power cell ‘W;

9 Update a(x), B(x),x € W; using (9)

10 Update wi; (x), we;(x),x € ‘W; using (5) and (11), respectively
11 Broadcast {a(x), B(x), wi; (x),wci(x)}

12 if Z; = 0 then

13 L $i(x) « wei(x),x € W; > Idle robots
14 else

15 L @i (x) «— wij(x),x € W; > Busy robots
16 Set goal g; = g using (2)

17 Compute u;(g;) using (3)

18 qi — qi +u; > Move towards goal

to inform their actions. For evenly distributed targets, Algorithm 1 yields a similar
tracking performance compared with Dames’ method [6] since wc is close to uniform
across the task space and ‘W is similar to a standard Voronoi diagram since then.
However, the advantages of our method is pronounced when targets are not uniformly
distributed in the space but are instead grouped together within small regions. Under
these circumstances, idle robots are especially helpful in learning the difference in target
density among sub-regions and optimizing the assignment of tracking effort in different
sub-regions.

4 Simulations

We test our proposed algorithms via MaTLAB simulations. The task space is a 100 m X
100 m square. Targets are distributed in clusters, where 30 are located in a 33 X 33 m
square sub-region at the lower-left corner of E, and another 30 targets in a 33 X 33 m
squared sub-region at the top-right corner. Targets move within the sub-regions following
a Gaussian random walk at a maximum speed of 3 m/s. All robots begin each trial at
randomized locations within a 20 m X 10 m box at the bottom center of the environment.
Robots have a maximum speed of 5 m/s and are equipped with isotropic sensors with a
sensing radius 5 m.

Both instantaneous and cumulative estimation are approximated by uniform grid
implementation, with a grid size of 0.1 m x 0.1 m. In the PHD filter, the robots use a
Gaussian random walk (with oo = 0.35 m/s) for the motion models f, set the survival
probability to 1, and the birth PHD to 0 due to no prior knowledge of targets is learned.
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Fig. 1. Figures show 70 robots and 60 targets distribution in a 100 m X 100 m squared task space
after 300s of tracking using Dame’s method and our method, respectively. Orange diamonds
plot locations of targets. Green squares and circles show locations and field of views of robots,
respectively. Red crosses plot robots’ temporary goals. Dashed lines plot boundaries of robots’
current assigned space.

We use the same measurement model for homogeneous noisy sensors as [6]. Note that
our proposed method is compatible with heterogeneous sensing network [4], we just
make this choice to simplify the tests.

4.1 Qualitative Comparison

We first show how our proposed algorithms improve multi-target tracking using a single
trial using 70 robots. Figures 1 show the locations of robots and targets after 300 s using
both Dames’ method [6] and our method. When targets gather within only a small portion
of the environment, the previous method can hardly optimize robot locations for more
accurate tracking of targets since only a few robots have found targets and are tracking
them. As a result, most of the robots are idle and move erratically to cover areas where
no targets are distribute, which demonstrates the weakness of the previous algorithm
that idle robots do not actively search for targets, causing an inefficient use of the total
sensing capability of the team while searching for un-tracked targets. Such phenomenon
is improved by our method, which drives a larger number of robots to gather at the
clusters of targets while a handful of other robots continue to search unexplored areas,
as the exact locations and motion models of targets are unknown. The result indicates
the efficacy of our method in that the distribution of the clusters is learned overtime and
the power diagram distributes more balanced workload to individuals.

To illustrate the different characteristics of the instantaneous estimation and the
cumulative estimation of targets, we plot in Figures 2 the value of wi(x) and wc(x)
for all x € E after 300 s of the task using our method, respectively. The instantaneous



Distributed Tracking of Clustered Targets 9

100

0.1

100

0 20

(b) wa

Fig. 2. Figures plot surface of wi and wc distributed over the 100 m X 100 m task spaces after
300, respectively.
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estimation, i.e., the PHD, provides the best guess of exact locations of targets at current
time through a set of sharp peaks, shown as Figure 2a. The PHD wi(x) of x € E returns
to near zero rapidly as targets are no longer found at x over a very short period of
time given low expected target birth rate, exhibiting high accuracy of estimating target
exact locations but short “memory” of historical target distribution. On the contrary, the
cumulative estimation wc presents a relatively smooth and continuous distribution over
the task space, with higher values distributed over the entire target clusters and near-zero
values over the rest of the space, shown as Figure 2b. Therefore, the instantaneous and
the cumulative estimation are utilized to drive busy and idle robots respectively, as the
former robots requires target exact locations for accurate tracking while the latter robots
are in need of coarse distribution of clusters for optimized deployment.

4.2 Quantitative Comparison

To test the efficacy of our proposed approach, we conduct a series of trials using a range
of team sizes (from 60 to 90 robots). Three tracking strategies are compared: 1) Dames’
method (“D” method) in [6], 2) Dames’ method with power diagram (“P” method)
which uses instantaneous estimation only for tracking (similar to the power diagram
implementation in [4]), and the power weight in Equation (14) is depending on PHD

instead, given by
1
-2
pi = ( > wi(x>) : (14)
xeW;

and 3) our method (“O” method) which uses both instantaneous and cumulative estima-
tion, outlined in Algorithm 1. For each team size we run 10 trials.

OSPA To quantify the performance, we will use the first order Optimal SubPattern
Assignment (OSPA) metric [14], acommonly-used approach in MTT. The error between
two sets X, Y, where |X| = m < |Y| = n without loss of generality, is

m 1/p
d(X,Y) = (l min (Z de (X, Y r(i))? +cP(n—m) , (15)
e
i=1

n I1,,

where ¢ is a cutoff distance, d.(x,y) = min(c, ||x — y||), and II,, is the set of all
permutations of the set {1,2,...,n}. This gives the average error in matched targets,
where OSPA considers all possible assignments between elements x € X and y € Y that
are within distance c of each other. This can be efficiently computed in polynomial time
using the Hungarian algorithm [10]. We use ¢ = 10m, p = 1, and measure the error
between the true and estimated target sets. Note that a lower OSPA value indicates a
more accurate tracking of the target set.

Results In Figure 3a, we report the median OSPA value to measure tracking accuracy
over the final 700s of each trial, allowing the team to reach or be close to a steady
state and smoothing out the effects of spurious measurements that cause the OSPA to
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Fig. 3. Figures show OSPA errors of group of trials. Figure 3a displays boxplots of average OSPA
errors from 300s to 1000s using the three methods (“D”, “P”, and “O”) with four team sizes,
each over ten trials. |R| denotes the number of robots. Figure 3b plots average OSPA errors of the
total of 40 trials (10 for each team size) using the three methods over the entire 1000 s.

fluctuate, and the results are aggregated into boxplots. “D” method shows the worst
performance in tracking clustered targets regardless of team sizes. As depicted by the
results of “P” method, such performance is improved by assigning optimized task spaces
that contain equivalent instantaneous estimated number of targets to robots in the team,
which drives the robots to gather at where targets are currently tracked. However, robots
are still not tend to move to where targets are likely to clustered by no target is tracked
instantly. Our proposed method further improves this flaw and shows the best tracking
performance of clustered targets, as suggested by the OSPA values of “O” method.

In Figure 3b, we plot the average OSPA values of all 40 trials of four different team
sizes using the three methods over the entire 1000s. It is shown that the OSPA error
drops at similar rates over the first 200 s as robots start moving from the starting area and
explore the entire search space, despite the applied tracking algorithm. After that, “D”
method no longer improves the tracking accuracy and the team reaches a steady state,
while the other two algorithms continues to result in lower down of the OSPA error.
“P” method reaches a steady state at around 400 s, after which the team has completed
updating a steady-state PHD and propagating optimized cell assignment. Meanwhile,
the OSPA error continuously drops by using “O” method until approximately 600 s.
This is due to the fact that the cumulative estimation of target number continuously
grows as more observations are gain, leading to an enhanced congregation of robots in
target clusters. It is illustrated that our proposed method results in a continuous learning
behavior of cluster distribution as robots explore and contributes to the outperformance
of tracking accuracy over the other two algorithms.
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5 Conclusions

The tracking accuracy of existing distributed MR-MTT algorithms significantly decays
when targets are clustered instead of evenly distributed across the task space. In this
paper, we propose a novel distributed multi-target tracking algorithm that allows a team
of robots to effectively track clustered targets, despite given no prior knowledge of
target states. Each robot estimates both instantaneous and cumulative target density and
dynamically optimizes its space assignment using a power diagram implementation
of Lloyd’s algorithm. As a result, robots are able to track detected targets precisely
while congregate at target clusters by learning the coarse cluster distribution from past
observations. Simulation results suggest that our algorithm is superior to other candidates
in effective tracking of clustered targets.
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