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Abstract. This paper proposes a distributed estimation and control
algorithm to allow a team of robots to search for and track an unknown
number of targets. The number of targets in the area of interest varies
over time as targets enter or leave, and there are many sources of sensing
uncertainty, including false positive detections, false negative detections,
and measurement noise. The robots use a novel distributed Multiple
Hypothesis Tracker (MHT) to estimate both the number of targets and
the states of each target. A key contribution is a new data association
method that reallocates target tracks across the team. The distributed
MHT is compared against another distributed multi-target tracker to
test its utility for multi-robot, multi-target tracking.

Keywords: Distributed estimation, Multiple Hypothesis Tracker, Multi-
target tracking

1 Introduction

The paper addresses the problem of multi-robot, multi-target tracking (MR-
MTT), a canonical task in robotics, which includes problems such as search and
rescue [21], surveillance [11], and mapping [10]. Additionally, we assume that
the robots operate in a known area that contains an unknown number of targets
(e.g., the robots know the blueprint map of a building but not how many people
are inside of it). The targets of interest can be stationary or dynamic, and they
might enter or leave current environment. Thus the number of the targets varies
with time. A solution to this problem contains two primary components: (I)
a estimation algorithm to track the targets and (II) a control algorithm leads
robots to search for new targets (exploration) while also keeping track of detected
targets (exploitation).

Multiple Target Tracking (MTT) is a well studied problem, with the pri-
mary distinction between methods being how they address the problem of data
association [30]. Common approaches include the Multiple Hypothesis Tracker
(MHT) [2], Joint Probabilistic Data Association (JPDA) [13], Probability Hy-
pothesis Density (PHD) filter [20], and Multi-target Multi-Bernoulli (MeMBer)
Filter [33]. We base our solution on the track-oriented MHT (TOMHT) [16] as
this offers a conceptually simple and computationally efficient solution.
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Active search with teams of robots is another well studied problem. The
primary distinction in this space is the use of centralized [27, 34] versus dis-
tributed strategies [11, 19, 29]. One of the most successful distributed algorithms
is Voronoi-based control [7], where the basic idea is to divide the search area
with a Voronoi partition [12] and iterative move each robot to the centroid of
its Voronoi cell, a process known as Lloyd’s algorithm. In recent years, Multi-
Agent Deep Reinforcement Learning (MADRL) offers a new method to generate
search policies through repeated interactions between other agents and the en-
vironment in an attempt to maximize a reward function [15]. However, much of
the work based on MADRL requires global information and uses a centralized
architecture [25, 14]. Zhou et al. [35] propose a decentralized MADRL method
using the maximum reciprocal reward to track cooperatively with UAV swarms.
However, one downside of learning-based frameworks is that they often have
trouble generalizing to unseen scenarios.

There are fewer works that specifically address the MR-MTT problem. One
of the first solutions was Cooperative Multi-robot Observation of Multiple Mov-
ing Targets (CMOMMT) from Parker [22], which assigns robots to targets to
maximize the time such that each target is observed by at least one robot. Re-
lated to CMOMMT, Pierson and Rus [23] proposed a distributed method for
capturing multiple evaders with multiple pursuers in 2D and 3D environment
by assigning pursuers to evaders and then using gradient descent. Pimenta et
al. [24] propose Simultaneous Coverage and Tracking (SCAT) where they use
Lloyd’s algorithm to create a control law with guaranteed exponential conver-
gence to a local minimum of the objective function. Our previous work [9] built
upon SCAT by allowing the robots to learn the target distribution online rather
than needing that information a priori. We did this by formulating a distributed
PHD filter and using this as the importance weighting function in Lloyd’s al-
gorithm to drive target search. This paper will use the same control framework
but formulate a new distributed MHT.

The primary contribution of this work is creating a new distributed TOMHT
algorithm. Our approach leverages information about the relative locations of
sensors (i.e., robots) to decrease the memory and computational requirements
relative to a näıve implementation. We then demonstrate the utility of this for-
mulation to solve the MR-MTT problem by using the resulting target estimates
to drive robot search. Our search strategy naturally and effectively drives the
robots to follow previously detected targets and to explore unknown areas that
may contain new targets. To demonstrate our result is correct and efficient, we
compare our result to that of the PHD filter [9] through a series of simulated
experiments with static and moving targets.

2 Background

In this section we provide the mathematical formulation of the standard Multiple
Hypothesis Tracker (MHT) for multi-target tracking and of Lloyd’s algorithm
for distributed coverage control.
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(a) Gating (b) Associated detec-
tions

(c) Track trees

Fig. 1. Illustration of MHT. (a) Example of at t = 1, where observations 2 and 3 are
in the gate and could be associated with the current track 1 while observation 4 is out
of the gate and can not be associated to existing tracks. (b) 1-6 are observations at
different time step. With the gating process, initial track hypothesis are built based
on gating test. (c) The corresponding track trees. Each tree node is associated to an
observation in (b).

2.1 MHT Definition

Let the set of objects be Xt = {x1
t ,x

2
t , . . .}, where xit is the state of the ith

object at time t. The MHT uses an extended Kalman filter to estimate the state
of each object, so x̂it ∼ N (µit,Σ

i
t). Since the number of objects is unknown, the

MHT uses the concept of a track to represent a potential object. Therefore, the
number of tracks represents the estimated number of objects within the search
space and the state of each track represents the state of that individual object.

At each time step, a robot receives a set of measurements Zt = {z1t , z2t , . . .}.
The number of measurements depends upon the number of targets within the
robot’s field of view (FoV) as well as the probability of receiving a false negative
pfn or false positive detection pfp . The MHT uses a two-step approach to solve
the MTT, first solving the data association problem to match measurements to
tracks and then using the associated measurements to update each track.

Data Association The MHT uses a gating method to determine if an individ-
ual measurement zjt should be associated with a track x̂it:

d2t (x̂
i
t, z

j
t ) = (µ̂it − zjt )

T (Σi
t)
−1(µ̂it − zjt ) ≤ ε2d, (1)

where µit,Σ
i
t are the mean and covariance of the estimated track x̂it and εd is the

allowable distance threshold. Fig. 1a shows the gating process for one time step.
This comparison is to determine the full set of potential associations between all
measurements Zt and all tracks X̂t at time t.

The TOMHT then considers this set of potential associations, as Fig. 1b
shows. For example, if measurements z2t and z3t could be associated with a track
x̂1
t , then two copies of that track are propagated into the future, one using each

hypothetical association, as Fig. 1c shows. All these distinct hypotheses for a
track are maintained using a tree structure, where each branch is a unique series
of associations and each node has a distinct mean and covariance. Additionally,
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the TOMHT considers the possibility of starting a new tree using each measure-
ment, which represents the possibility that a detection represents an entirely
new object.

Track Scoring Based on the above structure, there will be many distinct hy-
potheses for an individual track based on different association histories. There-
fore, the MHT uses a scoring system to determine the likelihood of individual
tracks. This score can be used both to find the maximum likelihood track as well
as to prune branches within the tree to avoid an exponential growth in the set
of hypotheses over time. A standard way to formulate the score S uses the log
likelihood ratio [3, 16]

S(Ai1:t) = ln
p(zk1:t1:t | z

ki
i ⊆ Zi ∀i)

p(zk1:t1:t | z
ki
i ⊆ ∅)

= ln

∏
i=1:t p(z

ki
i | z

ki−1

1:i−1, z
ki
i ⊆ Zi)∏

i=1:t p(z
ki
i | z

ki−1

1:i−1, z
ki
i ⊆ ∅)

(2)

whereAi1:t = {k1, . . . , kt} is a history of associations for track i, p(zkii | z
ki−1

1:i−1, z
ki
i ⊆

Zi) = N (zkii ; x̂kii ) represents the track being updated with a specific measure-

ment and p(zkii | z
ki−1

1:i−1, z
ki
i ⊆ ∅) = 1/AFoV represents a missed detection (i.e.,

false negative) and AFoV is the area of the sensor field of view. This score can
be easily updated at each time

S(Ai1:t) = S(Ai1:t−1) +

{
pfn

1−pfp
, zktt ⊆ ∅

ln AFoV

2π −
1
2 ln |Σt

kt |+
d2

2 , zktt ⊆ Zt
(3)

where d(= 2) is the dimension of the space.
To get the maximum likelihood target set at time t, the TOMHT selects the

best association history using the combination assignment problem:

max
∑
i

S(Ai1:t)

s.t. Ai1:t ∩A
j
1:t = ∅, ∀i 6= j

(4)

In other words, we want to find the maximum total store such that each mea-
surement is associated with at most one target. This optimization problem is
solved in [16]. Then the N-scan pruning approach will trace back to t −N and
prune the subtrees which diverge from the global optimal hypothesis, which is
the solution to (4).

2.2 Lloyd’s Algorithm

Lloyds’ algorithm [7] locally minimizes the function:

H(q1, q2, ...qR) =

∫
E

min
r∈{1,...,R}

f(d(x, qr))φ(x)dx, (5)
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where d(x, q) measures the distance between elements in E, f(·) is a monotoni-
cally increasing function, and φ(x) is a non-negative weighting function. φ(x) can
be a time-invariant function in coverage problem and it can also be a time-variant
function in tracking problem. A general choice is f(x) = x2. The minimum value
of the inside the integral is reached when we divide the environment using the
Voronoi partition, Vr = {x | d(x, qi) ≤ d(x, qj), ∀i 6= j}, where Vr are the Voronoi
cells. The minimum with respect to robot positions is

(qr)∗ =

∫
Vr
xφ(x) dx∫

Vr
φ(x) dx

, (6)

This is a distributed control algorithm because as long as each robot knows the
positions of its neighbors, a robot is capable of computing its Voronoi cell and
move forward to its weighted centroid of Voronoi cell. Note that in practice,
Voronoi neighbors can potentially be far apart. We make the assumption that
the density of robots and/or the communication range of robots is sufficiently
large to allow robots to communicate with all of their neighbors. The problem
of formulating a consistent partition subject to communication range limits will
the subject of future work.

This simple iterative, myopic control scheme is widely used in coverage prob-
lems. For example, Lee and Egerstedt [18] use Lloyd’s algorithm to track a
time-varying density function with a teams of robots. Bhattacharya et al. [1]
expand the the search space to non-convex and non-Euclidean space. Suresh et
al. [31] propose a method with low complexity and communication workload in
distributed case using Lloyd’s algorithm. Our previous work [9] repurposes this
coverage controller to perform target tracking by choosing the estimated target
density as the time-varying importance weighting function φ(x).

3 Distributed Multiple Hypothesis Tracker

The formulation above was for the standard single sensor case. However, two
new considerations arise when there are multiple robots. First, multiple robots
may observe the same target at the same time (and consequently may each have
a local copy of a track for that target). Second, targets may leave the FoV of
one robot and enter the FoV of another robot. So long as those two robots are
within communication range (which is typically much larger than the sensing
range), then the first robot can provide some information to the second robot
to improve its initial estimation. This section outlines our novel formulation to
address these issues.

Note that there are existing distributed MHT solutions for multi-sensor
surveillance in radar systems [5, 6]. However, in that case the sensors are static
and the topology of the communication network is fixed. In our case, the sen-
sors are mobile, have a smaller FoV than that of radar, and the communication
topology changes online. Our new formulation accounts for all of these effects.
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3.1 Assumptions

We make three main assumptions. First, that robots know their pose. This is
a strong assumption but robots operating in indoor environment with a high
quality of priori map [26] or in outdoor environment with GPS receivers are able
to navigate for long periods of time with minimal drift in their pose estimates.
We also showed in our past work that sufficiently small drift has neglibigle effects
on distributed target tracking accuracy [9]. Second, we assume that each robot
is capable of communicating with its Voronoi neighbors and all the robots with
overlapping sensor FoVs. This assumption was also discuss above in Sec. 2.2.
Third, each robot has a unique id, which they will use to determine precedence
to avoid conflicts.

Fig. 2. Example of track fusion. There are three robots, whose FoV are shown by the
dashed circles. Each robot has a unique color that is shared by its tracks. There are
4 targets, located at (10.5,11), (5.5,6.5), (5.5,9), and (16,16), and 6 tracks (colored
ellipses), 2 from each robot. Here r2 is the only robot with a nonempty set of private
tracks, P2 = (16, 16). All other tracks are in the union of multiple areas. Since r3 has
the largest ID, then R3 = (5.5, 9), (10.5, 11) and F3 = (10, 11), (11, 11), (5.5, 9), while
R1,R2,F1,F2 = ∅. Then, r3 calculates the KL-Divergence between tracks in F3 and
R3 and fuse tracks with low KL-Divergence using Algorithm 1.

3.2 Track Exchange and Fusion

Similar to our past work creating a distributed PHD filter [9], our distributed
MHT solution utilizes the Voronoi partition from Lloyd’s algorithm to spatially
distribute information across the team, i.e., robot r maintains the tracks that
are located within its Voronoi cell Vr. The key is to create a set of rules for data
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exchange to ensure consistency across the team as cell boundaries shift due to
robot motion and as targets move.

When robots are well spaced out with their FoVs not overlapping, then each
robot can run its own separate MHT. However, when multiple robots view the
same region then each may have its own separate track for the same target.
These repeated tracks not only drive several robots track one target, which is
a waste of system resource, but also increase false positive rate. Algorithm 1
outlines our approach, which is also illustrated in Fig. 2.

The process starts by inflating a robot’s FoV to account for effects such as
measurement noise (line 1), typically using the standard deviation of the mea-
surement model 2σ. Robots then exchange these inflated regions to determine
their local grouping NF (line 2). Robots then exchange track estimates amongst
these local clusters (lines 3-14), using the relative positions of the track and
other robots as well as the IDs of each robot to sort each track into one of three
categories: 1) private (i.e., only in F̂r), 2) fused (i.e., in multiple regions but r
has the highest ID amongst these), or 3) received (i.e., in multiple regions but
r is not the highest ID).

After this data exchange process, robot r measures the Kullback-Leibler di-
vergence between all tracks in its fused and received sets F and R (lines 15-20).
Robot r then uses the Munkres algorithm [17] to find the optimal assignment of
tracks (line 21), where a valid assignment (i.e., with cost less than dmax) means
that a fused and received track are the same object and the estimates are com-
bined and added to the private list (lines 26-27). Unassigned tracks are added
directly to the private list (lines 23-24 and 30-34).

3.3 Importance Weighting Function

Then we need to use the resulting target estimation from the MHT to drive
exploration using Lloyd’s algorithm. The key choice in Lloyd’s algorithm is to
set the importance weighting function φ(x). In our previous work [9], we used
the PHD as the weighting function. We will take a similar approach, using

φ(x) = v(x) +
n∑
i=1

N (x̂i | µi, Σ2
i ) (7)

where v(x) accounts for undetected targets (i.e., driving exploration) and the
right terms accounts for detected targets (i.e., exploitation). We create a simple
ad hoc rule to approximate the number of undetected targets

v(x) =

{
(1− pd(x))v(x) x ∈ FoV

max(v +∆v, δ) else,
(8)

where pd(x) is the probability of the robot detecting a target at x, ∆v is the
number of new targets potentially appearing per time step, and δ is a maxi-
mum target density to prevent “windup” in infrequently observed areas. The
motivation behind this rule is to decrease the expected number of undetected
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Algorithm 1 Track Exchange and Fusion for Robot r

1: F̂r = Fr ⊕ B(2σ) . Expand the FoV
2: NF = {j 6= r | F̂r ∩ F̂j 6= ∅}
3: P,F ,R = ∅ . Private, fused, and received track lists
4: for t ∈ T do
5: Nt = {j ∈ NF | t ∈ F̂j}
6: if Nt is empty then
7: P = P ∪ {t}
8: else if r > maxj∈Nt j then
9: F = F ∪ {t}

10: else
11: Send t to robot maxj∈Nt j
12: end if
13: end for
14: Add all tracks received from other robots to R
15: for tRi ∈ R do . Create assignment distance matrix D
16: for tFj ∈ F do

17: DKL(tRi ‖tFj ) = 1
2

(
‖µFj − µRi ‖2(ΣFj )−1 + tr((ΣFj )−1ΣRi )− 2 + ln

detΣFj
detΣRi

)
18: di,j =

{
DKL(tRi ‖tFj ), DKL(tRi ‖tFj ) < εKDL

dmax, else

19: end for
20: end for
21: Find assignment A : R→ F
22: for tRi ∈ R do
23: if A(i) = ∅ then . Track tRi not assigned
24: P = P ∪ {tRi }
25: else

26: Make new track t with µ =
µRi +µFA(i)

2
, Σ =

ΣRi +ΣFA(i)

2

27: P = P ∪ {t}
28: end if
29: end for
30: for tFj ∈ F do
31: if (@i s.t. A(i) = j) AND (di,j = dmax, ∀i) then . Track tFj not assigned
32: P = P ∪ {tFj }
33: end if
34: end for
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targets for all points that are observed and increases the number of undetected
targets outside of the field of view (where ∆v = 0 when it is known that targets
are stationary). We set v(x) = δ at the start of exploration. Typically, we set
δ = 1/A, where A is the area of the environment. This assumes there is only one
target in the environment.

To make the problem tractable, we approximate the weighting function by
a set of key points along a uniform grid in the environment, a common choice
in robotics [32]. We then calculate the weight of each key point using (7) and
use this to approximate the integrals in (6) by summations. We use the same
algorithms as our previous work [9, Algorithm 1] to ensure the data is properly
exchanged as Voronoi boundaries shift.

4 Results

In this section, we test our approach against our previous results using the
distributed PHD filter [9], as this is the most closely related MR-MTT solution
in the literature. First, we isolate the differences due to the tracker by using the
same measurement and pose data from [9] and running this data through our
new MHT. Then, we examine the benefits of the new weighting function (7) to
show that unifying the estimation and control is helpful.

All trials take place in an open 100×100 m area. We run trials with different
number of targets with the position of targets drawn uniformly from a 120×120 m
area. Any targets initialized outside the map will be discarded. The robots begin
at random locations within a small box at the bottom center of the map. The
robot are holonomic with a maximum velocity of 2 m/s. Each robot is equipped
with an onboard sensor with a circular FoV of radius 5 m, pfn = 1 − pd = 0.2,
and pfp = 3.66 · 10−3. Robots measure the relative position of a target z ∼
N (x − q, 0.25I2). The sensors collect measurements at 2 Hz. Note, these values
do not represent any specific real-world situation, but could represent a team of
drones equipped with downward facing cameras. For a real situation, one could
follow the procedures outlined in our other work to carefully characterize the
sensor models [8, 4].

4.1 Performance Metric

We measure tracking error using the Optimal SubPattern Assignment (OSPA)
metric [28]. The error between sets X and Y , where |X| = m ≤ |Y | = n without
loss of generality, is

d(X,Y ) =

(
1

n
min
π∈Πn

m∑
1

dc(xi, yπ(i))
p + cp(n−m)

) 1
p

(9)

where c is the cutoff distance (we use c = 10 m), dc(x, y) = min(c, ‖x− y‖), Πn

is the set of permutations of {1, 2, 3, ..., n}, and p = 1 is our choice for p-norm.
Since the OSPA can fluctuate due to false negative and false positive detections,
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(a) static targets (b) dynamic targets

Fig. 3. Robot trajectories. (a) shows the trajectories of robots during a single trail
with 20 robots and 5 static targets. (b) shows the trajectories of robots during a single
trail with 20 robots and dynamic targets

Fig. 4. Boxplots shows the median OSPA statistics over 10 runs for teams of 10-100
robots and 10,30,50 static targets for distributed MHT, MHT tracking based on control
result in PHD and distributed PHD case respectively.

we calculate the median of the OSPA over the last 100 s to obtain a steady
estimate and measure the variance of the OSPA over this same time window to
measurement the stability of the tracker.

4.2 Stationary Targets

In the static case, the number of targets and their positions remain constant. We
run a batch of trails with targets number 10, 30, and 50 respectively. The robots
begin by distributing over the environment. Once a robot detects a target, it will
typically continue to track that unless the track gets assigned to another robot,
as Fig. 3a shows. As the robots explore the environment, v(x) decreases in the
detected area, thus the weighted centroid in one Voronoi cell keeps shifting away
from regions without targets.
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Fig. 5. Boxplots shows the median of standard deviation of OSPA statistics over 10
runs for teams of 10-100 robots and 10,30,50 static targets for distributed MHT, track-
ing results from MHT using detection results in PHD and distributed PHD case re-
spectively.

Figure 4 shows the median OSPA over the last 100 s of a 550 s experiment
(long enough to reach a steady state). We see that the median OSPA decreases
significantly when the number of robots increases for all three methods, leveling
out when the number of robots is near the number of targets. We see that in
general, the performance is about the same using all three methods, with the
mixed MHT-PHD case having a higher average OSPA as the control was not
directly tied to the tracker. This is also born out in the standard deviation of
the OSPA data in Fig. 5, where the MHT-PHD case tends to have the highest
standard deviation. This also explains the increase in the standard deviation as
the number of robots increases.

We also see that the MHT data tends to be between the mixed case and the
PHD. This is likely due to the MHT making hard decisions about the presence
of a target (i.e., a track exists or is pruned) compared to the PHD, which uses
a target density function the more gracefully degrades. We expect the MHT to
perform better when there are fewer false negative detections, as repeated missed
detections often cause tracks to be pruned.

4.3 Dynamic Targets

In the dynamic case, targets move around in the environment and the number
of targets varies over time as targets enter or leave the map area. Thus we set
up the birth rate b(x) near the map boundary (∂E) to simulate the occurrence
of new targets:

b(x) =

{
5.26× 10−5 ‖x− ∂E‖ ≤ 5m

0 else

4v(x) := 4v(x) + b(x)

(10)

Note, this birth model is incorporated into the 4v term in (8). With this birth
model, the total expected number of increasing targets is 1 per 10 s. Because of
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Fig. 6. Boxplots shows the median OSPA error statistics over 10 runs for teams of 10-
100 robots and dynamic targets for distributed MHT, MHT tracking based on control
result in PHD and distributed PHD case respectively.

this flux, the final number of targets is always similar regardless of the initial
number. The emergent behavior in this case is different the static case, where
some robots spread out along the map boundary due to detect new targets,
as Fig. 3b shows. To get the steady state tracking performance, we extend the
experiment to 800s and we evaluate the OSPA error over last 200s.

Figure 6 shows the median OSPA of the distributed MHT, MHT-PHD and
PHD. We see that the OSPA decreases as the number of robots increases, and
the variance of the OSPA has the same trend as the static case. The pure MHT
estimation, namely, the MHT-PHD, still performs a little worse than the dis-
tributed PHD and keeps the largest variance among these three methods. The
main potential reason is similar to that in static case, which is the control policy
based on distributed PHD disturbs the tracks assignment in MHT estimation.
However, unlike the static case, the MHT has a consistently lower OSPA value
than the PHD data, especially in smaller teams. It also has a smaller variation
in larger teams, meaning it provides a more consistent result.

We do not analyze the standard deviation of the OSPA in last 200s of each
trail because the appearance and disappearance of the targets is the principle
component of the standard deviation.

4.4 Discussion

Beyond the qualitative and quantitative tracking performance in the above sce-
nario, there are a number of other factors to consider with MR-MTT algorithms.

Failure Cases The most challenging scenario for MTT is when targets are
tightly clustered together (relative to the measurement covariance), as this is
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when data association is most difficult. Due to their different approaches, the
MHT and PHD filter will fail in different ways. The MHT makes multiple hard
decisions about data association. Thus, tightly clustered targets will lead to a
large branching factor at each time step, each of which may have a high likelihood
of being true. This will cause the number of branches to be very large and
difficult to prune. On the other hand, the PHD filter represents targets using
one target density function. Thus, the PHD filter will have a single large peak
in the density function, making it difficult to extract the precise location of any
individual object within the cluster.

The other challenging scenario is when there are multiple missed detections
in a row. In the MHT, this causes a track to be pruned prematurely, as there is
typically a maximum timeout for a track to ensure that old branches get pruned.
Increasing this timeout will make the MHT more robust to missed detections,
but adds computations by increasing the number of tracks. The PHD filter fails
in a different manner. In the PHD filter update equation [9, eq. (4)], the target
density function decreases in areas where the robot expects to detect a target
and increases in areas where the robot actually detects a target. Thus, repeated
missed detections lower the density and make it difficult to recover quickly.

Adding multiple robots adds another challenge. Due to the design of our
distributed MTT algorithms, when a target lies right at the boundary between
two Voronoi cells then the ownership of that track will be ambiguous. Thus, two
robots may repeatedly exchange ownership of a track simply due to measurement
noise pushing the mean position across the Voronoi boundary. This will not affect
tracking quality, but will increase the communication load.

Computational Complexity Analyzing the computational complexity of the
MHT filter is challenging as the number of computations depends on the specific
scenario under consideration. As mentioned above, the worst case scenario for
the MHT is when all the targets are tightly clustered together (i.e., within the
gate radius of one another). In this case, the number of branches will grow expo-
nentially over time, where the base of the exponential function is the number of
targets in the cluster. On the other extreme, when targets are widely spaced then
there will only be one branch per target, essentially just running an extended
Kalman filter for each target in parallel.

The complexity of the PHD filter scales differently in the number of targets.
As detailed in [9, eq. (4)], the PHD filter features a summation over the number
of measurements (which is proportional to the number of targets). This superior
scaling law relative to the MHT is a result of the choices made during the data
association step of the MTT algorithm design.

The distributed MHT or PHD filter will generally scale better in the number
of targets than a centralized MTT as the computations are distributed across the
team, with each robot taking ownership of one portion of the full environment.
The worst case would be if all targets in cell of a single robot, but this is almost
guaranteed to never occur by construction of the control method, as robots are
drawn towards areas of high target density.
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Communication Load Like the complexity, the communication load is situa-
tionally dependent. There are three main stages to the distributed MHT or PHD
filter algorithms, 1) Voronoi calculations, 2) environment reassignment, and 3)
MTT update.

The Voronoi calculations are exactly the same between the distributed MHT
and PHD filter and only require robots to exchange pose information with their
neighbors, a low bandwidth operation.

The environment reassignment step in the MHT filter is where robots ex-
change tracks that have crossed the boundaries of Voronoi cells. The communi-
cation load depends upon the number of targets, the length of history, and the
number of branches in the track tree. In the PHD filter, the robots exchange
portions of the target density function (in our case, sets of weighted particles).
Thus, with low target density the MHT will be more efficient but with high
target density the PHD filter will be more efficient.

The MTT update step requires robots to exchange measurements if and
only if they can see into the cell of another robot (i.e., when the robot-robot
distance is smaller than the field of view of a robot). In this case, the robots
simply need to exchange measurement sets, which is a relatively low bandwidth
operation as this is typically just a numerical array (e.g., a list of range-bearing
measurements). In the case of the PHD filter, the robots need to perform a
second round of communication in order to compute a consistent normalization
term in the PHD update step [9, eq. (5)].

5 Conclusion

In this paper, we propose a distributed algorithm to search for and track an
unknown number of targets in a search area. There are two main components: 1)
a novel, distributed MHT formulation for mobile robot teams and (2) a Voronoi-
based control strategy. We compare the result of the distributed MHT to our
previous work, which uses an alternative MTT solution, a distributed PHD filter.
We found that both filters perform similarly well to solve the MR-MTT task.
The PHD filter was slightly better in the case of static targets, yielding more
accurate and consistent tracking performance. However, the MHT performed
slightly better when the targets were dynamic, particularly when the size of
the team is smaller. We also demonstrated the importance of tying the control
directly to the tracking, with the MHT performing better on live data compared
to running on the prior data collected by robots using the PHD filter.
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